JP2003201664A - Method for drying yarn-like material, method for producing hydrophilic polymer single yarn and apparatus for drying yarn-like material - Google Patents

Method for drying yarn-like material, method for producing hydrophilic polymer single yarn and apparatus for drying yarn-like material

Info

Publication number
JP2003201664A
JP2003201664A JP2001401889A JP2001401889A JP2003201664A JP 2003201664 A JP2003201664 A JP 2003201664A JP 2001401889 A JP2001401889 A JP 2001401889A JP 2001401889 A JP2001401889 A JP 2001401889A JP 2003201664 A JP2003201664 A JP 2003201664A
Authority
JP
Japan
Prior art keywords
filamentous material
wind tunnel
drying
single yarn
collagen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001401889A
Other languages
Japanese (ja)
Other versions
JP4000855B2 (en
Inventor
Yoshiteru Nakano
良輝 中野
Yukihiro Morinaga
幸弘 守永
Toshifumi Hotta
敏文 堀田
Koji Shimizu
浩二 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nipro Corp
Original Assignee
Nipro Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nipro Corp filed Critical Nipro Corp
Priority to JP2001401889A priority Critical patent/JP4000855B2/en
Publication of JP2003201664A publication Critical patent/JP2003201664A/en
Application granted granted Critical
Publication of JP4000855B2 publication Critical patent/JP4000855B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B15/00Removing liquids, gases or vapours from textile materials in association with treatment of the materials by liquids, gases or vapours
    • D06B15/09Removing liquids, gases or vapours from textile materials in association with treatment of the materials by liquids, gases or vapours by jets of gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/001Drying and oxidising yarns, ribbons or the like
    • F26B13/002Drying coated, e.g. enamelled, varnished, wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • F26B13/12Controlling movement, tension or position of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/004Nozzle assemblies; Air knives; Air distributors; Blow boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/10Temperature; Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/12Velocity of flow; Quantity of flow, e.g. by varying fan speed, by modifying cross flow area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/14Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects using gases or vapours other than air or steam, e.g. inert gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/04Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour circulating over or surrounding the materials or objects to be dried
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/08Drying solid materials or objects by processes not involving the application of heat by centrifugal treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Artificial Filaments (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for efficiently and continuously drying a yarn-like material having low heat resistance and weakness like a collagen single yarn without causing heat denaturation and fracture. <P>SOLUTION: This method for drying the yarn-like material comprises passing the yarn-like material to be dried in an axial direction through an air duct and applying airflow to the yarn-like material so as to carry out nearly circular motion of the yarn-like material around a straight line L as a center connecting a feed position P1 at which the yarn-like material is charged into the air duct with a take-up position P2 at which the yarn-like material is discharged from the air duct on a plane M perpendicular to the straight line L. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、糸状物の乾燥方
法、親水性高分子単糸の製造方法、及び糸状物乾燥装置
に関し、特に、湿潤状態で脆弱であり、熱変性を起こし
易い糸状物を、断裂を生じさせることなく、連続的かつ
効率よく乾燥させる手段に関するものである。
TECHNICAL FIELD The present invention relates to a method for drying a filamentous material, a method for producing a hydrophilic polymer single yarn, and a filamentous material drying apparatus, and particularly to a filamentous material that is fragile in a wet state and easily causes thermal denaturation. The present invention relates to a means for continuously and efficiently drying, without causing breakage.

【0002】[0002]

【従来の技術】水分を含み湿潤状態にある糸状物を乾燥
させる従来の方法として、糸状物に加熱処理等を施して
熱エネルギーを付与する方法や糸状物に空気等の気体を
送風する方法、及びこれらの方法を組み合わせた方法等
がある。係る方法は、一般に、湿潤状態にある物体から
液体成分を除去する方法と同様である。従来の糸状物の
乾燥方法の一つである熱エネルギーを付与する方法に
は、例えば、特開平9−888号公報に記載されている
ように、未乾燥の中空糸膜をハウジングケース内に封入
し、該ハウジングケース内でマイクロウェーブを発生さ
せて中空糸膜の束に含まれる水分を均一に加熱、蒸発さ
せ、発生した水蒸気をハウジング外の空気と交換するこ
とにより、中空糸膜を乾燥する方法がある。一方、熱エ
ネルギーを付与する方法と気体を送風する方法とを組み
合わせたものには、例えば、特開平10−237756
号公報に記載されているように、サイジング処理液を付
着させた炭素繊維を100〜300℃の乾燥装置内に設
置し、該乾燥装置内に燃焼炉で熱交換された熱風を送り
込んでサイジング処理液を乾燥させる方法がある。
2. Description of the Related Art As a conventional method for drying a filamentous material containing moisture, a method of applying heat energy to the filamentous material to give heat energy or a method of blowing a gas such as air to the filamentous material, And a method combining these methods. Such a method is generally similar to removing liquid components from a wet object. As a method of applying heat energy, which is one of the conventional methods for drying filamentous materials, for example, an undried hollow fiber membrane is enclosed in a housing case as described in JP-A-9-888. Then, microwaves are generated in the housing case to uniformly heat and evaporate the water content contained in the bundle of hollow fiber membranes, and the generated water vapor is exchanged with the air outside the housing to dry the hollow fiber membranes. There is a way. On the other hand, a combination of the method of applying thermal energy and the method of blowing gas includes, for example, Japanese Patent Laid-Open No. 10-237756.
As described in Japanese Patent Laid-Open Publication No. JP-A No. 2004-242242, carbon fibers to which a sizing treatment liquid is attached are installed in a drying device at 100 to 300 ° C., and hot air that has undergone heat exchange in a combustion furnace is fed into the drying device to perform the sizing treatment. There is a method of drying the liquid.

【0003】熱エネルギーを付与する方法により湿潤状
態にある糸状物を乾燥させるには、乾燥すべき糸状物に
耐熱性が要求される。例えば、特開平9−888号公報
に記載された方法では、中空糸膜がマイクロウェーブで
熱変成しないこと、特開平10−237756号公報に
記載された方法では、サイジング剤及び炭素繊維が10
0〜300℃の温度範囲で熱分解しないことが必要とな
る。従って、糸状物の耐熱性が低い場合には、熱エネル
ギーを付与する方法による乾燥は不適である。
In order to dry the filamentous material in a wet state by the method of applying heat energy, the filamentous material to be dried is required to have heat resistance. For example, in the method described in JP-A-9-888, the hollow fiber membrane does not undergo thermal denaturation by microwaves. In the method described in JP-A-10-237756, the sizing agent and the carbon fiber are 10
It is necessary not to thermally decompose in the temperature range of 0 to 300 ° C. Therefore, when the heat resistance of the filamentous material is low, the drying by the method of applying thermal energy is not suitable.

【0004】ところで、例えば親水性高分子であるコラ
ーゲンは、生分解性、生体適合性、組織再生、細胞増
殖、止血作用等の優れた特性から医療材料として注目さ
れており、コラーゲンを縫合糸や組織再生用膜等として
用いるために糸状物に紡糸することが有益である。しか
し、コラーゲンの変性温度は、由来動物種により多少の
差は有るものの一般的に低く、高いものであっても40
℃程度である。従って、湿潤状態のコラーゲン糸を乾燥
する方法として、前述したような熱エネルギーを付与す
る方法は不適である。
By the way, collagen, which is a hydrophilic polymer, has been attracting attention as a medical material because of its excellent properties such as biodegradability, biocompatibility, tissue regeneration, cell proliferation, and hemostatic action. It is useful to spin into filaments for use as tissue regeneration membranes and the like. However, the denaturation temperature of collagen is generally low, although there are some differences depending on the species of origin,
It is about ℃. Therefore, the method of applying heat energy as described above is not suitable as a method of drying a collagen thread in a wet state.

【0005】コラーゲン糸のように耐熱性の低い糸状物
を乾燥する方法として、特開平6−228505号公報
及び特開平6−228506号公報には、コラーゲンを
親水性有機溶媒で脱水凝固して糸状に成形した後に乾燥
する方法が記載されている。前記公報記載の方法によれ
ば、コラーゲン中の水分量を十数%とすればコラーゲン
の変性温度が蒸発潜熱効果により100℃前後に上昇す
ることから、乾燥工程における乾燥温度を60℃前後に
上げることができ、効率よく短時間に乾燥することがで
きる。しかし、コラーゲンを完全に乾燥させた後は、も
はや蒸発潜熱効果を得ることはできないので、コラーゲ
ンから水分が完全に除去された直後から、該コラーゲン
は変性温度を上回る60℃前後の温度に曝され熱変性を
起こす。これにより、コラーゲンの特性は失われ、ゼラ
チン化したものしか得られないという問題がある。
As a method of drying a filamentous material having a low heat resistance such as a collagen filament, JP-A-6-228505 and JP-A-6-228506 disclose a method in which collagen is dehydrated and coagulated with a hydrophilic organic solvent to form a filamentous material. The method of drying after molding is described. According to the method described in the above publication, when the amount of water in collagen is set to 10% or more, the denaturation temperature of collagen rises to about 100 ° C. due to the latent heat of vaporization effect. Therefore, the drying temperature in the drying step is raised to about 60 ° C. Therefore, it can be efficiently dried in a short time. However, since the latent heat of vaporization effect can no longer be obtained after the collagen is completely dried, the collagen is exposed to a temperature of about 60 ° C., which is higher than the denaturation temperature, immediately after the water is completely removed from the collagen. Causes heat denaturation. As a result, the properties of collagen are lost, and only gelatinized products are obtained.

【0006】[0006]

【発明が解決しようとする課題】前述したコラーゲン糸
のように、乾燥すべき糸状物の耐熱性等により熱エネル
ギーを付与する乾燥方法を採用することができない場合
には、一般に、空気等の気体を送風する方法が採用され
るが、係る方法は熱エネルギーを付与する方法と比較し
て乾燥効率が悪く、乾燥時間が長くなる等の不利益が大
きい。これに対し、単位時間当たりの送風量を増大させ
れば、即ち風圧を上げれば乾燥時間を短くすることが可
能となるが、糸状物への負荷も増大する。例えば前述し
たような、親水性有機溶媒で脱水凝固した直後のコラー
ゲン糸は非常に脆弱であり、乾燥効率を向上させるため
に風圧を上げればコラーゲン糸が断裂するという問題が
あった。このように、コラーゲン糸のような脆弱な糸状
物の乾燥効率は悪いので、該糸状物の製造では連続的に
紡糸して巻取り等を行うことは困難であり、適宜切断等
することにより乾燥に適した長さの糸状物を複数紡糸し
てから、自然乾燥又は微弱な送風による乾燥等を行わね
ばならなかった。
When it is not possible to adopt a drying method that imparts thermal energy due to the heat resistance of the filamentous material to be dried, such as the above-mentioned collagen thread, generally, a gas such as air is used. Although a method of blowing air is adopted, such a method has disadvantages such as poor drying efficiency and long drying time as compared with the method of applying heat energy. On the other hand, if the amount of air blown per unit time is increased, that is, the air pressure is increased, the drying time can be shortened, but the load on the filamentous material also increases. For example, as described above, the collagen yarn immediately after dehydration and coagulation with the hydrophilic organic solvent is very fragile, and there is a problem that the collagen yarn is torn when the air pressure is increased to improve the drying efficiency. As described above, since the brittle filamentous material such as collagen thread has poor drying efficiency, it is difficult to continuously spin and wind the filamentous material in the production thereof, and the filamentous material is dried by appropriately cutting it. It has been necessary to spin a plurality of filaments having a length suitable for the above, and then perform natural drying or drying with a weak blast.

【0007】本発明は、このような問題に鑑みてなされ
たものであり、コラーゲン単糸のように、耐熱性が低く
かつ脆弱な糸状物を、熱変性及び断裂を生じさせずに効
率的に、また、連続して乾燥させる手段を提供すること
を目的とする。
The present invention has been made in view of the above problems, and is effective for efficiently producing brittle filaments having low heat resistance and weakness, such as collagen single filaments, without causing thermal denaturation and rupture. Moreover, it aims at providing the means to dry continuously.

【0008】[0008]

【課題を解決するための手段】本発明に係る糸状物の乾
燥方法は、風洞に乾燥すべき糸状物を軸方向に通過させ
るとともに、糸状物が風洞に入る送入位置と糸状物が風
洞から出る取出位置とを結ぶ直線と直交する平面におい
て、糸状物が該直線を中心として略円運動を行うように
気流を与えるものである。
A method for drying a filamentous material according to the present invention is such that a filamentous material to be dried is axially passed through a wind tunnel, and a feeding position at which the filamentous material enters the wind tunnel and a filamentous material from the wind tunnel. In a plane orthogonal to a straight line connecting the take-out position, the filamentous material gives an air flow so as to make a substantially circular motion about the straight line.

