JP2003194146A - Base isolation structure - Google Patents

Base isolation structure

Info

Publication number
JP2003194146A
JP2003194146A JP2001394781A JP2001394781A JP2003194146A JP 2003194146 A JP2003194146 A JP 2003194146A JP 2001394781 A JP2001394781 A JP 2001394781A JP 2001394781 A JP2001394781 A JP 2001394781A JP 2003194146 A JP2003194146 A JP 2003194146A
Authority
JP
Japan
Prior art keywords
seismic isolation
flange plate
lower flange
rubber
pulling force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001394781A
Other languages
Japanese (ja)
Other versions
JP3948273B2 (en
JP2003194146A5 (en
Inventor
Yukihiro Kanzaka
幸弘 勘坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2001394781A priority Critical patent/JP3948273B2/en
Publication of JP2003194146A publication Critical patent/JP2003194146A/en
Publication of JP2003194146A5 publication Critical patent/JP2003194146A5/ja
Application granted granted Critical
Publication of JP3948273B2 publication Critical patent/JP3948273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maintain base isolation performance by a rubber seismic isolator even when a large pulling force occurs, via a simple structure, in a base isolation structure with rubber seismic isolators. <P>SOLUTION: A lower flange plate 14b of the rubber seismic isolator 14 is provided with pulling force reducing mechanisms 28. The pulling force reducing mechanism 28 comprises an anchor bolt 30 driven into a foundation slab 20 through the lower flange plate 14b, and a Belleville spring 32 mounted between a head 30a of the anchor bolt 30 and the lower flange plate 14b. A guide member 18 is fixed to a lower surface of the lower flange plate 14b, so that a guide part 18b is held for vertical movement and against horizontal displacement in an opening 22 formed in the foundation slab 20. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、免震ゴムで免震対
象物を免震する免震構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation structure for seismically isolating a seismic isolated object with seismic isolation rubber.

【0002】[0002]

【従来の技術】従来より、建築物と基礎部との間に免震
ゴムを介装した構成の免震構造が一般的に用いられてい
る。このような免震構造において、大きな地震の発生時
等に建築物全体が左右に揺れるような動き(ロッキン
グ)が生ずると、建築物が基礎部から浮き上がった部分
において免震ゴムに引抜き力が作用する(図5を参
照)。そして、免震ゴムは圧縮力に対しては大きな強度
を有するが、引抜き力(引張り力)に対する強度は小さ
い。このため、免震ゴムに大きな引抜き力が作用する
と、免震ゴムによる所期の免震性能が得られなくなって
しまう。
2. Description of the Related Art Conventionally, a seismic isolation structure having a structure in which a seismic isolation rubber is interposed between a building and a foundation has been generally used. In such a seismic isolation structure, if the entire building sways to the left or right (rocking) when a large earthquake occurs, pulling force acts on the seismic isolation rubber in the part where the building rises from the foundation. (See FIG. 5). The seismic isolation rubber has a large strength against a compressive force, but a small strength against a pulling force (pulling force). Therefore, if a large pulling force acts on the seismic isolation rubber, the desired seismic isolation performance of the seismic isolation rubber will not be obtained.

【0003】そこで、例えば特開平10−28072号
公報には、免震ゴムに作用する引抜き力を低減すること
を目的とした免震構造が開示されている。この免震構造
では、基礎部側および建築物側に互いに直角関係をもっ
て対向配置された下部ガイドレールおよび上部ガイドレ
ールが固定され、これらガイドレールの間に、上下に伸
縮可能な材料からなる引抜拘束部が設けられている。か
かる構成によれば、建築部が基礎部から浮き上がるよう
に変位して引抜き力が発生した場合に、この引抜き力に
対して引抜拘束部が抵抗することにより、免震ゴムに作
用する引抜き力が低減される。
Therefore, for example, Japanese Patent Application Laid-Open No. 10-28072 discloses a seismic isolation structure intended to reduce the pulling force acting on the seismic isolation rubber. In this seismic isolation structure, a lower guide rail and an upper guide rail, which are arranged facing each other at a right angle to each other on the foundation side and the building side, are fixed, and between these guide rails, pull-out restraint made of vertically expandable material. Section is provided. According to such a configuration, when the building portion is displaced so as to float from the foundation portion and a pullout force is generated, the pullout force acting on the seismic isolation rubber is reduced by the pullout restraint portion resisting the pullout force. Will be reduced.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の免震構造では、上部および下部のガイドレールを設
けることによって建築物の水平変位を許容する構成とし
ているため、構成が複雑化してコスト増を招いてしま
う。
However, in the above-mentioned conventional seismic isolation structure, since the horizontal displacement of the building is allowed by providing the upper and lower guide rails, the structure becomes complicated and the cost increases. I will invite you.

