JP2003199314A - Stepping motor - Google Patents

Stepping motor

Info

Publication number
JP2003199314A
JP2003199314A JP2001395649A JP2001395649A JP2003199314A JP 2003199314 A JP2003199314 A JP 2003199314A JP 2001395649 A JP2001395649 A JP 2001395649A JP 2001395649 A JP2001395649 A JP 2001395649A JP 2003199314 A JP2003199314 A JP 2003199314A
Authority
JP
Japan
Prior art keywords
coil winding
pole
yoke
pole teeth
pole tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001395649A
Other languages
Japanese (ja)
Other versions
JP3811059B2 (en
Inventor
Yoshiyuki Kobayashi
喜幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Hitachi Unisia Automotive Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Unisia Automotive Ltd filed Critical Hitachi Unisia Automotive Ltd
Priority to JP2001395649A priority Critical patent/JP3811059B2/en
Publication of JP2003199314A publication Critical patent/JP2003199314A/en
Application granted granted Critical
Publication of JP3811059B2 publication Critical patent/JP3811059B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Valve Device For Special Equipments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain smooth operation, increase in mean torque, and improvement in a stopping position accuracy by permitting magnetomotive forces on an outer coil winding side and an inner coil winding side to be substantially equal. <P>SOLUTION: Magnetic poles of an outer pole teeth pair, constituted of pole teeth 39b of an outer pole teeth yoke 39 and pole teeth 41b of a middle pole yoke 41, and an inner pole teeth pair, constituted of pole teeth 42b of a middle pole teeth yoke 42 and the pole teeth 40b of a inner pole teeth yoke 40, are changed by the switching of a current direction of an outer coil winding 33A and an inner coil winding 33B, thus a permanent magnet block 29 is rotated. In the stepping motor, the cross-sectional area of the outer coil winding 33A is set to be larger than that of the inner winding 33B, thus the magnetomotive forces of both of the coil windings 33A, 33B are equalized. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種の装置におい
て回転用のアクチュエータとして用いられるステップモ
ータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a step motor used as an actuator for rotation in various devices.

【0002】[0002]

【従来の技術】従来、PM型ステップモータとして、例
えば、特開平7-39130号公報に記載されるような
ものが案出されている。
2. Description of the Related Art Conventionally, as a PM type stepping motor, for example, one described in JP-A-7-39130 has been proposed.

【0003】このステップモータは、径方向内向きの複
数の極歯を有する環状平板状の外側極歯ヨークと、径方
向外向きの複数の極歯を有する円板状の内側極歯ヨーク
の間に、外向き極歯と内向き極歯を複数有する環状平板
状の中間極歯ヨークを配置し、これらの極歯ヨークの歯
群に電磁コイルの外側コイル巻線と内側コイル巻線によ
って適宜磁界を生じさせることにより、極歯ヨークに対
向して配置された永久磁石ブロックを回転させるように
なっている。具体的には、外側極歯ヨークと中間極歯ヨ
ーク、中間極歯ヨークと内側極歯ヨークの各対向する側
の極歯が夫々外側極歯対と内側極歯対を成し、これらの
極歯対に生じる磁極を外側コイル巻線と内側コイル巻線
の通電制御によって適宜変え、それによって永久磁石ブ
ロックに作用する磁気的吸引反発力を円周方向に沿って
変化させるようになっている。
In this step motor, an annular plate-shaped outer pole tooth yoke having a plurality of radially inward pole teeth and a disk-shaped inner pole tooth yoke having a plurality of radially outward pole teeth are provided. , An annular plate-shaped intermediate pole tooth yoke having a plurality of outward pole teeth and inward pole teeth is arranged, and the magnetic field is appropriately adjusted by the outer coil winding and the inner coil winding of the electromagnetic coil in the tooth group of these pole tooth yokes. Is generated, the permanent magnet block arranged so as to face the pole tooth yoke is rotated. Specifically, the pole teeth on the opposite sides of the outer pole tooth yoke and the intermediate pole tooth yoke, and the intermediate pole tooth yoke and the inner pole tooth yoke form the outer pole tooth pair and the inner pole tooth pair, respectively. The magnetic poles generated in the tooth pair are appropriately changed by controlling the energization of the outer coil winding and the inner coil winding, thereby changing the magnetic attraction repulsive force acting on the permanent magnet block along the circumferential direction.

【0004】尚、前記永久磁石ブロックの極歯ヨークの
極歯に対峙する側の面には異磁極が円周方向に沿って交
互になるように着磁されている。また、電磁コイルの外
側コイル巻線と内側コイル巻線は巻回部の外径は異なる
ものの、同径の線が同一巻数だけ巻回されている。
Different magnetic poles are magnetized so as to alternate along the circumferential direction on the surface of the permanent magnet block on the side facing the pole teeth of the pole tooth yoke. Further, the outer coil winding and the inner coil winding of the electromagnetic coil have different outer diameters at the winding portions, but wires of the same diameter are wound by the same number of turns.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来のス
テップモータの場合、電磁コイルの外側コイル巻線は内
側コイル巻線に比較して円周方向長さが長くなるため、
通電時の電気抵抗が内側コイル巻線のものよりもどうし
ても大きくなり、同電圧をかけたときにおける外側コイ
ル巻線と内側コイル巻線の通電電流に差が生じ、その結
果、両コイル巻線の起磁力に差ができてしまう。
However, in the case of the above-mentioned conventional step motor, the outer coil winding of the electromagnetic coil is longer in the circumferential direction than the inner coil winding.
The electrical resistance when energized is inevitably higher than that of the inner coil winding, and there is a difference in the energizing current between the outer coil winding and the inner coil winding when the same voltage is applied. There is a difference in magnetomotive force.

【0006】このため、従来のステップモータにおいて
は、外側コイル巻線の通電方向を変えて永久磁石ブロッ
クを回転させる時と、内側コイル巻線の通電方向を変え
て永久磁石ブロックを回転させる時とで永久磁石ブロッ
クに作用するトルクが変化し、モータ作動が不安定にな
ると共に、作動時における平均トルクも効率良く高める
ことができなかった。また、このステップモータにおい
ては、永久磁石ブロックに作用する磁力が外側コイル巻
線の通電切換時と内側コイル巻線の通電切換時で異なる
ことから、一ステップ毎の永久磁石ブロックの回転角が
不均一となり、永久磁石ブロックの停止位置精度が低下
することも問題となっている。
For this reason, in the conventional step motor, when the permanent magnet block is rotated by changing the energization direction of the outer coil winding, and when the permanent magnet block is rotated by changing the energization direction of the inner coil winding. Therefore, the torque acting on the permanent magnet block changes, the motor operation becomes unstable, and the average torque during the operation cannot be efficiently increased. In addition, in this step motor, the magnetic force acting on the permanent magnet block is different between the energization switching of the outer coil winding and the energization switching of the inner coil winding. There is also a problem that it becomes uniform and the accuracy of the stop position of the permanent magnet block decreases.

【0007】そこで本発明は、外側コイル巻線側と内側
コイル巻線側の起磁力をほぼ同じにできるようにして、
作動の円滑化と平均トルクの増大と停止位置精度の向上
を容易に図ることのできるステップモータを提供しよう
とするものである。
Therefore, in the present invention, the magnetomotive forces on the outer coil winding side and the inner coil winding side can be made substantially the same,
An object of the present invention is to provide a step motor that can easily achieve smooth operation, increase in average torque, and improvement in stop position accuracy.

