JP2003198100A - Method for manufacturing board having electric circuit - Google Patents

Method for manufacturing board having electric circuit

Info

Publication number
JP2003198100A
JP2003198100A JP2001393595A JP2001393595A JP2003198100A JP 2003198100 A JP2003198100 A JP 2003198100A JP 2001393595 A JP2001393595 A JP 2001393595A JP 2001393595 A JP2001393595 A JP 2001393595A JP 2003198100 A JP2003198100 A JP 2003198100A
Authority
JP
Japan
Prior art keywords
substrate
metal fine
electric circuit
metal
particle dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001393595A
Other languages
Japanese (ja)
Inventor
Emiko Ekusa
恵美子 江草
Shigehiko Hayashi
茂彦 林
Masato Kawahara
正人 川原
Masahiro Irie
正浩 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2001393595A priority Critical patent/JP2003198100A/en
Publication of JP2003198100A publication Critical patent/JP2003198100A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a board having an electric circuit formed to allow a pattern width and a pattern interval to be increased in densities by forming the circuit by a method not needing a plating step. <P>SOLUTION: The method for manufacturing the board having an electric circuit comprises the steps of manufacturing a thin film 11 from a metal fine particle dispersion liquid on the board 5, and irradiating the film 22 with a laser beam to aggregate metal fine particles on a groove-like circuit pattern 13 to form a conductor. Thus, the film 11 laminated on the board 5 is directly irradiated with the beam to form a sufficient conductor. A later plating step is not required to simplify the steps, and further the pattern width and the pattern interval can be increased in densities in the electric circuit. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電気回路を形成した
基板の製造方法に係り、詳しくはレーザー光を基板上に
積層した金属微粒子分散膜に直接照射して溝状の回路パ
ターン内に金属微粒子を凝集させて導体を形成した電気
的回路を成形した基板の製造方法にある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a substrate on which an electric circuit is formed. More specifically, the present invention relates to a method of directly irradiating a metal fine particle dispersed film laminated on a substrate with laser light to form metal fine particles in a groove-shaped circuit pattern. Is a method of manufacturing a substrate in which an electric circuit is formed by aggregating a conductor to form a conductor.

【0002】[0002]

【従来の技術】基板上にメッキで回路を形成する方法と
して、該基板にフォトマスクをかけ紫外線ランプによる
露光を行う「フォトイメージング法」が知られている。
この方法は基本的に現行のガラスエポキシ基板で行われ
ている「セミアディティブ法」や「サブトラクティブ
法」を利用したプリント配線基板の製造方法であり、紫
外線ランプを用いるためにパターン幅やパターン間隔に
制限があることと不要部分のメッキをエッティングによ
り除去するため、省資源の点から好ましくなかった。
2. Description of the Related Art As a method of forming a circuit on a substrate by plating, a "photoimaging method" is known in which a photomask is applied to the substrate and exposed by an ultraviolet lamp.
This method is basically a method for manufacturing a printed wiring board using the "semi-additive method" or "subtractive method" that is performed on the current glass epoxy board. This is not preferable from the point of view of resource saving because there is a limitation in the above and plating of unnecessary portions is removed by etching.

【0003】他の方法として不要部分のエッティング除
去をなくす目的で「フルアディティブ法」が使用される
ようになってきた。更に、パターン幅やパターン間隔を
さらに高密度化するために、レーザ光を用いる「直接露
光法」がある。
As another method, the "full-additive method" has come to be used for the purpose of eliminating the etting removal of unnecessary portions. Further, there is a "direct exposure method" using laser light in order to further increase the pattern width and the pattern interval.

【0004】また、レーザ光を用いる「直接露光法」の
他、例えば特開平9−309267号公報に開示されて
いるように、樹脂表面にグリース等の油類を被着しその
表面にレーザー光を照射して文字等をマーキングする方
法や、特開平8−174263号公報に開示されている
ように、無機顔料を含有した樹脂を塗布し定着させる方
法がある。
In addition to the "direct exposure method" using laser light, as disclosed in, for example, Japanese Patent Application Laid-Open No. 9-309267, oil such as grease is adhered to the resin surface and laser light is applied to the surface. There is a method of irradiating with and marking a character or the like, and a method of applying and fixing a resin containing an inorganic pigment as disclosed in JP-A-8-174263.

【0005】そして、最近では、パターン幅やパターン
間隔をさらに高密度化する目的でレーザ光を直接照射す
る「直接露光法」がある。
Recently, there is a "direct exposure method" in which a laser beam is directly irradiated for the purpose of further increasing the pattern width and the pattern interval.

【0006】[0006]

【発明が解決しようとする課題】しかし、前記「フルア
ディティブ法」は基本的に現行のガラスエポキシ基板で
行われている「セミアディティブ法」や「サブトラクテ
ィブ法」を利用したプリント配線基板の製造方法であ
り、紫外線ランプを用いるためにパターン幅やパターン
間隔に制限があることと不要部分のメッキをエッティン
グにより除去するため、省資源の点から好ましくなかっ
たまた、不要部分のエッティング除去をなくす目的で開
発された「フルアディティブ法」は、回路不要部分に触
媒が残ることや紫外線ランプによる露光を行うために、
パターン幅やパターン間隔に制限があった。
However, the above-mentioned "full additive method" is basically used for manufacturing a printed wiring board using the "semi-additive method" or "subtractive method" that is performed on the current glass epoxy substrate. Since this is a method, the pattern width and pattern interval are limited due to the use of an ultraviolet lamp, and plating of unnecessary portions is removed by etching, which is not preferable from the viewpoint of resource saving. The "Full Additive Method" developed for the purpose of eliminating it is because the catalyst remains in the circuit unnecessary part and it is exposed by an ultraviolet lamp.
There was a limit to the pattern width and pattern interval.