【0009】糸状物が行う略円運動とは、図1に示すよ
うに、送入位置P1と取出位置P2との間において糸状
物が弧状をなすように回転する、所謂縄跳び状に回転す
ることを意味し、送入位置P1と取出位置P2とを結ぶ
直線Lと直交する平面Mにおいてみれば、図に示すよう
に、糸状物が直線Lと平面Mとの交点Oを回転中心とし
て略円状の軌道Rを回転することをいう。回転方向は特
に限定されるものではなく、時計方向であっても反時計
方向であってもよいが、一定であることが好ましい。ま
た、糸状物が縄跳び状に回転した際の最大外径、即ち平
面Mにおける最大半径も特に限定されるものではない
が、糸状物が風洞の内壁に接触しないようにする。かか
る最大半径は、送入位置P1と取出位置P2間の距離、
気流の方向や風圧等により調整することが可能である。
As shown in FIG. 1, the substantially circular movement of the filamentous material means that the filamentous material rotates in an arc shape between the feeding position P1 and the take-out position P2, that is, a so-called jump rope shape. And a plane M orthogonal to a straight line L connecting the feed position P1 and the take-out position P2, as shown in the figure, the filamentous substance is substantially a circle with an intersection O between the straight line L and the plane M as a rotation center. It means to rotate the orbit R. The direction of rotation is not particularly limited, and it may be clockwise or counterclockwise, but it is preferably constant. Further, the maximum outer diameter when the filamentous material is rotated in a jump rope shape, that is, the maximum radius in the plane M is not particularly limited, but the filamentous material is prevented from coming into contact with the inner wall of the wind tunnel. The maximum radius is the distance between the feed position P1 and the take-out position P2,
It can be adjusted by the direction of the air flow, the wind pressure, or the like.

【0010】風洞は、断面が円形或いは楕円形の筒状体
であり、好ましくは断面円形の筒状体である。該風洞
は、金属、プラスチック、木材、ガラス等の材料により
形成することができるが、強度や加工性から金属製のも
のが好適である。風洞の両端は開口しており、該開口に
は、糸状物の送入口及び取出口と、気流の通気口とが設
けられる。該送入口及び取出口は円形であることが好ま
しく、その径は糸状物が挿通自在なものであれば特に限
定されるものではないが、十分に大きくすることにより
前記通気口と兼用させることも可能である。勿論、送入
口及び取出口と通気口とを別途に設けることとしてもよ
い。送入位置P1及び取出位置P2は、糸状物が前記送
入口又は取出口を通過する位置であり、送入位置P1、
取出位置P2の順に糸状物が軸方向に進行して風洞を通
過する。糸状物が通過すべき位置は風洞の軸線上である
ことが好ましい。また、送入位置P1及び取出位置P2
の近傍には、糸状物を両位置夫々に案内するための、例
えば回転ローラのようなガイド部材を設けることが好ま
しい。筒状体の風洞に糸状物を通過させるためには、最
初に前記ガイド部材に沿って糸状物を風洞内に挿通させ
る準備作業が必要となるが、風洞を、例えば筒状体の軸
方向に分割し、分割された部材同士を回動自在に枢着し
た構造や、分割された部材に係合部を設けて筒状体に組
立可能な構造とすることが好ましい態様であり、これに
より、前記準備作業中は風洞内を露呈させて作業するこ
とができるようになる。
The wind tunnel is a tubular body having a circular or elliptical cross section, preferably a tubular body having a circular cross section. The wind tunnel can be formed of a material such as metal, plastic, wood, or glass, but a metal one is preferable in terms of strength and workability. Both ends of the wind tunnel are open, and an inlet and an outlet for the filamentous material and an air flow vent are provided in the opening. The inlet and the outlet are preferably circular, and the diameter thereof is not particularly limited as long as a thread can be inserted therethrough, but it may also be used as the vent by being sufficiently large. It is possible. Of course, the inlet and outlet and the vent may be provided separately. The feed-in position P1 and the take-out position P2 are positions at which the filamentous material passes through the feed-in port or the take-out port.
The filamentous material advances in the axial direction in the order of the take-out position P2 and passes through the wind tunnel. The position where the filamentous material should pass is preferably on the axis of the wind tunnel. Further, the feeding position P1 and the unloading position P2
It is preferable to provide a guide member such as a rotary roller for guiding the filamentous material to both positions in the vicinity of the position. In order to pass the filamentous material through the wind tunnel of the tubular body, it is necessary to first perform a preparatory work for inserting the filamentous material into the wind tunnel along the guide member. It is a preferred embodiment that the structure is divided and the divided members are pivotally attached to each other, or that the divided members are provided with engaging portions so that they can be assembled into a tubular body. During the preparatory work, it becomes possible to work by exposing the inside of the wind tunnel.

【0011】糸状物を前記略円運動させる気流として
は、風洞を螺旋状に回転しながら進行する回転気流が好
適であるが、流速の方向がそろった層流である必要はな
く、乱流であってもよい。また、回転気流は、風洞内に
おいて、送入位置P1と取出位置P2とを結ぶ直線Lと
平行し、かつ、該直線Lと異なる方向へ送風することに
より発生させることが好適である。ここで、直線Lと異
なる方向とは、例えば、図1に矢印で示すように直線L
から離れる方向であり、平面視及び側面視の他、どの方
向から見ても直線Lと重ならない方向をいう。気流の進
行方向は、気流に対する糸状物の相対速度を高め、糸状
物が気流と接触する面積を増加させるために、糸状物の
進行方向と逆方向であること、即ち取出位置P2から送
入位置P1に向かって送風することが好適である。ま
た、送風方向は、図2に示すように、送風方向と直線L
とが交わるように平面視等した場合に、直線Lとなす角
度αが1〜89°の範囲で任意に設定することが可能で
あるが、糸状物の回転速度や乾燥効率を考慮すると、略
15〜75°の範囲内であることが好ましく、特に好ま
しくは略30〜60°の範囲内である。係る方向に送風
を行うことにより、送り出された気体は風洞の内壁に沿
って旋回しながら進行し、所謂螺旋状の回転気流とな
る。該回転気流が風洞内の糸状物に作用して、糸状物が
縄跳び状の回転運動を行うこととなる。
As the air flow that causes the filamentous material to make a substantially circular motion, a rotating air flow that advances while spirally rotating in a wind tunnel is suitable, but it does not have to be a laminar flow in which the directions of the flow velocity are uniform, and is a turbulent flow. It may be. Further, it is preferable that the rotating airflow is generated by blowing air in a direction different from the straight line L that is parallel to the straight line L connecting the inlet position P1 and the outlet position P2 in the wind tunnel. Here, the direction different from the straight line L means, for example, the straight line L as indicated by an arrow in FIG.
It is a direction away from, and is a direction that does not overlap with the straight line L when viewed from any direction other than a plan view and a side view. The direction of travel of the airflow is opposite to the direction of travel of the filamentous material in order to increase the relative speed of the filamentous material with respect to the airflow and increase the area in which the filamentous material contacts the airflow, that is, from the take-out position P2 to the feeding position. It is preferable to blow air toward P1. In addition, as shown in FIG. 2, the blowing direction is a straight line L with the blowing direction.
It is possible to arbitrarily set the angle α formed with the straight line L in the range of 1 to 89 ° when viewed in a plan view so as to intersect with, but in consideration of the rotation speed and drying efficiency of the filamentous material, It is preferably in the range of 15 to 75 °, particularly preferably in the range of approximately 30 to 60 °. By sending the air in such a direction, the sent-out gas advances while swirling along the inner wall of the wind tunnel, and becomes a so-called spiral rotating airflow. The rotating air flow acts on the filamentous material in the wind tunnel, and the filamentous material makes a rope jumping rotational movement.

【0012】前記螺旋状の回転気流のような気流を糸状
物に与えることにより、糸状物に作用する気流の風圧
(物理的外力)が糸状物の縄跳び状の回転運動に使用さ
れるので、風圧に起因する糸状物の断裂の危険性が低減
される。また、風圧を増大させた場合にも、振幅が殆ど
変化することなく糸状物の縄跳び状の回転運動の角速度
が増加するので、断裂の危険性は殆ど上がらない。糸状
物に断列を生じさせることなく風圧を増大させることが
できるので、乾燥条件に制限がある場合、例えば、糸状
物の熱変性等のため気体温度の上限に制限があり室温程
度の気体を送風して乾燥するような場合にも、効率的に
糸状物を乾燥することが可能となる。
By giving an air flow such as the above-mentioned spiral rotating air flow to the filamentous material, the wind pressure (physical external force) of the air flow acting on the filamentous material is used for the rope-jumping rotary motion of the filamentous material. The risk of rupture of the filamentous material due to is reduced. Further, even when the wind pressure is increased, the angular velocity of the rope-jump-like rotary motion of the filamentous material is increased with almost no change in the amplitude, so that the risk of rupture is hardly increased. Since the wind pressure can be increased without causing breakage in the filamentous material, when the drying conditions are limited, for example, due to thermal denaturation of the filamentous material, the upper limit of the gas temperature is limited, and a gas at room temperature is used. Even when air is blown to dry the filamentous material, it is possible to efficiently dry the filamentous material.

【0013】本発明において糸状物とは、一般的な糸の
ように、細長く柔軟性を有するものをいう。糸状物の外
径は、特に限定されるものではないが、略5μm〜1.
5mm程度が好適であり、略10〜20μmが最適であ
る。糸状物の素材は、親水性高分子物質や生分解性物質
が好ましく、更に好ましくは、強度や耐熱性が低いコラ
ーゲンやムコ多糖等であり、コラーゲンが最適である。
In the present invention, the thread-like material means an elongated and flexible material like a general thread. The outer diameter of the filamentous material is not particularly limited, but is approximately 5 μm to 1.
5 mm is suitable, and about 10 to 20 μm is optimum. The material of the filamentous material is preferably a hydrophilic polymer substance or a biodegradable substance, more preferably collagen or mucopolysaccharide having low strength and heat resistance, and collagen is most suitable.

【0014】本発明に係る乾燥方法は、湿潤状態にある
糸状物を乾燥する際に用いられるものであるが、特に湿
式紡糸法を用いて親水性高分子単糸を製造する方法に好
適である。湿式紡糸法とは、紡糸すべきポリマー等を溶
媒に溶解させた原液を、細孔を有するノズルから押し出
し、固化液で固めて糸状物を製造する方法である。前記
原液は固化液により脱溶媒されて表面が固まった状態の
糸状物となり、その後、種々の乾燥方法により、糸状物
の内部も脱溶媒される。前記固化液には、エタノール、
メタノール、イソプロパノール、アセトン、及びメチル
エチルケトン等の親水性有機溶媒、塩化ナトリウム、塩
化カリウム、塩化アンモニウム、硫酸ナトリウム、及び
硫酸アンモニウム等の塩溶液等が使用され、更にアルデ
ヒド類、エポキシ類、カルボジイミド類、及びイソシア
ネート類の架橋剤等が添加される場合もあるが、本発明
に係る乾燥方法は、特に親水性有機溶媒を固化液として
用いる湿式紡糸法に好適であり、エタノールを固化液と
して用いる湿式紡糸法に最適である。
The drying method according to the present invention is used for drying a filamentous material in a wet state, and is particularly suitable for a method for producing a hydrophilic polymer single yarn by using a wet spinning method. . The wet spinning method is a method in which a stock solution prepared by dissolving a polymer to be spun in a solvent is extruded from a nozzle having fine pores and solidified with a solidifying solution to produce a filamentous material. The stock solution is desolvated by the solidifying solution to form a filamentous material having a solid surface, and thereafter, the interior of the filamentous material is also desolvated by various drying methods. The solidified liquid contains ethanol,
Hydrophilic organic solvents such as methanol, isopropanol, acetone, and methyl ethyl ketone, salt solutions such as sodium chloride, potassium chloride, ammonium chloride, sodium sulfate, and ammonium sulfate are used, and further aldehydes, epoxies, carbodiimides, and isocyanates. Although a cross-linking agent of the class may be added, the drying method according to the present invention is particularly suitable for a wet spinning method using a hydrophilic organic solvent as a solidifying solution, and a wet spinning method using ethanol as a solidifying solution. Optimal.