【0008】[0008]

【課題を解決するための手段】上述した課題を解決する
ための手段として、本発明は、径方向内向きの複数の極
歯を有する環状の外側極歯ヨークと、径方向外向きの複
数の極歯を有し、かつ前記外側極歯ヨークの内周側に配
置される内側極歯ヨークと、前記外側極歯ヨークと内側
極歯ヨークの間に配置され、外側極歯ヨークの隣接する
極歯間に位置される径方向外向きの極歯と、内側極歯ヨ
ークの隣接する極歯間に位置される径方向内向きの極歯
とを有する環状の中間極歯ヨークと、外側極歯ヨークの
極歯と中間極歯ヨークの径方向外向きの極歯によって構
成される外側極歯対に異磁極を生じさせる外側コイル巻
線と、中間極歯ヨークの径方向内向きの極歯と内側極歯
ヨークの極歯によって構成される内側極歯対に異磁極を
生じさせる内側コイル巻線と、異磁極が円周方向に沿っ
て交互に配置されるように着磁され、磁極面が前記各極
歯ヨークの極歯に対峙するように回転可能に設けられた
永久磁石ブロックと、を備え、前記外側コイル巻線と内
側コイル巻線に対する通電方向を所定パターンで変化さ
せることにより、永久磁石ブロックを前記極歯ヨークに
対して相対回転させるステップモータにおいて、前記外
側コイル巻線の断面積を、内側コイル巻線の断面積より
も大きくした。この発明の場合、外側コイル巻線の円周
方向長さが長くなる分、断面積を内側コイル巻線よりも
大きくしたため、外側コイル巻線と内側コイル巻線の通
電電流をほぼ同じにすることができる。
As a means for solving the above problems, the present invention is directed to an annular outer pole tooth yoke having a plurality of radially inward pole teeth and a plurality of radially outward pole teeth. An inner pole tooth yoke having pole teeth and arranged on the inner peripheral side of the outer pole tooth yoke, and an adjacent pole of the outer pole tooth yoke arranged between the outer pole tooth yoke and the inner pole tooth yoke. An annular intermediate pole tooth yoke having radially outward pole teeth positioned between the teeth and radially inward pole teeth positioned between the adjacent pole teeth of the inner pole tooth yoke, and an outer pole tooth Outer coil windings that produce different magnetic poles in the outer pole teeth pair formed by the pole teeth of the yoke and the pole teeth of the yoke that are radially outward of the yoke, and the pole teeth that are radially inward of the intermediate pole tooth yoke. Inner pole teeth An inner coil that produces a different magnetic pole in the pair of inner pole teeth composed of the pole teeth of the yoke. And a different magnetic pole are magnetized so that they are alternately arranged along the circumferential direction, and the magnetic pole surface is rotatably provided so as to face the pole teeth of each pole tooth yoke. And a step motor for rotating the permanent magnet block relative to the pole tooth yoke by changing the energization direction with respect to the outer coil winding and the inner coil winding in a predetermined pattern. The cross-sectional area of was larger than that of the inner coil winding. In the case of the present invention, since the cross-sectional area is made larger than that of the inner coil winding by the length of the outer coil winding in the circumferential direction, the energization currents of the outer coil winding and the inner coil winding should be substantially the same. You can

【0009】このとき、外側コイル巻線と内側コイル巻
線の断面積は両者の起磁力が同一になるように設定する
ことが望ましい。
At this time, it is desirable to set the cross-sectional areas of the outer coil winding and the inner coil winding so that the magnetomotive forces of the two are the same.

【0010】また、発生磁束を対応する極歯ヨークに誘
導するコイルヨークの内部に外側コイル巻線と内側コイ
ル巻線が配置されものにおいては、内側コイル巻線の巻
き状態での総軸方向幅を外側コイル巻線の巻き状態での
総軸方向幅よりも小さくし、コイルヨークにおける両コ
イル巻線の配置を、内側コイル巻線の軸方向側部の磁束
通路部の軸方向幅が外側コイル巻線の軸方向側部の磁束
通路部の軸方向幅よりも大きくなるようにすることが望
ましい。コイルヨークに外側コイル巻線と内側コイル巻
線を配置した場合、外側コイル巻線は内側コイル巻線よ
りも径方向外側に位置されるため、外側コイル巻線の周
域の磁束通路部は内側コイル巻線の周域の磁束通路部よ
りも円周方向長さが長くなる分、大きな断面積を容易に
確保することができる。逆に内側コイル巻線の周域の磁
束通路部は円周方向長さが短い分、断面積の確保が難し
いが、少なくとも内側コイル巻線の軸方向側部は軸方向
幅が大きく確保されるため、断面積を大きく確保するこ
とが可能となる。したがって、コイルヨークにおける磁
気抵抗を、外側コイル巻線の周域と内側コイル巻線の周
域でほぼ同じにすることができる。
Further, in the case where the outer coil winding and the inner coil winding are arranged inside the coil yoke for guiding the generated magnetic flux to the corresponding pole tooth yoke, in the winding state of the inner coil winding, the total axial width Is smaller than the total axial width of the outer coil winding in the wound state, and the arrangement of both coil windings in the coil yoke is such that the axial width of the magnetic flux passage on the axial side of the inner coil winding is the outer coil. It is desirable that the width is larger than the axial width of the magnetic flux passage portion on the axial side of the winding. When the outer coil winding and the inner coil winding are arranged on the coil yoke, the outer coil winding is located radially outside the inner coil winding, so the magnetic flux passage portion in the peripheral area of the outer coil winding is inside. Since the circumferential length of the coil winding is longer than that of the magnetic flux passage portion in the circumferential region, a large cross-sectional area can be easily ensured. On the contrary, it is difficult to secure a cross-sectional area because the magnetic flux passage portion in the peripheral region of the inner coil winding is short in the circumferential direction, but a large axial width is secured at least in the axial side portion of the inner coil winding. Therefore, a large cross-sectional area can be secured. Therefore, the magnetic resistance in the coil yoke can be made substantially the same in the peripheral region of the outer coil winding and the peripheral region of the inner coil winding.

【0011】また、本発明は、内燃機関のクランクシャ
フトによって回転駆動する駆動回転体と、カムシャフト
若しくは同シャフトに結合された別体部材から成り、前
記駆動回転体から動力を伝達される従動回転体と、前記
駆動回転体と従動回転体のいずれか一方に設けられた径
方向ガイドと、前記駆動回転体と従動回転体に対して相
対回転可能に設けられ、前記径方向ガイドに対峙する側
の面に渦巻き状ガイドを有する中間回転体と、前記径方
向ガイドと渦巻き状ガイドに変位可能に案内係合される
可動案内部と、前記駆動回転体と従動回転体のいずれか
他方のものの回転中心から離間した部位と前記可動案内
部とを揺動可能に連結するリンクと、を備えた内燃機関
のバルブタイミング制御装置において、前記中間回転体
に駆動回転体及び従動回転体に対する相対的な回動操作
力を付与する操作力付与手段に用いる場合に好適であ
る。即ち、本発明のステップモータは、外側コイル巻線
側と内側コイル巻線側の起磁力がほぼ同じになり、作動
の安定化とトルクの増大を図ることが可能になると共
に、停止位置精度も確実に高まるため、駆動回転体と従
動回転体の回転位相を正確、かつ確実に変更することが
可能となる。
Further, according to the present invention, a driven rotating body which is rotationally driven by a crankshaft of an internal combustion engine and a camshaft or a separate member connected to the shaft, and a driven rotating body to which power is transmitted from the driving rotating body. A body, a radial guide provided on either one of the drive rotary body and the driven rotary body, and a side provided so as to be rotatable relative to the drive rotary body and the driven rotary body and facing the radial guide. Of the intermediate rotating body having a spiral guide on its surface, a movable guide portion displaceably guided and engaged with the radial guide and the spiral guide, and rotation of the other one of the drive rotating body and the driven rotating body. In a valve timing control device for an internal combustion engine, comprising a link that swingably connects the movable guide portion and a portion that is separated from the center, in the intermediate rotor, a drive rotor and It is suitable when used in the operation force imparting means for imparting a relative rotational operation force on the kinematic rotor. That is, in the step motor of the present invention, the magnetomotive forces on the outer coil winding side and the inner coil winding side are substantially the same, which makes it possible to stabilize the operation and increase the torque and also to improve the stop position accuracy. Since it surely increases, it becomes possible to accurately and surely change the rotational phases of the driving rotary body and the driven rotary body.

【0012】[0012]

【発明の実施の形態】次に、本発明の一実施形態を図面
に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of the present invention will be described with reference to the drawings.