【0007】更に、パターン幅やパターン間隔をさらに
高密度化する目的で開発されたレーザ光を用いる「直接
露光法」は、露光にレーザを用いた「サブトラクティブ
法」てあり、基板にエッティング、触媒付加などを施
し、全体に無電解メッキ、電解メッキにて銅メッキを形
成し、この銅メッキ上にメッキレジスト膜を形成した
後、レーザー光を用いて回路パターンをイメージング
し、イメージングされた回路部にエッティングレジスト
としてニッケル、半田、金等を電解メッキする。メッキ
レジストを除去した後、銅エッチィングを行っていた。
しかし、複雑な回路パターン、ファインパターン化に有
効な方法であるが、不要部分のメッキをエッティングに
より除去するために省資源の点から好ましくなかった。
Further, the "direct exposure method" using a laser beam developed for the purpose of further increasing the pattern width and the pattern interval is a "subtractive method" using a laser for exposure, and the substrate is etched. After applying a catalyst, etc., electroless plating and copper plating were formed on the entire surface by electroplating, and after forming a plating resist film on this copper plating, the circuit pattern was imaged using laser light, and the image was obtained. Nickel, solder, gold or the like is electrolytically plated as an etching resist on the circuit portion. After removing the plating resist, copper etching was performed.
However, although it is an effective method for forming a complicated circuit pattern or fine pattern, it is not preferable in terms of resource saving because the plating of an unnecessary portion is removed by etching.

【0008】本発明はこのような問題点を解決し、メッ
キ工程を必要としない方法で電気回路を形成し、パター
ン幅やパターン間隔を高密度化することができる電気回
路を形成した基板の製造方法を提供することを目的とす
る。
The present invention solves the above problems and manufactures an electric circuit formed by a method that does not require a plating step and can increase the pattern width and the pattern interval. The purpose is to provide a method.

【0009】[0009]

【課題を解決するための手段】即ち本願請求項1記載の
発明は、基板上に金属微粒子分散液から薄膜を作製し、
レーザー光を上記薄膜に照射して溝状の回路パターンに
金属微粒子を凝集させて導体を形成したことを特徴とす
る電気回路を有する基板の製造方法にあり、レーザー光
を基板上に積層した金属微粒子分散液から得られた薄膜
に直接照射して溝状の回路パターンに金属微粒子を凝集
させて充分な導体を形成することができるもので、その
後のメッキ工程が不要になって工程を簡略化でき、しか
もパターン幅やパターン間隔を高密度化することができ
る電気回路が得られる。
That is, the invention according to claim 1 of the present application is to produce a thin film from a fine metal particle dispersion on a substrate,
In a method for producing a substrate having an electric circuit, characterized in that a conductor is formed by aggregating metal fine particles in a groove-shaped circuit pattern by irradiating the thin film with laser light, and a metal having laser light laminated on the substrate. Directly irradiates the thin film obtained from the fine particle dispersion liquid to agglomerate the metal fine particles in the groove-shaped circuit pattern to form a sufficient conductor, and the subsequent plating step is unnecessary and the process is simplified. It is possible to obtain an electric circuit capable of achieving high density of the pattern width and the pattern interval.

【0010】本願請求項2記載の発明は、上記金属微粒
子分散液には導電性粉末を含んでいる電気回路を有する
基板の製造方法にあり、導電性粉末がレーザー光の照射
によって凝集した金属微粒子の間隙に充填して通電性を
高める。
The invention according to claim 2 of the present application is in the method for producing a substrate having an electric circuit in which the metal fine particle dispersion contains conductive powder, wherein the conductive powder is agglomerated by laser light irradiation. The gap is filled to improve conductivity.

【0011】本願請求項3記載の発明は、金属微粒子が
金微粒子そして銀微粒子から選ばれた少なくとも1種で
ある電気回路を有する基板の製造方法にある。
The third aspect of the present invention is a method for producing a substrate having an electric circuit in which the metal fine particles are at least one selected from gold fine particles and silver fine particles.

【0012】本願請求項4記載の発明は、金属微粒子の
添加量が金属微粒子分散液の固形分の合計重量に対して
25重量%以上である電気回路を形成した基板の製造方
法にあり、レーザ光を照射する工程においてレーザ光の
光エネルギーを十分に利用でき、微細で鮮明なパターン
回路を形成することできる。
The invention according to claim 4 of the present application is the method for producing a substrate on which an electric circuit is formed, wherein the amount of the metal fine particles added is 25% by weight or more based on the total weight of the solid content of the metal fine particle dispersion, and the laser is used. In the step of irradiating light, the light energy of the laser light can be fully utilized, and a fine and clear pattern circuit can be formed.

【0013】本願請求項5記載の発明は、導電性粉末の
添加量が金属微粒子分散液の固形分の合計重量に対して
0〜50重量%以上である電気回路を有する基板の製造
方法にあり、導電性粉末がレーザー光の照射によって凝
集した金属微粒子の間隙に充填して通電性を高める。
The invention according to claim 5 of the present application is the method for producing a substrate having an electric circuit in which the amount of the conductive powder added is 0 to 50% by weight or more based on the total weight of the solid content of the fine metal particle dispersion. The conductive powder is filled in the gaps between the metal fine particles aggregated by the irradiation of the laser beam to enhance the electrical conductivity.