【0015】また、本発明に係る乾燥方法を実施する装
置としては、(イ)風洞と、(ロ)糸状物を送出位置及
び取出位置に夫々案内するガイド部材を有し、風洞に乾
燥すべき糸状物を軸方向に通過させる糸状物送り機構
と、(ハ)送入位置と取出位置とを結ぶ直線と直交する
平面において、糸状物が該直線を中心として略円運動を
行うような気流を風洞に発生させる送風機構とを具備し
てなるものが好適である。
As an apparatus for carrying out the drying method according to the present invention, (a) a wind tunnel, and (b) a guide member for guiding the filamentous material to the delivery position and the take-out position, respectively, should be dried in the wind tunnel. A filamentous-material feeding mechanism that allows the filamentous material to pass in the axial direction, and (c) an air flow that causes the filamentous material to make a substantially circular motion about the straight line in a plane orthogonal to a straight line that connects the feeding position and the take-out position. A device provided with a blower mechanism for generating in a wind tunnel is preferable.

【0016】風洞は、前述した筒状体であり詳細な説明
は省略する。ガイド部材は、送入位置P1及び取出位置
P2に糸状物を夫々案内するためのものであり、周面に
糸状体を案内するための凹溝が形成された滑車や、内周
面が滑らかなリング状の部材等が好適であり、滑車が最
適である。糸状物送り機構は、該ガイド部材に沿って風
洞に糸状物を軸方向に通過させるものであり、例えば、
取出位置P2を通過した糸状物を巻き取るボビンを設
け、モータ及び減速ギア等により所定の角速度で該ボビ
ンを回転させることにより実現される。また、ボビンが
糸状物を均等に巻き取るように、回転しているボビンを
軸方向に往復運動させるスライド機構を有することが好
ましい。
The wind tunnel is the above-mentioned tubular body, and detailed description thereof will be omitted. The guide member is for guiding the filamentous material to the feeding position P1 and the take-out position P2, respectively, and has a pulley having a groove for guiding the filamentous material on the peripheral surface and a smooth inner peripheral surface. A ring-shaped member or the like is suitable, and a pulley is most suitable. The filamentous material feeding mechanism allows the filamentous material to pass through the wind tunnel along the guide member in the axial direction.
It is realized by providing a bobbin for winding the filamentous material that has passed through the take-out position P2 and rotating the bobbin at a predetermined angular velocity by a motor and a reduction gear. Further, it is preferable to have a slide mechanism that axially reciprocates the rotating bobbin so that the bobbin winds the filamentous material evenly.

【0017】前記送風機構は、気体を送り出す送風機
と、風洞内に設けられ、前記気体を、前記送入位置と取
出位置とを結ぶ直線と平行し、かつ、該直線と異なる方
向へ案内する送風ノズルとを具備してなるものであるこ
とが好適である。送風機は、コンプレッサーやファン等
を有する周知かつ任意のものが使用可能である。送風ノ
ズルは、送風機から送り出された気体を一定の方向に案
内できるものであれば特に限定されない。送風ノズルの
噴出口の方向は、図1及び図2に示したように、風洞内
において、送入位置P1と取出位置P2とを結ぶ直線L
と平行し、かつ、該直線Lと異なる方向が好適であり、
更に好ましくは糸状物の進行方向と逆方向である。これ
により、前記直線Lと直交する平面Mにおいて、糸状物
が直線Lを中心として略円運動を行うような気流を風洞
に発生させるものとなる。なお、送風ノズルを配設する
位置及び数は実施態様に応じて適宜設定できるものであ
り、特に限定されるものではない。
The blower mechanism is provided in the wind tunnel and a blower for blowing gas, and blows the gas in parallel with a straight line connecting the inlet position and the outlet position and in a direction different from the straight line. It is preferable that the nozzle comprises a nozzle. As the blower, a well-known and arbitrary one having a compressor, a fan and the like can be used. The blowing nozzle is not particularly limited as long as it can guide the gas blown out from the blower in a fixed direction. As shown in FIGS. 1 and 2, the direction of the outlet of the blow nozzle is a straight line L connecting the inlet position P1 and the outlet position P2 in the wind tunnel.
A direction parallel to the line L and different from the straight line L is preferable,
More preferably, it is in the direction opposite to the traveling direction of the filamentous material. As a result, in the plane M orthogonal to the straight line L, the air current is generated in the wind tunnel such that the filamentous material makes a substantially circular motion about the straight line L. It should be noted that the position and the number of the blowing nozzles can be set as appropriate according to the embodiment, and are not particularly limited.

【0018】前記送風機から風洞内に送り出される気体
は、乾燥すべき糸状物に変性等の悪影響を及ぼさない不
活性の気体が好ましく、例えば、空気や窒素等が好適で
あり、コストや取り扱いの容易さ等から空気が最適であ
る。また、気体の湿度及び温度は糸状物が熱変性等を起
こさない範囲で任意に設定することが可能であるが、好
ましくは、相対湿度が略50%以下、温度が室温程度、
更に好ましくは相対湿度が略30%以下である。また、
湿潤状態にある糸状物に塵埃等が付着しないようにフィ
ルタ等により塵埃を除去することが好ましい。
The gas blown into the wind tunnel from the blower is preferably an inert gas which does not adversely affect the filamentous material to be dried such as denaturation. For example, air or nitrogen is preferable, and the cost and the handling are easy. Air is the best choice. The humidity and temperature of the gas can be arbitrarily set within a range in which the filamentous material does not undergo thermal denaturation, but preferably the relative humidity is about 50% or less, the temperature is about room temperature,
More preferably, the relative humidity is about 30% or less. Also,
It is preferable to remove dust with a filter or the like so that dust or the like does not adhere to the filamentous material in a wet state.

【0019】また、風洞を通過する糸状物が、自重等に
より送入位置P1と取出位置P2との間で著しく弛んだ
り、断裂を生じる恐れがある場合、又は糸状物が縄跳び
状に回転運動する際に風洞の内壁に接触するような場合
には、風洞内に糸状物を送出自在に支持する中間支持部
材を配設することが好ましい。該中間支持部材は、糸状
物を送出自在に支持するものであり、例えば、糸状物を
挿通可能な挿通路を有する部材が好適である。また、前
述した、糸状物を風洞内に挿通させる準備作業におい
て、中間支持部材の挿通孔にも糸状物を挿通させること
となるので、前記風洞と同様に、中間支持部材を挿通孔
の軸方向に分割可能なものとして準備作業を容易とする
ことが好ましい。また、中間支持部材の配設数及び配設
位置は、風洞の長さや糸状物の強度等を考慮して適宜設
定するものであり、単数であっても複数であってもよ
い。
Further, when the filament passing through the wind tunnel may be significantly loosened or ruptured between the feeding position P1 and the take-out position P2 due to its own weight or the like, or the filament rotates in a jump rope shape. In this case, in the case of contacting the inner wall of the wind tunnel, it is preferable to dispose an intermediate support member that supports the filamentous material in the wind tunnel so that the filamentous material can be delivered freely. The intermediate support member supports the filamentous material so that the filamentous material can be delivered freely. For example, a member having an insertion passage through which the filamentous material can be inserted is suitable. Further, in the above-described preparatory work for inserting the filamentous material into the wind tunnel, the filamentous material is also inserted into the insertion hole of the intermediate support member. Therefore, similarly to the wind tunnel, the intermediate support member is inserted in the axial direction of the insertion hole. It is preferable that the preparation work can be facilitated by dividing into two parts. Further, the number and the positions of the intermediate support members are appropriately set in consideration of the length of the wind tunnel, the strength of the filamentous material, etc., and may be single or plural.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態に係る
糸状物の乾燥方法及び該乾燥方法を用いた糸状物の製造
方法について図を用いて具体的に説明する。なお、本実
施の形態ではコラーゲン単糸を湿式紡糸法により紡糸し
た後に乾燥する場合を示しているが、本実施の形態は一
例であり、本発明が実施の形態に限定されるものではな
いことは当然である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for drying a filamentous material according to an embodiment of the present invention and a method for producing a filamentous material using the drying method will be specifically described with reference to the drawings. Although the present embodiment shows the case where the collagen single yarn is spun by the wet spinning method and then dried, the present embodiment is an example, and the present invention is not limited to the embodiment. Is natural.

【0021】図3に、コラーゲン単糸紡糸装置100の
一例を示す。該コラーゲン単糸紡糸装置100は、図に
示すように、紡糸部100Aと、乾燥部(糸状物乾燥装
置)100Bとから構成されており、紡糸部100A
は、コラーゲン水溶液を押し出すシリンジ101と、押
し出されたコラーゲン水溶液を脱水固化する第1脱水液
槽102と、第1脱水液槽102で糸状に成形されたコ
ラーゲン単糸Tを更に脱水する第2脱水液槽103とか
らなるものである。一方、乾燥部100Bは、風洞10
4と、風洞104にコラーゲン単糸Tを通過させる巻取
機構(糸状物送り機構)105と、風洞104に気流を
発生させる送風機構106とからなるものである。
FIG. 3 shows an example of the collagen single yarn spinning device 100. As shown in the figure, the collagen single yarn spinning device 100 includes a spinning unit 100A and a drying unit (filamentary material drying device) 100B.
Is a syringe 101 that pushes out the collagen aqueous solution, a first dehydration liquid tank 102 that dehydrates and solidifies the extruded collagen aqueous solution, and a second dehydration that further dehydrates the collagen single yarn T formed into a thread shape in the first dehydration liquid tank 102. It is composed of a liquid tank 103. On the other hand, the drying unit 100B has the wind tunnel 10
4, a winding mechanism (filament feeding mechanism) 105 that allows the collagen single yarn T to pass through the wind tunnel 104, and a blowing mechanism 106 that generates an air flow in the wind tunnel 104.

【0022】まず、紡糸部100A及びコラーゲン単糸
の紡糸方法について詳細に説明する。コラーゲン水溶液
を押し出すシリンジ101は、シリンジ101内に所定
容量のコラーゲン水溶液が満たされており、プランジャ
が所定速度で押し下げられることにより、シリンジ10
1の先端から、その下方に位置する第1脱水液槽102
内に向けて、所定速度で連続的にコラーゲン水溶液を吐
出するものである。コラーゲンは可溶化コラーゲンであ
り、医療用途に用いる場合には、可溶化処理とともにコ
ラーゲンの抗原決定基であるテロペプタイドの除去処理
が行われているものが好適である。コラーゲンの由来や
タイプは特に限定されるものではないが、取り扱い上の
観点からはI型が好適である。コラーゲン水溶液の溶媒
としては、希酸溶液、親水性有機溶媒と水との混合液、
水等を用いることができる。また、コラーゲン水溶液の
濃度は、約4〜10重量%程度である。
First, the spinning section 100A and the method for spinning collagen single yarn will be described in detail. The syringe 101 that pushes out the collagen aqueous solution is such that the syringe 101 is filled with a predetermined volume of collagen aqueous solution, and the plunger 10 is pushed down at a predetermined speed, whereby the syringe 10
1st dewatering liquid tank 102 located below the tip of 1
The collagen aqueous solution is continuously discharged toward the inside at a predetermined speed. Collagen is solubilized collagen, and when used for medical purposes, it is preferable that solubilization treatment and telopeptide removal, which is an antigenic determinant of collagen, be performed. The origin and type of collagen are not particularly limited, but type I is preferable from the viewpoint of handling. As the solvent of the collagen aqueous solution, a dilute acid solution, a mixed liquid of a hydrophilic organic solvent and water,
Water or the like can be used. The concentration of the collagen aqueous solution is about 4 to 10% by weight.

【0023】第1脱水液槽102は第1脱水液が満たさ
れた溶媒槽であり、材質は特に限定されるものではない
が、ガラス等の透明な材質を用いれば、外部からコラー
ゲンの脱水状態を観察可能となるので好ましい。第1脱
水液槽102の容量等は特に限定されるものではない
が、図3に示すように、シリンジ101から下方に向け
てコラーゲン水溶液を吐出して脱水固化させる場合に
は、少なくともコラーゲン水溶液の表面が固化されて糸
状となるまで底に付着しない程度の深さを有することが
好ましい。第1脱水液としては、アルコール類やケトン
類の親水性有機溶媒を用いることができ、その含水率は
約50容量%以下が好ましく、更に好ましくは約30容
量%以下である。前記シリンジ101から吐出されたコ
ラーゲン水溶液は第1脱水液槽102内を下降しながら
第1脱水液により脱水固化されて糸状のコラーゲン単糸
Tとなる。
The first dehydrated liquid tank 102 is a solvent tank filled with the first dehydrated liquid, and the material is not particularly limited, but if a transparent material such as glass is used, the dehydrated state of collagen from the outside can be obtained. Is preferable because it can be observed. Although the capacity of the first dehydration liquid tank 102 is not particularly limited, when the collagen aqueous solution is discharged downward from the syringe 101 to dehydrate and solidify as shown in FIG. It is preferable to have a depth such that the surface does not adhere to the bottom until it solidifies to form a thread. As the first dehydrated liquid, hydrophilic organic solvents such as alcohols and ketones can be used, and the water content thereof is preferably about 50% by volume or less, more preferably about 30% by volume or less. The collagen aqueous solution discharged from the syringe 101 is dehydrated and solidified by the first dehydration liquid while descending in the first dehydration liquid tank 102 to form a filament-like collagen single yarn T.