【0013】この実施形態は本発明にかかるステップモ
ータ4を内燃機関のバルブタイミング制御装置のアクチ
ュエータ(操作力付与手段)部分に適用したものであ
る。このバルブタイミング制御装置は、図1に示すよう
に内燃機関のシリンダヘッド(図示せず)に回転自在に
支持されたカムシャフト1と、このカムシャフト1の前
端部に必要に応じて相対回動できるように組み付けら
れ、チェーン(図示せず)を介してクランクシャフト
(図示せず)に連繋されるタイミングスプロケット2を
外周に有する駆動プレート3(本発明における駆動回転
体)と、この駆動プレート3とカムシャフト1の前方側
(図1中左側)に配置されて、両者3,1の組付角を回
動操作する組付角操作機構5と、この組付角操作機構5
のさらに前方側に配置されて、同機構5を駆動操作する
前記ステップモータ4と、内燃機関の図外のシリンダヘ
ッドとロッカカバーの前面に跨って取り付けられて組付
角操作機構5とステップモータ4の前面と周域を覆うV
TCカバー12(本発明における非回転部材)と、を備
えている。
In this embodiment, the step motor 4 according to the present invention is applied to an actuator (operating force applying means) portion of a valve timing control device for an internal combustion engine. As shown in FIG. 1, the valve timing control device includes a cam shaft 1 rotatably supported by a cylinder head (not shown) of an internal combustion engine, and a relative rotation of a cam shaft 1 at a front end of the cam shaft 1 as necessary. A drive plate 3 (a drive rotating body in the present invention) having a timing sprocket 2 on the outer periphery, which is assembled so that it can be connected to a crankshaft (not shown) via a chain (not shown), and the drive plate 3 And an assembly angle operation mechanism 5 arranged on the front side of the camshaft 1 (on the left side in FIG. 1) for rotating the assembly angle of the both 3, 1, and this assembly angle operation mechanism 5.
Of the stepping motor 4 which is arranged further forward of the drive mechanism 5 for driving and operating the mechanism 5, and the assembly angle operating mechanism 5 and the stepping motor 5 which are mounted across the cylinder head (not shown) of the internal combustion engine and the front surface of the rocker cover. V covering the front of 4 and surrounding area
TC cover 12 (non-rotating member in the present invention).

【0014】駆動プレート3は、中心部に段差状の支持
孔6を備えた円板状に形成され、その支持孔6部分が、
カムシャフト1の前端部に一体に結合されたフランジリ
ング7に回転自在に支持されている。そして、駆動プレ
ート3の前面(カムシャフト1と逆側の面)には、図2
に示すように、平行な一対のガイド壁8a,8bから成
る3つの径方向ガイド8が円周方向等間隔に、かつ同プ
レート3のほぼ半径方向に沿うように取り付けられてお
り、この各径方向ガイド8のガイド壁8a,8bの間に
は、略方形状の可動案内部材17が摺動自在に組み付け
られている。
The drive plate 3 is formed in a disk shape having a stepped support hole 6 in the center, and the support hole 6 portion is
It is rotatably supported by a flange ring 7 that is integrally connected to the front end of the camshaft 1. The front surface of the drive plate 3 (the surface on the side opposite to the camshaft 1) is shown in FIG.
As shown in FIG. 3, three radial guides 8 composed of a pair of parallel guide walls 8a and 8b are mounted at equal intervals in the circumferential direction and along substantially the radial direction of the plate 3. A substantially rectangular movable guide member 17 is slidably assembled between the guide walls 8a and 8b of the direction guide 8.

【0015】また、前記フランジリング7の前面側に
は、放射状に突出する三つのレバー9を有するレバー軸
10(本発明における従動回転体)が配置され、このレ
バー軸10がフランジリング7と共にボルト13によっ
てカムシャフト1に結合されている。そして、レバー軸
10の各レバー9には、リンク14の一端がピン15に
よって枢支連結され、各リンク14の他端には、径方向
ガイド8に組み付けられた前記各可動案内部材17がピ
ン11によって枢支連結されている。
On the front side of the flange ring 7, there is arranged a lever shaft 10 (a driven rotary member in the present invention) having three levers 9 radially protruding, and the lever shaft 10 together with the flange ring 7 is bolted. It is connected to the camshaft 1 by 13. One end of a link 14 is pivotally connected to each lever 9 of the lever shaft 10 by a pin 15, and each movable guide member 17 assembled to the radial guide 8 is pinned to the other end of each link 14. It is pivotally connected by 11.

【0016】各可動案内部材17は、上述のように径方
向ガイド8に案内された状態において、リンク14を介
してレバー軸10の対応するレバー9に連結されている
ため、可動案内部材17が外力を受けて径方向ガイド8
に沿って変位すると、駆動プレート3とレバー軸10は
リンク14の作用でもって可動案内部材17の変位に応
じた方向及び角度だけ相対回動する。
Since each movable guide member 17 is connected to the corresponding lever 9 of the lever shaft 10 via the link 14 in the state of being guided by the radial guide 8 as described above, the movable guide member 17 is Radial guide 8 receiving external force
When displaced along the direction, the drive plate 3 and the lever shaft 10 are relatively rotated by the action of the link 14 by a direction and an angle corresponding to the displacement of the movable guide member 17.

【0017】また、各可動案内部材17の前面側所定位
置には保持穴18(図1参照)が設けられ、この保持穴
18に、球19を保持するためのリテーナ20が摺動自
在に収容されると共に、リテーナ20を前方側に付勢す
るためのコイルばね21が収容されている。リテーナ2
0は前面中央に半球状の凹部が設けられ、この凹部に球
19が転動自在に収容されている。
A holding hole 18 (see FIG. 1) is provided at a predetermined position on the front surface side of each movable guide member 17, and a retainer 20 for holding a ball 19 is slidably accommodated in the holding hole 18. In addition, a coil spring 21 for biasing the retainer 20 to the front side is housed. Retainer 2
In No. 0, a hemispherical recess is provided in the center of the front surface, and the ball 19 is rotatably accommodated in this recess.

【0018】レバー軸10のレバー9の突設位置よりも
前方側には玉軸受22を介して略円盤状の中間回転体2
3が支持されている。この中間回転体23の後部側の面
には断面半円状の渦巻き溝24(渦巻き状ガイド)が形
成され、この渦巻き溝24に各可動案内部材17の球1
9が転動自在に案内係合されている。渦巻き溝24の渦
巻きは、図2及び図9,図10に示すように(同図にお
いて、渦巻き溝24は中心線のみ示してある。)駆動プ
レート3の回転方向Rに沿って次第に縮径するように形
成されている。したがって、可動案内部材17の球19
が渦巻き溝24に係合した状態で中間回転体23が駆動
プレート3に対して遅れ方向に相対回転すると、可動案
内部材17は渦巻き溝24の渦巻き形状に沿って半径方
向内側に移動し、逆に、中間回転体23が進み方向に相
対回転すると、半径方向外側に移動する。
A substantially disk-shaped intermediate rotating body 2 is provided in front of the protruding position of the lever 9 of the lever shaft 10 via a ball bearing 22.
3 are supported. A spiral groove 24 (spiral guide) having a semicircular cross section is formed on the rear surface of the intermediate rotor 23, and the sphere 1 of each movable guide member 17 is formed in the spiral groove 24.
9 is rotatably guided and engaged. The spiral of the spiral groove 24 is gradually reduced along the rotation direction R of the drive plate 3 as shown in FIGS. 2 and 9 and 10 (in FIG. 2, only the center line of the spiral groove 24 is shown). Is formed. Therefore, the ball 19 of the movable guide member 17
When the intermediate rotor 23 relatively rotates in the delay direction with respect to the drive plate 3 in a state in which is engaged with the spiral groove 24, the movable guide member 17 moves inward in the radial direction along the spiral shape of the spiral groove 24, and Further, when the intermediate rotating body 23 relatively rotates in the forward direction, it moves outward in the radial direction.