【0014】[0014]

【発明の実施の形態】以下本発明の実施の形態を詳細に
説明する。基板表面には、予め金属微粒子分散膜が形成
される。金属微粒子分散膜を形成する金属微粒子分散剤
は、溶媒中あるいは保護高分子中に金属微粒子が独立分
散した金属微粒子分散液、高分子マトリクス、そして溶
媒の少なくとも3種を含んだものであり、特有の吸収ス
ペクトルを示す金属微粒子分散薄膜に対応した波長を有
するレーザー光を照射することによって、金属微粒子分
散膜が吸収したレーザー光エネルギーを熱として放出、
この熱によって高分子マトリクスが昇華または溶融し、
金属微粒子が凝集するためにプラスチック基板上に導体
が形成される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. A metal fine particle dispersed film is previously formed on the surface of the substrate. The metal fine particle dispersant that forms the metal fine particle dispersion film contains at least three kinds of a metal fine particle dispersion liquid in which metal fine particles are independently dispersed in a solvent or a protective polymer, a polymer matrix, and a solvent. The laser light energy absorbed by the metal fine particle dispersion film is released as heat by irradiating the laser light having the wavelength corresponding to the metal fine particle dispersion thin film showing the absorption spectrum of
This heat sublimates or melts the polymer matrix,
A conductor is formed on the plastic substrate because the metal fine particles aggregate.

【0015】金属微粒子分散液中の金属微粒子の添加量
は金属微粒子分散液の固形分の合計重量(金属微粒子、
導電性粉末、高分子等)に対して25重量%以上であ
り、好ましくは50〜95重量%であり、25重量%未
満になるとレーザ光を照射する工程においてレーザ光の
光エネルギーを十分に利用できず、微細で鮮明なパター
ン回路を形成することが困難になる。
The addition amount of the metal fine particles in the metal fine particle dispersion is the total weight of the solid content of the metal fine particle dispersion (metal fine particles,
25% by weight or more, preferably 50 to 95% by weight, based on the conductive powder, polymer, etc., and if less than 25% by weight, the light energy of the laser beam is sufficiently utilized in the step of irradiating the laser beam. However, it becomes difficult to form a fine and clear pattern circuit.

【0016】ここで使用する金属微粒子分散液は、粒径
0.001〜3μmの金属微粒子を溶媒中に独立して分
散したものであり、例えば特開平3−34211号公報
に開示されているガス中蒸発法と呼ばれる方法によって
製造される。これはチャンバ内にヘリウム不活性ガスを
導入して金属を蒸発させ、不活性ガスとの衝突により冷
却され凝縮して得られるが、この場合生成直後の粒子が
孤立状態にある段階でα−テレピネオール、トルエンな
どの溶媒の蒸気を導入して粒子表面の被覆を行ったもの
である。また他の作製法としては、一般に良く知られて
いる還元法、アトマイズ法等が知られている。
The fine metal particle dispersion used here is a dispersion of fine metal particles having a particle size of 0.001 to 3 μm independently in a solvent. For example, the gas disclosed in JP-A-3-34211. It is manufactured by a method called the medium evaporation method. This is obtained by introducing a helium-inert gas into the chamber to evaporate the metal, cooling by condensation with an inert gas, and condensing.In this case, α-terpineol is generated at the stage where the particles immediately after generation are in an isolated state. , And the vapor of a solvent such as toluene is introduced to coat the surface of the particles. Further, as other production methods, generally well-known reduction method, atomization method and the like are known.

【0017】また他の金属微粒子は、分子の末端あるい
は側鎖にシアノ基、アミノ基、及びチオール基から選ば
れた少なくとも1種の官能基を有する高分子あるいはオ
リゴマーを加熱して融解した後、金、白金、パラジウ
ム、ロジウム、銀などの金属を蒸発させて上記保護高分
子の融解物に捕捉させた後、融解した保護高分子中に分
散させたものである。そして、この高分子中に金属微粒
子を分散させた高分子複合物をα−テレピネオール、メ
タノール、エタノール、水、カルビトール、メタクレゾ
ール等の溶媒に溶かして使用することができる。
The other metal fine particles are obtained by heating and melting a polymer or oligomer having at least one kind of functional group selected from a cyano group, an amino group and a thiol group at the terminal or side chain of the molecule, and then melting it. A metal such as gold, platinum, palladium, rhodium, or silver is evaporated to be trapped in a melt of the protective polymer, and then dispersed in the molten protective polymer. Then, the polymer composite in which metal fine particles are dispersed in this polymer can be used by dissolving it in a solvent such as α-terpineol, methanol, ethanol, water, carbitol, and metacresol.