【0005】本発明は上記の点に鑑みてなされたもので
あり、簡単な構成で、大きな引抜き力が発生した場合に
も免震性能を維持することが可能な免震構造を提供する
ことを目的とする。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a seismic isolation structure having a simple structure and capable of maintaining seismic isolation performance even when a large pulling force is generated. To aim.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、請求項1に記載された発明は、基礎部に免震ゴムを
介して免震対象物を支持する免震構造であって、前記基
礎部に対して固定された保持部材と、該保持部材により
保持され、前記免震ゴムの下部フランジ板を前記基礎部
へ向けて付勢する弾性部材とを設けたことを特徴とす
る。
In order to achieve the above-mentioned object, the invention described in claim 1 is a seismic isolation structure for supporting a seismic isolation target object on a foundation through seismic isolation rubber, A holding member fixed to the base portion and an elastic member which is held by the holding member and urges the lower flange plate of the seismic isolation rubber toward the base portion are provided.

【0007】請求項1記載の発明によれば、免震ゴムに
引抜き力が作用することにより、免震ゴムが基礎部から
浮き上がるように変位すると、その引抜き力は免震ゴム
の下部フランジ板を介して弾性部材に伝達される。この
場合、弾性部材には伝達された力に応じた弾性変形が生
ずる。したがって、免震対象物が上向きに変位すると、
その変位の一部は弾性部材の弾性変形で吸収されること
となり、これにより、免震ゴムに作用する引抜き力が低
減される。このように、本発明によれば、下部フランジ
板を付勢する弾性部材と、これを保持する保持部材とを
設けるだけの簡単な構成で、免震ゴムに作用する引抜き
力を低減して、免震性能を維持することができる。
According to the invention described in claim 1, when the seismic isolation rubber is displaced so as to float up from the foundation due to the pulling force acting on the seismic isolation rubber, the withdrawal force is applied to the lower flange plate of the seismic isolation rubber. It is transmitted to the elastic member via. In this case, the elastic member is elastically deformed according to the transmitted force. Therefore, if the seismic isolation target is displaced upward,
Part of the displacement is absorbed by the elastic deformation of the elastic member, which reduces the pulling force acting on the seismic isolation rubber. As described above, according to the present invention, the elastic member for urging the lower flange plate and the holding member for holding the elastic member are provided with a simple structure to reduce the pulling force acting on the seismic isolation rubber. Seismic isolation performance can be maintained.

【0008】また、請求項2に記載された発明は、請求
項1記載の免震構造において、前記弾性部材は、前記免
震ゴムの弾性係数よりも小さな弾性係数を有することを
特徴とする。
The invention described in claim 2 is the seismic isolation structure according to claim 1, wherein the elastic member has an elastic coefficient smaller than that of the seismic isolation rubber.

【0009】請求項2記載の発明によれば、弾性体は免
震ゴムよりも小さな弾性係数を有しているので、弾性体
には免震ゴムよりも大きな弾性変形が生ずる。したがっ
て、免震対象物が上向きに変位した場合に、その変位の
大半は弾性体の弾性変形で吸収されることとなり、これ
により、免震ゴムに作用する引抜き力はより効果的に低
減される。
According to the second aspect of the invention, since the elastic body has a smaller elastic coefficient than the seismic isolation rubber, elastic deformation larger than that of the seismic isolation rubber occurs in the elastic body. Therefore, when the seismic isolation target object is displaced upward, most of the displacement is absorbed by the elastic deformation of the elastic body, so that the pull-out force acting on the seismic isolation rubber is more effectively reduced. .