【0019】この実施形態の場合、組付角操作機構5
は、以上説明した駆動プレート3の径方向ガイド8、可
動案内部材17、リンク14、レバー9、中間回転体2
3の渦巻き溝24等によって構成されている。この組付
角操作機構5は、操作力付与手段であるステップモータ
4から中間回転体23にカムシャフト1に対する相対的
な回動操作力が入力されると、渦巻き溝24を介して可
動案内部材17を径方向に変位させ、さらにリンク14
及びレバー9を介してその回動力を設定倍率に増幅し、
駆動プレート3とカムシャフト1に相対的な回動力を作
用させる。
In the case of this embodiment, the assembly angle operating mechanism 5
Is the radial guide 8, the movable guide member 17, the link 14, the lever 9, and the intermediate rotating body 2 of the drive plate 3 described above.
It is constituted by three spiral grooves 24 and the like. In this assembly angle operation mechanism 5, when a relative rotational operation force with respect to the cam shaft 1 is input to the intermediate rotor 23 from the step motor 4 which is an operation force imparting means, the movable guide member is moved through the spiral groove 24. 17 is displaced in the radial direction, and further the link 14
Amplifying the turning power to a set magnification via the lever 9 and
A relative turning force is applied to the drive plate 3 and the cam shaft 1.

【0020】一方、ステップモータ4は、前記中間回転
体23の前面側(駆動プレート3と逆面側)の外周縁部
に接合された円環プレート状の永久磁石ブロック29
と、レバー軸10に一体に結合された同じく円環プレー
ト状のヨークブロック30と、VTCカバー12内に係
止された電磁コイルブロック32と、を備えて成り、こ
の電磁コイルブロック32の備える外側コイル巻線33
Aと内側コイル巻線33Bが励磁回路やパルス分配回路
等を含む駆動回路(図示せず)に接続され、その駆動回
路が図示しないコントローラによって制御されるように
なっている。尚、コントローラは、クランク角、カム
角、機関回転数、機関負荷等の各種の入力信号を受け、
随時機関の運転状態に応じた制御信号を駆動回路に出力
する。
On the other hand, the step motor 4 has an annular plate-shaped permanent magnet block 29 joined to the outer peripheral edge of the intermediate rotor 23 on the front side (opposite side of the drive plate 3).
And a yoke block 30 of the same annular plate shape that is integrally connected to the lever shaft 10 and an electromagnetic coil block 32 that is locked in the VTC cover 12, and the outside of the electromagnetic coil block 32. Coil winding 33
A and the inner coil winding 33B are connected to a drive circuit (not shown) including an excitation circuit and a pulse distribution circuit, and the drive circuit is controlled by a controller (not shown). The controller receives various input signals such as crank angle, cam angle, engine speed, engine load,
A control signal according to the operating state of the engine is output to the drive circuit as needed.

【0021】永久磁石ブロック29は、図3に示すよう
に、軸方向と直交する面に放射方向に延出する磁極(N
極,S極)が、異磁極が交互になるように円周方向に沿
って複数着磁されている。尚、図3においては、N極の
磁極面を36nで示し、S極の磁極面を36sで示して
いる。
As shown in FIG. 3, the permanent magnet block 29 has magnetic poles (N) extending in a radial direction on a plane orthogonal to the axial direction.
A plurality of magnetic poles (S poles) are magnetized along the circumferential direction so that different magnetic poles alternate. In FIG. 3, the magnetic pole surface of the N pole is indicated by 36n, and the magnetic pole surface of the S pole is indicated by 36s.

【0022】ヨークブロック30は、図4〜図6に示す
ように円環状の外側極歯ヨーク39と、その極歯ヨーク
39の内周側に同軸に配置された円板状の内側極歯ヨー
ク40と、外側極歯ヨーク39と内側極歯ヨーク40の
間に配置された一対の中間極歯ヨーク41,42と、を
備え、これらの極歯ヨーク39〜42が透磁率の高い金
属材料によって形成されると共に、隣接する極歯ヨーク
39〜42相互が絶縁体である樹脂材料43によって結
合され、内側極歯ヨーク40がレバー軸10に対して一
体に結合されている。
As shown in FIGS. 4 to 6, the yoke block 30 has an annular outer pole tooth yoke 39 and a disc-shaped inner pole tooth yoke coaxially arranged on the inner peripheral side of the pole tooth yoke 39. 40 and a pair of intermediate pole tooth yokes 41 and 42 arranged between the outer pole tooth yoke 39 and the inner pole tooth yoke 40, and these pole tooth yokes 39 to 42 are made of a metal material having high magnetic permeability. The pole teeth yokes 39 to 42 that are formed adjacent to each other are coupled by the resin material 43 that is an insulator, and the inner pole tooth yoke 40 is integrally coupled to the lever shaft 10.

【0023】各極歯ヨーク39〜42は環状の基部39
a〜42aと径方向に延出する複数の極歯39b〜42
bを有しており、外側極歯ヨーク39と中間極歯ヨーク
41、中間極歯ヨーク42と内側極歯ヨーク40の各極
歯39b,41b、及び、40b,42bは夫々相手極
歯ヨーク側に指向し、かつ、相手極歯ヨークの隣接する
極歯間に極歯の先端部が位置されるように延出してい
る。尚、以下、極歯39b,41bを「外側極歯対」、
極歯40b,42bを「内側極歯対」と呼ぶものとす
る。そして、各極歯ヨーク39〜42の極歯39b〜4
2bは円周方向等間隔に配置されると共に、総ての極歯
ヨーク39〜42の極歯39b〜42bが4分の1ピッ
チ角ずれて配列されている。
Each pole tooth yoke 39-42 has an annular base 39.
a to 42a and a plurality of pole teeth 39b to 42 extending in the radial direction
b, and the pole teeth 39b and 41b of the outer pole tooth yoke 39 and the middle pole tooth yoke 41, and the pole teeth 39b and 41b of the middle pole tooth yoke 42 and the inner pole tooth yoke 40, and 40b and 42b, respectively, are opposite pole tooth yokes. And extends so that the tips of the pole teeth are positioned between the adjacent pole teeth of the mating pole tooth yoke. In addition, hereinafter, the pole teeth 39b and 41b will be referred to as "outer pole tooth pair",
The pole teeth 40b and 42b are referred to as "inner pole tooth pair". And the pole teeth 39b-4 of each pole tooth yoke 39-42
2b are arranged at equal intervals in the circumferential direction, and the pole teeth 39b to 42b of all the pole tooth yokes 39 to 42 are arranged with a quarter pitch angle shift.

【0024】一方、電磁コイルブロック32は、図1に
示すようにヨークブロック30に向かう磁気通路を構成
する厚肉円板状のコイルヨーク34と、このコイルヨー
ク34内に配置された外側コイル巻線33A、及び、内
側コイル巻線33Bと、を備えている。外側コイル巻線
33Aと内側コイル巻線33Bは同巻数で巻かれている
が、同図中に拡大して示すように、巻線一本当たりの断
面積が異なり、外側コイル巻線33A側の断面積が内側
コイル巻線33B側の断面積よりも大きくなっている。
そして、両者は巻き状態での総軸方向幅c1,c2が外側
コイル巻線33A側の方が大きくなるように設定され、
また、内側コイル巻線33Bの軸方向側部(図1中左側
側部)のコイルヨーク34の肉厚d2は外側コイル巻線
33Aの軸方向側部のコイルヨーク34の肉厚d1より
も大きくなっている。
On the other hand, as shown in FIG. 1, the electromagnetic coil block 32 includes a thick disk-shaped coil yoke 34 forming a magnetic path toward the yoke block 30, and an outer coil winding arranged in the coil yoke 34. The wire 33A and the inner coil winding 33B are provided. The outer coil winding 33A and the inner coil winding 33B are wound with the same number of turns, but as shown in the enlarged view of the figure, the cross-sectional area per winding is different, and the outer coil winding 33A side The cross-sectional area is larger than the cross-sectional area on the inner coil winding 33B side.
Both of them are set so that the total axial widths c 1 and c 2 in the wound state are larger on the outer coil winding 33A side,
Further, the wall thickness d 2 of the coil yoke 34 on the axial side portion (the left side portion in FIG. 1) of the inner coil winding 33B is greater than the wall thickness d 1 of the coil yoke 34 on the axial side portion of the outer coil winding 33A. Is also getting bigger.