【0018】具体的には、上記保護高分子は、分子の末
端あるいは側鎖にシアノ基(−CN)、アミノ基(−N
2 )、及びチオール基(−SH)から選ばれた少なく
とも1種の官能基を有するもので、その骨格はポリエチ
レンオキサイド、ポリエチレングリコール、ポリビニル
アルコール、ナイロン11、ナイロン6、ナイロン6,
6、ナイロン6,10、ポリエチレンテレフタレート、
ポリスチレン等からなり、その融点あるいは軟化点は4
0〜100°Cである。オリゴマーの平均分子量も特に
制限はないが、500〜6000程度である。上記官能
基は特に微粒子の表面の金属原子と共有結合や配位結合
を形成しやすく、粒成長を抑制し、微粒子の分散性を高
めることになる。
Specifically, the above protective polymer has a cyano group (-CN) or an amino group (-N) at the terminal or side chain of the molecule.
H 2 ), and at least one functional group selected from thiol groups (—SH), the skeleton of which is polyethylene oxide, polyethylene glycol, polyvinyl alcohol, nylon 11, nylon 6, nylon 6, nylon 6,
6, nylon 6,10, polyethylene terephthalate,
It is made of polystyrene and has a melting point or softening point of 4
It is 0 to 100 ° C. The average molecular weight of the oligomer is not particularly limited, but is about 500 to 6000. The above-mentioned functional group is particularly likely to form a covalent bond or a coordinate bond with a metal atom on the surface of the fine particles, suppresses grain growth, and enhances dispersibility of the fine particles.

【0019】他に例えば特公平6−99585号公報に
開示されているように、融解後急速固化することによっ
て熱力学的に非平衡状態としたナイロン11のような高
分子層の表面に銅、金、銀、鉛、及びプラチナ、または
銅を含むこれらの合金を蒸着させた後、この高分子層を
平衡状態になるまで緩和させることで、該金属を微粒子
化して保護高分子内に分散させて得ることができる。そ
して、この高分子中に微粒子を分散をさせた高分子複合
物をα−テレピネオール、メタノール、エタノール、カ
ルビトール、メタクレゾール等の溶媒に溶かして使用す
る。
In addition, as disclosed in, for example, Japanese Patent Publication No. 6-99585, copper is formed on the surface of a polymer layer such as nylon 11 which is thermodynamically nonequilibrium by being rapidly solidified after melting. After vapor deposition of these alloys containing gold, silver, lead, and platinum, or copper, the polymer layer is relaxed to equilibrium, thereby atomizing the metal and dispersing it in the protective polymer. Can be obtained. Then, a polymer composite in which fine particles are dispersed in this polymer is dissolved in a solvent such as α-terpineol, methanol, ethanol, carbitol, and metacresol for use.

【0020】上記金属微粒子分散液を高分子マトリクス
中に分散させて金属微粒子分散剤を得る。本発明におい
て、高分子マトリクスとしてエチルセルロース、エチル
ヒドロキシエチルセルロース等が使用される。
The metal fine particle dispersion is dispersed in a polymer matrix to obtain a metal fine particle dispersant. In the present invention, ethyl cellulose, ethyl hydroxyethyl cellulose or the like is used as the polymer matrix.

【0021】溶媒は、上記高分子マトリクスを溶かすも
のであれがよく、例えばトルエン、キシレン、テレピネ
オール、シクロヘキサンである。
The solvent may be any solvent which can dissolve the above-mentioned polymer matrix, and examples thereof include toluene, xylene, terpineol and cyclohexane.

【0022】上記金属微粒子分散剤には、導電性粉末を
含めることができる。この導電性粉末はレーザー光の照
射によって凝集した金属微粒子の間隙に充填して通電性
を高めるもので、具体的には酸化錫ドープ酸化インジウ
ム粉末(ITO粉末)、アンチモンドープ酸化錫粉末
(ATO粉末)。酸化錫、酸化亜鉛、酸化カドミウム、
あるいはこれらでコートした酸化チタン等の導電性酸化
物が好ましく、酸化物が絶縁体となるものは好ましくな
い。
The metal fine particle dispersant may contain a conductive powder. This conductive powder is filled in the gaps of the metal fine particles agglomerated by the irradiation of laser light to enhance the electrical conductivity, and specifically, tin oxide-doped indium oxide powder (ITO powder), antimony-doped tin oxide powder (ATO powder). ). Tin oxide, zinc oxide, cadmium oxide,
Alternatively, a conductive oxide such as titanium oxide coated with these is preferable, and one in which the oxide serves as an insulator is not preferable.

【0023】この導電性粉末の粒径は通常、0.05〜
10μmであり、10μmを超えると、導電性粉末が凝
集した金属微粒子の間隙に充填できず、通電性が悪くな
る。また、導電性粉末の添加量が金属微粒子分散液の固
形分の合計重量に対して0〜50重量%であり、50重
量%を超えると、金属微粒子の量が少なくなって通電性
が劣ってくる。
The particle size of this conductive powder is usually from 0.05 to
It is 10 μm, and if it exceeds 10 μm, it cannot be filled in the gaps of the metal fine particles in which the conductive powder is aggregated, and the electrical conductivity is deteriorated. Further, the amount of the conductive powder added is 0 to 50% by weight based on the total weight of the solid content of the metal fine particle dispersion, and if it exceeds 50% by weight, the amount of the metal fine particles is small and the electrical conductivity is poor. come.

【0024】上記金属微粒子を分散した薄膜の厚さは、
0.5〜30μmが好ましく、更に好ましくは15〜2
0μm程度である。薄膜の厚さは、使用する高分子と溶
媒の量を適宜調整することによって容易に調整可能であ
る。0.5μm未満の膜厚では薄膜の十分な吸光度が得
られず、溝状パターン加工に必要なレーザー光照射エネ
ルギーが大きくなり、好ましくない。
The thickness of the thin film in which the fine metal particles are dispersed is
0.5 to 30 μm is preferable, and 15 to 2 is more preferable.
It is about 0 μm. The thickness of the thin film can be easily adjusted by appropriately adjusting the amounts of polymer and solvent used. If the film thickness is less than 0.5 μm, sufficient absorbance of the thin film cannot be obtained, and the laser beam irradiation energy required for groove pattern processing becomes large, which is not preferable.