【0010】また、請求項3に記載された発明は、請求
項1または2記載の免震構造において、前記保持部材は
前記基礎部に対する上下方向の位置を調整可能に構成さ
れていることを特徴とする。
The invention described in claim 3 is the seismic isolation structure according to claim 1 or 2, wherein the holding member is configured to be adjustable in vertical position with respect to the base portion. And

【0011】請求項3記載の発明によれば、保持部材の
基礎部に対する上下方向の位置に応じて、弾性体の初期
弾性変形量を調整することができる。そして、この初期
弾性変形量に応じた初期荷重が免震ゴムを基礎部に付勢
する力として作用する。したがって、免震対象物に上向
き変位が生じた場合、免震ゴムに作用する引抜き力が上
記初期荷重を超えると、免震ゴムが基礎部から浮き上が
るように変位することとなる。したがって、本発明によ
れば、免震対象物の上向き変位に応じて弾性体が弾性変
形を始めるタイミングを調整することができる。
According to the third aspect of the invention, the initial elastic deformation amount of the elastic body can be adjusted according to the vertical position of the holding member with respect to the base portion. Then, the initial load corresponding to this initial elastic deformation amount acts as a force for urging the base isolation rubber to the foundation portion. Therefore, when the seismic isolation target object is displaced upward, if the pull-out force acting on the seismic isolation rubber exceeds the initial load, the seismic isolation rubber will be displaced so as to float from the foundation portion. Therefore, according to the present invention, it is possible to adjust the timing at which the elastic body starts elastic deformation in accordance with the upward displacement of the seismic isolation target.

【0012】また、請求項4に記載された発明は、請求
項1乃至3のうち何れか1項記載の免震構造において、
前記下部フランジ板の上下方向の変位を許容すると共に
水平方向の変位を阻止するガイド機構を設けたことを特
徴とする。
The invention described in claim 4 is the seismic isolation structure according to any one of claims 1 to 3,
A guide mechanism is provided for allowing the lower flange plate to move in the vertical direction and preventing the lower flange plate from moving in the horizontal direction.

【0013】請求項3記載の発明によれば、ガイド機構
により、免震ゴムの下部フランジ板の水平方向の変位が
拘束される。このため、免震対象物から免震ゴムに回転
力や水平力が作用した場合にも、免震ゴムが傾斜したり
水平方向にずれたりするのを防止して、免震ゴムの免震
性能を維持することができる。
According to the third aspect of the invention, the guide mechanism restrains the horizontal displacement of the lower flange plate of the base isolation rubber. Therefore, even if a rotational force or a horizontal force is applied to the seismic isolation rubber from the seismic isolation target, the seismic isolation rubber is prevented from tilting or shifting in the horizontal direction and the seismic isolation performance of the seismic isolation rubber Can be maintained.

【0014】[0014]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態について説明する。図1は、本発明の一実施形態
である免震構造10が適用された免震対象物である構造
物12の基礎部分を示す正面図である。また、図2は、
図1に示す免震構造10の直線II-IIに沿った断面図で
あり、図3は、免震構造10の要部を拡大して示す鉛直
方向断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a front view showing a base portion of a structure 12 which is a seismic isolation target to which a seismic isolation structure 10 according to an embodiment of the present invention is applied. Also, in FIG.
FIG. 3 is a cross-sectional view of the seismic isolation structure 10 shown in FIG. 1 taken along a line II-II, and FIG. 3 is an enlarged vertical cross-sectional view showing a main part of the seismic isolation structure 10.

【0015】図1〜図3に示す如く、免震構造10は、
積層ゴムからなる免震ゴム14を含んで構成されてい
る。免震ゴム14の上下端部には夫々上部フランジ板1
4aおよび下部フランジ板14bが固定されており、上
部フランジ板14aが構造物12の下底面に取り付けら
れている。
As shown in FIGS. 1 to 3, the seismic isolation structure 10 includes
It is configured to include a seismic isolation rubber 14 made of laminated rubber. The upper flange plate 1 is attached to the upper and lower ends of the seismic isolation rubber 14, respectively.
4a and the lower flange plate 14b are fixed, and the upper flange plate 14a is attached to the lower bottom surface of the structure 12.