【0025】コイルヨーク34内における各コイル巻線
33A,33Bの軸方向側部のスペースはコルイ巻線3
3A,33Bの磁気通路部を成す部分であるため、内側
コイル巻線33Bの軸方向側部は肉厚の増大分だけ磁気
通路部の断面積の増大が図られている。ただし、内側コ
イル巻線33Bはもともと外側コイル巻線33Aよりも
周長が短いため、この肉厚増による断面積の増大によっ
て内側コイル巻線33Bの側部の総断面積と外側コイル
巻線33Aの側部の総断面積とがほぼ等しくなってい
る。したがって、これによりコイルヨーク34内におけ
る内側コイル巻線33Bの周域の磁気通路と外側コイル
巻線33Aの周域の磁気通路は磁気抵抗がほぼ等しくな
っている。
The space on the axial side of each coil winding 33A, 33B in the coil yoke 34 is the Koly winding 3
Since the portions 3A and 33B form the magnetic passage portion, the axial side portion of the inner coil winding 33B has an increased cross-sectional area of the magnetic passage portion by an increase in the wall thickness. However, since the inner coil winding 33B originally has a shorter circumferential length than the outer coil winding 33A, the increase in the cross-sectional area due to the increase in the thickness increases the total cross-sectional area of the side portion of the inner coil winding 33B and the outer coil winding 33A. Is almost equal to the total cross-sectional area of the side part. Accordingly, the magnetic resistance in the peripheral area of the inner coil winding 33B and the magnetic path in the peripheral area of the outer coil winding 33A in the coil yoke 34 are substantially equal to each other.

【0026】また、コイルヨーク34の磁気入出部はヨ
ークブロック30の対応する極歯ヨーク39〜42の基
部39a〜42aに対してエアギャップを介して対峙し
ている。このため、コイル巻線33A,33Bが励磁さ
れて所定の向きの磁界が生じると、そのエアギャップを
介してヨークブロック30の対応する極歯ヨーク39〜
42に磁気誘導が生じ、その結果として、各極歯ヨーク
39〜42の極歯39b〜42bに磁界の向きに応じた
磁極が現れる。
The magnetic entry / exit portion of the coil yoke 34 faces the corresponding base tooth portions 39a-42a of the pole tooth yokes 39-42 of the yoke block 30 via an air gap. Therefore, when the coil windings 33A and 33B are excited to generate a magnetic field in a predetermined direction, the corresponding pole tooth yokes 39 to 39 of the yoke block 30 through the air gap.
Magnetic induction occurs in 42, and as a result, magnetic poles corresponding to the direction of the magnetic field appear in the pole teeth 39b to 42b of the pole tooth yokes 39 to 42, respectively.

【0027】コイル巻線33A,33Bの発生磁界は、
駆動回路のパルスの入力に対して所定のパターンで順次
切換えられ、それによって永久磁石ブロック29の磁極
面36n,36sに対峙する極歯39b〜42bの磁極
が円周方向に沿って4分の1ピッチずつ移動するように
なっている。したがって、中間回転体23は、このとき
ヨークブロック30上の円周方向に沿った磁極の移動に
追従し、レバー軸10に対して相対的に回動することと
なる。
The magnetic fields generated by the coil windings 33A and 33B are
The magnetic poles of the pole teeth 39b to 42b facing the magnetic pole surfaces 36n and 36s of the permanent magnet block 29 are switched to one-fourth along the circumferential direction by sequentially switching in a predetermined pattern with respect to the pulse input of the drive circuit. It is designed to move pitch by pitch. Therefore, at this time, the intermediate rotating body 23 follows the movement of the magnetic poles along the circumferential direction on the yoke block 30 and rotates relatively to the lever shaft 10.

【0028】また、電磁コイルブロック32の内周面に
は玉軸受50が配置されており、同ブロック32はその
玉軸受50を介してレバー軸10に回転自在に係合され
ている。
A ball bearing 50 is arranged on the inner peripheral surface of the electromagnetic coil block 32, and the block 32 is rotatably engaged with the lever shaft 10 via the ball bearing 50.

【0029】このバルブタイミング制御装置は以上のよ
うな構成であるため、内燃機関の始動時やアイドル運転
時には、図2に示すように、駆動プレート3とレバー軸
10の組付角を予め最遅角側に維持しておくことによ
り、クランクシャフトとカムシャフト1の回転位相(機
関弁の開閉タイミング)を最遅角側にし、機関回転の安
定化と燃費の向上を図ることができる。
Since this valve timing control device has the above-described structure, when the internal combustion engine is started or idled, the assembly angle of the drive plate 3 and the lever shaft 10 is set to the latest as shown in FIG. By maintaining the angle side, the rotation phase of the crankshaft and the camshaft 1 (the opening / closing timing of the engine valve) is set to the most retarded side, and the engine rotation can be stabilized and the fuel consumption can be improved.

【0030】そして、この状態から機関の運転が通常運
転に移行し、前記回転位相を最進角側に変更すべく指令
が図外のコントローラから電磁コイルブロック32の駆
動回路に発されると、電磁コイルブロック32はその指
令に従って発生磁界を所定パターンで切換え、永久磁石
ブロック29を中間回転体23と共に遅れ側に最大に相
対回動させる。これにより、渦巻き溝24に球19によ
って係合されている可動案内部材17は、図10に示す
ように、径方向ガイド8に沿って径方向内側に最大に変
位し、リンク14とレバー9を介して駆動プレート3と
レバー軸10の組付角を最進角側に変更する。この結
果、クランクシャフトとカムシャフト1の回転位相が最
進角側に変更され、それによって機関の高出力化が図ら
れることとなる。
Then, when the operation of the engine shifts to the normal operation from this state and a command for changing the rotational phase to the most advanced side is issued from the controller (not shown) to the drive circuit of the electromagnetic coil block 32, The electromagnetic coil block 32 switches the generated magnetic field in a predetermined pattern according to the command, and relatively rotates the permanent magnet block 29 together with the intermediate rotor 23 to the delay side. As a result, the movable guide member 17, which is engaged with the spiral groove 24 by the ball 19, is maximally displaced inward in the radial direction along the radial guide 8, as shown in FIG. Through this, the assembling angle of the drive plate 3 and the lever shaft 10 is changed to the most advanced angle side. As a result, the rotation phases of the crankshaft and the camshaft 1 are changed to the most advanced side, and thereby the output of the engine is increased.

【0031】また、この状態から前記回転位相を最遅角
側に変更すべく指令がコントローラから発されると、電
磁コイルブロック32が発生磁界を逆パターンで切換え
ることによって中間回転体23を進み側に最大に相対回
動させ、渦巻き溝24に係合する可動案内部材17を、
図2に示すように、径方向ガイド8に沿って径方向外側
に最大に変位させる。これにより、可動案内部材17は
リンク14とレバー9を介して駆動プレート3とレバー
軸10を相対回動させ、クランクシャフトとカムシャフ
ト1の回転位相を最遅角側に変更する。
When a command is issued from the controller to change the rotation phase to the most retarded side from this state, the electromagnetic coil block 32 switches the generated magnetic field in a reverse pattern to move the intermediate rotor 23 to the forward side. The movable guide member 17 engaged with the spiral groove 24 by relatively rotating the
As shown in FIG. 2, the maximum displacement is made radially outward along the radial guide 8. As a result, the movable guide member 17 relatively rotates the drive plate 3 and the lever shaft 10 via the link 14 and the lever 9, and changes the rotational phase of the crankshaft and the camshaft 1 to the most retarded angle side.