【0025】高分子中での金属微粒子の分散状態が不良
の場合には、金属微粒子と高分子との相互作用に基づく
固有の吸収スペクトルを得ることが困難となり、得られ
る薄膜はブロードな吸収スペクトルを示す。これは薄膜
のレーザー光に対する感度低下につながる。この場合も
また過大なレーザー光照射が必要となるため、金属微粒
子は高分子内で均一に分散させる必要がある。
When the dispersion state of the metal fine particles in the polymer is poor, it becomes difficult to obtain a unique absorption spectrum based on the interaction between the metal fine particles and the polymer, and the obtained thin film has a broad absorption spectrum. Indicates. This leads to a reduction in the sensitivity of the thin film to laser light. In this case, too, it is necessary to irradiate the laser beam excessively, and therefore it is necessary to uniformly disperse the metal fine particles in the polymer.

【0026】用いる金属微粒子の種類によって得られる
薄膜の光吸収特性が異なり、例えば金微粒子では530
nm付近に、銀微粒子では430nm付近にその吸収極
大を有する薄膜が得られる。
The light absorption characteristics of the thin film obtained differ depending on the type of the metal fine particles used.
In the vicinity of nm, silver fine particles give a thin film having an absorption maximum near 430 nm.

【0027】金属微粒子は、上記のように金属微粒子分
散膜として高分子に分散させたもの以外に、金属微粒子
分散剤として有機溶媒に分散させた状態のまま基板上に
塗布してもよい。このとき、市販の金属微粒子分散剤に
添加されている界面活性剤の効果で、金属微粒子が基板
上で凝集することなく、上記金属微粒子分散膜と同様の
金属微粒子に特有の色を有した薄膜が基板上に形成され
る。
The metal fine particles may be coated on the substrate in the state of being dispersed in the organic solvent as the metal fine particle dispersant, in addition to the metal fine particle dispersed film dispersed in the polymer as described above. At this time, due to the effect of the surfactant added to the commercially available metal fine particle dispersant, the metal fine particles do not aggregate on the substrate, and a thin film having a color unique to the metal fine particle dispersion film similar to the above metal fine particle dispersion film. Are formed on the substrate.

【0028】上記基板としては、メチルメタアクリレー
ト(PMMA)樹脂等のメタクリル樹脂、ポリカーボネ
ート(PC)樹脂、ポリエチレン(PE)樹脂、ポリプ
ロピレン(PP)樹脂、ポリスチレン(PS)樹脂、ポ
リエチレンテレフタレート(PET)等のポリエステル
樹脂、エポキシ樹脂、フェノール樹脂、ポリ塩化ビニル
(PVC)樹脂等各種汎用プラスチック、ガラスが挙げ
られる。それぞれ無色のままであってもよく、各種着色
剤を含有した状態であってもよい。
As the substrate, methacrylic resin such as methylmethacrylate (PMMA) resin, polycarbonate (PC) resin, polyethylene (PE) resin, polypropylene (PP) resin, polystyrene (PS) resin, polyethylene terephthalate (PET), etc. Examples include various general-purpose plastics such as polyester resin, epoxy resin, phenol resin, polyvinyl chloride (PVC) resin, and glass. Each may remain colorless or may contain various colorants.

【0029】金微粒子分散薄膜(以下、薄膜11とい
う)を表面に形成したプラスチック基板に、図1に示す
レーザー光照射系によってレーザー光を照射し、パター
ン加工を行う。レーザー光源1としては、薄膜11の吸
収波長領域内に収まるものであれば特に限定されるもの
ではないが、薄膜11のレーザー光に対する感度を考慮
に入れれば、薄膜11の極大吸収波長付近の波長を有す
るものが好ましい。出力は十数ミリワット程度の小出力
のもので十分であり、例えば、430nm、488n
m、532nm、633nm、その他の可視領域の光を
発振するレーザーが好適に用いられる。加工面における
レーザー光強度は2mW以上が好ましい。このレーザー
光強度は薄膜11の吸収量によって調整され、レーザー
強度が強すぎる場合、基板の凹凸が大きくなり、通電性
を妨げる。微弱なレーザー光でパターン加工を行う本発
明の主旨を考慮すれば、30mW以下が好ましい。
A plastic substrate having a gold fine particle dispersed thin film (hereinafter referred to as thin film 11) formed on its surface is irradiated with laser light by the laser light irradiation system shown in FIG. 1 to perform pattern processing. The laser light source 1 is not particularly limited as long as it is within the absorption wavelength range of the thin film 11, but if the sensitivity of the thin film 11 to the laser light is taken into consideration, a wavelength in the vicinity of the maximum absorption wavelength of the thin film 11 is obtained. Those having are preferred. A small output of about a dozen milliwatts is sufficient, and for example, 430 nm, 488n
A laser that oscillates light in the visible region of m, 532 nm, 633 nm, or the like is preferably used. The laser light intensity on the processed surface is preferably 2 mW or more. The laser light intensity is adjusted by the amount of absorption of the thin film 11, and if the laser intensity is too high, the unevenness of the substrate becomes large, which hinders the electrical conductivity. Considering the gist of the present invention in which pattern processing is performed with a weak laser beam, 30 mW or less is preferable.