【0024】第2脱水液槽103は、第2脱水液が満た
された溶媒槽であり、前記第1脱水槽に隣接して設けら
れている。第1脱水液槽102で糸状に成形されたコラ
ーゲン単糸Tは、第2脱水液槽103において更に脱水
固化される。第2脱水液槽103は横方向に幅広の所謂
平皿状のものであり、長手方向端部付近にピン11が略
水平方向に夫々設けられ、コラーゲン単糸Tが第2脱水
液内を進行するようになっている。第2脱水液も、前記
第1脱水液と同様に、アルコール類やケトン類の親水性
有機溶媒を用いることができ、その含水率は約10容量
%以下が好ましく、さらに好ましくは約2容量%以下で
ある。
The second dehydration liquid tank 103 is a solvent tank filled with the second dehydration liquid, and is provided adjacent to the first dehydration tank. The collagen single yarn T formed into a thread shape in the first dehydration liquid tank 102 is further dehydrated and solidified in the second dehydration liquid tank 103. The second dehydration liquid tank 103 is of a so-called flat plate shape that is wide in the lateral direction, the pins 11 are provided substantially horizontally in the vicinity of the ends in the longitudinal direction, and the collagen single yarn T travels in the second dehydration liquid. It is like this. Similarly to the first dehydration liquid, a hydrophilic organic solvent such as alcohols and ketones can be used for the second dehydration liquid, and the water content thereof is preferably about 10% by volume or less, more preferably about 2% by volume. It is the following.

【0025】つぎに、乾燥部100B及びコラーゲン単
糸の乾燥方法について詳細に説明する。風洞104は、
図4及び図5に示すように、金属製の筒状体であって、
軸方向に上下2分割されたものが蝶番により開閉自在に
枢着されたものである。風洞104が分割されているの
は、前述したように風洞内を露呈可能として準備作業を
容易化するためであり、風洞104の分割態様は上下2
分割に限定されるものではない。風洞104のコラーゲ
ン単糸Tが送入される側の端部は筒状体の内径と略同径
で開口しており、該開口40がコラーゲン単糸Tの送入
口と気流の通気口とを兼ねている。一方、コラーゲン単
糸Tが取り出される側の端部は筒状体の内径より小さな
開口41となっており、該開口41がコラーゲン単糸T
の取出口となっている。開口41は、コラーゲン単糸T
の外径の数倍から十数倍程度である。さらに、開口41
の周縁には、内周面が滑らかに加工されたポリテトラフ
ルオロエチレン製のリング状部材42が設けられてお
り、開口41の周縁にコラーゲン単糸Tが接触した場合
に、該周縁がコラーゲン単糸Tを損傷することを防止し
ている。また、風洞104の開口41近傍には貫通孔4
3が2箇所に形成されている。該貫通孔43は、送風機
構106の送風ノズル61を取り付けるためのものであ
り、風洞104の軸線を挟んで対向位置にある。
Next, the drying section 100B and the method for drying the collagen single yarn will be described in detail. The wind tunnel 104 is
As shown in FIG. 4 and FIG. 5, a metal cylindrical body,
The upper and lower parts that are axially divided into two parts are pivotally attached by a hinge so that they can be opened and closed. The reason why the wind tunnel 104 is divided is that the inside of the wind tunnel can be exposed to facilitate the preparatory work as described above.
It is not limited to division. The end of the wind tunnel 104 on the side where the collagen single yarn T is fed is opened with a diameter substantially the same as the inner diameter of the tubular body, and the opening 40 serves as the inlet of the collagen single yarn T and the airflow vent. Also serves as. On the other hand, the end portion on the side where the collagen single thread T is taken out has an opening 41 smaller than the inner diameter of the tubular body, and the opening 41 is the opening 41.
It is an outlet for The opening 41 is a collagen single thread T
The outer diameter is about several times to about ten times. Further, the opening 41
A ring-shaped member 42 made of polytetrafluoroethylene, the inner peripheral surface of which is smoothly processed, is provided at the periphery of the collagen monofilament T when the periphery of the opening 41 comes into contact with the collagen monofilament T. It prevents the yarn T from being damaged. In addition, the through hole 4 is provided near the opening 41 of the wind tunnel 104.
3 is formed in two places. The through holes 43 are for attaching the air blowing nozzles 61 of the air blowing mechanism 106, and are at opposite positions with the axis of the wind tunnel 104 interposed therebetween.

【0026】さらに、図4及び図5に示すように、風洞
104の長手方向中央近傍には、コラーゲン単糸Tを支
持するための中間支持部材44が配設されている。中間
支持部材44は、中央付近に縮径部44aを有する棒状
の部材であり、2本の中間支持部材44が、上下に分割
された風洞104夫々の径方向に架設され、風洞104
内において各縮径部44aで風洞104の軸線を挟むよ
うにしてコラーゲン単糸Tの挿通路を形成するものであ
る。該挿通路により、2本の中間支持部材44がコラー
ゲン単糸Tを送出自在に支持する。前記縮径部44aの
幅は、コラーゲン単糸Tの外径の数倍から十数倍程度で
あり、前記開口41の内径と同程度とすることが好まし
い。また、中間支持部材44の素材も特に限定されるも
のではないが、加工が容易であって接触や摩擦等により
コラーゲン単糸Tを損傷しないもの、例えば、ポリテト
ラフルオロエチレンが好適である。勿論、中間支持部材
44の配置数や配置位置は本実施の形態のものに限定さ
れず、風洞104の長さや乾燥すべき糸状物等の強度等
を考慮して適宜設定すればよい。
Further, as shown in FIGS. 4 and 5, an intermediate support member 44 for supporting the collagen single yarn T is disposed near the center of the wind tunnel 104 in the longitudinal direction. The intermediate support member 44 is a rod-shaped member having a reduced diameter portion 44a in the vicinity of the center, and two intermediate support members 44 are installed in the radial direction of each of the vertically divided wind tunnels 104 to form the wind tunnel 104.
In the inside, an insertion passage of the collagen single yarn T is formed so that each reduced diameter portion 44a sandwiches the axis of the wind tunnel 104. By the insertion passage, the two intermediate support members 44 support the collagen single yarn T so that it can be delivered. The width of the diameter-reduced portion 44a is about several times to several tens of times the outer diameter of the collagen single yarn T, and is preferably about the same as the inner diameter of the opening 41. The material of the intermediate support member 44 is also not particularly limited, but a material that is easy to process and does not damage the collagen single yarn T due to contact, friction or the like, for example, polytetrafluoroethylene is suitable. Of course, the number and positions of the intermediate support members 44 are not limited to those in the present embodiment, and may be appropriately set in consideration of the length of the wind tunnel 104, the strength of the filamentous material to be dried, and the like.

【0027】巻取機構105は、コラーゲン単糸Tを送
出位置P1及び取出位置P2に夫々案内するガイドロー
ラ(ガイド部材)50と、風洞104を通過したコラー
ゲン単糸Tを巻き取るための巻取りボビン51とを備え
てなるものである。
The take-up mechanism 105 includes a guide roller (guide member) 50 for guiding the collagen single yarn T to the delivery position P1 and the take-out position P2, and a take-up for winding the collagen single yarn T passing through the wind tunnel 104. And a bobbin 51.

【0028】ガイドローラ50は、図4に示すように、
周側面にコラーゲン単糸Tの位置を規制するための凹型
溝が形成された滑車であり、前記風洞104の開口4
0、41の直外側に夫々回転自在に設けられている。ガ
イドローラ50間に、コラーゲン単糸Tが断裂しない程
度の適度な弛みで張架されることにより、前記紡糸部1
00Aで紡糸されたコラーゲン単糸Tが送入位置P1及
び取出位置P2に案内される。ここで、送入位置P1
は、風洞104の開口40の略中心位置であり、取出位
置P2は開口41の略中心位置である。従って、送入位
置P1と取出位置P2とを結ぶ直線Lは、風洞104の
軸線と重複するものである。
The guide roller 50, as shown in FIG.
It is a pulley in which a concave groove for restricting the position of the collagen single yarn T is formed on the peripheral surface, and the pulley 4 has an opening 4
They are rotatably provided on the outer sides of 0 and 41, respectively. The collagen single yarn T is stretched between the guide rollers 50 with an appropriate degree of slack so that the collagen single yarn T is not ruptured.
The collagen single yarn T spun at 00A is guided to the feed-in position P1 and the take-out position P2. Here, the feeding position P1
Is a substantially central position of the opening 40 of the wind tunnel 104, and the take-out position P2 is a substantially central position of the opening 41. Therefore, the straight line L connecting the feed-in position P1 and the take-out position P2 overlaps the axis of the wind tunnel 104.

【0029】巻取りボビン51は、図3に示すように、
円柱状のものであり、回転することにより周側面に風洞
104を通過したコラーゲン単糸Tを巻き取るものであ
る。巻取りボビン51の大きさや軸方向の長さは特に限
定されないが、前記紡糸部100Aのシリンジ101に
充填されたコラーゲン水溶液により連続的に紡糸可能な
コラーゲン単糸Tをすべて巻取り可能な程度の大きさ及
び長さであることが好ましい。巻取りボビン51は、図
3に示すように、前記風洞104の開口41近傍に、そ
の軸方向が風洞104の軸方向と直交するように位置せ
しめられ、図示しない駆動源、例えば電動モータ等によ
り回転されるとともに、巻取りボビン51自体は一定速
度で軸方向に往復運動を行い、コラーゲン単糸Tが巻取
りボビン51に均等に巻き取られるようになっている。
なお、巻取りボビン51自体を軸方向に往復運動させる
他、前記ガイドローラ50と巻取りボビン51との間
に、コラーゲン単糸Tを摺動自在に掛合して巻取りボビ
ン51の軸方向に往復運動するフック等を介設すること
としてもよい。
The winding bobbin 51, as shown in FIG.
It is of a columnar shape, and the collagen single yarn T that has passed through the wind tunnel 104 is wound around the peripheral surface by rotating. The size and axial length of the take-up bobbin 51 are not particularly limited. However, it is possible to take up all the collagen single yarns T that can be continuously spun by the collagen aqueous solution filled in the syringe 101 of the spinning section 100A. The size and the length are preferable. As shown in FIG. 3, the winding bobbin 51 is located near the opening 41 of the wind tunnel 104 so that its axial direction is orthogonal to the axial direction of the wind tunnel 104, and is driven by a drive source (not shown) such as an electric motor. While being rotated, the winding bobbin 51 itself reciprocates in the axial direction at a constant speed, so that the collagen single yarn T is evenly wound around the winding bobbin 51.
In addition to reciprocating the winding bobbin 51 itself in the axial direction, a collagen single yarn T is slidably engaged between the guide roller 50 and the winding bobbin 51 in the axial direction of the winding bobbin 51. A reciprocating hook or the like may be provided.

【0030】送風機構106は、図3に示すように、圧
縮空気を送出する送風機60と、該気体を噴出する送風
ノズル61とを備えてなるものである。送風機60は周
知のエアコンプレッサであり、一方、送風ノズル61は
空気流通路を有する円筒体であって、その側周面に細孔
が設けられたものであり、該細孔は圧縮空気を直線的に
噴出する送風口610(図示せず)となっている。2つ
の送風ノズル61が、前記風洞104の貫通孔43に送
風口610が風洞104内に位置するように取り付けら
れており、送風機60と送風ノズル61とはチューブ6
2により連通されている。これにより、送風機60から
の圧縮空気がチューブ62を流通して、送風ノズル61
の送風口610から風洞104内に流出されるものとな
っている。
As shown in FIG. 3, the blower mechanism 106 is provided with a blower 60 which sends out compressed air and a blower nozzle 61 which blows out the gas. The blower 60 is a well-known air compressor, while the blower nozzle 61 is a cylindrical body having an air flow passage, and the side peripheral surface thereof is provided with fine pores, which finely compress compressed air. It is a blower port 610 (not shown) that blows out. Two blower nozzles 61 are attached to the through hole 43 of the wind tunnel 104 so that the blower opening 610 is located inside the wind tunnel 104, and the blower 60 and the blower nozzle 61 are connected to the tube 6
It is connected by 2. As a result, the compressed air from the blower 60 flows through the tube 62 and the blower nozzle 61
The air is blown out into the wind tunnel 104 from the air outlet 610.