【0032】尚、クランクシャフトとカムシャフト1の
回転位相の変更は上記の最進角側位置と最遅角側位置に
限らず、コントローラによる制御によって任意の位置に
変更することができ、例えば、図9に示すように、最遅
角位置と最進角位置の中間位置に変更することも可能で
ある。
The rotation phases of the crankshaft and the camshaft 1 are not limited to the positions of the most advanced angle side and the most retarded angle side, but can be changed to any position by the control of the controller. As shown in FIG. 9, it is also possible to change to an intermediate position between the most retarded angle position and the most advanced angle position.

【0033】このバルブタイミング制御装置は以上のよ
うに作動するが、この装置の操作力付与手段に用いられ
るステップモータ4は、電磁コイルブロック32の外側
コイル巻線33Aの一本当りの断面積を内側コイル巻線
33Bのものよりも大きくすることによって両コイル巻
線33A,33Bの通電時の電気抵抗がほぼ同じになる
ようにしているため、両コイル巻線33A,33Bの起
磁力がほぼ同じになる。
This valve timing control device operates as described above, but the step motor 4 used as the operating force applying means of this device has a cross-sectional area per outer coil winding 33A of the electromagnetic coil block 32. By making the inner coil windings 33B larger than those of the inner coil windings 33B so that the electric resistances of the coil windings 33A and 33B when they are energized are substantially the same, the magnetomotive forces of the coil windings 33A and 33B are substantially the same. become.

【0034】また、外側コイル巻線33Aの一本当りの
断面積を内側コイル巻線33B側よりも大きくしたこと
によって外側コイル巻線33Aの総断面積が内側コイル
巻線33Bの総断面積よりも大きくなるが、この実施形
態の場合、外側コイル巻線33Aの総軸方向幅c1を内
側コイル巻線33Bの総軸方向幅c2よりも大きくし
て、コイルヨーク34上における内側コイル巻線33B
の軸方向側部の磁束通路部の幅(肉厚d2)が外側コイ
ル巻線33Aの軸方向側部の磁束通路部の幅(肉厚
1)よりも大きくなるようにしたことにより、外側コ
イル巻線33Aと内側コイル巻線33Bの各周域の磁束
通路部の磁気抵抗をほぼ同じにすることができる。
Since the cross-sectional area per outer coil winding 33A is larger than that of the inner coil winding 33B, the total cross-sectional area of the outer coil winding 33A is smaller than that of the inner coil winding 33B. However, in this embodiment, the total axial width c 1 of the outer coil winding 33A is made larger than the total axial width c 2 of the inner coil winding 33B so that the inner coil winding on the coil yoke 34 is larger. Line 33B
The width (thickness d 2 ) of the magnetic flux passage portion on the axial side of is larger than the width (thickness d 1 ) of the magnetic flux passage portion on the axial side of the outer coil winding 33A. It is possible to make the magnetic resistances of the magnetic flux passage portions in the respective circumferential regions of the outer coil winding 33A and the inner coil winding 33B substantially the same.

【0035】このため、この実施形態のステップモータ
4においては、ヨークブロック30の外側極歯対と内側
極歯対の回転中心からの距離と、永久磁石ブロック29
との対向面積を適宜設定することにより、外側極歯対側
の極歯39b,41bから永久磁石ブロック29に作用
するトルクと、内側極歯対側の極歯40b,42bから
永久磁石ブロック29に作用するトルクを同じにし、そ
れによって作動の円滑化とトルクの増大を図ることがで
きる。
Therefore, in the step motor 4 of this embodiment, the distance from the rotation center of the outer pole tooth pair and the inner pole tooth pair of the yoke block 30 and the permanent magnet block 29.
By appropriately setting the facing area to the permanent magnet block 29 from the pole teeth 39b and 41b on the outer pole tooth pair side, and the permanent magnet block 29 from the pole teeth 40b and 42b on the inner pole tooth pair side to the permanent magnet block 29. It is possible to make the acting torques the same, thereby smoothing the operation and increasing the torque.

【0036】さらに、このステップモータ4の場合、各
極歯対と永久磁石ブロック29との対向面積の設定によ
って内側極対側の極歯40b,42bから永久磁石ブロ
ック29に作用する磁力と、外側極歯対側の極歯39
b,41bから永久磁石ブロック29に作用する磁力が
ほぼ同じになるため、一ステップ毎の永久磁石ブロック
29の回転角を一定にし、停止位置精度を高めることが
できる。
Further, in the case of the step motor 4, the magnetic force acting on the permanent magnet block 29 from the pole teeth 40b and 42b on the inner pole pair side and the outer side are set by setting the facing area of each pole tooth pair and the permanent magnet block 29. Polar teeth opposite pole teeth 39
Since the magnetic forces acting on the permanent magnet block 29 from b and 41b become almost the same, the rotation angle of the permanent magnet block 29 for each step can be made constant and the stop position accuracy can be improved.

【0037】即ち、今例えば、外側極歯対と内側極歯対
の極歯39b,41b、40b,42bの磁極N,Sが
図11(A)に示す状態にあり、それによって永久磁石
ブロック29が同図に示す位置で回転停止しているとす
ると、このとき任意の磁極面、例えば永久磁石ブロック
29の同図中ほぼ中央のS極の磁極面は、大面積で対向
する外側極歯対と内側極歯対の異磁極(N極)によって
吸引力を受ける(同図中通常ハッチ部参照)と同時に、
小面積で対向する外側極歯対の右側の同磁極(S極)と
内側極歯対の左側の同磁極(S極)によって相反方向の
反発力を受ける(同図中クロスハッチ部参照)。そし
て、この状態から外側極歯対の磁極N,Sが図11
(B)に示すように変わると、永久磁石ブロック29の
S極の磁極面は、大面積で対向する外側極歯対の異磁極
(N極)と内側極歯対の異磁極(N極)によって吸引力
を受け(同図中通常ハッチ部参照)、それと同時に小面
積で対向する外側極歯対の左側の同磁極(S極)と内側
極歯対の右側の同磁極(S極)によって相反方向の反発
力を受ける(同図中クロスハッチ部参照)。このとき、
外側極歯対側の磁力が内側極歯対側の磁力よりも大きい
ものとすれば、永久磁石ブロック29は、図11(A)
の状況下で同図中の左側に若干ずれた位置で停止し、図
11(B)の状況下では逆に右側に若干ずれた位置で停
止することとなるが、このステップモータ4において
は、外側極歯対と内側極歯対の磁力がほぼ同じになって
いるため、図11(A),(B)のいずれの状況下にお
いても永久磁石ブロック29は左右いずれにもずれない
中央位置で停止することとなる。したがって、このよう
な理由から永久磁石ブロック29の一ステップ毎の回転
角は常に一定となり、高い停止位置精度を得ることが可
能となる。
That is, for example, the magnetic poles N, S of the pole teeth 39b, 41b, 40b, 42b of the outer pole tooth pair and the inner pole tooth pair are in the state shown in FIG. Is stopped at the position shown in the same figure, at this time, an arbitrary magnetic pole surface, for example, the magnetic pole surface of the south pole of the permanent magnet block 29 in the substantially central part in the same figure, has a large area facing the outer pole tooth pair. And an attracting force is received by the different magnetic pole (N pole) of the inner pole tooth pair (see the normal hatch portion in the figure),
Repulsive forces in opposite directions are received by the same magnetic pole (S pole) on the right side of the pair of outer pole teeth facing each other in a small area and the same magnetic pole (S pole) on the left side of the pair of inner pole teeth (see the cross hatch portion in the figure). From this state, the magnetic poles N and S of the outer pole tooth pair are shown in FIG.
If changed as shown in (B), the magnetic pole surface of the S pole of the permanent magnet block 29 has a different magnetic pole (N pole) of the outer pole tooth pair and a different magnetic pole (N pole) of the inner pole tooth pair facing each other in a large area. By the same magnetic pole (S pole) on the left side of the outer pole tooth pair and the same magnetic pole (S pole) on the right side of the inner pole tooth pair that face each other in a small area. It receives repulsive force in opposite directions (see the cross hatch part in the figure). At this time,
Assuming that the magnetic force on the opposite side of the outer pole teeth is larger than the magnetic force on the opposite side of the inner pole teeth, the permanent magnet block 29 has the structure shown in FIG.
Under this situation, the vehicle will stop at a position slightly deviated to the left side in the figure, and conversely, at the position slightly deviated to the right side in the situation of FIG. 11B, in the step motor 4, Since the magnetic forces of the outer pole tooth pair and the inner pole tooth pair are almost the same, the permanent magnet block 29 is at the center position where it does not shift to the left or right in any of the situations of FIGS. 11 (A) and 11 (B). It will be stopped. Therefore, for this reason, the rotation angle for each step of the permanent magnet block 29 is always constant, and high stop position accuracy can be obtained.