【0030】レーザー光はミラー2及び偏光ビームスプ
リッタ3を介して、薄膜11が載置されたXYZステー
ジ4上に導かれる。モーター駆動により3次元方向に移
動可能なXYZステージ4上に載置された基板5上の薄
膜表面は、直上の対物レンズ6及びCCDカメラ7を通
してTVモニター8で観察可能である。薄膜11にレー
ザー光を透過フィルター9を用いて強度を調整して導入
する。レーザー光は対物レンズ6によって薄膜11上で
1〜20μm程度にまで絞り込まれる。薄膜11表面を
TVモニター8で観察しながら、XYZステージ4をX
Y方向に所望のパターンに従って駆動する。
The laser light is guided through the mirror 2 and the polarization beam splitter 3 onto the XYZ stage 4 on which the thin film 11 is placed. The thin film surface on the substrate 5 placed on the XYZ stage 4 which can be moved in three dimensions by driving a motor can be observed by the TV monitor 8 through the objective lens 6 and the CCD camera 7 directly above. Laser light is introduced into the thin film 11 with its intensity adjusted using the transmission filter 9. The laser light is narrowed down to about 1 to 20 μm on the thin film 11 by the objective lens 6. While observing the surface of the thin film 11 on the TV monitor 8, move the XYZ stage 4 to X.
It drives according to a desired pattern in the Y direction.

【0031】基板5を取り出すと、図2に示すようにレ
ーザー光を照射した箇所には溝状の回路パターン13が
形成されている。そして、薄膜11を構成して高分子マ
トリクス等の有機物質が昇華または溶融するとともに回
路パターン13は金属微粒子が凝集して導体になってい
る。
When the substrate 5 is taken out, as shown in FIG. 2, a groove-shaped circuit pattern 13 is formed at the portion irradiated with the laser beam. Then, the thin film 11 is formed, and an organic substance such as a polymer matrix is sublimated or melted, and at the same time, the circuit pattern 13 is a conductor in which metal fine particles are aggregated.

【0032】[0032]

【実施例】以下、本発明の電気回路を形成した基板の製
造方法について、実施例を示しさらに詳細に説明する。
EXAMPLES The method for manufacturing a substrate having an electric circuit according to the present invention will be described in more detail below with reference to examples.

【0033】実施例1〜4、比較例1〜2 表1の配合に示すように、容器にエチルセルロース5重
量%及び溶媒であるp−キシレン95重量%を加えて1
時間攪拌して溶解し、これにテレピネオール分散金微粒
子(真空冶金製「パーフェクトゴールド」Au19.9
重量%)を所定量、導電性粉末を所定量加えて30分以
上攪拌して金微粒子分散液を作製し、これを所定の基板
に滴下、スピンコータ(回転数:2,000rpm、時
間:15秒)で厚さ約4μmの薄膜を作成後、室温で1
0分間乾燥し、金微粒子分散膜を得た。
Examples 1 to 4 and Comparative Examples 1 to 2 As shown in the formulation of Table 1, 5% by weight of ethyl cellulose and 95% by weight of p-xylene as a solvent were added to a container to give 1
After stirring for a while to dissolve, terpineol-dispersed gold particles (“Perfect Gold” Au 19.9 manufactured by vacuum metallurgy) were added.
(% By weight) and a predetermined amount of conductive powder are added and stirred for 30 minutes or more to prepare a gold fine particle dispersion liquid, which is dropped on a predetermined substrate and spin-coated (rotation speed: 2,000 rpm, time: 15 seconds). ), Create a thin film with a thickness of about 4 μm, and
It was dried for 0 minutes to obtain a gold fine particle dispersed film.

【0034】[0034]

【表1】 [Table 1]

【0035】上記金微粒子分散膜上にステージを走査さ
せながら対物レンズ(NA:0.25)で集光したグリ
ーンレーザー光(波長:532nm、出力:25mW)
を用いて所定幅の回路パターンを形成した。なお、加工
面でのレーザー光強度は25mWであった。
A green laser beam (wavelength: 532 nm, output: 25 mW) focused by an objective lens (NA: 0.25) while scanning the stage on the gold fine particle dispersion film.
Was used to form a circuit pattern having a predetermined width. The laser light intensity on the processed surface was 25 mW.

【0036】その後、レーザー光を照射した部分の両端
部にドータイトを塗り、テスターを用いて抵抗を測定し
た。その結果を表3に示す。
Then, both ends of the portion irradiated with laser light were coated with dotite, and the resistance was measured using a tester. The results are shown in Table 3.

【0037】実施例5、比較例3 表2の配合に示すように、容器にエチルセルロース5重
量%及び溶媒であるp−キシレン95重量%を加えて1
時間攪拌して溶解し、これにトルエン分散金微粒子(真
空冶金製「パーフェクトゴールド」Au20重量%)を
所定量、トルエン分散ITO(錫ドープ酸化インジウ
ム)微粒子(Au20重量%)を所定量加えて30分以
上攪拌して金微粒子分散液を作製し、これをPMMA基
板に滴下、スピンコータ(回転数:1,000rpm、
時間:20秒)で厚さ約12μmの薄膜を作成後、室温
で10分間乾燥し、金微粒子分散膜を得た。
Example 5, Comparative Example 3 As shown in the formulation of Table 2, 1% by adding 5% by weight of ethyl cellulose and 95% by weight of p-xylene as a solvent to a container.
After stirring and dissolving for a time, a predetermined amount of toluene-dispersed gold fine particles (vacuum metallurgy "Perfect Gold" Au 20% by weight) and a predetermined amount of toluene-dispersed ITO (tin-doped indium oxide) fine particles (Au 20% by weight) were added to give 30 Stirring for more than a minute to prepare a gold fine particle dispersion liquid, which is dropped onto a PMMA substrate and spin-coated (rotation speed: 1,000 rpm,
After forming a thin film having a thickness of about 12 μm for 20 seconds, it was dried at room temperature for 10 minutes to obtain a gold fine particle dispersed film.