【0016】図3に示す如く、下部フランジ板14bの
下面には、取付ボルト16により、ガイド部材18が固
定されている。ガイド部材18は、その上端部に設けら
れた支持プレート18aと、支持プレート18aの下面
に固定されたガイド部18bとにより構成されており、
支持プレート18aが下部フランジ板14bに固定され
ている。ガイド部18bは、例えば、支持プレート18
aに溶接固定された環状鋼板18cの内側にモルタル等
の充填材18dを充填すること等により構成されてい
る。
As shown in FIG. 3, a guide member 18 is fixed to the lower surface of the lower flange plate 14b by a mounting bolt 16. The guide member 18 is composed of a support plate 18a provided at the upper end thereof and a guide portion 18b fixed to the lower surface of the support plate 18a,
The support plate 18a is fixed to the lower flange plate 14b. The guide portion 18b is, for example, the support plate 18
It is configured by filling a filling material 18d such as mortar inside the annular steel plate 18c welded and fixed to a.

【0017】ガイド部材18は、そのガイド部18bが
基礎板20に設けられた円筒状の開口部22に収容さ
れ、かつ、支持プレート18aの周縁部下面が基礎板2
0上に設置されたベースプレート23に当接するように
設置されている。ガイド部18bの周囲には、ゴムシー
ト24等の潤滑用材料が張り付けられており、このゴム
シート24の外周面が、開口部22の内周面に沿って固
定された鋼板等からなるガイド面26と摺動するように
構成されている。これにより、ガイド部材18は開口部
22により上下に移動可能に支持されつつ、水平方向の
変位が阻止されるようになっている。なお、ゴムシート
22をガイド部18b側ではなく、ガイド面26側に設
けてもよい。
The guide member 18 has its guide portion 18b housed in a cylindrical opening 22 provided in the base plate 20, and the lower surface of the peripheral edge of the support plate 18a is the base plate 2.
It is installed so as to come into contact with the base plate 23 installed on the upper surface. A lubricating material such as a rubber sheet 24 is attached around the guide portion 18b, and the outer peripheral surface of the rubber sheet 24 is a guide surface made of a steel plate or the like fixed along the inner peripheral surface of the opening 22. 26 is configured to slide. As a result, the guide member 18 is supported by the opening 22 so as to be movable in the vertical direction, while being prevented from being displaced in the horizontal direction. The rubber sheet 22 may be provided on the guide surface 26 side instead of the guide portion 18b side.

【0018】下部フランジ板14bの外周縁部の下面
と、ベースプレート23との間にはシールゴム等のシー
ル部材27が装着されている。このシール部材27によ
り、後述するように下部フランジ板14bが基礎板20
から浮き上がった場合にも、開口部22へ雨水等が浸入
することが防止される。
A seal member 27 such as a seal rubber is mounted between the lower surface of the outer peripheral edge portion of the lower flange plate 14b and the base plate 23. The sealing member 27 allows the lower flange plate 14b to move to the base plate 20 as described later.
Rainwater and the like can be prevented from entering the opening 22 even when it rises from above.

【0019】免震構造10は、また、引抜力低減機構2
8を備えている。図2に示される如く、引抜力低減機構
28は、免震ゴム14を取り囲むように、1つの免震ゴ
ム14に対して数個(図2の例では、12個)設けられ
ている。
The seismic isolation structure 10 also includes a pulling force reducing mechanism 2
Eight. As shown in FIG. 2, the pulling force reducing mechanism 28 is provided in several pieces (12 pieces in the example of FIG. 2) for one seismic isolation rubber 14 so as to surround the seismic isolation rubber 14.

【0020】引抜力低減機構28は、アンカーボルト3
0と皿ばね32とにより構成されている。アンカーボル
ト30は、下部フランジ板14bの外周縁近傍に設けら
れた貫通穴34を貫通して、基礎板20へ締め込まれて
いる。また、皿ばね32は、アンカーボルト30の頭部
30aと下部フランジ板14bの上面との間に装着され
ている。皿ばね32はその弾性係数が免震ゴム14の弾
性係数よりも十分小さくなるように構成されている。か
かる引抜力低減機構28の構成によれば、アンカーボル
ト30の締め込み量に応じて、皿ばね32を圧縮変形さ
せ、これにより、皿ばね32に導入される予荷重P0を
調整することができる。そして、この予荷重P0が初期
状態において下部フランジ板14bを基礎板20へ付勢
する力となる。なお、皿ばね32に代えて、ゴム製部材
等の他の弾性体を用いてもよい。
The withdrawal force reducing mechanism 28 is used for the anchor bolt 3
0 and a disc spring 32. The anchor bolt 30 passes through a through hole 34 provided in the vicinity of the outer peripheral edge of the lower flange plate 14b and is fastened to the base plate 20. The disc spring 32 is mounted between the head portion 30a of the anchor bolt 30 and the upper surface of the lower flange plate 14b. The disc spring 32 is configured so that its elastic coefficient is sufficiently smaller than the elastic coefficient of the seismic isolation rubber 14. According to the structure of the pulling-out force reduction mechanism 28, the disc spring 32 is compressed and deformed according to the tightening amount of the anchor bolt 30, whereby the preload P0 introduced into the disc spring 32 can be adjusted. . The preload P0 serves as a force for urging the lower flange plate 14b toward the base plate 20 in the initial state. Instead of the disc spring 32, another elastic body such as a rubber member may be used.