【0038】また、この実施形態においては、本発明に
かかるステップモータ4を内燃機関のバルブタイミング
制御装置に適用したため、クランクシャフトとカムシャ
フト1の回転位相を正確、かつ、確実に変更することが
でき、また、回転トルクを効率良く高めることができる
ため、車両にとって貴重な電力の消費を抑えることがで
きる。
Further, in this embodiment, since the step motor 4 according to the present invention is applied to the valve timing control device of the internal combustion engine, the rotation phases of the crankshaft and the camshaft 1 can be changed accurately and surely. In addition, since the rotational torque can be efficiently increased, it is possible to suppress the consumption of electric power, which is valuable for the vehicle.

【0039】さらに、この実施形態のステップモータ4
においては、両コイル巻線33A,33Bの起磁力を同
じにすることができると共に、コイルヨーク34におけ
る両コイル巻線33A,33Bの磁気抵抗を同じするこ
とができるため、ヨークブロック30の設計変更のみ
で、容易に形状やサイズの異なるものに適用できるとい
う利点がある。
Further, the step motor 4 of this embodiment is
In the above, since the magnetomotive forces of the coil windings 33A and 33B can be made the same and the magnetic resistances of the coil windings 33A and 33B in the coil yoke 34 can be made the same, the design of the yoke block 30 is changed. There is an advantage that it can be easily applied to different shapes and sizes.

【0040】尚、本発明の実施形態は以上で説明したも
のに限るものでなく、例えば、以上の実施形態において
は、外向きの極歯41bを有する中間極歯ヨーク41と
内向きの極歯42bを有する中間極歯ヨーク42を別体
に形成したが、一つの中間極歯ヨークに内向きの極歯と
外向きの極歯を形成するようにしても良い。また、ステ
ップモータの適用もバルブタイミング制御装置に限ら
ず、他の種々の装置であって良い。
The embodiments of the present invention are not limited to those described above. For example, in the above embodiments, the intermediate pole tooth yoke 41 having the outwardly facing pole teeth 41b and the inwardly facing pole teeth 41b are provided. Although the intermediate pole tooth yoke 42 having 42b is formed as a separate body, the inward pole tooth and the outward pole tooth may be formed in one intermediate pole tooth yoke. Further, the application of the step motor is not limited to the valve timing control device but may be various other devices.

【0041】[0041]

【発明の効果】以上のように本発明は、外側コイル巻線
の円周方向長さが長くなる分、その線の断面積を内側コ
イル巻線よりも大きくしたため、外側コイル巻線側の起
磁力と内側コイル巻線側の起磁力をほぼ同じにすること
ができる。したがって、本発明によれば、外側コイル巻
線の通電方向を変えて永久磁石ブロックを回転させる時
と、内側コイル巻線の通電方向を変えて永久磁石ブロッ
クを回転させる時とでトルクの差が少なくなることか
ら、モータ作動を円滑化することができると共に平均ト
ルクも増大させることができる。
As described above, according to the present invention, since the length of the outer coil winding in the circumferential direction is increased, the cross-sectional area of the wire is made larger than that of the inner coil winding. The magnetic force and the magnetomotive force on the inner coil winding side can be made substantially the same. Therefore, according to the present invention, there is a difference in torque between when the permanent magnet block is rotated by changing the energization direction of the outer coil winding and when the permanent magnet block is rotated by changing the energization direction of the inner coil winding. Since the amount is reduced, the motor operation can be smoothed and the average torque can be increased.

【0042】また、本発明においては、外側コイル巻線
側と内側コイル巻線側の起磁力がほぼ同じなることか
ら、外側コイル巻線の通電切換えによって永久磁石ブロ
ックに作用する磁力と、内側コイル巻線の通電切換えに
よって永久磁石ブロックに作用する磁力をほぼ同じにす
ることができ、この結果、一ステップ毎の回転角をほぼ
一定にして停止位置精度を高めることができる。
Further, in the present invention, since the magnetomotive forces on the outer coil winding side and the inner coil winding side are substantially the same, the magnetic force acting on the permanent magnet block by switching the energization of the outer coil winding and the inner coil By switching the energization of the windings, the magnetic force acting on the permanent magnet block can be made substantially the same, and as a result, the rotation angle for each step can be made substantially constant and the stop position accuracy can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態を示す縦断面図。FIG. 1 is a vertical sectional view showing an embodiment of the present invention.

【図2】同実施形態を示す図1のA−A線に沿う断面
図。
FIG. 2 is a sectional view taken along the line AA of FIG. 1 showing the same embodiment.

【図3】同実施形態を示す永久磁石ブロックの正面図。FIG. 3 is a front view of a permanent magnet block showing the same embodiment.

【図4】同実施形態を示す図5のB−B線に沿うヨーク
ブロックの半断面図。
FIG. 4 is a half cross-sectional view of the yoke block taken along the line BB of FIG. 5 showing the same embodiment.

【図5】同実施形態を示すヨークブロックの充填樹脂材
料の図示を省略した正面図。
FIG. 5 is a front view of the same embodiment, omitting illustration of a filling resin material of a yoke block.

【図6】同実施形態を示すヨークブロックの充填樹脂材
料の図示を省略した背面図。
FIG. 6 is a rear view showing the filling resin material of the yoke block showing the same embodiment, but omitting the illustration thereof.

【図7】同実施形態を示す電磁石ブロックの正面図。FIG. 7 is a front view of an electromagnet block showing the same embodiment.

【図8】同実施形態を示す電磁石ブロックの背面図。FIG. 8 is a rear view of the electromagnet block showing the same embodiment.

【図9】同実施形態の作動状態を示す図2に対応の断面
図。
FIG. 9 is a sectional view corresponding to FIG. 2, showing an operating state of the same embodiment.

【図10】同実施形態の別の作動状態を示す図2に対応
の断面図。
FIG. 10 is a cross-sectional view corresponding to FIG. 2, showing another operating state of the same embodiment.

【図11】同実施形態を示す、永久磁石ブロックと各極
歯対の位置関係をと磁力を模式的に示す図。
FIG. 11 is a view schematically showing the positional relationship between the permanent magnet block and each pole tooth pair and the magnetic force, showing the embodiment.

【符号の説明】 1…カムシャフト 3…駆動プレート(駆動回転体) 8…径方向ガイド 10…レバー軸(従動回転体) 14…リンク 17…可動案内部材 23…中間回転体 24…渦巻き溝(渦巻き状ガイド) 29…永久磁石ブロック 32…電磁コイルブロック 33A…外側コイル巻線 33B…内側コイル巻線 34…コイルヨーク 39…外側極歯ヨーク 40…内側極歯ヨーク 41,42…中間極歯ヨーク 39b〜42b…極歯[Explanation of symbols] 1 ... Camshaft 3 ... Drive plate (drive rotor) 8 ... Radial guide 10 ... Lever shaft (driven rotor) 14 ... Link 17 ... Movable guide member 23 ... Intermediate rotating body 24 ... spiral groove (spiral guide) 29 ... Permanent magnet block 32 ... Electromagnetic coil block 33A ... Outer coil winding 33B ... Inner coil winding 34 ... Coil yoke 39 ... Outer pole tooth yoke 40 ... Inner pole tooth yoke 41, 42 ... Intermediate pole tooth yoke 39b to 42b ... pole teeth