【0038】[0038]

【表2】 [Table 2]

【0039】上記金微粒子分散膜上の実施例1と同様の
方法によって、所定幅の回路パターンを形成した。その
後、レーザー光を照射した部分の両端部にドータイトを
塗り、テスターを用いて抵抗を測定した。その結果を表
3に示す。
A circuit pattern having a predetermined width was formed on the gold fine particle dispersion film by the same method as in Example 1. Then, the both ends of the portion irradiated with the laser beam were coated with dotite, and the resistance was measured using a tester. The results are shown in Table 3.

【0040】[0040]

【表3】 [Table 3]

【0041】この結果、実施例1〜4は基板の種類に関
係なく通電性のある回路が形成され、また金微粒子の量
が多く、また膜厚の大きい回路になると、抵抗値が小さ
く通電性がよくなっていることが判る。一方、比較例1
〜2は導電性粉末として酸化チタン、粒径10μmの銅
粉末を使用したことにより、通電性のない回路になって
いることが判る。
As a result, in Examples 1 to 4, a circuit having electrical conductivity was formed regardless of the type of the substrate, and in a circuit having a large amount of fine gold particles and a large film thickness, the resistance value was small and the electrical conductivity was small. You can see that is getting better. On the other hand, Comparative Example 1
It can be seen that Nos. 2 to 2 are circuits having no electrical conductivity because titanium oxide and copper powder having a particle size of 10 μm are used as the conductive powder.

【0042】実施例5は導電性粉末としてITO微粒子
を使用した場合、通電性の良好な回路が形成されること
が判る。比較例3は金微粒子を含まないため、通電性の
ない回路になっていることが判る。
In Example 5, it can be seen that when ITO fine particles are used as the conductive powder, a circuit having good electric conductivity is formed. Since Comparative Example 3 does not contain fine gold particles, it can be seen that the circuit has no electrical conductivity.

【0043】[0043]

【発明の効果】以上説明したように本願各請求項記載で
は、基板上に金属微粒子分散液から薄膜を作製し、レー
ザー光を上記金属微粒子分散膜に照射して溝状の回路パ
ターン内に金属微粒子を凝集させて導体を形成した電気
回路を有する基板の製造方法にあり、レーザー光を基板
上に積層した金属微粒子分散液から得られた薄膜に直接
照射して溝状の回路パターンに金属微粒子を凝集させて
充分な導体を形成することができるもので、その後のメ
ッキ工程が不要になって工程を簡略化でき、しかもパタ
ーン幅やパターン間隔を高密度化することができる電気
回路が得られる効果がある。
As described above, in each claim of the present application, a thin film is prepared from a metal fine particle dispersion liquid on a substrate, and the metal fine particle dispersion film is irradiated with a laser beam to form a metal in a groove-shaped circuit pattern. In a method of manufacturing a substrate having an electric circuit in which fine particles are aggregated to form a conductor, a thin film obtained from a metal fine particle dispersion liquid laminated on a substrate is directly irradiated with laser light to form a groove-shaped circuit pattern. Can be aggregated to form a sufficient conductor, and the subsequent plating step is not required, and the process can be simplified, and an electric circuit capable of densifying the pattern width and pattern interval can be obtained. effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】基板の微細加工に係る装置の概念図である。FIG. 1 is a conceptual diagram of an apparatus for microfabrication of a substrate.

【図2】レーザー光を照射した後に形成された回路パタ
ーンを示す基板の斜視図である。
FIG. 2 is a perspective view of a substrate showing a circuit pattern formed after laser light irradiation.

【符号の説明】[Explanation of symbols]