【0031】図6及び図7は風洞104に取り付けられ
た送風ノズル61の送風口610の方向を示すための平
面図及び側面図である。図に示すように、風洞104の
軸線を挟んで上下対向位置に設けられた送風ノズル61
は、側面視(図6)において、送風口610を、送入位
置P1と取出位置P2とを結ぶ直線Lと平行する方向へ
向いており、平面視(図7)において、該直線Lと夫々
45°をなす方向へ向くように固定されている。なお、
図7においては、風洞104の上側に取り付けられた送
風ノズル61の送風口610の方向が実線の矢印で示さ
れており、風洞104の下側に取り付けられた送風ノズ
ル61の送風口610の方向が破線の矢印で示されてい
る。また、図に示すように、各送風ノズル61の送風口
610は、コラーゲン単糸Tの進行方向と逆方向、即ち
送入位置P1の方向を向いている。
6 and 7 are a plan view and a side view showing the direction of the blower port 610 of the blower nozzle 61 attached to the wind tunnel 104. As shown in the figure, the blower nozzles 61 are provided at vertically opposed positions with the axis of the wind tunnel 104 interposed therebetween.
In the side view (FIG. 6), the blower opening 610 is directed in a direction parallel to the straight line L connecting the inlet position P1 and the take-out position P2. It is fixed so that it faces in the direction of 45 °. In addition,
In FIG. 7, the direction of the blower port 610 of the blower nozzle 61 mounted on the upper side of the wind tunnel 104 is shown by a solid arrow, and the direction of the blower port 610 of the blower nozzle 61 mounted on the lower side of the wind tunnel 104. Are indicated by dashed arrows. Further, as shown in the drawing, the air blowing port 610 of each air blowing nozzle 61 faces the direction opposite to the advancing direction of the collagen single yarn T, that is, the direction of the inflow position P1.

【0032】以下、乾燥部100Bの動作について説明
する。前記紡糸部100Aで連続的に紡糸されたコラー
ゲン単糸Tは湿潤状態にある。係るコラーゲン単糸T
を、ガイドローラ50に沿って風洞104を通過させ、
その端部を巻取りボビン51に固定する。この準備作業
は、前述したように、風洞104を開放して行えば容易
である。準備作業を終えた後、風洞104を筒状に閉止
して送風機構106により風洞104内へ送風を開始す
るとともに、巻取り機構105を作動させる。
The operation of the drying section 100B will be described below. The collagen single yarn T continuously spun in the spinning unit 100A is in a wet state. Related Collagen Single Thread T
Through the wind tunnel 104 along the guide roller 50,
The end portion is fixed to the winding bobbin 51. This preparatory work is easy if the wind tunnel 104 is opened, as described above. After completing the preparatory work, the wind tunnel 104 is closed in a tubular shape, and the air blowing mechanism 106 starts blowing air into the wind tunnel 104, and the winding mechanism 105 is operated.

【0033】図8は風洞104に発生する回転気流を、
図9はコラーゲン単糸が風洞104内で回転気流により
回転運動する状態を説明するための斜視図であり、図9
においては説明の便宜上、風洞104の分割された上半
分は省略している。送風機構106により風洞104内
へ送風された空気は、送風ノズル61から噴出された
後、風洞104の内壁に衝突し、風洞104に沿って螺
旋状に旋回しながら進行する。これにより、図8に示す
ような螺旋状の回転気流が風洞104内に発生する。一
方、図には示していないが、巻取り機構105の巻取り
ボビン51が軸方向に往復運動をしながら回転してコラ
ーゲン単糸Tを巻き取っていく。これにより、コラーゲ
ン単糸Tは、風洞104内を巻取りボビン51の方向へ
所定速度で通過する。該コラーゲン単糸Tは、風洞10
4内を通過する際に前記回転気流を受けて、図9に示す
ように、ガイドローラ50と中間支持部材44間におい
て、夫々縄跳び状に回転運動する。コラーゲン単糸T
は、回転気流からの風圧を縄跳び状に回転運動すること
により緩衝させながら該回転気流と接触することによ
り、断裂を生じることなく効率的に乾燥され、十分に乾
燥されたコラーゲン単糸Tが前記巻取りボビン51に均
等に巻き取られる。
FIG. 8 shows the rotating airflow generated in the wind tunnel 104,
FIG. 9 is a perspective view for explaining a state in which the collagen single yarn rotates in the wind tunnel 104 by the rotating air flow.
For convenience of description, the divided upper half of the wind tunnel 104 is omitted in FIG. The air blown into the wind tunnel 104 by the blower mechanism 106 is ejected from the blower nozzle 61, collides with the inner wall of the wind tunnel 104, and travels along the wind tunnel 104 while spirally turning. As a result, a spiral rotating airflow as shown in FIG. 8 is generated in the wind tunnel 104. On the other hand, although not shown in the figure, the winding bobbin 51 of the winding mechanism 105 rotates while reciprocating in the axial direction to wind the collagen single yarn T. As a result, the collagen single yarn T passes through the wind tunnel 104 in the direction of the winding bobbin 51 at a predetermined speed. The collagen single yarn T is a wind tunnel 10.
When passing through the inside of the roller 4, the rotary airflow is received, and as shown in FIG. 9, between the guide roller 50 and the intermediate support member 44, the rotary motion is performed in a jump rope shape. Collagen single thread T
Is contacted with the rotating airflow while buffering the wind pressure from the rotating airflow by rotating the rope in a jump rope shape, whereby it is efficiently dried without causing a tear, and the sufficiently dried collagen single yarn T is It is evenly wound around the winding bobbin 51.

【0034】このようにして、本コラーゲン単糸紡糸装
置100の紡糸部Aによりコラーゲン単糸Tが連続的に
紡糸され、乾燥部100Bにより湿潤状態のコラーゲン
単糸Tが連続的に乾燥されるものとなる。かかるコラー
ゲン単糸の乾燥方法によれば、風洞104内に螺旋状の
回転気流を発生させ、該風洞104にコラーゲン単糸T
を通過させることにより、コラーゲン単糸Tを縄跳び状
に回転運動させながら乾燥するので、コラーゲン単糸T
に断裂を生じさせることなく、効率的に乾燥させること
が可能である。また、本乾燥方法を採用したコラーゲン
単糸の製造方法によれば、コラーゲン単糸Tを連続的か
つ効率的に紡糸することが可能である。
In this way, the collagen single yarn T is continuously spun by the spinning portion A of the collagen single yarn spinning apparatus 100, and the wet collagen single yarn T is continuously dried by the drying portion 100B. Becomes According to the method for drying collagen single yarn, a spiral rotating airflow is generated in the wind tunnel 104, and the collagen single yarn T is generated in the wind tunnel 104.
Since the collagen single thread T is dried while rotating in a jump rope shape by passing through, the collagen single thread T
It is possible to dry efficiently without causing rupture. Further, according to the method for producing a collagen single yarn adopting the present drying method, the collagen single yarn T can be continuously and efficiently spun.

【0035】なお、前記実施の形態においては、送風ノ
ズル61を風洞104の軸線を挟んで対向位置となる上
下2箇所に夫々設けることとしたが、送風ノズル61を
設ける位置及び数はこれに限定されるものでないことは
当然であり、例えば、風洞104の開口41に配設され
た送風ノズル61に加えて、又はこれに代えて、風洞1
04の長手方向中央付近に配設することとしてもよい。
In the above-described embodiment, the blower nozzles 61 are provided at two upper and lower positions which are opposed to each other with the axis of the wind tunnel 104 interposed therebetween, but the position and number of the blower nozzles 61 are limited to this. It is natural that the wind tunnel 1 is not provided, for example, in addition to or instead of the blower nozzle 61 disposed in the opening 41 of the wind tunnel 104.
It may be arranged near the center of 04 in the longitudinal direction.

【0036】また、前記実施の形態における乾燥部10
0Bは、コラーゲン単糸を縄跳び状に回転運動させる気
流を発生させる構成の一例であり、該気流を他の構成に
よって生じさせることも可能である。以下、他の構成の
例を説明する。図10は、前記風洞104の変形例を示
すものであり、風洞内壁に形成された螺旋状の溝により
回転気流を発生させるようになっている。詳細には、図
に示すように、本変形例に係る風洞107は、前記風洞
104と同様に、金属製の筒状体が軸方向に上下2分割
されたものが蝶番により開閉自在に枢着されたものであ
り、その端部は、コラーゲン単糸Tが送入される側は筒
状体の内径と略同径の開口70であり、コラーゲン単糸
Tが取り出される側は筒状体の内径より小さな開口71
である。また、風洞107の開口71近傍には、送風ノ
ズル61を取り付けるための貫通孔72が軸線を挟んで
対向位置となる上下2箇所に形成されている。さらに、
前記風洞104と同様に、風洞107の長手方向中央近
傍には、中間支持部材44が配設されている。
Further, the drying unit 10 in the above-mentioned embodiment
0B is an example of a configuration for generating an air flow that causes the collagen single yarn to rotate in a jump rope shape, and the air flow can be generated by another configuration. Hereinafter, examples of other configurations will be described. FIG. 10 shows a modified example of the wind tunnel 104, in which a rotating airflow is generated by a spiral groove formed on the inner wall of the wind tunnel. More specifically, as shown in the figure, in the wind tunnel 107 according to the present modification, a metal tubular body, which is axially divided into upper and lower parts, is pivotally attached by a hinge, similarly to the wind tunnel 104. At the end thereof, the side into which the collagen single thread T is fed is an opening 70 having substantially the same diameter as the inner diameter of the tubular body, and the side from which the collagen single thread T is taken out is of the tubular body. Aperture 71 smaller than inner diameter
Is. Further, in the vicinity of the opening 71 of the wind tunnel 107, through holes 72 for attaching the blower nozzle 61 are formed at two upper and lower positions which are opposed to each other with the axis interposed therebetween. further,
Similar to the wind tunnel 104, an intermediate support member 44 is arranged near the center of the wind tunnel 107 in the longitudinal direction.

【0037】風洞107の内壁には、図10に示すよう
に、螺旋状の溝73が形成されている。該溝73は凹型
溝であり、所定間隔で複数の溝73が並列して形成され
ている。図には示していないが、貫通孔72に取り付け
られた送風ノズル61から噴出された空気が、風洞10
7内壁の溝73に衝突し、該溝73の形状に沿って、図
8に示したものと同様の螺旋状の回転気流となる。これ
により、一層効率的に風洞107内に螺旋状の回転気流
を生じさせることができる。また、該溝73により風洞
107内の回転気流の方向性を規定できるので、送風ノ
ズル61の送風口610の方向を前述したように規制す
る必要はなく、送風ノズル61から噴出される空気が風
洞107の内壁に衝突するように送風すれば、溝73に
よって規定される螺旋状の回転気流が生じる。このよう
に、風洞107によれば、発生させるべき回転気流の方
向性等を考慮して送風口610の方向を規制することな
く、回転気流を発生させることができ、また、前記実施
の形態に本風洞107を用いることにより、風洞107
内に螺旋状の回転気流を一層効率的に発生させることが
できる。
A spiral groove 73 is formed on the inner wall of the wind tunnel 107, as shown in FIG. The groove 73 is a concave groove, and a plurality of grooves 73 are formed in parallel at predetermined intervals. Although not shown in the figure, the air blown from the blower nozzle 61 attached to the through hole 72 is
7 collides with the groove 73 on the inner wall, and a spiral rotating air flow similar to that shown in FIG. 8 is formed along the shape of the groove 73. As a result, a spiral rotating airflow can be generated in the wind tunnel 107 more efficiently. Further, since the direction of the rotating airflow in the wind tunnel 107 can be regulated by the groove 73, it is not necessary to regulate the direction of the blower opening 610 of the blower nozzle 61 as described above, and the air blown out from the blower nozzle 61 can be used in the wind tunnel. When the air is blown so as to collide with the inner wall of 107, a spiral rotating air flow defined by the groove 73 is generated. As described above, according to the wind tunnel 107, the rotating airflow can be generated without restricting the direction of the blower port 610 in consideration of the directionality of the rotating airflow to be generated. By using the main wind tunnel 107, the wind tunnel 107
It is possible to more efficiently generate the spiral rotating airflow therein.

【0038】また、前記実施の形態においては、送風ノ
ズル61は送風口610から直線的に空気を噴出するも
のとしたが、送風口610までの空気流通路を螺旋状に
形成したり、噴出される空気を螺旋状に回転させる形状
の羽根を送風口610に設けることとすれば、該送風口
610から噴出された空気は螺旋状の回転気流となる。
このような風洞ノズル61によっても、風洞104の形
状と送風口610の方向との関係に拘わらず、コラーゲ
ン単糸Tを縄跳び状に回転運動させる回転気流を風洞1
04内に生じさせることが可能となる。
Further, in the above-mentioned embodiment, the air blow nozzle 61 blows air linearly from the air blow port 610, but the air flow passage to the air blow port 610 is formed spirally or is blown. If the air blower 610 is provided with a blade having a shape that spirally rotates the air, the air ejected from the air blower 610 becomes a spiral rotating air flow.
With such a wind tunnel nozzle 61 as well, regardless of the relationship between the shape of the wind tunnel 104 and the direction of the blower opening 610, the wind air that causes the collagen single yarn T to rotate in a jump rope shape is generated in the wind tunnel 1.
It is possible to generate within 04.

【0039】[0039]

【実施例】以下、本発明の実施例について説明する。 実施例1 ブタ由来I型、III型混合コラーゲン粉末(日本ハム株
式会社製、SOFDタイプ、Lot.No.0102226)
を注射用蒸留水(大塚製薬社製)に溶解し、7重量%に
調製した。乾燥工程を含む全行程を、相対湿度が約38
%以下、温度が室温(約25℃)に制御された環境下に
おき、図3で示したコラーゲン単糸紡糸装置100と同
様の装置を用いてコラーゲン単糸Tを紡糸した。前記7
重量%コラーゲン水溶液を充填したシリンジ101(E
FD社製 Disposable Barrels/Pistons、55cc)に空
気圧を付与し、シリンジに装着した針(EFD社製 Ult
ra Dispensing Tips;27G、ID;0.21mm)から
該コラーゲン水溶液を99.5%エタノール(和光純
薬、特級)3Lの脱水液に吐出した。脱水液により脱水
凝固されて糸状に成形されたコラーゲン単糸Tを、乾燥
装置100Bで乾燥した。風洞104の長さは約45cm
であり、該風洞104にコラーゲン単糸Tを約9.0m/
minの速度で通過させた。このとき、コラーゲン単糸T
が風洞104を通過する時間は約3秒間であった。風洞
104に、送風機(エアコンプレッサ)60から送り出
された相対湿度38%以下、室温の空気を、初期送風圧
0.1、0.2、0.3、0.4MPa(メガパスカル)
で夫々送り出し、各空気を送風チューブ61を経由して
送風ノズル61から夫々送風し、湿潤状態のコラーゲン
単糸Tを乾燥した。乾燥後のコラーゲン単糸Tは、巻き
取り速度約9.0m/min.で、直径78mm、全長200mm
の円柱状のステンレス(以下、SUS)製巻取りボビン5
1に巻き取った。巻取りの際、コラーゲン単糸Tが巻取
りボビン51の所定部分に均等に巻き取られるように、
巻取りボビン51を、軸方向に一定速度(1.5mm/
秒)で往復させた。このようにして、巻取りボビン51
に巻き取られたコラーゲン単糸Tを作製した。
EXAMPLES Examples of the present invention will be described below. Example 1 Pig-derived type I and type III mixed collagen powder (manufactured by Nippon Ham Co., Ltd., SOFD type, Lot. No. 0102226)
Was dissolved in distilled water for injection (manufactured by Otsuka Pharmaceutical Co., Ltd.) to prepare 7% by weight. Relative humidity is about 38 during the entire process including the drying process.
%, The temperature was controlled to room temperature (about 25 ° C.), and the collagen single yarn T was spun using the same device as the collagen single yarn spinning device 100 shown in FIG. 7
Syringe 101 (E
A needle (EFD Ult manufactured by FD) equipped with a syringe by applying air pressure to Disposable Barrels / Pistons (55cc) manufactured by FD
From the ra Dispensing Tips; 27G, ID: 0.21 mm, the collagen aqueous solution was discharged into 3 L of dehydration liquid of 99.5% ethanol (Wako Pure Chemical Industries, special grade). The collagen single yarn T, which was dehydrated and solidified with a dehydration solution and formed into a thread shape, was dried by a drying device 100B. Wind tunnel 104 is about 45 cm long
The collagen single yarn T is about 9.0 m / in the wind tunnel 104.
It was passed at a speed of min. At this time, collagen single thread T
It took about 3 seconds to pass through the wind tunnel 104. The air having a relative humidity of 38% or less and room temperature sent from a blower (air compressor) 60 to the wind tunnel 104 has an initial blow pressure of 0.1, 0.2, 0.3, 0.4 MPa (megapascal).
Then, each air was blown from the blowing nozzle 61 via the blowing tube 61, and the collagen single yarn T in a wet state was dried. The collagen single yarn T after drying has a winding speed of about 9.0 m / min., A diameter of 78 mm and a total length of 200 mm.
Cylindrical stainless steel (hereinafter SUS) take-up bobbin 5
Rolled up to 1. At the time of winding, the collagen single yarn T is evenly wound around a predetermined portion of the winding bobbin 51.
Rotate the winding bobbin 51 at a constant speed in the axial direction (1.5 mm /
Seconds). In this way, the winding bobbin 51
A collagen single yarn T wound around was prepared.

【0040】次に、コラーゲン単糸Tを巻き取った巻取
りボビン51から、約7.0m/秒の取出速度でコラー
ゲン単糸Tを取り出し、取出時にコラーゲン単糸Tに所
謂糸切れが発生するかどうかを試験した。表1に、送風
機60の初期送風圧(MPa)及び総送風量(Nl(ノル
マルリットル)/分)と、乾燥工程の糸切れ及び取出時
の糸切れの有無を示した。
Next, the collagen single yarn T is taken out from the winding bobbin 51 wound with the collagen single yarn T at a take-out speed of about 7.0 m / sec, and so-called thread breakage occurs in the collagen single yarn T at the time of taking-out. Tested whether or not. Table 1 shows the initial blow pressure (MPa) of the blower 60 and the total blow rate (Nl (normal liter) / min), and the presence or absence of yarn breakage during the drying process and yarn breakage during take-out.

【0041】[0041]

【表1】 [Table 1]

【0042】表1から明らかなように、送風圧0.1〜
0.4MPaのすべての条件で、乾燥工程におけるコラー
ゲン単糸Tの糸切れは発生しなかった。また、送風圧
0.1〜0.4MPaのすべての条件において、取出時に
おけるコラーゲン単糸Tの糸切れも発生しなかった。乾
燥工程においてコラーゲン単糸Tの糸切れが発生しない
ことから、本乾燥はコラーゲン単糸Tに対するストレス
が少ないものであることがわかる。また、取出時におい
てコラーゲン単糸Tの糸切れが発生しないことから、巻
取りボビン51に巻き取られたコラーゲン単糸Tにおい
て、隣接するコラーゲン単糸T同士の癒着が発生してお
らず、十分な強度を有するコラーゲン単糸Tが得られた
こと、即ち、本乾燥方法によりコラーゲン単糸Tの乾燥
を十分かつ効率的に行うことができたことがわかる。
As is clear from Table 1, the blast pressure is 0.1-0.1.
Under all conditions of 0.4 MPa, the filament breakage of the collagen single yarn T in the drying step did not occur. Further, under all conditions of a blowing pressure of 0.1 to 0.4 MPa, the filament breakage of the collagen single yarn T at the time of taking out did not occur. Since no breakage of the collagen single yarn T occurs in the drying step, it can be seen that the main drying has less stress on the collagen single yarn T. Further, since the collagen single yarn T does not break when taken out, the collagen single yarn T wound on the winding bobbin 51 does not cause adhesion between adjacent collagen single yarns T, which is sufficient. It can be seen that the collagen single yarn T having a sufficient strength was obtained, that is, the collagen single yarn T could be sufficiently and efficiently dried by this drying method.

【0043】比較例1 風洞104による乾燥工程を行わないことを除いて、そ
の他の工程は前記実施例1と同様に行ってコラーゲン単
糸Tを作製し巻取りボビン51に巻き取った。即ち、コ
ラーゲン水溶液を脱水液により脱水凝固して糸状のコラ
ーゲン単糸Tを成形した後、湿潤状態のコラーゲン単糸
Tを巻取りボビン51に巻き取って、コラーゲン単糸T
を作製した。
Comparative Example 1 A collagen single yarn T was produced in the same manner as in Example 1 except that the drying step by the wind tunnel 104 was not performed, and the collagen single yarn T was wound up on the winding bobbin 51. That is, the collagen aqueous solution is dehydrated and coagulated with a dehydrating solution to form a filament-like collagen single yarn T, and then the wet collagen single yarn T is wound onto a winding bobbin 51 to obtain a collagen single yarn T.
Was produced.

【0044】次に、コラーゲン単糸Tを巻き取った巻取
りボビン51を室温で自然乾燥させ、その後、約7.0
m/秒の取出速度で巻き取られたコラーゲン単糸Tを取
り出し、取出時にコラーゲン単糸Tに糸切れが発生する
かどうかを試験した。その結果、巻き取られたコラーゲ
ン単糸T同士は強固に癒着しており、取出時に癒着部分
で糸切れが発生した。また、巻取りボビン51に巻き取
られたコラーゲン単糸T全体に渡って強固に癒着してい
たので、糸切れ後にコラーゲン単糸Tの端部を発見する
ことができず、その後のコラーゲン単糸Tの取出しは不
可能であった。コラーゲン単糸Tの癒着は、コラーゲン
単糸Tが湿潤状態で巻取りボビン51に巻き取られ、そ
の後、コラーゲン単糸T同士が隣接及び積重した状態の
ままで自然乾燥された為に発生したものと考えられる。
従って、コラーゲン単糸Tを巻取りボビン51に巻き取
る前に十分に乾燥を行う必要があり、該乾燥が不十分で
あれば使用可能な、即ち巻取りボビン51から糸切れを
生じさせることなく取出可能なコラーゲン単糸Tを得る
ことができないことがわかる。
Next, the winding bobbin 51 wound with the collagen single yarn T is naturally dried at room temperature, and then about 7.0.
The collagen single yarn T taken up at the take-out speed of m / sec was taken out, and it was tested whether or not a thread breakage occurred in the collagen single yarn T at the time of taking out. As a result, the wound collagen single yarns T were firmly adhered to each other, and a yarn breakage occurred at the adhering portion during take-out. Further, since the collagen single yarn T wound around the take-up bobbin 51 was firmly adhered, the end of the collagen single yarn T could not be found after the yarn breakage, and the collagen single yarn after that could not be found. It was impossible to take out T. The adhesion of the collagen single yarn T occurred because the collagen single yarn T was wound on the winding bobbin 51 in a wet state and then naturally dried while the collagen single yarn T was adjacent to and stacked on itself. It is considered to be a thing.
Therefore, it is necessary to sufficiently dry the collagen single yarn T before winding it on the winding bobbin 51. If the drying is insufficient, it can be used, that is, without causing thread breakage from the winding bobbin 51. It can be seen that it is not possible to obtain a detachable collagen single yarn T.

【0045】比較例2 実施例1と同様の方法でコラーゲン水溶液を糸状のコラ
ーゲン単糸Tに成形した後、図11に示すように、湿潤
状態のコラーゲン単糸Tの直上からコラーゲン単糸Tに
向けて送風を行い乾燥した。送風機構60(図示せず)
及び送風ノズル61は前記実施例1と同様のものであ
り、2個の送風ノズル61を45cm間隔でコラーゲン単
糸Tの上方に設置し、送風機60の初期送風圧0.1、
0.2、0.3、0.4MPaで、該送風ノズル61から
湿潤状態のコラーゲン単糸Tに夫々送風するとともに、
巻取り速度約9.0m/分でコラーゲン単糸Tを巻取り
ボビン51に巻き取った。初期送風圧0.1、0.2M
Paの条件では、乾燥工程におけるコラーゲン単糸Tの
糸切れは発生しなかったが、初期送風圧0.3、0.4
MPaの条件では、コラーゲン単糸Tの糸切れが発生した
ので、コラーゲン単糸Tを巻取りボビン51に巻き取る
ことができなかった。
Comparative Example 2 A collagen aqueous solution was formed into a filament-like collagen single yarn T by the same method as in Example 1, and then, as shown in FIG. The air was blown toward and dried. Blower mechanism 60 (not shown)
The blower nozzle 61 is the same as that in the first embodiment, two blower nozzles 61 are installed at an interval of 45 cm above the collagen single yarn T, and an initial blower pressure of the blower 60 is 0.1.
At 0.2, 0.3, and 0.4 MPa, air is blown from the air blowing nozzle 61 to the wet collagen single yarn T, respectively,
The collagen single yarn T was wound on the winding bobbin 51 at a winding speed of about 9.0 m / min. Initial blast pressure 0.1, 0.2M
Under the condition of Pa, the filament breakage of the collagen single yarn T did not occur in the drying process, but the initial blowing pressure was 0.3, 0.4.
Under the condition of MPa, the collagen single yarn T was broken, so that the collagen single yarn T could not be wound on the winding bobbin 51.

【0046】次に、初期送風圧が0.1、0.2MPaの
条件で乾燥したコラーゲン単糸Tを巻き取った巻取りボ
ビン51を室温で自然乾燥させた後、巻き取られたコラ
ーゲン単糸Tを、約7.0m/sの取出速度で取り出し、
取出時においてコラーゲン単糸Tに糸切れが発生するか
どうかを試験した。表2に、送風機60の初期送風圧
(MPa)及び総送風量(Nl/分)と、乾燥工程の糸切
れ及び取出時の糸切れの有無を示した。
Then, the wound bobbin 51 wound with the collagen single yarn T dried under the conditions of initial blowing pressure of 0.1 and 0.2 MPa was naturally dried at room temperature, and then the wound collagen single yarn was wound. T is taken out at an extraction speed of about 7.0 m / s,
It was tested whether or not thread breakage occurred in the collagen single thread T at the time of removal. Table 2 shows the initial blow pressure (MPa) of the blower 60, the total blow rate (Nl / min), and the presence or absence of yarn breakage during the drying process and yarn breakage during removal.

【0047】[0047]

【表2】 [Table 2]

【0048】表2から明らかなように、送風圧0.1〜
0.2MPaでは、比較例1と同様に、巻取りボビン51
においてコラーゲン単糸T同士の癒着が発生したので、
取出時に癒着部分でコラーゲン単糸Tに糸切れが発生
し、その後、コラーゲン単糸Tの端部を発見することが
できず、コラーゲン単糸Tの取出しを継続するのは不可
能であった。従って、送風圧0.1、0.2MPaではコ
ラーゲン単糸Tの乾燥が十分に行われなかったことがわ
かる。また、送風圧0.3、0.4MPaでは、乾燥工程
においてコラーゲン単糸Tに糸切れが発生したので、コ
ラーゲン単糸Tを巻き取ることができず、取出時のコラ
ーゲン単糸Tの糸切れの有無を試験できなかった。
As is clear from Table 2, the blow pressure is 0.1 to 0.1.
At 0.2 MPa, as in Comparative Example 1, the winding bobbin 51
Since the adhesion between the collagen single threads T occurred in
When the collagen single thread T was broken at the adhesion portion at the time of removal, the end of the collagen single thread T could not be found, and it was impossible to continue the removal of the collagen single thread T. Therefore, it can be seen that the collagen single yarn T was not sufficiently dried at the blowing pressures of 0.1 and 0.2 MPa. Also, when the blowing pressure was 0.3 and 0.4 MPa, the collagen single yarn T was broken during the drying process, so that the collagen single yarn T could not be wound up, and the collagen single yarn T was broken during removal. Could not be tested for.

【0049】実施例1と比較例2を比較すれば、比較例
2のようにコラーゲン単糸Tに対して垂直方向から送風
を行った場合に、送風圧が0.3、0.4MPaと比較的
高送風圧では、風圧によりコラーゲン単糸Tに糸切れが
発生し、巻取りボビン51にコラーゲン単糸を巻き取り
ながら連続的にコラーゲン単糸Tの乾燥を行うことがで
きなかったが、実施例1の乾燥方法では、同じ高送風圧
の条件でもコラーゲン単糸Tに糸切れが発生せず、連続
的にコラーゲン単糸Tの乾燥を行うことができた。ま
た、送風圧が0.1、0.2MPaのように低送風圧にお
いては、比較例2では、巻取りボビン51にコラーゲン
単糸を巻き取りながら連続的にコラーゲン単糸の乾燥を
行うことができたものの、その後に巻取りボビン51か
らコラーゲン単糸Tを取り出す際に糸切れが発生し、コ
ラーゲン単糸Tの乾燥が十分でなかったが、実施例1で
は、同じ低送風圧の条件で乾燥を行ったコラーゲン単糸
Tを巻取りボビン51から取り出す際に糸切れは発生し
なかったことから、実施例1の乾燥方法は、比較例2の
方法より、コラーゲン単糸Tの乾燥の達成度が高く、効
率的な乾燥方法であることがわかる。
Comparing Example 1 and Comparative Example 2, when the air is blown from the vertical direction to the collagen single yarn T as in Comparative Example 2, the blowing pressure is 0.3 and 0.4 MPa. At the high blowing pressure, the collagen single yarn T was broken due to the wind pressure, and it was not possible to continuously dry the collagen single yarn T while winding the collagen single yarn on the winding bobbin 51. In the drying method of Example 1, the collagen single yarn T was not broken even under the same high blowing pressure condition, and the collagen single yarn T could be continuously dried. In addition, in a low air pressure such as 0.1 and 0.2 MPa, in Comparative Example 2, the collagen single thread can be continuously dried while winding the collagen single thread on the winding bobbin 51. Although it was possible, a thread breakage occurred when the collagen single yarn T was taken out from the winding bobbin 51 after that, and the collagen single yarn T was not sufficiently dried. However, in Example 1, under the same low blowing pressure condition. Since no yarn breakage occurred when the dried collagen single yarn T was taken out from the winding bobbin 51, the drying method of Example 1 achieved the drying of the collagen single yarn T more than the method of Comparative Example 2. It can be seen that this is a highly efficient and efficient drying method.

【0050】[0050]

【発明の効果】以上説明したように、本発明に係る糸状
物の乾燥方法によれば、風洞に乾燥すべき糸状物を軸方
向に通過させるとともに、糸状物が風洞に入る送入位置
と糸状物が風洞から出る取出位置とを結ぶ直線と直交す
る平面において、糸状物が該直線を中心として略円運動
を行うように気流を与えることとしたので、糸状物に作
用する風圧が縄跳び状の円運動により緩和されるととも
に、一定量の気体が糸状物と接触する面積が増加され、
熱変性温度や耐熱性等の理由から温度エネルギーを付与
できない糸状物に対して、糸状物へのストレスを抑制し
て送風による乾燥効率を高めることができる。
As described above, according to the method for drying a filamentous material according to the present invention, the filamentous material to be dried is allowed to pass through the wind tunnel in the axial direction, and the filamentous material enters the wind tunnel and the feeding position and the filamentous shape. In the plane orthogonal to the straight line connecting the take-out position where the object comes out of the wind tunnel, it was decided to give the air current so that the thread-like object would make a substantially circular motion around the straight line, so the wind pressure acting on the thread-like object was a skipping rope. While being relaxed by the circular motion, the area where a certain amount of gas contacts the filamentous material is increased,
For a filamentous material to which temperature energy cannot be applied due to heat denaturation temperature, heat resistance, or the like, it is possible to suppress stress on the filamentous material and improve drying efficiency by blowing air.

【0051】また、本発明によれば、風洞内において、
前記送入位置と取出位置とを結ぶ直線と平行し、かつ、
該直線と異なる方向へ送風することにより前記気流を発
生させることとしたので、簡易かつ効率的に糸状物に縄
跳び状の円運動をさせることができる。さらに、前記気
流の進行方向を、前記糸状物の進行方向と逆方向とする
ことにより、風圧に対する糸状物の運動効率を高めると
ともに、気体と糸状物とを効率的に接触させることがで
き、前記効果を効率的に発揮させることができる。
Further, according to the present invention, in the wind tunnel,
Parallel to a straight line connecting the feeding position and the unloading position, and
Since the airflow is generated by blowing the air in a direction different from the straight line, it is possible to easily and efficiently cause the filamentous material to make a rope jumping circular motion. Furthermore, by making the advancing direction of the air flow opposite to the advancing direction of the filamentous material, it is possible to enhance the movement efficiency of the filamentous material with respect to the wind pressure and to efficiently bring the gas and the filamentous material into contact with each other. The effect can be efficiently exerted.

【0052】また、本発明に係る親水性高分子単糸の製
造方法によれば、湿式紡糸法により紡糸された湿潤状態
の親水性高分子単糸を、前記乾燥方法により乾燥する工
程を含むので、湿潤状態にある親水性高分子単糸を、熱
変性及び断裂を生じさせることなく効率的に乾燥するこ
とができる。これにより、親水性高分子単糸の連続的な
紡糸が可能となり、十分に乾燥されて強度の高い親水性
高分子単糸を得ることができる。
Further, the method for producing a hydrophilic polymer single yarn according to the present invention includes a step of drying the wet hydrophilic polymer single yarn spun by the wet spinning method by the drying method. Thus, the hydrophilic polymer single yarn in a wet state can be efficiently dried without causing thermal denaturation and tearing. As a result, continuous spinning of the hydrophilic polymer single yarn is possible, and a hydrophilic polymer single yarn that is sufficiently dried and has high strength can be obtained.

【0053】また、本発明に係る糸状物乾燥装置によれ
ば、風洞と、糸状物を送入位置及び取出位置に夫々案内
するガイド部材を有し、風洞に乾燥すべき糸状物を軸方
向に通過させる糸状物送り機構と、送入位置と取出位置
とを結ぶ直線と直交する平面において、糸状物が該直線
を中心として略円運動を行うような気流を風洞に発生さ
せる送風機構と、を具備してなるものとしたので、簡易
な構造により前記乾燥方法を実施することが可能とな
る。
Further, according to the filamentous material drying apparatus of the present invention, it has a wind tunnel and guide members for guiding the filamentous material to the feeding position and the take-out position, respectively, and the filamentous material to be dried in the axial direction in the wind tunnel. A filamentous-material feeding mechanism that allows the filamentous material to pass therethrough, and a blowing mechanism that generates an air flow in the wind tunnel such that the filamentous material makes a substantially circular motion about the straight line in a plane orthogonal to the straight line connecting the feeding position and the take-out position. Since it has been provided, it is possible to carry out the drying method with a simple structure.

【0054】また、前記送風機構を、気体を送り出す送
風機と、風洞内に設けられ、前記気体を、前記送入位置
と取出位置とを結ぶ直線と平行し、かつ、該直線と異な
る方向へ案内する送風ノズルと、を具備してなるものと
することにより、簡易かつ効率的に糸状物に縄跳び状の
円運動をさせる気流を発生させることができる。さら
に、前記送風ノズルは、糸状物の進行方向と逆方向に前
記気体を案内するものとすることにより、風圧に対する
糸状物の運動効率を高めるとともに、気体と糸状物とを
効率的に接触させることができる。
Further, the blower mechanism is provided in the blower for blowing out the gas and in the wind tunnel, and guides the gas in a direction parallel to the straight line connecting the feeding position and the taking-out position and in a direction different from the straight line. By providing the air-blowing nozzle, the airflow that causes the thread-like object to make a rope jump circular motion can be generated easily and efficiently. Further, the blower nozzle guides the gas in a direction opposite to the traveling direction of the filamentous material, thereby enhancing the movement efficiency of the filamentous material with respect to the wind pressure and efficiently bringing the gas and the filamentous material into contact with each other. You can

【0055】また、本発明によれば、前記風洞の所定位
置に、糸状物を送出自在に支持する中間支持部材を配設
したので、ガイド部材間に張架された糸状物を適宜支持
して糸状物の自重による断裂等を防止できる。これによ
り、乾燥すべき糸状物の脆弱性に拘わらず、ガイド部材
間、即ち、風洞の長手方向の長さを長くすることが可能
となり、乾燥時間等の所望の乾燥条件を実現することが
可能となる。
Further, according to the present invention, since the intermediate supporting member for supporting the filamentous material so that the filamentous material can be sent out is arranged at the predetermined position of the wind tunnel, the filamentous material stretched between the guide members is appropriately supported. It is possible to prevent tearing of the filamentous material due to its own weight. This makes it possible to increase the length between the guide members, that is, the length in the longitudinal direction of the wind tunnel, regardless of the brittleness of the filamentous material to be dried, and it is possible to realize desired drying conditions such as drying time. Becomes

【図面の簡単な説明】[Brief description of drawings]

【図1】糸状物が行う略円運動を説明するための図であ
る。
FIG. 1 is a diagram for explaining a substantially circular movement performed by a thread.

【図2】風洞内における送風方向を説明するための図で
ある。
FIG. 2 is a diagram for explaining a blowing direction in a wind tunnel.

【図3】本発明の実施の形態に係るコラーゲン単糸紡糸
装置100の概略構成を示す概略斜視図である。
FIG. 3 is a schematic perspective view showing a schematic configuration of a collagen single yarn spinning device 100 according to an embodiment of the present invention.

【図4】風洞104近傍の外観構成を示す概略斜視図で
ある。
FIG. 4 is a schematic perspective view showing an external configuration in the vicinity of the wind tunnel 104.

【図5】開放された状態の風洞104の構成を示す斜視
図である。
FIG. 5 is a perspective view showing the configuration of the wind tunnel 104 in an opened state.

【図6】風洞104に取り付けられた送風ノズル61の
送風口610の方向を示すための側面図である。
FIG. 6 is a side view showing a direction of a blower port 610 of a blower nozzle 61 attached to a wind tunnel 104.

【図7】風洞104に取り付けられた送風ノズル61の
送風口610の方向を示すための平面図である。
FIG. 7 is a plan view showing a direction of a blow port 610 of a blow nozzle 61 attached to a wind tunnel 104.

【図8】風洞104に発生する回転気流を示す斜視図で
ある。
FIG. 8 is a perspective view showing a rotating airflow generated in a wind tunnel 104.

【図9】コラーゲン単糸Tが回転気流により風洞104
内において回転運動する状態を説明するための斜視図で
ある。
[Fig. 9] Collagen single yarn T is blown by the rotating air flow into the wind tunnel 104
FIG. 6 is a perspective view for explaining a state of rotating motion inside.

【図10】開放された状態の風洞107の構成を示す斜
視図である。
FIG. 10 is a perspective view showing the configuration of the wind tunnel 107 in an opened state.

【図11】比較例2におけるコラーゲン単糸Tの乾燥方
法を説明するための概略斜視図である。
FIG. 11 is a schematic perspective view for explaining a method for drying a collagen single yarn T in Comparative Example 2.

【符号の説明】[Explanation of symbols]

100 コラーゲン単糸紡糸装置 100B 乾燥部(糸状物乾燥装置) 104、107 風洞 105 巻取り機構(糸状物送り機構) 106 送風機構 44 中間支持部材 50 ガイドローラ(ガイド部材) 60 送風機 61 送風ノズル 100 Collagen single yarn spinning device 100B Drying part (filamentary material drying device) 104, 107 wind tunnel 105 Winding mechanism (thread feeding mechanism) 106 Blower mechanism 44 Intermediate support member 50 Guide roller (guide member) 60 blower 61 Blower nozzle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀田 敏文 大阪市北区本庄西3丁目9番3号 ニプロ 株式会社内 (72)発明者 清水 浩二 大阪市北区本庄西3丁目9番3号 ニプロ 株式会社内 Fターム(参考) 3B154 AA01 AB02 BA19 BB33 BB42 BB47 BB76 BC06 BE03 DA21 3L113 AA03 AB02 AC31 AC47 BA01 CA10 DA01 DA24 4L035 BB03 CC02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshifumi Hotta             3-9-3 Honjo-nishi, Kita-ku, Osaka Nipro             Within the corporation (72) Inventor Koji Shimizu             3-9-3 Honjo-nishi, Kita-ku, Osaka Nipro             Within the corporation F term (reference) 3B154 AA01 AB02 BA19 BB33 BB42                       BB47 BB76 BC06 BE03 DA21                 3L113 AA03 AB02 AC31 AC47 BA01                       CA10 DA01 DA24                 4L035 BB03 CC02

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 湿潤状態の糸状物を乾燥させる方法であ
って、 風洞に乾燥すべき糸状物を軸方向に通過させるととも
に、糸状物が風洞に入る送入位置と糸状物が風洞から出
る取出位置とを結ぶ直線と直交する平面において、糸状
物が該直線を中心として略円運動を行うように気流を与
えることを特徴とする糸状物の乾燥方法。
1. A method for drying a filamentous material in a wet state, wherein the filamentous material to be dried is passed through the wind tunnel in the axial direction, and the feeding position of the filamentous material enters the wind tunnel and the takeout of the filamentous material from the wind tunnel. A method for drying a filamentous material, which comprises applying an airflow so that the filamentous material makes a substantially circular motion about the straight line in a plane orthogonal to a straight line connecting the position.
【請求項2】 前記気流を、風洞内において、前記送入
位置と取出位置とを結ぶ直線と平行し、かつ、該直線と
異なる方向へ送風することにより発生させる請求項1に
記載の糸状物の乾燥方法。
2. The filamentous material according to claim 1, wherein the air current is generated by blowing air in a wind tunnel in a direction parallel to a straight line connecting the inlet position and the outlet position and in a direction different from the straight line. How to dry.
【請求項3】 前記気流の進行方向は、前記糸状物の進
行方向と逆方向である請求項1又は2に記載の糸状物の
乾燥方法。
3. The method for drying a filamentous material according to claim 1, wherein the traveling direction of the air flow is opposite to the traveling direction of the filamentous material.
【請求項4】 前記糸状物は親水性高分子物質である請
求項1乃至3のいずれかに記載の糸状物の乾燥方法。
4. The method for drying a filamentous material according to claim 1, wherein the filamentous material is a hydrophilic polymer substance.
【請求項5】 前記親水性高分子物質はコラーゲンであ
る請求項4に記載の糸状物の乾燥方法。
5. The method for drying a filamentous material according to claim 4, wherein the hydrophilic polymer substance is collagen.
【請求項6】 湿式紡糸法により紡糸された湿潤状態の
親水性高分子単糸を、請求項1乃至3のいずれかに記載
の糸状物の乾燥方法により乾燥する工程を含むことを特
徴とする親水性高分子単糸の製造方法。
6. A method of drying a wet hydrophilic polymer single yarn spun by a wet spinning method by the method for drying a filamentous material according to any one of claims 1 to 3. Method for producing hydrophilic polymer single yarn.
【請求項7】 親水性高分子単糸がコラーゲン単糸であ
る請求項6に記載の親水性高分子単糸の製造方法。
7. The method for producing a hydrophilic polymer single yarn according to claim 6, wherein the hydrophilic polymer single yarn is a collagen single yarn.
【請求項8】 (イ)風洞と、(ロ)糸状物を送入位置
及び取出位置に夫々案内するガイド部材を有し、風洞に
乾燥すべき糸状物を軸方向に通過させる糸状物送り機構
と、(ハ)送入位置と取出位置とを結ぶ直線と直交する
平面において、糸状物が該直線を中心として略円運動を
行うような気流を風洞に発生させる送風機構とを具備し
てなるものであることを特徴とする糸状物乾燥装置。
8. A filamentous-material feeding mechanism having (a) a wind tunnel and (b) a guide member for guiding the filamentous material to a feeding position and a take-out position, respectively, and allowing the filamentous material to be dried to pass through the wind tunnel in an axial direction. And (c) a blower mechanism for generating an air flow in the wind tunnel such that the filamentous material makes a substantially circular motion about the straight line in a plane orthogonal to the straight line connecting the inlet position and the take-out position. A filamentous material drying apparatus characterized by being a thing.
【請求項9】 前記送風機構は、気体を送り出す送風機
と、風洞内に設けられ、前記気体を、前記送入位置と取
出位置とを結ぶ直線と平行し、かつ、該直線と異なる方
向へ案内する送風ノズルとを具備してなるものである請
求項8に記載の糸状物乾燥装置。
9. The blower mechanism is provided in an air blower for blowing out gas, and guides the gas in a direction parallel to a straight line connecting the inlet position and the outlet position and in a direction different from the straight line. 9. The filamentous material drying apparatus according to claim 8, further comprising a blower nozzle.
【請求項10】 前記送風ノズルは、糸状物の進行方向
と逆方向に前記気体を案内するものである請求項9に記
載の糸状物乾燥装置。
10. The filamentous material drying apparatus according to claim 9, wherein the blower nozzle guides the gas in a direction opposite to a traveling direction of the filamentous material.
【請求項11】 前記風洞の所定位置に、糸状物を送出
自在に支持する中間支持部材が配設された請求項8乃至
10のいずれかに記載の糸状物乾燥装置。
11. The filamentous material drying apparatus according to claim 8, wherein an intermediate support member that supports the filamentous material so that it can be delivered is disposed at a predetermined position of the wind tunnel.
JP2001401889A 2001-12-28 2001-12-28 Filament drying method, hydrophilic polymer single yarn manufacturing method, and filament drying apparatus Expired - Lifetime JP4000855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001401889A JP4000855B2 (en) 2001-12-28 2001-12-28 Filament drying method, hydrophilic polymer single yarn manufacturing method, and filament drying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001401889A JP4000855B2 (en) 2001-12-28 2001-12-28 Filament drying method, hydrophilic polymer single yarn manufacturing method, and filament drying apparatus

Publications (2)

Publication Number Publication Date
JP2003201664A true JP2003201664A (en) 2003-07-18
JP4000855B2 JP4000855B2 (en) 2007-10-31

Family

ID=27640314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001401889A Expired - Lifetime JP4000855B2 (en) 2001-12-28 2001-12-28 Filament drying method, hydrophilic polymer single yarn manufacturing method, and filament drying apparatus

Country Status (1)

Country Link
JP (1) JP4000855B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111823A (en) * 2005-10-20 2007-05-10 Toko Kikai Seisakusho:Kk Wire-type cutting device
CN103741415A (en) * 2014-01-24 2014-04-23 浙江中新毛纺织有限公司 Yarn oven
JP2019078460A (en) * 2017-10-24 2019-05-23 株式会社Moresco Apparatus for drying long-string product, and apparatus for producing long-string product
CN113089223A (en) * 2021-04-09 2021-07-09 浙江紫竹梅印染有限公司 Improve dyeing efficiency's air current dyeing machine nozzle structure and dyeing machine
CN113768562A (en) * 2021-09-18 2021-12-10 运医之星(上海)科技有限公司 Manufacturing method for round and flat variable diameter suture
WO2024211799A1 (en) * 2023-04-07 2024-10-10 Embody, Inc. Device for evaporating a liquid from a collagen fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111823A (en) * 2005-10-20 2007-05-10 Toko Kikai Seisakusho:Kk Wire-type cutting device
CN103741415A (en) * 2014-01-24 2014-04-23 浙江中新毛纺织有限公司 Yarn oven
JP2019078460A (en) * 2017-10-24 2019-05-23 株式会社Moresco Apparatus for drying long-string product, and apparatus for producing long-string product
CN113089223A (en) * 2021-04-09 2021-07-09 浙江紫竹梅印染有限公司 Improve dyeing efficiency's air current dyeing machine nozzle structure and dyeing machine
CN113768562A (en) * 2021-09-18 2021-12-10 运医之星(上海)科技有限公司 Manufacturing method for round and flat variable diameter suture
CN113768562B (en) * 2021-09-18 2024-03-19 运医之星(上海)科技有限公司 Manufacturing method for round and flat reducing suture line
WO2024211799A1 (en) * 2023-04-07 2024-10-10 Embody, Inc. Device for evaporating a liquid from a collagen fiber

Also Published As

Publication number Publication date
JP4000855B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
US20060083918A1 (en) Method and device for producing post-stretched cellulose spun threads
US8632721B2 (en) Electrospinning in a controlled gaseous environment
KR101143934B1 (en) A method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method
US6103158A (en) Method and apparatus for spinning a multifilament yarn
US2874443A (en) Method and apparatus for crimping yarn
KR101076550B1 (en) Process for extruding a fluid
JP2019519691A (en) Fiber expansion
JP2003201664A (en) Method for drying yarn-like material, method for producing hydrophilic polymer single yarn and apparatus for drying yarn-like material
CN110785518A (en) Apparatus for producing ultrafine fibers and method for producing ultrafine fibers
US6705850B1 (en) Apparatus for biopolymer coagulation in a uniform flow
JPS62263314A (en) New uniform polymer filament
US5688451A (en) Method of forming an absorbable biocompatible suture yarn
US6067928A (en) Filament guide assembly especially useful in combination with filament finish applicators
US3114235A (en) Method of forming a round collagen strand
US4174605A (en) Method of and apparatus for spinning yarn in an air vortex in a spinning tube
JP7544377B2 (en) Wet-spun fibers, wet-formed films and their manufacturing methods
JP2006070370A (en) Fiber-expanding machine
US3023075A (en) Fibrous material
KR20050041198A (en) A nozzle for electrostatic spinning and a producing method of nano-fiber using the same
US3285903A (en) Collagen film
CN116695266B (en) Air draft system, device comprising same and application
US11299823B2 (en) Spinning apparatus and spinning method
CN101506410A (en) Process for the production of a cellulosic fiber from a solution of cellulose in a tertiary amine-oxide and device for carrying out said process
JP2022131793A (en) Wet spinning apparatus for manufacturing artificial fiber
AU4529096A (en) Absorbable biocompatible suture and method of manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4000855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term