【0021】図4は、免震ゴム14の取付位置における
構造物12の上向き変位δと、当該免震ゴム14に作用
する引抜き力Pとの関係を示す。なお、図4には、引抜
力低減機構28が設けられない場合の上記関係を一点鎖
線で示している。
FIG. 4 shows the relationship between the upward displacement δ of the structure 12 at the mounting position of the seismic isolation rubber 14 and the pulling force P acting on the seismic isolation rubber 14. Note that, in FIG. 4, the above relationship in the case where the pulling-out force reduction mechanism 28 is not provided is shown by a one-dot chain line.

【0022】ロッキング等に伴って構造物12が上向き
に変位すると、免震ゴム14には引抜き力Pが作用す
る。この引抜き力Pが、皿ばね32に付与された予荷重
P0に達するまでは、下部フランジ板14bが皿ばね3
2により基礎板20に押し付けられた状態が維持され
る。このため、図4の区間Iに示すように、上向き変位
δの進行に応じて、引抜き力Pは免震ゴム14の弾性係
数に応じた比較的大きな勾配で増大する。
When the structure 12 is displaced upward due to rocking or the like, a pulling force P acts on the seismic isolation rubber 14. Until the pull-out force P reaches the preload P0 applied to the disc spring 32, the lower flange plate 14b keeps the disc spring 3
The state of being pressed against the base plate 20 by 2 is maintained. Therefore, as shown in the section I of FIG. 4, the pulling-out force P increases with a relatively large gradient according to the elastic coefficient of the seismic isolation rubber 14 as the upward displacement δ progresses.

【0023】一方、免震ゴム14に作用する引抜き力P
が予荷重P0を超えると、下部フランジ板14bには皿
ばね32による下向きの押し付け力を超える上向きの力
が作用することとなるから、下部フランジ板14bが上
向きに変位するようになる。この場合、皿ばね32はそ
の上端部がアンカーボルト30の頭部30aで拘束され
ているから、下部フランジ板14bにより下から圧縮さ
れて、予荷重P0が導入された初期状態から更に圧縮変
形する。そして、皿ばね32の弾性係数は免震ゴム14
の弾性係数に比べて十分に小さいため、引抜き力Pが予
荷重P0を超えた後は、主として皿ばね32の圧縮変形
のみが進行する。したがって、図4の区間IIに示すよう
に、引抜き力Pは、上向き変位δの進行に応じて、主に
皿ばね32の小さな弾性係数に応じた小さな勾配で増大
する。すなわち、構造物12から大きな上向き変位が入
力されても、それに伴って生ずる引抜き力Pには、主と
して皿ばね32の弾性力で抵抗することとなり、免震ゴ
ム14に過大な引抜き力が作用するのを防止することが
できる。
On the other hand, the pulling force P acting on the seismic isolation rubber 14
Exceeds a preload P0, an upward force exceeding the downward pressing force of the disc spring 32 acts on the lower flange plate 14b, so that the lower flange plate 14b is displaced upward. In this case, since the upper end portion of the disc spring 32 is restrained by the head portion 30a of the anchor bolt 30, the disc spring 32 is compressed from below by the lower flange plate 14b and is further compressed and deformed from the initial state in which the preload P0 is introduced. . The elastic coefficient of the disc spring 32 is 14
Since it is sufficiently smaller than the elastic coefficient of, the compression force of the disc spring 32 mainly progresses after the pulling force P exceeds the preload P0. Therefore, as shown in the section II of FIG. 4, the extraction force P increases with a small gradient mainly according to the small elastic coefficient of the disc spring 32 as the upward displacement δ progresses. That is, even if a large upward displacement is input from the structure 12, the pulling force P that accompanies it is mainly resisted by the elastic force of the disc spring 32, and an excessive pulling force acts on the seismic isolation rubber 14. Can be prevented.

【0024】これを、引抜力低減機構28が設けられな
い場合と比較すると以下の通りである。すなわち、図4
に一点鎖線で示すように、引抜力低減機構28が設けら
れない場合には、引抜き力Pを全て免震ゴム14で受け
ることになるから、引抜き力Pは、弾性限界P1に達す
るまで、免震ゴム14の弾性係数に応じた大きな勾配で
増加する。そして、変位δ1において免震ゴム14の弾
性限界P1に達すると、それ以上の変位では免震ゴム1
4に塑性変形が生じるために所期の免震性能が得られな
くなる。これに対して、引抜力低減機構28が設けられ
た場合には、上記の如く、引抜き力Pが予荷重P0を超
えた後は、引抜き力Pの増加勾配が小さくなるから、変
位δ1よりも十分に大きな変位δ2で弾性限界P1に達す
ることになる。このように、引抜力低減機構28が設け
られることで、より大きな引抜き変位δ2まで、免震ゴ
ム14をその弾性限界内で作動させて免震性能を維持す
ることができる。
The following is a comparison of this with the case where the pulling force reducing mechanism 28 is not provided. That is, FIG.
As shown by the alternate long and short dash line, when the pull-out force reduction mechanism 28 is not provided, the pull-out force P is entirely received by the seismic isolation rubber 14, so that the pull-out force P is released until the elastic limit P1 is reached. It increases with a large gradient according to the elastic coefficient of the seismic rubber 14. Then, when the elastic limit P1 of the seismic isolation rubber 14 is reached at the displacement δ1, the seismic isolation rubber 1 is reached at displacements beyond that.
Due to plastic deformation in No. 4, the desired seismic isolation performance cannot be obtained. On the other hand, in the case where the pulling force reduction mechanism 28 is provided, as described above, after the pulling force P exceeds the preload P0, the increasing gradient of the pulling force P becomes smaller, so that the displacement is larger than the displacement δ1. The elastic limit P1 is reached with a sufficiently large displacement δ2. As described above, by providing the pulling-out force reduction mechanism 28, the seismic isolation rubber 14 can be operated within its elastic limit up to a larger withdrawal displacement δ2 to maintain the seismic isolation performance.

【0025】以上説明したように、本実施形態によれ
ば、アンカーボルト30および皿ばね32からなる簡単
な構成の引抜力低減機構28を設けるだけで、免震ゴム
14に過大な引抜荷重が作用するのを防止することがで
きる。したがって、本実施形態によれば、構造物12
が、例えば高層ビルのようにアスペクト比が大きく、ロ
ッキング時に大きな引抜き力が発生しやすい場合であっ
ても、コスト増を招くことなく免震構造10を適用して
免震を行なうことができる。
As described above, according to this embodiment, an excessive pulling load acts on the seismic isolation rubber 14 only by providing the pulling force reducing mechanism 28 having the simple structure including the anchor bolt 30 and the disc spring 32. Can be prevented. Therefore, according to the present embodiment, the structure 12
However, even in the case where the aspect ratio is large such as a high-rise building and a large pull-out force is likely to be generated at the time of locking, the seismic isolation structure 10 can be applied to perform seismic isolation without increasing the cost.

【0026】また、免震ゴム14に作用する引抜き力が
低減されることにより、構造物12に入力される水平力
によって柱に生ずる軸力を抑えるべくラーメン構造を用
いて水平力を構造物12全体に分散させることが不要に
なる。このため、構造物12を比較的低コストのブレー
ス架構や耐震壁構造で構築することが可能となり、構造
物12の構築コストを低減することもできる。
Further, since the pulling force acting on the seismic isolation rubber 14 is reduced, the horizontal force is applied to the structure 12 by using a rigid frame structure so as to suppress the axial force generated in the column by the horizontal force input to the structure 12. There is no need to disperse it throughout. Therefore, it is possible to construct the structure 12 with a relatively low-cost brace frame or earthquake-resistant wall structure, and it is possible to reduce the construction cost of the structure 12.

【0027】また、免震ゴム14には構造物12から引
抜き力のほかに回転力や水平方向のせん断力も作用する
が、本実施形態では、上記のように、ガイド部材18の
ガイド部18bが開口部22に保持されていることで、
回転力やせん断力が作用した場合にも、免震ゴム14が
傾斜したり水平に移動したりするのを確実に防止して、
免震性能を維持することができる。
Further, in addition to the pulling force from the structure 12, a rotational force or a horizontal shearing force acts on the seismic isolation rubber 14, but in the present embodiment, the guide portion 18b of the guide member 18 is used as described above. By being held in the opening 22,
Even when a rotational force or a shear force is applied, the seismic isolation rubber 14 is reliably prevented from inclining or moving horizontally,
Seismic isolation performance can be maintained.

【0028】なお、上記実施形態では、ガイド部材18
のガイド部18aおよび開口部22が円筒状に構成され
ているものとしたが、円筒状に限らず、これらを矩形や
十字型に構成してもよい。要するに、ガイド部材18
を、その上下方向の変位のみを許容し、水平方向の変位
を阻止するように保持できる構成であればよい。
In the above embodiment, the guide member 18
Although the guide portion 18a and the opening 22 are configured to have a cylindrical shape, they are not limited to the cylindrical shape, and may have a rectangular shape or a cross shape. In short, the guide member 18
Need only be configured so as to allow the displacement in the vertical direction and to prevent the displacement in the horizontal direction.

【0029】[0029]

【発明の効果】本発明によれば、免震ゴムを供える免震
構造において、簡単な構成で、大きな引抜き力が発生し
た場合にも免震ゴムによる免震性能を維持することがで
きる。
According to the present invention, in the seismic isolation structure provided with the seismic isolation rubber, the seismic isolation performance of the seismic isolation rubber can be maintained with a simple structure even when a large pulling force is generated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態である免震構造10が適用
された構造物12の基礎部分を示す正面図である。
FIG. 1 is a front view showing a base portion of a structure 12 to which a seismic isolation structure 10 according to an embodiment of the present invention is applied.

【図2】図1に示す免震構造の直線II-IIに沿った断面
図である。
FIG. 2 is a cross-sectional view taken along the line II-II of the seismic isolation structure shown in FIG.

【図3】図1に示す免震構造10の要部を拡大して示す
鉛直方向断面図である
FIG. 3 is a vertical cross-sectional view showing an enlarged main part of the base isolation structure 10 shown in FIG.

【図4】免震ゴムの取付位置における構造物の上向き変
位量δと、当該免震ゴムに作用する引抜き力との関係を
示す図である。
FIG. 4 is a diagram showing a relationship between an upward displacement amount δ of a structure at a mounting position of a seismic isolation rubber and a pulling force acting on the seismic isolation rubber.

【図5】建築物のロッキングに伴って引抜き力が生ずる
様子を示す図である。
FIG. 5 is a diagram showing how a pulling force is generated as a building is rocked.

【符号の説明】[Explanation of symbols]

10 免震構造 12 構造物 14 免震ゴム 14b 下部フランジ板 18 ガイド部材 20 基礎板 22 開口部 28 引抜力低減機構 30 アンカーボルト 30a 頭部 32 皿ばね 10 Seismic isolation structure 12 Structure 14 seismic isolation rubber 14b Lower flange plate 18 Guide member 20 foundation plate 22 opening 28 Pulling force reduction mechanism 30 anchor bolt 30a head 32 disc spring

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基礎部に免震ゴムを介して免震対象物を
支持する免震構造であって、前記基礎部に対して固定さ
れた保持部材と、該保持部材により保持され、前記免震
ゴムの下部フランジ板を前記基礎部へ向けて付勢する弾
性部材とを設けたことを特徴とする免震構造。
1. A seismic isolation structure for supporting a seismic isolation target object on a foundation through a seismic isolation rubber, comprising a holding member fixed to the foundation, and a holding member held by the holding member. A seismic isolation structure characterized in that an elastic member for urging a lower flange plate of seismic rubber toward the base portion is provided.
【請求項2】 請求項1記載の免震構造において、前記
弾性部材は、前記免震ゴムの弾性係数よりも小さな弾性
係数を有することを特徴とする免震構造。
2. The seismic isolation structure according to claim 1, wherein the elastic member has an elastic coefficient smaller than that of the seismic isolation rubber.
【請求項3】 請求項1または2記載の免震構造におい
て、前記保持部材は前記基礎部に対する上下方向の位置
を調整可能に構成されていることを特徴とする免震構
造。
3. The seismic isolation structure according to claim 1, wherein the holding member is configured to be adjustable in vertical position with respect to the base portion.
【請求項4】 請求項1乃至3のうち何れか1項記載の
免震構造において、前記下部フランジ板の上下方向の変
位を許容すると共に水平方向の変位を阻止するガイド機
構を設けたことを特徴とする免震構造。
4. The seismic isolation structure according to claim 1, further comprising a guide mechanism that allows vertical displacement of the lower flange plate and prevents horizontal displacement of the lower flange plate. A characteristic seismic isolation structure.
JP2001394781A 2001-12-26 2001-12-26 Seismic isolation structure, seismic isolation method Expired - Lifetime JP3948273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001394781A JP3948273B2 (en) 2001-12-26 2001-12-26 Seismic isolation structure, seismic isolation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001394781A JP3948273B2 (en) 2001-12-26 2001-12-26 Seismic isolation structure, seismic isolation method

Publications (3)

Publication Number Publication Date
JP2003194146A true JP2003194146A (en) 2003-07-09
JP2003194146A5 JP2003194146A5 (en) 2006-08-31
JP3948273B2 JP3948273B2 (en) 2007-07-25

Family

ID=27601403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001394781A Expired - Lifetime JP3948273B2 (en) 2001-12-26 2001-12-26 Seismic isolation structure, seismic isolation method

Country Status (1)

Country Link
JP (1) JP3948273B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044191A (en) * 2011-08-25 2013-03-04 Bridgestone Corp Bridge bearing structure
TWI415723B (en) * 2009-01-16 2013-11-21 Hon Hai Prec Ind Co Ltd Manipulator
CN104565716A (en) * 2014-12-25 2015-04-29 贵州黔程天力智能科技有限公司 Receiver vibration attenuation supporting seat
JP2017032104A (en) * 2015-08-04 2017-02-09 三井住友建設株式会社 Construction support structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415723B (en) * 2009-01-16 2013-11-21 Hon Hai Prec Ind Co Ltd Manipulator
JP2013044191A (en) * 2011-08-25 2013-03-04 Bridgestone Corp Bridge bearing structure
CN104565716A (en) * 2014-12-25 2015-04-29 贵州黔程天力智能科技有限公司 Receiver vibration attenuation supporting seat
JP2017032104A (en) * 2015-08-04 2017-02-09 三井住友建設株式会社 Construction support structure

Also Published As

Publication number Publication date
JP3948273B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
JP4394661B2 (en) Fixed bearing device for structures
JP2007291676A (en) Rubber-sealed fixing and bearing apparatus for structure
JP2008025113A (en) Aseismic control structure
JP4893061B2 (en) Viscous vibration damping device and base-isolated building equipped with the same
JP2003194146A (en) Base isolation structure
JPH11153191A (en) Mechanism corresponding to drawing of base isolation device
JPH10219902A (en) Construction of vibration-isolation bearing
KR101403660B1 (en) Building structure for improving seismic performance
JP5348945B2 (en) Seismic isolation structure of building
JP2009263880A (en) Multistory parking system assembled inside building void and horizontal support device therefor
JP2007262691A (en) Sliding support, method of mounting it, and base isolation structure
JP2001329716A (en) Method and structure of base isolation of multistory building
JP3671317B2 (en) Seismic isolation mechanism
JP2002004632A (en) Base isolation column base structure
JPH11131497A (en) Base isolation structure of pile
JP4456726B2 (en) Seismic isolation structure
JP2006090078A (en) Base-isolated building and construction method for the same
JPH11166331A (en) Base isolation pull-out resistance device
JP3254322B2 (en) Seismic isolation device
JP2000240722A (en) Base isolation device
JP2001115684A (en) Base isolation structure
JPH1077750A (en) Base isolation device
JP2005256315A (en) Base isolation construction method and base isolation member used for this construction method
JP2009270614A (en) Base isolation mechanism and method of manufacturing the same
JP4331390B2 (en) Stopper device with pull-out prevention mechanism

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060712

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060712

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Ref document number: 3948273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

EXPY Cancellation because of completion of term