5 基板 11 薄膜 13 回路パターン 5 substrates 11 thin film 13 circuit patterns

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上に金属微粒子分散液から薄膜を作
製し、レーザー光を上記薄膜に照射して溝状の回路パタ
ーンに金属微粒子を凝集させて導体を形成したことを特
徴とする電気回路を有する基板の製造方法。
1. An electric circuit comprising: forming a thin film on a substrate from a metal fine particle dispersion liquid; and irradiating the thin film with laser light to agglomerate the metal fine particles into a groove-shaped circuit pattern to form a conductor. Of manufacturing a substrate having a.
【請求項2】 上記金属微粒子分散液は導電性粉末を含
んでいる請求項1記載の電気回路を有する基板の製造方
法。
2. The method for manufacturing a substrate having an electric circuit according to claim 1, wherein the fine metal particle dispersion contains a conductive powder.
【請求項3】 金属微粒子が金微粒子そして銀微粒子か
ら選ばれた少なくとも1種である請求項1又は2記載の
電気回路を有する基板の製造方法。
3. The method for producing a substrate having an electric circuit according to claim 1, wherein the fine metal particles are at least one selected from fine gold particles and fine silver particles.
【請求項4】 金属微粒子の添加量は金属微粒子分散液
の固形分の合計重量に対して25重量%以上である請求
項1〜3記載の電気回路を有する基板の製造方法。
4. The method for producing a substrate having an electric circuit according to claim 1, wherein the addition amount of the metal fine particles is 25% by weight or more based on the total weight of the solid content of the metal fine particle dispersion liquid.
【請求項5】 導電性粉末の添加量は金属微粒子分散液
の固形分の合計重量に対して0〜50重量%以上である
請求項1〜3記載の電気回路を有する基板の製造方法。
5. The method for producing a substrate having an electric circuit according to claim 1, wherein the conductive powder is added in an amount of 0 to 50% by weight or more based on the total weight of the solid content of the fine metal particle dispersion.
JP2001393595A 2001-12-26 2001-12-26 Method for manufacturing board having electric circuit Pending JP2003198100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001393595A JP2003198100A (en) 2001-12-26 2001-12-26 Method for manufacturing board having electric circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001393595A JP2003198100A (en) 2001-12-26 2001-12-26 Method for manufacturing board having electric circuit

Publications (1)

Publication Number Publication Date
JP2003198100A true JP2003198100A (en) 2003-07-11

Family

ID=27600552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001393595A Pending JP2003198100A (en) 2001-12-26 2001-12-26 Method for manufacturing board having electric circuit

Country Status (1)

Country Link
JP (1) JP2003198100A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038999A (en) * 2004-07-23 2006-02-09 Sumitomo Electric Ind Ltd Method for forming conductive circuit by using laser irradiation, and conductive circuit
JP2008112942A (en) * 2006-10-31 2008-05-15 Tohoku Univ Material for electric circuit board, and electric circuit board using the same
JP2009123765A (en) * 2007-11-12 2009-06-04 Seiko Epson Corp Method of manufacturing multilayer wiring board
ITTV20130128A1 (en) * 2013-08-03 2015-02-04 Tryonic Ltd ¿COMPOSED WHEN TRACKING ELECTRIC WALKS¿
JP2020001255A (en) * 2018-06-27 2020-01-09 日立化成株式会社 Article and process for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038999A (en) * 2004-07-23 2006-02-09 Sumitomo Electric Ind Ltd Method for forming conductive circuit by using laser irradiation, and conductive circuit
JP2008112942A (en) * 2006-10-31 2008-05-15 Tohoku Univ Material for electric circuit board, and electric circuit board using the same
JP2009123765A (en) * 2007-11-12 2009-06-04 Seiko Epson Corp Method of manufacturing multilayer wiring board
ITTV20130128A1 (en) * 2013-08-03 2015-02-04 Tryonic Ltd ¿COMPOSED WHEN TRACKING ELECTRIC WALKS¿
WO2015019266A1 (en) * 2013-08-03 2015-02-12 Tryonic Ltd Compound to form electrical tracks into
CN105474761A (en) * 2013-08-03 2016-04-06 特罗尼克有限公司 Compound to form electrical tracks into
JP2020001255A (en) * 2018-06-27 2020-01-09 日立化成株式会社 Article and process for manufacturing the same
JP7155663B2 (en) 2018-06-27 2022-10-19 昭和電工マテリアルズ株式会社 Article manufacturing method

Similar Documents

Publication Publication Date Title
EP2957155B1 (en) Two-step, direct- write laser metallization
JP5009907B2 (en) Improved transparent conductive coating and method for producing them
JP4636496B2 (en) Method for producing nano-coating and nano-ink having conductivity and transparency, and nano-powder coating and ink produced by this production method
KR101777311B1 (en) Metallic ink
KR101735710B1 (en) Buffer layer to enhance photo and/or laser sintering
US7736693B2 (en) Nano-powder-based coating and ink compositions
WO2006012057A1 (en) Forming electrical conductors on a substrate
JP2014116315A (en) Metallic ink
JP2006038999A (en) Method for forming conductive circuit by using laser irradiation, and conductive circuit
Zaier et al. Generating highly reflective and conductive metal layers through a light-assisted synthesis and assembling of silver nanoparticles in a polymer matrix
JPH04120173A (en) Laser-cuttable polymeric dielectric and its formation
CN104704930A (en) Electrical components and methods and systems of manufacturing electrical components
JP2003198100A (en) Method for manufacturing board having electric circuit
Aminuzzaman et al. Fabrication of conductive silver micropatterns on an organic–inorganic hybrid film by laser direct writing
KR101808741B1 (en) Method for forming conductive layer patterns by inkjet-printing
WO2002023962A2 (en) Method for the formation of a pattern on an insulating substrate
US4692387A (en) Sintering of metal interlayers within organic polymeric films
US20010024842A1 (en) Film production method and film produced thereby
US8518489B2 (en) Method for making fine patterns using mask template
JP2003193244A (en) Manufacturing method of plastic substrate having electric circuit
WO2018212345A1 (en) Method for producing conductor, method for producing wiring board, and composition for forming conductor
Watanabe et al. Submicron writing by laser irradiation on metal nano-particle dispersed films toward flexible electronics
US20230413449A1 (en) Method for fabricating electronic circuit and metal ion solution
JP2013181205A (en) Gold nanoparticle dispersion liquid and method for producing the same
JP2024017543A (en) Conductive film formation method and conductive ink for photo-baking