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 径方向内向きの複数の極歯を有する環状
の外側極歯ヨークと、 径方向外向きの複数の極歯を有し、かつ前記外側極歯ヨ
ークの内周側に配置される内側極歯ヨークと、 前記外側極歯ヨークと内側極歯ヨークの間に配置され、
外側極歯ヨークの隣接する極歯間に位置される径方向外
向きの極歯と、内側極歯ヨークの隣接する極歯間に位置
される径方向内向きの極歯とを有する環状の中間極歯ヨ
ークと、 外側極歯ヨークの極歯と中間極歯ヨークの径方向外向き
の極歯によって構成される外側極歯対に異磁極を生じさ
せる外側コイル巻線と、 中間極歯ヨークの径方向内向きの極歯と内側極歯ヨーク
の極歯によって構成される内側極歯対に異磁極を生じさ
せる内側コイル巻線と、 異磁極が円周方向に沿って交互に配置されるように着磁
され、磁極面が前記各極歯ヨークの極歯に対峙するよう
に回転可能に設けられた永久磁石ブロックと、を備え、 前記外側コイル巻線と内側コイル巻線に対する通電方向
を所定パターンで変化させることにより、永久磁石ブロ
ックを前記極歯ヨークに対して相対回転させるステップ
モータにおいて、 前記外側コイル巻線の断面積を、内側コイル巻線の断面
積よりも大きくしたことを特徴とするステップモータ。
1. An annular outer pole tooth yoke having a plurality of radially inward pole teeth, and a plurality of radially outward pole teeth, which are arranged on an inner peripheral side of the outer pole tooth yoke. An inner pole tooth yoke, and arranged between the outer pole tooth yoke and the inner pole tooth yoke,
An annular intermediate having radially outward pole teeth positioned between adjacent pole teeth of the outer pole tooth yoke and radially inward pole teeth positioned between adjacent pole teeth of the inner pole tooth yoke. A pole tooth yoke, an outer coil winding that causes different magnetic poles in the outer pole tooth pair formed by the pole teeth of the outer pole tooth yoke and the pole teeth of the middle pole tooth yoke facing outward in the radial direction, and the middle pole tooth yoke Inner coil windings that generate different magnetic poles on the inner pole teeth formed by the pole teeth facing inward in the radial direction and the pole teeth of the inner pole tooth yoke, and the different magnetic poles are arranged alternately along the circumferential direction. And a permanent magnet block rotatably provided so that the magnetic pole surface faces the pole teeth of each of the pole tooth yokes, and the energization directions for the outer coil winding and the inner coil winding are predetermined. By changing the pattern, A step motor that rotates relative to a tooth yoke, wherein the cross-sectional area of the outer coil winding is larger than the cross-sectional area of the inner coil winding.
【請求項2】 外側コイル巻線と内側コイル巻線の断面
積を両者の起磁力が同一となるように設定したことを特
徴とする請求項1に記載のステップモータ。
2. The step motor according to claim 1, wherein the cross-sectional areas of the outer coil winding and the inner coil winding are set so that the magnetomotive forces of the two are the same.
【請求項3】 発生磁束を対応する極歯ヨークに誘導す
るコイルヨークの内部に外側コイル巻線と内側コイル巻
線が配置された請求項1に記載のステップモータにおい
て、 内側コイル巻線の巻き状態での総軸方向幅を外側コイル
巻線の巻き状態での総軸方向幅よりも小さくし、コイル
ヨークにおける両コイル巻線の配置を、内側コイル巻線
の軸方向側部の磁束通路部の軸方向幅が外側コイル巻線
の軸方向側部の磁束通路部の軸方向幅よりも大きくなる
ようにしたことを特徴とするステップモータ。
3. The step motor according to claim 1, wherein the outer coil winding and the inner coil winding are arranged inside the coil yoke for guiding the generated magnetic flux to the corresponding pole tooth yoke. The total axial width of the inner coil winding is smaller than the total axial width of the outer coil winding, and the arrangement of both coil windings in the coil yoke is set to the magnetic flux passage section on the axial side of the inner coil winding. The axial width of the step motor is larger than the axial width of the magnetic flux passage portion on the axial side of the outer coil winding.
【請求項4】 内燃機関のクランクシャフトによって回
転駆動する駆動回転体と、カムシャフト若しくは同シャ
フトに結合された別体部材から成り、前記駆動回転体か
ら動力を伝達される従動回転体と、前記駆動回転体と従
動回転体のいずれか一方に設けられた径方向ガイドと、
前記駆動回転体と従動回転体に対して相対回転可能に設
けられ、前記径方向ガイドに対峙する側の面に渦巻き状
ガイドを有する中間回転体と、前記径方向ガイドと渦巻
き状ガイドに変位可能に案内係合される可動案内部と、
前記駆動回転体と従動回転体のいずれか他方のものの回
転中心から離間した部位と前記可動案内部とを揺動可能
に連結するリンクと、を備えた内燃機関のバルブタイミ
ング制御装置において、前記中間回転体に駆動回転体及
び従動回転体に対する相対的な回動操作力を付与する操
作力付与手段に用いることを特徴とする請求項1〜3の
いずれかに記載のステップモータ。
4. A driven rotating body that is rotationally driven by a crankshaft of an internal combustion engine, and a driven rotating body that is composed of a camshaft or a separate member coupled to the shaft, and that is driven by the drive rotating body. A radial guide provided on one of the drive rotating body and the driven rotating body,
An intermediate rotating body that is provided so as to be rotatable relative to the drive rotating body and the driven rotating body and has a spiral guide on a surface facing the radial guide, and is displaceable between the radial guide and the spiral guide. A movable guide portion that is guided and engaged with
A valve timing control device for an internal combustion engine, comprising: a link that oscillates between the movable guide portion and a portion of the other of the drive rotor and the driven rotor that is separated from the center of rotation, The step motor according to any one of claims 1 to 3, wherein the step motor is used as an operation force applying unit that applies a relative rotational operation force to the rotating body with respect to the drive rotating body and the driven rotating body.
JP2001395649A 2001-12-27 2001-12-27 Step motor Expired - Fee Related JP3811059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001395649A JP3811059B2 (en) 2001-12-27 2001-12-27 Step motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001395649A JP3811059B2 (en) 2001-12-27 2001-12-27 Step motor

Publications (2)

Publication Number Publication Date
JP2003199314A true JP2003199314A (en) 2003-07-11
JP3811059B2 JP3811059B2 (en) 2006-08-16

Family

ID=27601965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001395649A Expired - Fee Related JP3811059B2 (en) 2001-12-27 2001-12-27 Step motor

Country Status (1)

Country Link
JP (1) JP3811059B2 (en)

Also Published As

Publication number Publication date
JP3811059B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
JP3986371B2 (en) Valve timing control device for internal combustion engine
JP3629362B2 (en) Driving method of electromagnetic valve for driving engine valve
JP3943892B2 (en) Rotation control device and valve timing control device for internal combustion engine
JP3811038B2 (en) Stepping motor
JP4183761B2 (en) Electric adjustment drive
JP3917833B2 (en) Valve timing control device for internal combustion engine
JP2003199314A (en) Stepping motor
JP2003204665A (en) Stepping motor
JP2003189582A (en) Step motor
JP2003189510A (en) Electromagnetic coil
JP2003189580A (en) Step motor
JP4012388B2 (en) Valve timing control device for internal combustion engine
JP2003189581A (en) Step motor
JP3917855B2 (en) Step motor
JP3948995B2 (en) Valve timing control device for internal combustion engine
JP4008225B2 (en) Valve timing control device for internal combustion engine
KR100514459B1 (en) Actuator
JP2003120239A (en) Valve timing control device for internal combustion engine
JP2003239709A (en) Valve timing control device for internal combustion engine
US7687955B2 (en) Braking device for a camshaft adjuster
JP3589324B2 (en) Actuator
JP4043205B2 (en) Valve timing control device for internal combustion engine
JP3933783B2 (en) Actuator
JP2003074315A (en) Valve timing control device for internal combustion engine
JP2004088934A (en) Hysteresis brake

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040427

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20041217

Free format text: JAPANESE INTERMEDIATE CODE: A712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060509

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060525

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees