JP2003191075A - Consumable electrode type arc welding equipment - Google Patents
Consumable electrode type arc welding equipmentInfo
- Publication number
- JP2003191075A JP2003191075A JP2001391295A JP2001391295A JP2003191075A JP 2003191075 A JP2003191075 A JP 2003191075A JP 2001391295 A JP2001391295 A JP 2001391295A JP 2001391295 A JP2001391295 A JP 2001391295A JP 2003191075 A JP2003191075 A JP 2003191075A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- welding
- output
- circuit
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Arc Welding In General (AREA)
- Arc Welding Control (AREA)
Abstract
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】本発明は、溶接用電力を出力
する溶接電源出力回路を備えた溶接電源と溶接する位置
の移動に伴って溶接作業者が持ち運びするワイヤ送給装
置とに分離されている消耗電極式アーク溶接装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is separated into a welding power source equipped with a welding power source output circuit for outputting welding power and a wire feeding device carried by a welding operator when the welding position is moved. Consumable electrode type arc welding equipment.
【0002】[0002]
【従来の技術】図2は、従来技術の消耗電極式アーク溶
接装置の接続図である。消耗電極式アーク溶接装置は、
通常、重量があるために移動させない溶接電源WERと
溶接位置の移動に伴って溶接作業者が持ち運びするワイ
ヤ送給装置WSRとに分離されている。この溶接電源W
ERには、後述する溶接電源出力回路WP、制御電源ア
センブリィMS、出力制御回路等が内蔵されている。ま
た、リモコン装置REMには、溶接電流設定器WI、溶
接電圧設定器WVが内蔵されている。さらに、ワイヤ送
給装置WSRには、後述する送給モータM、電磁弁SO
L等が内蔵されている。この電磁弁SOLは、消耗電極
式アーク溶接方法が、CO2溶接、MIG溶接、MAG
溶接等のガスシールド消耗電極式アーク溶接のときに、
溶接トーチTHから噴出されるシールドガスの流路の開
閉をする。2. Description of the Related Art FIG. 2 is a connection diagram of a conventional consumable electrode type arc welding apparatus. Consumable electrode type arc welding equipment
Usually, it is separated into a welding power source WER which is not moved due to its weight and a wire feeding device WSR which is carried by a welding operator as the welding position moves. This welding power source W
The welding power supply output circuit WP, the control power supply assembly MS, the output control circuit, and the like, which will be described later, are built in the ER. Further, the remote control device REM incorporates a welding current setting device WI and a welding voltage setting device WV. Further, the wire feeding device WSR includes a feeding motor M and a solenoid valve SO, which will be described later.
L, etc. are built in. In this solenoid valve SOL, the consumable electrode type arc welding method is CO2 welding, MIG welding, or MAG.
For gas shield consumable electrode type arc welding such as welding,
The flow path of the shield gas ejected from the welding torch TH is opened and closed.
【0003】同図において、溶接電源出力回路WPは、
溶接用電力を出力する回路であって、1次整流回路DR
1、インバータ回路INV、主変圧器INT、2次整流
回路DR2、直流リアクトルDL等から形成されてい
る。1次整流回路DR1は、三相交流商用電源ACの出
力を整流し直流電力に変換する。インバータ回路INV
は、1次整流回路DR1で直流に変換した電力を高周波
交流パルス電圧に変換し、主変圧器INTは、インバー
タ回路INVの出力をアーク加工に適した高周波交流パ
ルス電圧に変換し、2次整流回路DR2は、主変圧器の
出力を整流して直流電力に変換する。この変換した直流
電力を直流リアクトルDLを通じて第1のパワーケーブ
ル4及び第2のパワーケーブル5を通じて、消耗性電極
2及び被加工物1に供給する。In the figure, the welding power source output circuit WP is
A circuit for outputting electric power for welding, which is a primary rectification circuit DR
1, an inverter circuit INV, a main transformer INT, a secondary rectifier circuit DR2, a DC reactor DL and the like. The primary rectifier circuit DR1 rectifies the output of the three-phase AC commercial power supply AC and converts it into DC power. Inverter circuit INV
Is a high-frequency AC pulse voltage that is converted to DC by the primary rectifier circuit DR1, and the main transformer INT converts the output of the inverter circuit INV into a high-frequency AC pulse voltage suitable for arc machining, and performs secondary rectification. The circuit DR2 rectifies the output of the main transformer and converts it into DC power. The converted DC power is supplied to the consumable electrode 2 and the work piece 1 through the first power cable 4 and the second power cable 5 through the DC reactor DL.
【0004】図示省略の出力制御部は、出力制御回路S
C、溶接電圧設定器WV、クレータ電圧設定器CV、出
力電圧検出回路VD、出力電流検出回路ID及びインバ
ータ駆動回路IRから形成されている。出力電圧検出回
路VDは出力端子間の電圧を検出し、出力電流検出回路
IDは出力電流を検出する。An output control unit (not shown) is an output control circuit S.
C, welding voltage setter WV, crater voltage setter CV, output voltage detection circuit VD, output current detection circuit ID, and inverter drive circuit IR. The output voltage detection circuit VD detects the voltage between the output terminals, and the output current detection circuit ID detects the output current.
【0005】(従来技術の制御ケーブル使用の)溶接電
源WERの制御電源アセンブリィMS及び出力制御回路
SCとワイヤ送給装置WSRとの間は、第1のパワーケ
ーブル4及び第2のパワーケーブル5の他に、起動信号
用制御線6(トーチスイッチ用2芯ケーブル)、モータ
用制御線7、電磁弁用制御線8及びGND線9の複数の
制御線が接続されている。また、出力制御回路SCとリ
モコン装置REMとの間には、リモコン制御用電源線1
1、溶接電流設定用制御線12、溶接電圧設定用制御線
13、リモコン制御用GND線14及びインチング用制
御線15によって接続されている。これらの複数の制御
線は、束ねて一体化したり、複数心線からなる制御ケー
ブル10及びリモコン装置用制御ケーブル16が使用さ
れている。従って、溶接位置の移動に伴って溶接作業者
がワイヤ送給装置WSRを持ち運びするときに、上記束
ねて一体化した制御線又は複数心線からなる制御ケーブ
ル10及びリモコン装置用制御ケーブル16も一緒に移
動させている。The first power cable 4 and the second power cable 5 are provided between the control power supply assembly MS of the welding power supply WER (using the conventional control cable) and the output control circuit SC and the wire feeding device WSR. In addition, a plurality of control lines including a start signal control line 6 (two-core cable for torch switch), a motor control line 7, a solenoid valve control line 8 and a GND line 9 are connected. Further, a power supply line 1 for remote control is provided between the output control circuit SC and the remote control device REM.
1, a welding current setting control line 12, a welding voltage setting control line 13, a remote control GND line 14 and an inching control line 15. These control lines are bundled and integrated, or a control cable 10 and a remote control device control cable 16 formed of a plurality of cores are used. Therefore, when the welding operator carries the wire feeding device WSR along with the movement of the welding position, the control cable 10 and the control cable 16 for the remote control device, which are composed of the bundled and integrated control wires or plural core wires, are also included. Have moved to.
【0006】出力制御回路SCは、トーチスイッチ起動
信号Tsに応じて動作を開始し、リモコン装置REM内
蔵の溶接電流設定器WIによって設定される予め定めた
値の溶接電流設定信号Wi、溶接電圧設定器WVによっ
て設定される予め定めた溶接電圧設定信号Wv、溶接電
源WER内蔵のクレータ電流設定器CIによって設定さ
れる予め定めたクレータ電流設定信号Ci、クレータ電
圧設定器CVによって設定される予め定めたクレータ電
圧設定信号Cv、出力電圧検出信号Vd及び出力電流検
出信号Idとの値に応じて演算処理を行って、出力制御
信号Scを出力すると共に、送給モータ制御信号Sa及
び溶接電源内蔵電磁弁開閉信号S1を出力する。The output control circuit SC starts its operation in response to the torch switch activation signal Ts, and sets the welding current setting signal Wi and the welding voltage setting signal Wi having a predetermined value set by the welding current setting device WI incorporated in the remote controller REM. Welding voltage setting signal Wv set by controller WV, predetermined crater current setting signal Ci set by crater current setting device CI built in welding power source WER, predetermined by crater voltage setting device CV Calculation processing is performed according to the values of the crater voltage setting signal Cv, the output voltage detection signal Vd, and the output current detection signal Id to output the output control signal Sc, and at the same time, the feed motor control signal Sa and the solenoid valve with a built-in welding power source. The open / close signal S1 is output.
【0007】制御電源アセンブリィMSは、電源投入中
供給補助変圧器TO、補助電源整流回路DR3、電磁弁
開閉スイッチSW1及び送給モータ制御回路GAによっ
て形成されている。The control power supply assembly MS is formed by a supply auxiliary transformer TO during power-on, an auxiliary power supply rectification circuit DR3, a solenoid valve opening / closing switch SW1 and a feed motor control circuit GA.
【0008】電源投入中供給補助変圧器TOは、三相交
流商用電源ACを送給モータの駆動電圧及び電磁弁の動
作電圧に適した電圧に変換し、補助電源整流回路DR3
は、電源投入中供給補助変圧器TOの出力を整流して直
流電力に変換する。電磁弁開閉スイッチSW1を開閉す
る溶接電源内蔵電磁弁開閉信号S1がHighレベルの
期間中は、電磁弁開閉スイッチSW1の線路を導通(電
磁弁開閉スイッチSW1をON)して電磁弁SOLの流
路を形成(電磁弁SOLをON)する。送給モータ制御
回路GAは送給モータ制御信号Saの値に応じて、送給
モータMの回転数を制御する。The power-supplying auxiliary transformer TO converts the three-phase AC commercial power AC into a voltage suitable for the drive voltage of the feed motor and the operating voltage of the solenoid valve, and the auxiliary power rectifier circuit DR3.
Rectifies the output of the auxiliary power transformer TO during power-on and converts it into DC power. While the solenoid valve opening / closing signal S1 for opening / closing the solenoid valve opening / closing switch SW1 is at a high level, the line of the solenoid valve opening / closing switch SW1 is turned on (the solenoid valve opening / closing switch SW1 is turned on) to make the flow path of the solenoid valve SOL. Is formed (the solenoid valve SOL is turned on). The feed motor control circuit GA controls the rotation speed of the feed motor M according to the value of the feed motor control signal Sa.
【0009】モータ制御回路外装のワイヤ送給装置WS
Rは、送給モータM、電磁弁SOL及び送給ロール3で
形成されている。Wire feeder WS for motor control circuit exterior
R is formed by a feed motor M, a solenoid valve SOL, and a feed roll 3.
【0010】図3は、図2に示す従来技術の消耗電極式
アーク溶接装置の動作を説明するためのタイミング図で
あり、図2に示す従来技術の動作を図3のタイミング図
によって説明する。図3(A)は、出力電圧検出信号V
dを示し、図3(B)は、出力電流検出信号Idを示
す。図3(C)は、トーチスイッチTSから出力するト
ーチスイッチ起動信号Tsを示し、図3(D)は、出力
制御回路SCから出力する送給モータ制御信号Saを示
し、図3(E)は、出力制御回路SCから出力する溶接
電源内蔵電磁弁開閉信号S1を示す。FIG. 3 is a timing chart for explaining the operation of the conventional consumable electrode type arc welding apparatus shown in FIG. 2. The operation of the conventional art shown in FIG. 2 will be described with reference to the timing chart of FIG. FIG. 3A shows the output voltage detection signal V
3B shows the output current detection signal Id. 3C shows the torch switch activation signal Ts output from the torch switch TS, FIG. 3D shows the feed motor control signal Sa output from the output control circuit SC, and FIG. , A welding power source built-in solenoid valve opening / closing signal S1 output from the output control circuit SC.
【0011】図2に示すトーチスイッチTSから、図3
(C)に示すトーチスイッチ起動信号Tsが時刻t=t
2において出力されてHighレベルになると、出力制
御回路SCは、溶接電流設定信号Wi、クレータ電流設
定信号Ci、溶接電圧設定信号Wv及びクレータ電圧設
定信号Cvの値並びに出力電流検出信号Id及び出力電
圧検出信号Vdの値に応じて演算処理を行って、出力制
御信号Sc、溶接電源内蔵電磁弁開閉信号S1及び送給
モータ制御信号Saを出力する。From the torch switch TS shown in FIG.
The torch switch activation signal Ts shown in (C) is at time t = t.
2, the output control circuit SC outputs the values of the welding current setting signal Wi, the crater current setting signal Ci, the welding voltage setting signal Wv and the crater voltage setting signal Cv, and the output current detection signal Id and the output voltage. The calculation processing is performed according to the value of the detection signal Vd, and the output control signal Sc, the solenoid valve opening / closing signal S1 with a built-in welding power source, and the feed motor control signal Sa are output.
【0012】図3(D)に示す時刻t=t2において、
送給モータ制御信号Saが送給モータ制御回路GAに入
力されると、上記送給モータ制御回路GAは入力信号の
値に応じて送給モータMの回転を制御する。At time t = t2 shown in FIG. 3D,
When the feed motor control signal Sa is input to the feed motor control circuit GA, the feed motor control circuit GA controls the rotation of the feed motor M according to the value of the input signal.
【0013】図3(E)に示す時刻t=t2において、
溶接電源内蔵電磁弁開閉信号S1が電磁弁SOLに入力
されて電磁弁を開閉する。At time t = t2 shown in FIG. 3 (E),
A solenoid valve opening / closing signal S1 with a built-in welding power source is input to the solenoid valve SOL to open / close the solenoid valve.
【0014】図3(B)に示すT2は無負荷電圧出力期
間を示し、消耗性電極2を予め定めた値の送給速度で送
給し、時刻t=t3において、消耗性電極2と被加工物
1とが接触すると同時にアークスタート電流が流れてア
ークが発生し、溶接期間T3の間、短絡とアークを繰り
返す「短絡移行」を行う。T2 shown in FIG. 3 (B) indicates a no-load voltage output period, in which the consumable electrode 2 is fed at a feeding speed of a predetermined value, and at time t = t3, the consumable electrode 2 and the consumable electrode 2 are fed. At the same time when the workpiece 1 comes into contact with the workpiece 1, an arc start current flows to generate an arc, and during the welding period T3, a "short circuit transition" is performed in which the short circuit and the arc are repeated.
【0015】図3(D)に示す時刻t=t4において、
トーチスイッチ起動信号TsがLowレベルになると送
給モータMの回転数が減速すると共に、予め定めた値の
アンチスティック期間T4後にインバータ回路の出力が
停止する。また、予め定めた値のアフタフロー期間T5
後に電磁弁開閉スイッチSW1の線路を遮断(電磁弁開
閉スイッチSW1をOFF)にして電磁弁SOLの線路
を遮断(電磁弁SOLをOFF)する。At time t = t4 shown in FIG. 3 (D),
When the torch switch activation signal Ts becomes Low level, the rotation speed of the feed motor M is decelerated and the output of the inverter circuit is stopped after the antistick period T4 of a predetermined value. In addition, the afterflow period T5 of a predetermined value
After that, the line of the solenoid valve opening / closing switch SW1 is cut off (the solenoid valve opening / closing switch SW1 is turned off), and the line of the solenoid valve SOL is cut off (the solenoid valve SOL is turned off).
【0016】[0016]
【発明が解決しようとする課題】消耗電極式アーク溶接
装置は、従来技術の図2に示すように、重量があるため
に移動させない溶接電源WERと溶接する位置の移動に
伴って溶接作業者が持ち運びするワイヤ送給装置WSR
とに分離されている。従って、溶接位置の移動に伴って
溶接作業者がワイヤ送給装置WSRを持ち運びするとき
に、束ねて一体化した制御線又は複数心線からなる制御
ケーブルを一緒に移動させなければならないために、作
業性が非常に悪く、また、制御線の数を減らすために、
パワーケーブルと制御線とガスホースとを1本にまとめ
た複合ケーブル方式や、ガスホース内に制御線を通した
複合ガース方式が実用化されているが、これらは特殊な
構造であり制御線が断線したとき、修理が困難であっ
た。さらに、溶接電源WERとリモコン装置REMとの
間の制御信号を増やすには、制御ケーブルの本数も増加
するため、上記リモコン装置REMには必要最小限の機
能しか設けることができなかった。As shown in FIG. 2 of the prior art, the consumable electrode type arc welding apparatus is used by the welding operator in connection with the welding power source WER which is not moved due to its weight and the welding position is moved. Portable wire feeder WSR
It is separated into and. Therefore, when the welding operator carries the wire feeding device WSR with the movement of the welding position, the control cable composed of the bundled and integrated control wires or multiple core wires must be moved together, Workability is very poor, and in order to reduce the number of control lines,
A composite cable system in which a power cable, a control line, and a gas hose are combined into one, and a composite girth system in which a control line is passed through the gas hose have been put into practical use, but these have a special structure and the control line is broken. Sometimes it was difficult to repair. Further, in order to increase the number of control signals between the welding power source WER and the remote control device REM, the number of control cables also increases, so that the remote control device REM can be provided with only the minimum necessary functions.
【0017】[0017]
【課題を解決するための手段】出願時請求項1の装置の
発明は、溶接用電力を出力する溶接電源出力回路WPを
備えた溶接電源WER2と溶接する位置の移動に伴って
溶接作業者が持ち運びするワイヤ送給装置WSR2とに
分離されている消耗電極式アーク溶接装置において、溶
接電源WER2に、溶接待機中に送給モータM及び電磁
弁SOLを制御する制御電圧を第1のパワーケーブル4
と第2のパワーケーブル5又は接地線とに供給する溶接
待機中出力制御電源PSを備えると共に、ワイヤ送給装
置WSR2に、第1のパワーケーブル4と第2のパワー
ケーブル5又は接地線から供給される、上記制御電圧を
入力する送給装置内蔵制御電源SPと、上記送給装置内
蔵制御電源SPの出力電圧及びトーチスイッチ起動信号
Tsを入力されると送給モータ制御信号Sa及び電磁弁
駆動信号S2を出力する第2の中央演算処理回路CPU
2と、上記送給装置内蔵制御電源SPの送給モータ制御
回路用供給電圧Sk及び送給モータ制御信号Saを入力
とする送給モータ制御回路GAと、上記送給装置内蔵制
御電源SPの電磁弁ON用供給電圧So及び電磁弁駆動
信号S2を入力とする電磁弁駆動回路SW及び電磁弁S
OLと、上記溶接電源WER2とワイヤ送給装置WSR
2との間の各制御信号の送信及び受信を第1のパワーケ
ーブル4を経由してスペクトル拡散通信方式で送受信す
るスペクトル拡散通信部を備えた消耗電極式アーク溶接
装置である。According to the invention of the apparatus of claim 1 at the time of filing, a welding worker can move along with a welding power source WER2 equipped with a welding power source output circuit WP for outputting welding power and a welding position. In a consumable electrode type arc welding apparatus which is separated from a wire feeding apparatus WSR2 to be carried around, a welding power source WER2 supplies a control voltage for controlling a feeding motor M and a solenoid valve SOL to a first power cable 4 during welding standby.
And a second power cable 5 or a ground wire, which is provided with a welding standby output control power supply PS and is supplied to the wire feeding device WSR2 from the first power cable 4 and the second power cable 5 or the ground wire. When the control power supply SP with a built-in feeding device for inputting the control voltage and the output voltage of the control power supply SP with a built-in feeding device and the torch switch activation signal Ts are input, the feed motor control signal Sa and the solenoid valve drive Second central processing circuit CPU that outputs signal S2
2, a feeding motor control circuit GA which receives the feeding motor control circuit supply voltage Sk of the feeding device built-in control power supply SP and a feeding motor control signal Sa, and an electromagnetic wave of the feeding device built-in control power supply SP. Solenoid valve drive circuit SW and solenoid valve S to which the supply voltage So for valve ON and the solenoid valve drive signal S2 are input
OL, welding power source WER2 and wire feeding device WSR
2 is a consumable electrode type arc welding apparatus provided with a spread spectrum communication unit that transmits and receives each control signal to and from 2 via a first power cable 4 in a spread spectrum communication system.
【0018】出願時請求項2の装置の発明は、溶接用電
力を出力する溶接電源出力回路WPを備えた溶接電源W
ER2と溶接する位置の移動に伴って溶接作業者が持ち
運びするワイヤ送給装置WSR2とに分離されている消
耗電極式アーク溶接装置において、溶接電源WER2
に、溶接待機中に送給モータM及び電磁弁SOLを制御
する制御電圧を第1のパワーケーブル4と第2のパワー
ケーブル5又は接地線とに供給する溶接待機中出力制御
電源PSを備えると共に、ワイヤ送給装置WSR2に、
第1のパワーケーブル4と第2のパワーケーブル5又は
接地線から上記制御電圧を入力する送給装置内蔵制御電
源SPを備えて、(1)上記溶接電源WER2は、第1
のパワーケーブル4に結合させてスペクトル拡散通信方
式で拡散変調信号を送受信する拡散信号結合回路TR
と、受信した拡散変調受信信号Trを逆拡散して復調を
行う逆拡散復調回路SDと、復調した逆拡散復調信号S
dを中央演算処理回路CPUに対応した信号に復調する
1次変調波復調回路DEと、中央演算処理回路CPUか
ら出力する溶接電流検出・溶接監視信号Crを1次変調
する信号変調回路MOと、1次変調波信号Moをスペク
トル拡散する拡散変調回路SIと、上記1次変調波復調
回路DEによって復調された溶接電源起動・出力電圧設
定用受信信号Deの値に応じて演算して溶接電源起動信
号Ctと出力電圧設定信号Cpとに分離して出力する中
央演算処理回路CPUと、上記溶接電源起動信号Ctが
入力されると動作を開始し、出力電圧設定信号Cp、出
力電圧検出信号Vd及び出力電流検出信号Idの値に応
じて演算処理を行って溶接電源出力回路WPの出力を制
御する出力制御回路SC2とを備え、(2)上記ワイヤ
送給装置WSR2は、トーチスイッチ起動信号Tsが入
力されると電磁弁駆動信号S2を出力し、溶接電流設定
器WIが出力する溶接電流設定信号Wi及びクレータ電
流設定器CIが出力するクレータ電流設定信号Ciに応
じて送給モータ制御信号Saを出力し、溶接電圧設定器
WVが出力する溶接電圧設定信号Wv及びクレータ電圧
設定器CVが出力するクレータ電圧設定信号Cvに応じ
て、溶接電源起動・出力電圧設定用送信信号Ckを出力
する第2の中央演算処理回路CPU2と、上記溶接電源
起動・出力電圧設定用送信信号Ckを1次変調する第2
の信号変調回路MO2と、第2の1次変調波信号Mo2
をスペクトル拡散する第2の拡散変調回路SI2と、第
1のパワーケーブル4に結合させてスペクトル拡散通信
方式で拡散変調信号を送受信する第2の拡散信号結合回
路TR2と、受信した第2の拡散変調受信信号Tr2を
逆拡散して復調を行う第2の逆拡散復調回路SD2と、
復調した第2の逆拡散復調信号Sd2を第2の中央演算
処理回路CPU2に対応した信号に復調する第2の1次
変調波復調回路DE2と、上記送給モータ制御信号Sa
を入力して送給モータMを駆動させる送給モータ制御回
路GAと、電磁弁駆動信号S2を入力して電磁弁SOL
をON・OFFする電磁弁駆動回路SWとを備え、上記
送給装置内蔵制御電源SPが入力する制御電圧は、溶接
待機期間(図5のT6及びT7)中は上記溶接待機中出
力制御電源PSから供給され、溶接期間及びアンチスチ
ィック期間(図5のT3及びT4)中はアーク電圧から
供給され、無負荷電圧出力期間(図5のT2)中は溶接
電源WER2の無負荷電圧から供給される消耗電極式ア
ーク溶接装置である。The invention of the apparatus of claim 2 at the time of application is the welding power source W provided with the welding power source output circuit WP for outputting the welding power.
In the consumable electrode type arc welding device separated from the ER2 and the wire feeding device WSR2 carried by the welding operator as the welding position moves, the welding power source WER2
And a welding standby output control power supply PS for supplying the control voltage for controlling the feed motor M and the solenoid valve SOL to the first power cable 4 and the second power cable 5 or the ground wire during the welding standby. , The wire feeder WSR2,
The power supply device built-in control power supply SP for inputting the control voltage from the first power cable 4 and the second power cable 5 or the ground wire is provided, and (1) the welding power supply WER2 is the first
Spreader signal coupling circuit TR for transmitting and receiving a spread spectrum modulated signal by a spread spectrum communication system by being coupled to the power cable 4 of
A despread demodulation circuit SD for despreading the received spread-modulation received signal Tr for demodulation, and a demodulated despread demodulated signal S.
a primary modulation wave demodulation circuit DE for demodulating d into a signal corresponding to the central processing circuit CPU, and a signal modulation circuit MO for primary modulating the welding current detection / welding monitoring signal Cr output from the central processing circuit CPU, Spreading modulation circuit SI that spreads the spectrum of primary modulated wave signal Mo, and welding power source startup by calculating according to the value of welding power source startup / output voltage setting reception signal De demodulated by primary modulation wave demodulation circuit DE A central processing unit CPU that separates and outputs a signal Ct and an output voltage setting signal Cp, and starts operation when the welding power source start signal Ct is input, and outputs an output voltage setting signal Cp, an output voltage detection signal Vd, and And an output control circuit SC2 for controlling the output of the welding power supply output circuit WP by performing arithmetic processing according to the value of the output current detection signal Id. (2) The wire feeding device WSR2 , When the torch switch activation signal Ts is input, the solenoid valve drive signal S2 is output, and according to the welding current setting signal Wi output by the welding current setting device WI and the crater current setting signal Ci output by the crater current setting device CI. The feed motor control signal Sa is output, and the welding power supply start / output voltage setting transmission is performed according to the welding voltage setting signal Wv output by the welding voltage setting device WV and the crater voltage setting signal Cv output by the crater voltage setting device CV. A second central processing circuit CPU2 that outputs a signal Ck and a second central processing unit that secondly modulates the welding power source start-up / output voltage setting transmission signal Ck
Signal modulation circuit MO2 and second primary modulated wave signal Mo2
A second spread spectrum modulation circuit SI2 for spread spectrum, a second spread spectrum signal combination circuit TR2 for transmitting and receiving a spread spectrum modulated signal by the spread spectrum communication system by being coupled to the first power cable 4, and the received second spread spectrum A second despread demodulation circuit SD2 for despreading the modulated reception signal Tr2 to demodulate;
A second primary modulation wave demodulation circuit DE2 for demodulating the demodulated second despread demodulation signal Sd2 into a signal corresponding to the second central processing circuit CPU2, and the feed motor control signal Sa.
To feed motor control circuit GA for driving feed motor M, and solenoid valve drive signal S2 to input solenoid valve SOL.
And a solenoid valve drive circuit SW for turning on and off, the control voltage input by the control power supply SP with a built-in feeding device is the output control power supply PS during welding standby during the welding standby period (T6 and T7 in FIG. 5). Supplied from the arc voltage during the welding period and the anti-stic period (T3 and T4 in FIG. 5), and from the no-load voltage of the welding power source WER2 during the no-load voltage output period (T2 in FIG. 5). It is a consumable electrode type arc welding device.
【0019】出願時請求項3の装置の発明は、溶接用電
力を出力する溶接電源出力回路WPを備えた溶接電源W
ER2と溶接する位置の移動に伴って溶接作業者が持ち
運びするワイヤ送給装置WSR2とに分離されている消
耗電極式アーク溶接装置において、溶接電源WER2
に、溶接待機中に送給モータM及び電磁弁SOLを制御
する制御電圧を第1のパワーケーブル4と第2のパワー
ケーブル5又は接地線とに供給する溶接待機中出力制御
電源PSを備えると共に、ワイヤ送給装置WSR2に、
第1のパワーケーブル4と第2のパワーケーブル5又は
接地線から上記制御電圧を入力する送給装置内蔵制御電
源SPを備えて、(1)上記溶接電源WER2は、第1
のパワーケーブル4に結合させてスペクトル拡散通信方
式で拡散変調信号を送受信する拡散信号結合回路TR
と、受信した拡散変調受信信号Trを逆拡散して復調を
行う逆拡散復調回路SDと、復調した逆拡散復調信号S
dを中央演算処理回路CPUに対応した信号に復調する
1次変調波復調回路DEと、中央演算処理回路CPUか
ら出力する溶接電流検出・溶接監視信号Crを1次変調
する信号変調回路MOと、1次変調波信号Moをスペク
トル拡散する拡散変調回路SIと、上記1次変調波復調
回路DEによって復調された溶接電源起動・出力電圧設
定用受信信号Deの値に応じて演算して溶接電源起動信
号Ctと出力電圧設定信号Cpとに分離して出力する中
央演算処理回路CPUと、上記溶接電源起動信号Ctが
入力されると動作を開始し、出力電圧設定信号Cp、出
力電圧検出信号Vd及び出力電流検出信号Idの値に応
じて演算処理を行って溶接電源出力回路WPの出力を制
御する出力制御回路SC2とを備え、(2)上記ワイヤ
送給装置WSR2は、上記送給装置内蔵制御電源SPが
供給する第2の中央演算処理回路用供給電圧Spを電源
として、トーチスイッチ起動信号Tsが入力されると電
磁弁駆動信号S2を出力し、溶接電流設定器WIが出力
する溶接電流設定信号Wi及びクレータ電流設定器CI
が出力するクレータ電流設定信号Ciに応じて送給モー
タ制御信号Saを出力し、溶接電圧設定器WVが出力す
る溶接電圧設定信号Wv及びクレータ電圧設定器CVが
出力するクレータ電圧設定信号Cvに応じて、溶接電源
起動・出力電圧設定用送信信号Ckを出力する第2の中
央演算処理回路CPU2と、上記溶接電源起動・出力電
圧設定用送信信号Ckを1次変調する第2の信号変調回
路MO2と、第2の1次変調波信号Mo2をスペクトル
拡散する第2の拡散変調回路SI2と、第1のパワーケ
ーブル4に結合させてスペクトル拡散通信方式で拡散変
調信号を送受信する第2の拡散信号結合回路TR2と、
受信した第2の拡散変調受信信号Tr2を逆拡散して復
調を行う第2の逆拡散復調回路SD2と、復調した第2
の逆拡散復調信号Sd2を第2の中央演算処理回路CP
U2に対応した信号に復調する第2の1次変調波復調回
路DE2と、上記送給装置内蔵制御電源SPが供給する
送給モータ制御回路用供給電圧Skを電源として、上記
送給モータ制御信号Saを入力して送給モータMを駆動
させる送給モータ制御回路GAと、上記送給装置内蔵制
御電源SPが供給する電磁弁ON用供給電圧Soを電源
として、電磁弁駆動信号S2を入力して電磁弁SOLを
ON・OFFする電磁弁駆動回路SWとを備え、上記送
給装置内蔵制御電源SPが入力する制御電圧は、溶接待
機期間(図5のT6及びT7)中は上記溶接待機中出力
制御電源PSから供給され、溶接期間及びアンチスチィ
ック期間(図5のT3及びT4)中はアーク電圧から供
給され、無負荷電圧出力期間(図5のT2)中は溶接電
源WER2の無負荷電圧から供給される消耗電極式アー
ク溶接装置である。The invention of the apparatus of claim 3 at the time of application is the welding power source W provided with the welding power source output circuit WP for outputting the welding power.
In the consumable electrode type arc welding device separated from the ER2 and the wire feeding device WSR2 carried by the welding operator as the welding position moves, the welding power source WER2
And a welding standby output control power supply PS for supplying the control voltage for controlling the feed motor M and the solenoid valve SOL to the first power cable 4 and the second power cable 5 or the ground wire during the welding standby. , The wire feeder WSR2,
The power supply device built-in control power supply SP for inputting the control voltage from the first power cable 4 and the second power cable 5 or the ground wire is provided, and (1) the welding power supply WER2 is the first
Spreader signal coupling circuit TR for transmitting and receiving a spread spectrum modulated signal by a spread spectrum communication system by being coupled to the power cable 4 of
A despread demodulation circuit SD for despreading the received spread-modulation received signal Tr for demodulation, and a demodulated despread demodulated signal S.
a primary modulation wave demodulation circuit DE for demodulating d into a signal corresponding to the central processing circuit CPU, and a signal modulation circuit MO for primary modulating the welding current detection / welding monitoring signal Cr output from the central processing circuit CPU, Spreading modulation circuit SI that spreads the spectrum of primary modulated wave signal Mo, and welding power source startup by calculating according to the value of welding power source startup / output voltage setting reception signal De demodulated by primary modulation wave demodulation circuit DE A central processing unit CPU that separates and outputs a signal Ct and an output voltage setting signal Cp, and starts operation when the welding power source start signal Ct is input, and outputs an output voltage setting signal Cp, an output voltage detection signal Vd, and And an output control circuit SC2 for controlling the output of the welding power supply output circuit WP by performing arithmetic processing according to the value of the output current detection signal Id. (2) The wire feeding device WSR2 When the torch switch activation signal Ts is input by using the second central processing circuit supply voltage Sp supplied by the feeding device built-in control power supply SP as a power supply, the solenoid valve drive signal S2 is output, and the welding current setting device. Welding current setting signal Wi output from WI and crater current setting device CI
The feed motor control signal Sa is output according to the crater current setting signal Ci output by the crater current setting signal Ci, and the welding voltage setting signal Wv output by the welding voltage setting device WV and the crater voltage setting signal Cv output by the crater voltage setting device CV are output. And a second central processing unit CPU2 that outputs a welding power supply start-up / output voltage setting transmission signal Ck, and a second signal modulation circuit MO2 that primarily modulates the welding power supply start-up / output voltage setting transmission signal Ck. And a second spread spectrum modulation circuit SI2 that spreads the second primary modulated wave signal Mo2 and a second spread spectrum signal that is coupled to the first power cable 4 to transmit and receive the spread spectrum modulated signal by the spread spectrum communication system. A coupling circuit TR2,
A second despread demodulation circuit SD2 for despreading and demodulating the received second spread modulation reception signal Tr2;
Of the despread demodulated signal Sd2 of the second central processing circuit CP
A second primary modulated wave demodulation circuit DE2 for demodulating into a signal corresponding to U2, and a feed motor control signal supply voltage Sk supplied from the feed device built-in control power supply SP as a power source. A feed motor control circuit GA for inputting Sa to drive the feed motor M, and a solenoid valve ON supply voltage So supplied by the feed power control apparatus SP with built-in feed device are used as power sources to input a solenoid valve drive signal S2. And a solenoid valve drive circuit SW for turning on / off the solenoid valve SOL, and the control voltage input by the control power supply SP with a built-in feeder is in the welding standby state during the welding standby period (T6 and T7 in FIG. 5). It is supplied from the output control power supply PS, is supplied from the arc voltage during the welding period and the anti-stick period (T3 and T4 in FIG. 5), and the welding power source WER2 is negative during the no-load voltage output period (T2 in FIG. 5). A consumable electrode arc welding system is supplied from the voltage.
【0020】出願時請求項4の装置の発明は、出願時請
求項1又は出願時請求項2又は出願時請求項3に記載の
溶接待機中出力制御電源PSから供給される出力電圧
が、溶接待機期間(図5のT6及びT7)中、保護特別
低電圧(PELV)の規格値である実効値AC25V又
はリップル無しDC60V以下の予め定めた値の電圧で
ある消耗電極式アーク溶接装置である。The invention of the apparatus of claim 4 at the time of filing is that the output voltage supplied from the output control power source PS during welding standby according to claim 1 at the time of filing, claim 2 at the time of filing or claim 3 at the time of filing During the standby period (T6 and T7 in FIG. 5), the consumable electrode type arc welding device has a voltage of a predetermined value of the effective value AC25V which is the standard value of the protection extraordinary low voltage (PELV) or DC60V without ripple.
【0021】出願時請求項5の装置の発明は、出願時請
求項2又は出願時請求項3に記載のスペクトル拡散通信
方式が、直接拡散方式である消耗電極式アーク溶接装置
である。The invention of the apparatus of claim 5 at the time of application is a consumable electrode type arc welding apparatus in which the spread spectrum communication system according to claim 2 at the time of application or claim 3 at the time of application is a direct spread method.
【0022】出願時請求項6の装置の発明は、出願時請
求項2又は出願時請求項3に記載の送給装置内蔵制御電
源SPが、ダイオードDR4を経由して第1のパワーケ
ーブル4及び第2のパワーケーブル5とに接続されると
共に、上記送給装置内蔵制御電源SPの両端に、電力供
給の変動に対して安定した電力を供給する補助電源用コ
ンデンサCが接続されて、送給モータM及び電磁弁SO
Lを制御する回路に第2の中央演算処理回路用供給電圧
Spを出力し、送給モータMを制御する回路に送給モー
タ制御回路用供給電圧Skを出力し、電磁弁SOLをO
N・OFFする回路に電磁弁ON用供給電圧Soを出力
する消耗電極式アーク溶接装置である。The invention of the apparatus of claim 6 at the time of filing is that the control power supply SP with a built-in feeding device according to claim 2 at the time of filing or claim 3 at the time of filing has the first power cable 4 and the first power cable 4 via the diode DR4. The auxiliary power supply capacitor C, which is connected to the second power cable 5 and is connected to both ends of the power supply SP with built-in feeding device, supplies stable power against fluctuations in power supply, Motor M and solenoid valve SO
The second central processing circuit supply voltage Sp is output to the circuit that controls L, the feed motor control circuit supply voltage Sk is output to the circuit that controls the feed motor M, and the solenoid valve SOL is turned on.
This is a consumable electrode type arc welding device that outputs a solenoid valve ON supply voltage So to an N / OFF circuit.
【0023】出願時請求項7の装置の発明は、出願時請
求項1又は出願時請求項2又は出願時請求項3記載の溶
接待機中出力制御電源PSが、短絡時の出力電流値が3
A以下である消耗電極式アーク溶接装置である。The invention of the apparatus of claim 7 at the time of filing is that the output control power supply PS during welding standby according to claim 1 at the time of filing, claim 2 at the time of filing or claim 3 at the time of filing has an output current value of 3 at the time of short circuit.
It is a consumable electrode type arc welding device of A or less.
【0024】出願時請求項8の装置の発明は、出願時請
求項2又は出願時請求項3に記載のスペクトル拡散通信
方式が、周波数ホッピング方式又はチャープ方式又は上
記各組の方式を融合したハイブリット方式である消耗電
極式アーク溶接装置である。The invention of the apparatus of claim 8 at the time of filing is a hybrid in which the spread spectrum communication system according to claim 2 at the time of filing or claim 3 at the time of filing is a frequency hopping system, a chirp system, or a combination of the above systems. It is a consumable electrode type arc welding device of the type.
【0025】[0025]
【発明の実施の形態】図1は、当該出願に係る発明の特
徴を最も良く表す図である。後述する図4と同じなの
で、説明は図4で後述する。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram best representing the features of the invention according to the application. Since it is the same as FIG. 4 described later, the description will be described later with reference to FIG.
【0026】本発明の実施の形態は、出願時請求項2の
装置の発明であって、溶接用電力を出力する溶接電源出
力回路WPを備えた溶接電源WER2と溶接する位置の
移動に伴って溶接作業者が持ち運びするワイヤ送給装置
WSR2とに分離されている消耗電極式アーク溶接装置
において、(制御ケーブル不要の)溶接電源WER2
に、溶接待機中に送給モータM及び電磁弁SOLを制御
する制御電圧を第1のパワーケーブル4と第2のパワー
ケーブル5又は接地線とに供給する溶接待機中出力制御
電源PSを備えると共に、(制御ケーブル不要の)ワイ
ヤ送給装置WSR2に、第1のパワーケーブル4と第2
のパワーケーブル5又は接地線から上記制御電圧を入力
する送給装置内蔵制御電源SPを備えて、(1)上記溶
接電源WER2は、第1のパワーケーブル4に結合させ
てスペクトル拡散通信方式で拡散変調信号を送受信する
拡散信号結合回路TRと、受信した拡散変調受信信号T
rを逆拡散して復調を行う逆拡散復調回路SDと、復調
した逆拡散復調信号Sdを中央演算処理回路CPUに対
応した信号に復調する1次変調波復調回路DEと、中央
演算処理回路CPUから出力する溶接電流検出・溶接監
視信号Crを1次変調する信号変調回路MOと、1次変
調波信号Moをスペクトル拡散する拡散変調回路SI
と、上記1次変調波復調回路DEによって復調された溶
接電源起動・出力電圧設定用受信信号Deの値に応じて
演算して溶接電源起動信号Ctと出力電圧設定信号Cp
とに分離して出力する中央演算処理回路CPUと、上記
溶接電源起動信号Ctが入力されると動作を開始し、出
力電圧設定信号Cp、出力電圧検出信号Vd及び出力電
流検出信号Idの値に応じて演算処理を行って溶接電源
出力回路WPの出力を制御する出力制御回路SC2とを
備え、(2)上記ワイヤ送給装置WSR2は、トーチス
イッチ起動信号Tsが入力されると電磁弁駆動信号S2
を出力し、溶接電流設定器WIが出力する溶接電流設定
信号Wi及びクレータ電流設定器CIが出力するクレー
タ電流設定信号Ciに応じて送給モータ制御信号Saを
出力し、溶接電圧設定器WVが出力する溶接電圧設定信
号Wv及びクレータ電圧設定器CVが出力するクレータ
電圧設定信号Cvに応じて、溶接電源起動・出力電圧設
定用送信信号Ckを出力する第2の中央演算処理回路C
PU2と、上記溶接電源起動・出力電圧設定用送信信号
Ckを1次変調する第2の信号変調回路MO2と、第2
の1次変調波信号Mo2をスペクトル拡散する第2の拡
散変調回路SI2と、第1のパワーケーブル4に結合さ
せてスペクトル拡散通信方式で拡散変調信号を送受信す
る第2の拡散信号結合回路TR2と、受信した第2の拡
散変調受信信号Tr2を逆拡散して復調を行う第2の逆
拡散復調回路SD2と、復調した第2の逆拡散復調信号
Sd2を第2の中央演算処理回路CPU2に対応した信
号に復調する第2の1次変調波復調回路DE2と、上記
送給モータ制御信号Saを入力して送給モータMを駆動
させる送給モータ制御回路GAと、電磁弁駆動信号S2
を入力して電磁弁SOLをON・OFFする電磁弁駆動
回路SWとを備え、上記送給装置内蔵制御電源SPが入
力する制御電圧は、溶接待機期間(図5のT6及びT
7)中は上記溶接待機中出力制御電源PSから供給さ
れ、溶接期間及びアンチスチィック期間(図5のT3及
びT4)中はアーク電圧から供給され、無負荷電圧出力
期間(図5のT2)中は溶接電源WER2の無負荷電圧
から供給される消耗電極式アーク溶接装置である。The embodiment of the present invention is the invention of the apparatus of claim 2 at the time of filing, in which the welding power source WER2 provided with the welding power source output circuit WP for outputting welding power is moved along with the movement of the welding position. In the consumable electrode type arc welding device separated from the wire feeding device WSR2 carried by the welding operator, the welding power source WER2 (without a control cable) is used.
And a welding standby output control power supply PS for supplying the control voltage for controlling the feed motor M and the solenoid valve SOL to the first power cable 4 and the second power cable 5 or the ground wire during the welding standby. , The wire feeder WSR2 (which does not require a control cable), the first power cable 4 and the second power cable 4
(1) The welding power source WER2 is coupled to the first power cable 4 and spread by a spread spectrum communication method. Spreading signal combining circuit TR for transmitting / receiving a modulation signal and received spread modulation receiving signal T
A despread demodulation circuit SD that despreads r to perform demodulation, a primary modulated wave demodulation circuit DE that demodulates the demodulated despread demodulation signal Sd into a signal corresponding to the central processing circuit CPU, and a central processing circuit CPU Signal modulation circuit MO for primary-modulating the welding current detection / welding supervisory signal Cr output from and a spread-modulation circuit SI for spectrally spreading the primary modulation wave signal Mo
And the welding power source start signal Ct and the output voltage setting signal Cp calculated by the value of the welding power source start / output voltage setting reception signal De demodulated by the primary modulated wave demodulation circuit DE.
When the central processing unit CPU which outputs the signal to the CPU and the welding power source activation signal Ct are input, the operation is started and the values of the output voltage setting signal Cp, the output voltage detection signal Vd and the output current detection signal Id are set. And an output control circuit SC2 for controlling the output of the welding power source output circuit WP by performing a calculation process accordingly. (2) The wire feeding device WSR2 receives a solenoid valve drive signal when the torch switch activation signal Ts is input. S2
Is output, and the feed motor control signal Sa is output according to the welding current setting signal Wi output by the welding current setting device WI and the crater current setting signal Ci output by the crater current setting device CI, and the welding voltage setting device WV outputs A second central processing circuit C that outputs a welding power source start-up / output voltage setting transmission signal Ck according to the welding voltage setting signal Wv that is output and the crater voltage setting signal Cv that is output by the crater voltage setting device CV.
PU2, a second signal modulation circuit MO2 that firstly modulates the welding power supply start-up / output voltage setting transmission signal Ck, and a second
A second spread spectrum modulation circuit SI2 for spread spectrum of the primary modulated wave signal Mo2 and a second spread spectrum signal combination circuit TR2 for transmitting and receiving the spread spectrum modulated signal by the spread spectrum communication system by being coupled to the first power cable 4. The second despread demodulation circuit SD2 that despreads the received second spread modulation received signal Tr2 and demodulates it, and the demodulated second despread demodulation signal Sd2 corresponds to the second central processing circuit CPU2. A second primary modulated wave demodulation circuit DE2 for demodulating into a signal, a feed motor control circuit GA for driving the feed motor M by inputting the feed motor control signal Sa, and a solenoid valve drive signal S2.
And a solenoid valve drive circuit SW for turning on / off the solenoid valve SOL, and the control voltage inputted by the control power source SP with a built-in feeding device is the welding standby period (T6 and T in FIG. 5).
7) is supplied from the above-mentioned welding standby output control power supply PS, and is supplied from the arc voltage during the welding period and the anti-stic period (T3 and T4 in FIG. 5) and the no-load voltage output period (T2 in FIG. 5). Inside is a consumable electrode type arc welding device supplied from the no-load voltage of the welding power source WER2.
【0027】[0027]
【実施例】図4において、図2と同一の符号は同一動作
を行うので説明は省略して相違する動作について説明す
る。消耗性電極2が被加工物1に接触したとき、(制御
ケーブル不要の)溶接電源WER2の出力側が第1のパ
ワーケーブル4及び第2のパワーケーブル5を経由して
短絡される。In FIG. 4, the same reference numerals as those in FIG. 2 perform the same operations, so the description thereof will be omitted and different operations will be described. When the consumable electrode 2 contacts the work piece 1, the output side of the welding power source WER2 (which does not require a control cable) is short-circuited via the first power cable 4 and the second power cable 5.
【0028】溶接電源WER2とワイヤ送給装置WSR
2との間の制御信号の送受信は、第1のパワーケーブル
4を経由して、スペクトル拡散通信方式(Spread
Spectrum)の代表例である直接拡散方式(D
irect Spread)を使用して説明する。Welding power source WER2 and wire feeding device WSR
The transmission / reception of the control signal to / from the transmission / reception device 2 via the first power cable 4 is a spread spectrum communication system (Spread).
Direct diffusion method (D) which is a typical example of Spectrum)
The description will be given by using the direct spread).
【0029】溶接電源WER2の出力制御部は、出力制
御回路SC2、出力電流検出回路ID、出力電圧検出回
路VD、拡散信号結合回路TR、逆拡散復調回路SD、
1次変調波復調回路DE、拡散変調回路SI、信号変調
回路MO、中央演算処理回路CPU等から形成されてい
る。拡散信号結合回路TRは、溶接電源WER2とワイ
ヤ送給装置WSR2との間の、第1のパワーケーブル4
に拡散変調信号を結合させて、スペクトル拡散通信方式
によって送受信する。逆拡散復調回路SDは、拡散符号
により広帯域の拡散変調受信信号Trを逆拡散という方
法で狭帯域変調信号の逆拡散復調信号Sdに復調させ
る。1次変調波復調回路DEは、上記逆拡散復調信号S
dの1次変調波を中央演算処理回路CPUに対応した信
号に復調させる。中央演算処理回路CPUは、1次変調
波復調回路DEによって復調された信号の値に応じて演
算して、溶接電源起動信号Ctと出力電圧設定信号Cp
とに分離して出力する。出力制御回路SC2は、上記溶
接電源起動信号Ctが入力されると動作を開始し、出力
電圧設定信号Cp、出力電圧検出信号Vd及び出力電流
検出信号Idとの値に応じて演算処理を行って出力制御
信号Scを出力する。The output control unit of the welding power source WER2 includes an output control circuit SC2, an output current detection circuit ID, an output voltage detection circuit VD, a spread signal coupling circuit TR, a despread demodulation circuit SD,
It is composed of a primary modulated wave demodulation circuit DE, a spread modulation circuit SI, a signal modulation circuit MO, a central processing circuit CPU and the like. The spread signal coupling circuit TR includes the first power cable 4 between the welding power source WER2 and the wire feeder WSR2.
A spread spectrum modulated signal is combined with and transmitted and received by a spread spectrum communication system. The despread demodulation circuit SD demodulates the wideband spread modulation reception signal Tr by the spreading code into a despread demodulation signal Sd of a narrow band modulation signal by a method called despreading. The primary modulation wave demodulation circuit DE includes the despread demodulation signal S
The primary modulated wave of d is demodulated into a signal corresponding to the central processing circuit CPU. The central processing circuit CPU calculates according to the value of the signal demodulated by the primary modulation wave demodulation circuit DE, and outputs the welding power source start signal Ct and the output voltage setting signal Cp.
Separated and output. The output control circuit SC2 starts its operation when the welding power source activation signal Ct is input, and performs arithmetic processing according to the values of the output voltage setting signal Cp, the output voltage detection signal Vd, and the output current detection signal Id. The output control signal Sc is output.
【0030】中央演算処理回路CPUは、出力制御回路
SC2から溶接監視信号Ww及び溶接電流検出信号Wr
に応じて、溶接電流検出・溶接監視送信信号Crを出力
する。信号変調回路MOは、入力信号の値に応じて搬送
波をPSK(Phase Shift Keying)
に変調した1次変調波信号Moを出力する。拡散変調回
路SIは、狭帯域の1次変調波信号Moを拡散符号によ
りスペクトル拡散を行い広帯域の拡散変調送信信号Si
に変調する。The central processing circuit CPU receives the welding monitoring signal Ww and the welding current detection signal Wr from the output control circuit SC2.
Accordingly, the welding current detection / welding monitoring transmission signal Cr is output. The signal modulation circuit MO PSK (Phase Shift Keying) the carrier wave according to the value of the input signal.
The primary modulated wave signal Mo modulated to is output. The spread spectrum modulation circuit SI spreads the narrow-band primary modulated wave signal Mo with a spread code to spread spectrum the modulated transmission signal Si.
To.
【0031】溶接待機中出力制御電源PSは、溶接待機
中供給用補助変圧器TO2、電流制限用抵抗器R及び補
助電源整流回路DR3によって形成されている。また、
溶接待機中の上記溶接待機中出力制御電源PSの出力電
圧をJISB9960−1:1999に示されている保
護特別低電圧(PELV)の規格値である実効値AC2
5V又はリップル無しDC60V以下に満足させるため
に、溶接待機中供給用補助変圧器TO2の2次側の巻線
比を予め定めた値に設定している。また、出力電流の値
を数A以下にするために電流制限用抵抗器Rの値を予め
定めた値に設定している。The welding standby output control power supply PS is formed by a welding standby supply auxiliary transformer TO2, a current limiting resistor R, and an auxiliary power supply rectifying circuit DR3. Also,
The output voltage of the output control power supply PS during the welding waiting state is the effective value AC2 which is the standard value of the protection extraordinary low voltage (PELV) shown in JIS B9960-1: 1999.
In order to satisfy 5 V or 60 V DC without ripple or less, the winding ratio on the secondary side of the auxiliary supply transformer TO2 during welding standby is set to a predetermined value. Further, the value of the current limiting resistor R is set to a predetermined value so that the value of the output current is several A or less.
【0032】ワイヤ送給装置WSR2は、ダイオードD
R4を経由して、第1のパワーケーブル4及び第2のパ
ワーケーブル5に接続された補助電源用コンデンサC、
同じく第1のパワーケーブル4及び第2のパワーケーブ
ル5に接続された送給装置内蔵制御電源SP、第2の拡
散信号結合回路TR2、第2の逆拡散復調回路SD2、
第2の1次変調波復調回路DE2、第2の拡散変調回路
SI2、第2の信号変調回路MO2、第2の中央演算処
理回路CPU2、送給モータ制御回路GA、送給モータ
M、インチングスイッチIT、ガスチェックスイッチG
C、溶接電流設定器WI、クレータ電流設定器CI、溶
接電圧設定器WV、クレータ電圧設定器CV、電磁弁駆
動回路SW、電磁弁SOL及び表示部LDが内蔵されて
いる。The wire feeding device WSR2 includes a diode D
Auxiliary power supply capacitor C connected to the first power cable 4 and the second power cable 5 via R4,
Similarly, a power supply device built-in control power source SP, a second spread signal coupling circuit TR2, a second despread demodulation circuit SD2, which are connected to the first power cable 4 and the second power cable 5,
Second primary modulated wave demodulation circuit DE2, second spread modulation circuit SI2, second signal modulation circuit MO2, second central processing circuit CPU2, feed motor control circuit GA, feed motor M, inching switch IT, gas check switch G
C, a welding current setting device WI, a crater current setting device CI, a welding voltage setting device WV, a crater voltage setting device CV, a solenoid valve drive circuit SW, a solenoid valve SOL, and a display unit LD are incorporated.
【0033】ダイオードDR4は保護用ダイオードであ
り、また補助電源用コンデンサCは、送給装置内蔵制御
電源SPの電力を蓄積する補助電源用コンデンサであ
る。送給装置内蔵制御電源SPに入力される電圧は、溶
接待機期間(図5のT6及びT7)中は上記溶接待機中
出力制御電源PSから供給され、溶接期間及びアンチス
チィック期間(図5のT3及びT4)中はアーク電圧か
ら供給され、無負荷電圧出力期間(図5のT2)中は溶
接電源WER2の無負荷電圧から供給される。The diode DR4 is a protection diode, and the auxiliary power supply capacitor C is an auxiliary power supply capacitor for accumulating the electric power of the control power supply SP with a built-in feeder. The voltage input to the control-device power supply SP with a built-in feeder is supplied from the welding standby output control power supply PS during the welding standby period (T6 and T7 in FIG. 5), and the welding period and the anti-stick period (see FIG. 5). It is supplied from the arc voltage during T3 and T4) and from the no-load voltage of the welding power source WER2 during the no-load voltage output period (T2 in FIG. 5).
【0034】送給装置内蔵制御電源SPは、補助電源用
コンデンサCの端子電圧を入力電圧として第2の中央演
算処理回路用供給電圧Sp、送給モータ制御回路用供給
電圧Sk及び電磁弁ON用供給電圧Soの値に変換して
出力する。とくに溶接中に消耗性電極2が被加工物1に
短絡したときは一時的に溶接電源WER2からの電力供
給が絶たれるが、上記送給装置内蔵制御電源SPは大容
量の補助電源用コンデンサCを備えているので安定した
電力供給が得られる。The control power supply SP with a built-in feeding device uses the terminal voltage of the auxiliary power supply capacitor C as an input voltage to supply the second central processing circuit supply voltage Sp, the supply motor control circuit supply voltage Sk, and the solenoid valve ON. The value of the supply voltage So is converted and output. In particular, when the consumable electrode 2 is short-circuited to the work piece 1 during welding, the power supply from the welding power source WER2 is temporarily cut off, but the control power source SP with a built-in feeding device has a large-capacity auxiliary power source capacitor C. Since it is equipped with, stable power supply can be obtained.
【0035】第2の中央演算処理回路CPU2は、送給
装置内蔵制御電源SPから供給される第2の中央演算処
理回路用供給電圧Spを制御電圧とし、トーチスイッチ
TSから出力されるトーチスイッチ起動信号Ts、溶接
電流設定器WIによって設定される予め定めた値の溶接
電流設定信号Wi、溶接電圧設定器WVによって設定さ
れる予め定めた値の溶接電圧設定信号Wv、クレータ電
流設定器CIによって設定される予め定めた値のクレー
タ電流設定信号Ci及びクレータ電圧設定器CVによっ
て設定される予め定めた値のクレータ電圧設定信号C
v、溶接電源から受信した溶接電流検出・溶接監視受信
信号De2、インチングスイッチITによって設定され
るインチング信号It、ガスチェックスイッチGCによ
って設定されるガスチェック信号Gcの値に応じて、送
給モータ制御信号Sa、溶接電源起動・出力電圧設定用
送信信号Ck、電磁弁駆動信号S2及び表示信号Ldを
出力する。The second central processing circuit CPU2 uses the second central processing circuit supply voltage Sp supplied from the feeding power control device SP as a control voltage and starts the torch switch output from the torch switch TS. Signal Ts, welding current setting signal Wi having a predetermined value set by welding current setting device WI, welding voltage setting signal Wv having a predetermined value set by welding voltage setting device WV, setting by crater current setting device CI Crater current setting signal Ci having a predetermined value and Crater voltage setting signal C having a predetermined value set by crater voltage setting device CV
v, the feeding motor control according to the values of the welding current detection / welding monitoring reception signal De2 received from the welding power source, the inching signal It set by the inching switch IT, and the gas check signal Gc set by the gas check switch GC The signal Sa, the welding power source start-up / output voltage setting transmission signal Ck, the solenoid valve drive signal S2, and the display signal Ld are output.
【0036】送給モータ制御回路GAは、送給装置内蔵
制御電源SPから供給される送給モータ制御回路用供給
電圧Skを制御電源とし、第2の中央演算処理回路CP
U2から出力される送給モータ制御信号Saの値に応じ
て、送給モータ用出力信号Gaを出力して送給モータM
の回転数を制御する。The feed motor control circuit GA uses the feed motor control circuit supply voltage Sk supplied from the feed power control device SP as a control power source, and uses the second central processing circuit CP.
According to the value of the feed motor control signal Sa output from U2, the feed motor output signal Ga is output to feed the feed motor M.
Control the rotation speed of.
【0037】電磁弁駆動回路SWは、送給装置内蔵制御
電源SPから入力された電磁弁ON用供給電圧Soを制
御電源とし、第2の中央演算処理回路CPU2から出力
される電磁弁駆動信号S2によって電磁弁SOLを動作
させて電磁弁SOLをON・OFFする。The solenoid valve drive circuit SW uses the solenoid valve ON supply voltage So input from the feeding power control device SP as a control power source, and the solenoid valve drive signal S2 output from the second central processing circuit CPU2. The solenoid valve SOL is operated by to turn on / off the solenoid valve SOL.
【0038】第2の信号変調回路MO2は、溶接電源起
動・出力電圧設定用送信信号Ckの値に応じて搬送波を
PSKに変調した第2の1次変調波信号Mo2を出力す
る。第2の拡散変調回路SI2は、狭帯域の第2の1次
変調波信号Mo2を拡散符号によりスペクトル拡散を行
い広帯域の第2の拡散変調送信信号Si2に変調する。
第2の拡散信号結合回路TR2は、溶接電源WER2と
ワイヤ送給WSR2との間の第1のパワーケーブル4に
拡散変調信号を結合させてスペクトル拡散通信方式によ
って送受信する。第2の逆拡散復調回路SD2は、拡散
符号により広帯域の第2の拡散変調受信信号Tr2を逆
拡散という方法で狭帯域変調信号の第2の逆拡散復調信
号Sd2に復調させる。第2の1次変調波復調回路DE
2は、上記第2の逆拡散復調信号Sd2の1次変調波を
第2の中央演算処理回路CPU2に対応した信号に復調
させる。The second signal modulation circuit MO2 outputs a second primary modulated wave signal Mo2 in which the carrier wave is modulated into PSK according to the value of the welding power source start-up / output voltage setting transmission signal Ck. The second spread modulation circuit SI2 spreads the narrow band second primary modulated wave signal Mo2 with a spread code to modulate a wide band second spread modulated transmission signal Si2.
The second spread signal coupling circuit TR2 couples the spread modulation signal to the first power cable 4 between the welding power source WER2 and the wire feed WSR2, and transmits / receives by the spread spectrum communication method. The second despread demodulation circuit SD2 demodulates the wideband second spread modulation reception signal Tr2 into a second despread demodulation signal Sd2 of a narrow band modulation signal by a method called despreading using a spreading code. Second primary modulated wave demodulation circuit DE
2 demodulates the primary modulated wave of the second despread demodulated signal Sd2 into a signal corresponding to the second central processing circuit CPU2.
【0039】図5は、図4に示す本発明の消耗電極式ア
ーク溶接装置の動作を説明するためのタイミング図であ
る。図5(A)は、出力電圧検出信号Vdを示し、図5
(B)は、出力電流検出信号Idを示す。図5(C)
は、トーチスイッチTSから出力するトーチスイッチ起
動信号Tsを示し、図5(D)は、溶接電流検出信号W
rを示す。図5(E)は、補助電源用コンデンサCの端
子電圧を示し、図5(F)は、第2の中央演算処理回路
CPU2から出力する溶接電源起動・出力電圧設定用送
信信号Ckを示し、図5(G)は、1次変調波復調回路
DEにより復調された溶接電源起動・出力電圧設定用受
信信号Deを示し、図5(H)は、送給モータ制御信号
Saを示し、図5(I)は、電磁弁駆動信号S2を示
す。FIG. 5 is a timing chart for explaining the operation of the consumable electrode type arc welding apparatus of the present invention shown in FIG. FIG. 5A shows the output voltage detection signal Vd.
(B) shows the output current detection signal Id. Figure 5 (C)
Shows the torch switch activation signal Ts output from the torch switch TS, and FIG. 5 (D) shows the welding current detection signal W.
Indicates r. 5E shows the terminal voltage of the auxiliary power supply capacitor C, and FIG. 5F shows the welding power supply start-up / output voltage setting transmission signal Ck output from the second central processing unit CPU2. FIG. 5 (G) shows the welding power supply start-up / output voltage setting reception signal De demodulated by the primary modulation wave demodulation circuit DE, and FIG. 5 (H) shows the feed motor control signal Sa. (I) shows the solenoid valve drive signal S2.
【0040】図6は、図4に示す本発明の消耗電極式ア
ーク溶接装置の直接拡散方式の詳細図である。信号変調
回路MOは、搬送波発生回路RFと1次変調回路1Cと
で形成され、拡散変調回路SIは、拡散符号発生回路D
Mと2次変調回路2Cとで形成され、逆拡散復調回路S
Dは、同期回路SS、拡散符号発生回路DM、2次復調
回路2D及びバンドパスフィルタBFによって形成され
ている。第2の信号変調回路MO2、第2の拡散変調回
路SI2及び第2の逆拡散復調回路SD2は、上記と同
一であるので省略する。FIG. 6 is a detailed view of the direct diffusion system of the consumable electrode type arc welding apparatus of the present invention shown in FIG. The signal modulation circuit MO is formed of a carrier wave generation circuit RF and a primary modulation circuit 1C, and the spreading modulation circuit SI is a spreading code generation circuit D.
M and a secondary modulation circuit 2C, and a despread demodulation circuit S
D is formed by the synchronization circuit SS, the spread code generation circuit DM, the secondary demodulation circuit 2D, and the bandpass filter BF. The second signal modulation circuit MO2, the second spreading modulation circuit SI2, and the second despreading demodulation circuit SD2 are the same as those described above, and will be omitted.
【0041】図7は、図6に示す直接拡散方式の動作を
説明するための波形図である。図7(A)は、第2の1
次変調波信号Mo2を示し、図7(B)は、第2の拡散
変調送信信号Si2を示し、図7(C)は、拡散変調受
信信号Trを示し、図7(D)は、2次復調信号2dを
示し、図7(E)は、逆拡散復調信号Sdを示す。FIG. 7 is a waveform diagram for explaining the operation of the direct diffusion method shown in FIG. FIG. 7A shows the second 1
FIG. 7B shows the second modulated wave signal Mo2, FIG. 7B shows the second spread modulation transmitted signal Si2, FIG. 7C shows the spread modulated received signal Tr, and FIG. The demodulated signal 2d is shown, and FIG. 7E shows the despread demodulated signal Sd.
【0042】図4に示す、本発明の消耗電極式アーク溶
接装置の動作を図5、図6及び図7を用いて説明する。The operation of the consumable electrode type arc welding apparatus of the present invention shown in FIG. 4 will be described with reference to FIGS. 5, 6 and 7.
【0043】図5に示す、時刻t=t1において、溶接
電源WER2に三相交流商用電源ACが入力されると、
溶接待機中出力制御電源PSは予め定めた値の出力電圧
を溶接電源WER2の出力端子に出力して、第1のパワ
ーケーブル4、ダイオードDR4を経由して溶接待機期
間T6の間、補助電源用コンデンサCに電力を供給す
る。At time t = t1 shown in FIG. 5, when the three-phase AC commercial power source AC is input to the welding power source WER2,
The welding standby output control power supply PS outputs an output voltage of a predetermined value to the output terminal of the welding power supply WER2, and for the auxiliary power supply during the welding standby period T6 via the first power cable 4 and the diode DR4. Power is supplied to the capacitor C.
【0044】図5(E)に示す、補助電源用コンデンサ
Cの端子電圧が予め定めた値を越えると、送給装置内蔵
制御電源SPが動作を開始して、送給モータ制御回路用
供給電圧Sk、第2の中央演算処理回路用供給電圧Sp
及び電磁弁ON用供給電圧Soを出力する。When the terminal voltage of the auxiliary power source capacitor C shown in FIG. 5 (E) exceeds a predetermined value, the feeding device built-in control power source SP starts to operate and the feeding motor control circuit supply voltage is increased. Sk, supply voltage Sp for second central processing circuit
And the supply voltage So for turning on the solenoid valve.
【0045】時刻t=t2において、図5(C)に示す
トーチスイッチ起動信号TsがHighレベルになる
と、第2の中央演算処理回路CPU2は、動作を開始し
て溶接電源起動・出力電圧設定用送信信号Ck、電磁弁
駆動信号S2及び送給モータ制御信号Saを出力する。At time t = t2, when the torch switch activation signal Ts shown in FIG. 5 (C) becomes High level, the second central processing circuit CPU2 starts operation to start welding power source / output voltage setting. The transmission signal Ck, the solenoid valve drive signal S2, and the feed motor control signal Sa are output.
【0046】第2の信号変調回路MO2は、溶接電源起
動・出力電圧設定用送信信号Ckの値に応じて、搬送波
発生回路RFから出力される搬送波を1次変調回路1C
によりPSK変調した図7(A)に示す、狭帯域の第2
の1次変調波信号Mo2を出力する。第2の拡散変調回
路SI2は、拡散符号発生回路DMから出力される高速
な拡散符号信号Dmを用いて、2次変調回路2Cにより
スペクトル拡散を行い図7(B)に示す、広帯域の第2
の拡散変調送信信号Si2を出力する。第2の拡散信号
結合回路TR2は、溶接電源WER2とワイヤ送給WS
R2との間の第1のパワーケーブル4に第2の拡散変調
送信信号Si2を結合させて送信する。The second signal modulation circuit MO2 changes the carrier wave output from the carrier wave generation circuit RF to the primary modulation circuit 1C according to the value of the welding power source start-up / output voltage setting transmission signal Ck.
The second narrow band shown in FIG.
The primary modulated wave signal Mo2 is output. The second spread modulation circuit SI2 spreads the spectrum by the secondary modulation circuit 2C using the high-speed spread code signal Dm output from the spread code generation circuit DM, and the second wide band shown in FIG. 7B.
And outputs the spread modulation transmission signal Si2. The second spread signal coupling circuit TR2 includes a welding power source WER2 and a wire feeding WS.
The second spread modulation transmission signal Si2 is coupled to the first power cable 4 connected to R2 and transmitted.
【0047】拡散信号結合回路TRは、第1のパワーケ
ーブル4によって送信されてくる第2の拡散変調送信信
号Si2を受信して図7(C)に示す拡散変調受信信号
Trとして出力する。このとき溶接機が発生するノイズ
も受信する。逆拡散復調回路SDは、同期回路SSによ
り拡散符号発生回路DMから出力される拡散符号信号D
mを送信側の拡散符号と同期し、上記同期した拡散符号
信号を用いて、2次復調回路2Dにより逆拡散を行い図
7(D)に示す2次復調信号2dを出力し、バンドパス
フィルタBFによりノイズを削除して図7(E)に示す
逆拡散復調信号Sdを出力する。このとき、送信中に受
けたノイズは、逆に拡散されて信号レベルよりはるかに
小さな信号になるためノイズの影響を受けにくくなる。
1次変調波復調回路DEは、逆拡散復調信号Sd2を中
央演算処理回路CPUに対応した溶接電源起動・出力電
圧設定用受信信号Deに復調させる。The spread signal combination circuit TR receives the second spread modulation transmission signal Si2 transmitted by the first power cable 4 and outputs it as the spread modulation reception signal Tr shown in FIG. 7 (C). At this time, the noise generated by the welding machine is also received. The despread demodulation circuit SD has a spreading code signal D output from the spreading code generation circuit DM by the synchronization circuit SS.
m is synchronized with the spreading code on the transmission side, the synchronized spreading code signal is used to despread by the secondary demodulation circuit 2D, and the secondary demodulation signal 2d shown in FIG. Noise is removed by the BF and the despread demodulation signal Sd shown in FIG. 7E is output. At this time, the noise received during transmission is inversely diffused and becomes a signal much smaller than the signal level, so that it is less likely to be affected by the noise.
The primary modulated wave demodulation circuit DE demodulates the despread demodulation signal Sd2 into a welding power supply start-up / output voltage setting reception signal De corresponding to the central processing circuit CPU.
【0048】中央演算処理回路CPUは、溶接電源起動
・出力電圧設定用受信信号Deの値を演算して、溶接電
源起動信号Ctと出力電圧設定信号Cpとに分離して出
力する。出力制御回路SC2は、上記溶接電源起動Ct
が入力されると動作を開始して、出力電圧設定信号C
p、出力電圧検出信号Vd及び出力電流検出信号Idと
の値に応じて演算処理を行って出力制御信号Scの値を
制御する。The central processing circuit CPU calculates the value of the welding power supply start-up / output voltage setting reception signal De, and separates and outputs the welding power supply start-up signal Ct and the output voltage setting signal Cp. The output control circuit SC2 uses the welding power source start Ct.
Is started, the output voltage setting signal C
According to the values of p, the output voltage detection signal Vd, and the output current detection signal Id, arithmetic processing is performed to control the value of the output control signal Sc.
【0049】図5(I)に示す、電磁弁駆動信号S2が
Highレベルになると、上記電磁弁駆動回路SWは、
電磁弁駆動信号S2によって電磁弁ON用供給電圧So
を出力して電磁弁SOLを動作させる。When the solenoid valve drive signal S2 shown in FIG. 5 (I) becomes High level, the solenoid valve drive circuit SW becomes
Supply voltage So for solenoid valve ON by solenoid valve drive signal S2
Is output to operate the solenoid valve SOL.
【0050】図5(H)に示す送給モータ制御信号Sa
は、溶接電流設定器WIによって設定された溶接電流設
定信号Wi及びクレータ電流設定器CIによって設定さ
れる予め定めた値のクレータ電流設定信号Ci、溶接電
源から受信した溶接電流検出・溶接監視受信信号De
2、インチングスイッチITによって設定されるインチ
ング信号Itの値に応じて、第2の中央演算処理回路C
PU2から出力される。送給モータ制御回路GAは送給
モータ制御信号Saの値に応じて送給モータMの回転数
を制御する。また、無負荷電圧出力期間T2の間、溶接
電源WER2の無負荷電圧によって、補助電源用コンデ
ンサCに電力が供給される。Feed motor control signal Sa shown in FIG.
Is a welding current setting signal Wi set by the welding current setting device WI, a crater current setting signal Ci having a predetermined value set by the crater current setting device CI, a welding current detection / welding monitoring reception signal received from the welding power source. De
2. The second central processing circuit C according to the value of the inching signal It set by the inching switch IT.
It is output from PU2. The feed motor control circuit GA controls the rotation speed of the feed motor M according to the value of the feed motor control signal Sa. During the no-load voltage output period T2, the no-load voltage of the welding power source WER2 supplies power to the auxiliary power source capacitor C.
【0051】時刻t=t3において、消耗性電極2が被
加工物1に接触すると、出力制御回路SC2は、接触を
検出して溶接電流検出信号Wrを出力する。また、溶接
異常を監視する溶接監視信号Wwも出力する。中央演算
処理回路CPUは、溶接電流検出・溶接監視送信信号C
rを出力して、上述と同様の方法でスペクトル拡散の変
調及び復調を繰り返して第2の中央演算処理回路CPU
2に送信され、復調された溶接電流検出・溶接監視受信
信号De2に応じて、送給モータMの回転数がスローダ
ウン速度から予め定めた溶接速度に切り替わり、アーク
スタート電流が流れてアークが発生する。さらに、溶接
異常が発生したときは表示部LDに異常を表示する。When the consumable electrode 2 comes into contact with the workpiece 1 at time t = t3, the output control circuit SC2 detects the contact and outputs the welding current detection signal Wr. It also outputs a welding monitoring signal Ww for monitoring welding abnormalities. The central processing circuit CPU has a welding current detection / welding monitoring transmission signal C.
The second central processing unit CPU which outputs r and repeats the spread spectrum modulation and demodulation in the same manner as described above.
2, the rotation speed of the feed motor M is switched from the slowdown speed to a predetermined welding speed in accordance with the demodulated welding current detection / welding monitoring reception signal De2, and an arc start current flows to generate an arc. To do. Further, when a welding abnormality occurs, the abnormality is displayed on the display LD.
【0052】溶接期間T3において、消耗性電極2と被
加工物1とが短絡とアーク発生とを繰り返す「短絡移
行」の短絡中は、一時的に補助電源用コンデンサCに電
力が供給されないが、予め定めた値の大容量の補助電源
用コンデンサCを備えているため、補助電源用コンデン
サCの端子電圧は図5(E)に示すように低下の傾向に
あるが送給装置内蔵制御電源SPは安定した動作をす
る。During the welding period T3, during the "short circuit transition" short circuit in which the consumable electrode 2 and the workpiece 1 are repeatedly short-circuited and arced, no power is temporarily supplied to the auxiliary power supply capacitor C. Since the auxiliary power supply capacitor C having a large value having a predetermined value is provided, the terminal voltage of the auxiliary power supply capacitor C tends to decrease as shown in FIG. Operates stably.
【0053】図5に示す時刻t=t4において、トーチ
スイッチ起動信号TsがLowレベルになると、アンチ
スティック期間になり送給モータMの回転が減速して消
耗性電極2の送給が停止し、消耗性電極2と被加工物1
との「短絡移行」が終了する。このアンチスティック期
間T4の間、アーク電圧によって補助電源用コンデンサ
Cに電力が供給される。また、上記トーチスイッチ起動
信号Tsが時刻t=t4にLowレベルになると、第2
の中央演算処理回路CPU2は、電磁弁駆動信号S2を
予め定めた値のアフタフロー期間T5を設けて、アフタ
フロー期間T5の間、電磁弁SOLをONさせる。At time t = t4 shown in FIG. 5, when the torch switch activation signal Ts becomes Low level, the anti-stick period starts, the rotation of the feeding motor M is decelerated, and the feeding of the consumable electrode 2 is stopped. Consumable electrode 2 and work piece 1
"Short circuit transfer" with is completed. During this anti-stick period T4, power is supplied to the auxiliary power supply capacitor C by the arc voltage. When the torch switch activation signal Ts becomes Low level at time t = t4, the second
The central processing circuit CPU2 provides a solenoid valve drive signal S2 with an afterflow period T5 having a predetermined value, and turns on the solenoid valve SOL during the afterflow period T5.
【0054】図5に示す時刻t=t6において、出力制
御回路SC2はインバータ駆動信号IrをLowレベル
にしてインバータ回路INVの動作を停止させて、溶接
待機中出力制御電源PSの出力(保護特別低電圧)に切
り換えて、溶接待機期間T7の間、補助電源用コンデン
サCに電力を供給する。At time t = t6 shown in FIG. 5, the output control circuit SC2 sets the inverter drive signal Ir to the low level to stop the operation of the inverter circuit INV, and the output of the output control power supply PS during welding standby (protection special low Voltage) to supply power to the auxiliary power supply capacitor C during the welding standby period T7.
【0055】本発明では、スペクトル拡散通信方式(S
pread Spectrum)の代表例である直接拡
散方式(Direct Spread)を使用している
が、上記スペクトル拡散通信方式を周波数ホッピング方
式、チャープ方式及びそれらを融合したハイブリッド方
式にしてもよい。In the present invention, the spread spectrum communication system (S
Although the direct spread method (Direct Spread), which is a typical example of the pread spectrum, is used, the spread spectrum communication method may be a frequency hopping method, a chirp method, or a hybrid method combining them.
【0056】[0056]
【発明の効果】本発明によれば、溶接電源とワイヤ送給
装置との間のパワーケーブルを経由して、上記ワイヤ送
給装置から溶接電源にスペクトル拡散通信方式によって
各制御信号を供給し、逆に溶接電源からワイヤ送給装置
の送給装置内蔵制御電源にパワーケーブルを経由して電
力が供給できるので、(1)ワイヤ送給装置用制御ケー
ブル及びリモコン装置用制御ケーブルが不要となり、ワ
イヤ送給装置の移動が容易になり、さらに、制御ケーブ
ルの断線等の原因が取り除かれるので溶接作業の効率及
び溶接品質が大幅に向上できる。(2)スペクトル拡散
通信方式により、多くの情報が送受信できるために、制
御線を増やすこともなく溶接電源のフロントパネルにあ
るすべての操作をワイヤ送給装置側で制御することも可
能になる。(3)ノイズ環境がきわめて悪い溶接現場で
ノイズに強い信頼性の高い情報伝達が可能となる。According to the present invention, each control signal is supplied from the wire feeder to the welding power source by the spread spectrum communication method via the power cable between the welding power source and the wire feeder. On the contrary, since power can be supplied from the welding power source to the control power supply with a built-in feeding device of the wire feeding device via the power cable, (1) the wire feeding device control cable and the remote control device control cable are not required The movement of the feeding device is facilitated, and the cause such as the disconnection of the control cable is removed, so that the efficiency and quality of welding work can be significantly improved. (2) Since the spread spectrum communication system can transmit and receive a large amount of information, it is possible to control all operations on the front panel of the welding power source on the wire feeder side without increasing the number of control lines. (3) Noise-resistant and highly reliable information can be transmitted at a welding site where the noise environment is extremely bad.
【図1】当該出願に係る発明の特徴を最もよく表す図で
ある。FIG. 1 is a diagram best representing the features of the invention according to the application.
【図2】図2は、従来技術の消耗電極式アーク溶接装置
の接続図である。FIG. 2 is a connection diagram of a conventional consumable electrode type arc welding apparatus.
【図3】図3は、図2に示す従来技術の消耗電極式アー
ク溶接装置の動作を説明するためのタイミング図であ
る。FIG. 3 is a timing chart for explaining the operation of the conventional consumable electrode type arc welding apparatus shown in FIG.
【図4】図4は、本発明の消耗電極式アーク溶接装置の
接続図である。FIG. 4 is a connection diagram of the consumable electrode type arc welding apparatus of the present invention.
【図5】図5は、図4に示す消耗電極式アーク溶接装置
の動作を説明するためのタイミング図である。5 is a timing chart for explaining the operation of the consumable electrode type arc welding apparatus shown in FIG.
【図6】図6は、直接拡散方式の詳細図である。FIG. 6 is a detailed diagram of a direct diffusion method.
【図7】図7は、図6に示す直接拡散方式の動作を説明
するための波形図である。FIG. 7 is a waveform diagram for explaining the operation of the direct diffusion method shown in FIG.
【図8】図4の本発明の消耗電極式アーク溶接装置の接
続図に接地線を追加した図である。FIG. 8 is a diagram in which a ground wire is added to the connection diagram of the consumable electrode type arc welding apparatus of the present invention in FIG.
1 被加工物
2 消耗性電極
3 送給ロール
4 第1のパワーケーブル
5 第2のパワーケーブル
6 起動信号用制御線
7 モータ用制御線
8 電磁弁用制御線
9 GND線
10 ワイヤ送給装置用制御ケーブル
11 リモコン制御用電源線
12 溶接電流設定用制御線
13 溶接電圧設定用制御線
14 リモコン制御用GND線
15 インチング用制御線
16 リモコン装置用制御ケーブル
AC 三相交流商用電源
BF バンドパスフィルタ
C 補助電源用コンデンサ
CI クレータ電流設定器
CV クレータ電圧設定器
1C 1次変調回路
2C 2次変調回路
CPU 中央演算処理回路
CPU2 第2の中央演算処理回路
DE 1次変調波復調回路
DE2 第2の1次変調波復調回路
DL 直流リアクトル
DM 拡散符号発生回路
DR1 1次整流回路
DR2 2次整流回路
DR3 補助電源整流回路
DR4 ダイオード
2D 2次復調回路
GA 送給モータ制御回路
GC ガスチェックスイッチ
LD 表示部
ID 出力電流検出回路
IR インバータ駆動回路
IT インチングスイッチ
INT 主変圧器
INV インバータ回路
M 送給モータ
MS 制御電源アセンブリィ
MO 信号変調回路
MO2 第2の信号変調回路
PS 溶接待機中出力制御電源
R 電流制限用抵抗器
RF 搬送波発生回路
REM リモコン装置
SC (制御ケーブル使用の)出力制御回路
SC2 (制御ケーブル不要の)出力制御回路
SD 逆拡散復調回路
SD2 第2の逆拡散復調回路
SP 送給装置内蔵制御電源
SI 拡散変調回路
SI2 第2の拡散変調回路
SOL 電磁弁
SS 同期回路
SW 電磁弁駆動回路
SW1 電磁弁開閉スイッチ
TO 電源投入中供給補助変圧器
TO2 溶接待機中供給補助変圧器
TH 溶接トーチ
TS トーチスイッチ
TR 拡散信号結合回路
TR2 第2の拡散信号結合回路
VD 出力電圧検出回路
WI 溶接電流設定器
WP 溶接電源出力回路
WV 溶接電圧設定器
WER (従来技術の制御ケーブル使用の)溶接
電源
WER2 (本発明に使用する制御ケーブル不要
の)溶接電源
WSR (従来技術の制御ケーブル使用の)ワイ
ヤ送給装置
WSR2 (本発明に使用する制御ケーブル不要
の)ワイヤ送給装置
Ci クレータ電流設定信号
Ct 溶接電源起動信号
Cp 出力電圧設定信号
Cr 溶接電流検出・溶接監視送信信号
Ck 溶接電源起動・出力電圧設定用送信信号
Cv クレータ電圧設定信号
De 溶接電源起動・出力電圧設定用受信信号
Dm 拡散符号信号
2d 2次復調信号
De2 溶接電流検出・溶接監視受信信号
Ga 送給モータ用出力信号
Gc ガスチェック信号
Id 出力電流検出信号
It インチング信号
Ir インバータ駆動信号
Mo 1次変調波信号
Mo2 第2の1次変調波信号
Sa 送給モータ制御信号
Sc 出力制御信号
Sd 逆拡散復調信号
Sd2 第2の逆拡散復調信号
Si 拡散変調送信信号
Si2 第2の拡散変調送信信号
So 電磁弁ON用供給電圧
Sp 第2の中央演算処理回路用供給電圧
Ss 同期信号
Sk 送給モータ制御回路用供給電圧
S1 溶接電源内蔵電磁弁開閉信号
S2 電磁弁駆動信号
Ts トーチスイッチ起動信号
Tr 拡散変調受信信号
Tr2 第2の拡散変調受信信号
T1 トーチスイッチ起動期間
T2 無負荷電圧出力期間
T3 溶接期間
T4 アンチスティック期間
T5 アフタフロー期間
T6、T7 溶接待機期間
Vd 出力電圧検出信号
Wi 溶接電流設定信号
Wv 溶接電圧設定信号
Wr 溶接電流検出信号
Ww 溶接監視信号1 Workpiece 2 Consumable Electrode 3 Feeding Roll 4 First Power Cable 5 Second Power Cable 6 Start Signal Control Line 7 Motor Control Line 8 Solenoid Valve Control Line 9 GND Line 10 Wire Feeder Control cable 11 Remote control power line 12 Welding current setting control line 13 Welding voltage setting control line 14 Remote control GND line 15 Inching control line 16 Remote control device control cable AC Three-phase AC commercial power supply BF Bandpass filter C Auxiliary power supply capacitor CI Crater current setting device CV Crater voltage setting device 1C Primary modulation circuit 2C Secondary modulation circuit CPU Central arithmetic processing circuit CPU2 Second central arithmetic processing circuit DE Primary primary modulated wave demodulation circuit DE2 Second primary Modulation wave demodulation circuit DL DC reactor DM Spread code generation circuit DR1 Primary rectification circuit DR2 Secondary rectification circuit DR3 Auxiliary power supply rectification circuit DR4 Diode 2D secondary demodulation circuit GA Feed motor control circuit GC Gas check switch LD Display ID output current detection circuit IR Inverter drive circuit IT Inching switch INT Main transformer INV Inverter circuit M Feed motor MS Control power supply Assembly MO Signal modulation circuit MO2 Second signal modulation circuit PS Welding standby output control power supply R Current limiting resistor RF Carrier wave generation circuit REM Remote control device SC (using control cable) Output control circuit SC2 (no control cable required) Output control circuit SD Despreading demodulation circuit SD2 Second despreading demodulation circuit SP Feeder built-in control power supply SI Spreading modulation circuit SI2 Second spreading modulation circuit SOL Solenoid valve SS Synchronous circuit SW Solenoid valve drive circuit SW1 Solenoid valve open / close switch TO Auxiliary transformer TO2 melted while power is on Standby supply auxiliary transformer TH Welding torch TS Torch switch TR Spreading signal coupling circuit TR2 Second spreading signal coupling circuit VD Output voltage detection circuit WI Welding current setting device WP Welding power output circuit WV Welding voltage setting device WER (Prior art) Welding power supply WER2 (using a control cable) (not using the control cable used in the present invention) Welding power supply WSR (using a control cable in the prior art) WSR2 (no control cable used in the present invention) Wire feeding device Equipment Ci Crater current setting signal Ct Welding power supply starting signal Cp Output voltage setting signal Cr Welding current detection / welding monitoring transmission signal Ck Welding power supply starting / output voltage setting transmission signal Cv Crater voltage setting signal De Welding power supply starting / output voltage setting Received signal Dm Spread code signal 2d Secondary demodulation signal De2 Welding current detection / welding monitoring Signal signal Ga Output signal for feed motor Gc Gas check signal Id Output current detection signal It Inching signal Ir Inverter drive signal Mo Primary modulated wave signal Mo2 Second primary modulated wave signal Sa Feed motor control signal Sc Output control signal Sd despread demodulation signal Sd2 second despread demodulation signal Si 2 diffusion modulation transmission signal Si2 second diffusion modulation transmission signal So solenoid valve ON supply voltage Sp second central processing circuit supply voltage Ss synchronization signal Sk transmission Motor control circuit supply voltage S1 Solenoid valve opening / closing signal S2 with built-in welding power source Solenoid valve drive signal Ts Torch switch activation signal Tr Spread modulation reception signal Tr2 Second diffusion modulation reception signal T1 Torch switch startup period T2 No load voltage output period T3 Welding Period T4 Anti-stick period T5 Afterflow period T6, T7 Welding standby period Vd Output power Detection signal Wi welding current setting signal Wv welding voltage setting signal Wr welding current detection signal Ww Welding monitoring signal
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4E082 AA01 BA01 CA01 DA01 EA02 EC03 EC13 EF04 EF16 GA02 ─────────────────────────────────────────────────── ─── Continued front page F-term (reference) 4E082 AA01 BA01 CA01 DA01 EA02 EC03 EC13 EF04 EF16 GA02
Claims (8)
を備えた溶接電源と溶接する位置の移動に伴って溶接作
業者が持ち運びするワイヤ送給装置とに分離されている
消耗電極式アーク溶接装置において、溶接電源に溶接待
機中に送給モータ及び電磁弁を制御する制御電圧を第1
のパワーケーブルと第2のパワーケーブル又は接地線と
に供給する溶接待機中出力制御電源を備えると共に、ワ
イヤ送給装置に第1のパワーケーブルと第2のパワーケ
ーブル又は接地線から供給される、前記制御電圧を入力
する送給装置内蔵制御電源と、前記送給装置内蔵制御電
源の出力電圧及びトーチスイッチ起動信号を入力される
と送給モータ制御信号及び電磁弁駆動信号を出力する第
2の中央演算処理回路と、前記送給装置内蔵制御電源の
送給モータ制御回路用供給電圧及び送給モータ制御信号
を入力とする送給モータ制御回路と、上記送給装置内蔵
制御電源の電磁弁ON用供給電圧及び電磁弁駆動信号を
入力とする電磁弁駆動回路及び電磁弁と、前記溶接電源
とワイヤ送給装置との間の各制御信号の送信及び受信を
第1のパワーケーブルを経由してスペクトル拡散通信方
式で送受信するスペクトル拡散通信部を備えた消耗電極
式アーク溶接装置。1. A consumable electrode type arc welding in which a welding power source having a welding power source output circuit for outputting welding power and a wire feeding device carried by a welding operator along with movement of a welding position are separated from each other. In the apparatus, a first control voltage is applied to the welding power source to control the feed motor and the solenoid valve while waiting for welding.
And a power supply for welding standby control for supplying to the power cable and the second power cable or the ground wire, and the wire feeding device is supplied from the first power cable and the second power cable or the ground wire. A control power supply with a built-in feeding device for inputting the control voltage, and a second output motor control signal and a solenoid valve drive signal when the output voltage of the control power supply with a built-in feeding device and a torch switch start signal are input. Central processing circuit, feed motor control circuit for inputting feed voltage for feed motor control circuit and feed motor control signal of the control power supply with built-in feed device, and solenoid valve of the control power supply with built-in feed device turned on For transmitting and receiving each control signal between the welding power source and the wire feeding device, and the solenoid valve driving circuit and the solenoid valve which receive the supply voltage and the solenoid valve driving signal for the first power cable. Consumable electrode type arc welding apparatus having a spread spectrum communication unit for transmitting and receiving via the Le in the spread spectrum communication system.
を備えた溶接電源と溶接する位置の移動に伴って溶接作
業者が持ち運びするワイヤ送給装置とに分離されている
消耗電極式アーク溶接装置において、溶接電源に溶接待
機中に送給モータ及び電磁弁を制御する制御電圧を第1
のパワーケーブルと第2のパワーケーブル又は接地線と
に供給する溶接待機中出力制御電源を備えると共に、ワ
イヤ送給装置に第1のパワーケーブルと第2のパワーケ
ーブル又は接地線から制御電圧を入力する送給装置内蔵
制御電源を備えて、前記溶接電源は、第1のパワーケー
ブルに結合させてスペクトル拡散通信方式で拡散変調信
号を送受信する拡散信号結合回路と、受信した拡散変調
受信信号を逆拡散して復調を行う逆拡散復調回路と、復
調した逆拡散復調信号を中央演算処理回路に対応した信
号に復調する1次変調波復調回路と、中央演算処理回路
から出力する溶接電流検出・溶接監視信号を1次変調す
る信号変調回路と、1次変調波信号をスペクトル拡散す
る拡散変調回路と、前記1次変調波復調回路によって復
調された溶接電源起動・出力電圧設定用受信信号の値に
応じて演算して溶接電源起動信号と出力電圧設定信号と
に分離して出力する中央演算処理回路と、前記溶接電源
起動信号が入力されると動作を開始し、出力電圧設定信
号、出力電圧検出信号及び出力電流検出信号の値に応じ
て演算処理を行って溶接電源出力回路の出力を制御する
出力制御回路とを備え、前記ワイヤ送給装置は、トーチ
スイッチ起動信号が入力されると電磁弁駆動信号を出力
し、溶接電流設定器が出力する溶接電流設定信号及びク
レータ電流設定器が出力するクレータ電流設定信号に応
じて送給モータ制御信号を出力し、溶接電圧設定器が出
力する溶接電圧設定信号及びクレータ電圧設定器が出力
するクレータ電圧設定信号に応じて、溶接電源起動・出
力電圧設定用送信信号を出力する第2の中央演算処理回
路と、前記溶接電源起動・出力電圧設定用送信信号を1
次変調する第2の信号変調回路と、第2の1次変調波信
号をスペクトル拡散する第2の拡散変調回路と、第1の
パワーケーブル4に結合させてスペクトル拡散通信方式
で拡散変調信号を送受信する第2の拡散信号結合回路
と、受信した第2の拡散変調受信信号を逆拡散して復調
を行う第2の逆拡散復調回路と、復調した第2の逆拡散
復調信号を第2の中央演算処理回路に対応した信号に復
調する第2の1次変調波復調回路と、前記送給モータ制
御信号を入力して送給モータを駆動させる送給モータ制
御回路と、電磁弁駆動信号を入力して電磁弁SOLをO
N・OFFする電磁弁駆動回路とを備え、前記送給装置
内蔵制御電源が入力する制御電圧は、溶接待機期間中は
溶接待機中出力制御電源から供給され、溶接期間及びア
ンチスチィック期間中はアーク電圧から供給され、無負
荷電圧出力期間中は溶接電源の無負荷電圧から供給され
る消耗電極式アーク溶接装置。2. A consumable electrode type arc welding in which a welding power source having a welding power source output circuit for outputting welding power and a wire feeding device carried by a welding operator along with movement of a welding position are separated. In the apparatus, a first control voltage is applied to the welding power source to control the feed motor and the solenoid valve while waiting for welding.
And a second power cable for supplying power to the power cable and the second power cable or the ground wire, and a control voltage is input to the wire feeding device from the first power cable and the second power cable or the ground wire. The welding power source includes a spread signal combination circuit for transmitting and receiving a spread modulation signal by a spread spectrum communication system by connecting to the first power cable, and a reverse power supply for the received spread modulation reception signal. A despread demodulation circuit that spreads and demodulates, a primary modulation wave demodulation circuit that demodulates the demodulated despread demodulation signal into a signal corresponding to the central processing circuit, and welding current detection and welding output from the central processing circuit A signal modulation circuit for primary-modulating the monitoring signal, a spread modulation circuit for spreading the spectrum of the primary-modulation-wave signal, and a welding power source demodulated by the primary-modulation-wave demodulation circuit. A central processing circuit that calculates according to the value of the received signal for dynamic / output voltage setting and outputs the signal separately from the welding power source start signal and the output voltage setting signal, and operates when the welding power source start signal is input. Start, output voltage setting signal, comprising an output control circuit for controlling the output of the welding power supply output circuit by performing arithmetic processing according to the values of the output voltage detection signal and the output current detection signal, the wire feeding device, When the torch switch start signal is input, the solenoid valve drive signal is output, and the feed motor control signal is output according to the welding current setting signal output by the welding current setting device and the crater current setting signal output by the crater current setting device. The welding power source start-up / output voltage setting transmission signal is output according to the welding voltage setting signal output by the welding voltage setting device and the crater voltage setting signal output by the crater voltage setting device. A central processing circuit, a transmission signal for the welding power source start-output voltage setting 1
A second signal modulation circuit for next modulation, a second spread modulation circuit for spread spectrum of the second primary modulated wave signal, and a spread modulation signal by a spread spectrum communication method by being coupled to the first power cable 4. A second spread signal combination circuit for transmitting and receiving, a second despread demodulation circuit for despreading and demodulating the received second spread modulation received signal, and a demodulated second despread demodulated signal for the second A second primary modulation wave demodulation circuit for demodulating into a signal corresponding to the central processing circuit, a feed motor control circuit for inputting the feed motor control signal to drive the feed motor, and a solenoid valve drive signal. Input and turn on the solenoid valve SOL
A solenoid valve drive circuit for turning on / off the control voltage input by the control power supply with a built-in feeding device is supplied from the output control power supply during welding standby during the welding standby period, and during the welding period and the anti-stick period. Consumable electrode type arc welding equipment that is supplied from the arc voltage and is supplied from the no-load voltage of the welding power source during the no-load voltage output period.
を備えた溶接電源と溶接する位置の移動に伴って溶接作
業者が持ち運びするワイヤ送給装置とに分離されている
消耗電極式アーク溶接装置において、溶接電源に溶接待
機中に送給モータ及び電磁弁を制御する制御電圧を第1
のパワーケーブルと第2のパワーケーブル又は接地線と
に供給する溶接待機中出力制御電源を備えると共に、ワ
イヤ送給装置に、第1のパワーケーブルと第2のパワー
ケーブル又は接地線から制御電圧を入力する送給装置内
蔵制御電源を備えて、前記溶接電源は、第1のパワーケ
ーブルに結合させてスペクトル拡散通信方式で拡散変調
信号を送受信する拡散信号結合回路と、受信した拡散変
調受信信号を逆拡散して復調を行う逆拡散復調回路と、
復調した逆拡散復調信号を中央演算処理回路に対応した
信号に復調する1次変調波復調回路と、中央演算処理回
路から出力する溶接電流検出・溶接監視信号を1次変調
する信号変調回路と、1次変調波信号をスペクトル拡散
する拡散変調回路と、前記1次変調波復調回路によって
復調された溶接電源起動・出力電圧設定用受信信号の値
に応じて演算して溶接電源起動信号と出力電圧設定信号
とに分離して出力する中央演算処理回路と、前記溶接電
源起動信号が入力されると動作を開始し、出力電圧設定
信号、出力電圧検出信号及び出力電流検出信号の値に応
じて演算処理を行って溶接電源出力回路の出力を制御す
る出力制御回路とを備え、前記ワイヤ送給装置は、送給
装置内蔵制御電源が供給する第2の中央演算処理回路用
供給電圧を電源として、トーチスイッチ起動信号が入力
されると電磁弁駆動信号を出力し、溶接電流設定器が出
力する溶接電流設定信号及びクレータ電流設定器が出力
するクレータ電流設定信号に応じて送給モータ制御信号
を出力し、溶接電圧設定器が出力する溶接電圧設定信号
及びクレータ電圧設定器が出力するクレータ電圧設定信
号に応じて、溶接電源起動・出力電圧設定用送信信号を
出力する第2の中央演算処理回路と、前記溶接電源起動
・出力電圧設定用送信信号を1次変調する第2の信号変
調回路と、第2の1次変調波信号をスペクトル拡散する
第2の拡散変調回路と、第1のパワーケーブルに結合さ
せてスペクトル拡散通信方式で拡散変調信号を送受信す
る第2の拡散信号結合回路と、受信した第2の拡散変調
受信信号を逆拡散して復調を行う第2の逆拡散復調回路
と、復調した第2の逆拡散復調信号を第2の中央演算処
理回路に対応した信号に復調する第2の1次変調波復調
回路と、前記送給装置内蔵制御電源が供給する送給モー
タ制御回路用供給電圧を電源として、前記送給モータ制
御信号を入力して送給モータを駆動させる送給モータ制
御回路と、前記送給装置内蔵制御電源が供給する電磁弁
ON用供給電圧を電源として、電磁弁駆動信号を入力し
て電磁弁をON・OFFする電磁弁駆動回路とを備え、
前記送給装置内蔵制御電源が入力する制御電圧は、溶接
待機期間中は溶接待機中出力制御電源から供給され、溶
接期間及びアンチスチィック期間中はアーク電圧から供
給され、無負荷電圧出力期間中は溶接電源の無負荷電圧
から供給される消耗電極式アーク溶接装置。3. A consumable electrode type arc welding, which is separated into a welding power source having a welding power source output circuit for outputting welding power and a wire feeding device carried by a welding operator when the welding position moves. In the apparatus, a first control voltage is applied to the welding power source to control the feed motor and the solenoid valve while waiting for welding.
And a second power cable or a ground wire for supplying power to the second power cable and a grounding wire, and the wire feeder is provided with a control voltage from the first power cable and the second power cable or the ground wire. The welding power source is equipped with a control power source with a built-in feeding device for inputting, and the welding power source couples a spread signal combining circuit for transmitting and receiving a spread modulation signal by a spread spectrum communication method to the first power cable, and a received spread modulation received signal. A despread demodulation circuit that performs despreading and demodulation,
A primary modulation wave demodulation circuit for demodulating the demodulated despread demodulation signal into a signal corresponding to a central processing circuit; and a signal modulation circuit for primary modulating a welding current detection / welding monitoring signal output from the central processing circuit, A spread modulation circuit that spreads the spectrum of the primary modulated wave signal, and a welding power source startup signal and an output voltage that are calculated according to the values of the welding power source startup / output voltage setting received signal demodulated by the primary modulated wave demodulation circuit. A central arithmetic processing circuit that outputs separately to a setting signal, and starts operation when the welding power source start signal is input, and operates according to the values of the output voltage setting signal, the output voltage detection signal, and the output current detection signal. An output control circuit for performing processing to control the output of the welding power source output circuit, wherein the wire feeding device uses a second central arithmetic processing circuit supply voltage supplied by a feeding device built-in control power source as a power source. When the torch switch start signal is input, the solenoid valve drive signal is output, and the feed motor control signal is output according to the welding current setting signal output by the welding current setting device and the crater current setting signal output by the crater current setting device. And a welding voltage setting signal output by the welding voltage setting device and a crater voltage setting signal output by the crater voltage setting device, the welding power source start / output voltage setting transmission signal is output. A circuit, a second signal modulation circuit that first-modulates the welding power source start-up / output voltage setting transmission signal, a second spread-modulation circuit that spreads the spectrum of the second primary-modulation wave signal, and a first A second spread signal combining circuit that is connected to a power cable to transmit and receive a spread modulation signal by a spread spectrum communication system, and a second spread signal receiving circuit that despreads the received second spread modulation received signal for demodulation. Despread demodulation circuit, a second primary modulated wave demodulation circuit for demodulating the demodulated second despread demodulation signal into a signal corresponding to the second central processing circuit, and the control device built-in power supply device. A feed motor control circuit for driving the feed motor by inputting the feed motor control signal using the supply voltage for the feed motor control circuit to be supplied as a power source, and an electromagnetic valve ON supplied by the control power supply with a built-in feed device. And a solenoid valve drive circuit for turning on / off the solenoid valve by inputting a solenoid valve drive signal using the supply voltage for power supply as a power source,
The control voltage input by the control power supply with a built-in feeding device is supplied from the welding control output control power supply during the welding standby period, is supplied from the arc voltage during the welding period and the antistic period, and is during the no-load voltage output period. Is a consumable electrode type arc welding device supplied from the no-load voltage of the welding power source.
中出力制御電源から供給される出力電圧が、溶接待機期
間中は保護特別低電圧(PELV)の規格値である実効
値AC25V又はリップル無しDC60V以下の予め定
めた値の電圧である消耗電極式アーク溶接装置。4. The output voltage supplied from the welding standby output control power source according to claim 2 or claim 3 is an effective value AC25V which is a standard value of a protection extra low voltage (PELV) during a welding standby period, or Consumable electrode type arc welding device having a predetermined value of DC 60V or less without ripple.
ル拡散通信方式が、直接拡散方式である消耗電極式アー
ク溶接装置。5. A consumable electrode type arc welding device in which the spread spectrum communication system according to claim 2 or 3 is a direct spread system.
内蔵制御電源が、ダイオードを経由して第1のパワーケ
ーブル及び第2のパワーケーブルとに接続されると共
に、前記送給装置内蔵制御電源の両端に電力供給の変動
に対して安定した電力を供給する補助電源用コンデンサ
が接続されて、送給モータ及び電磁弁を制御する回路に
第2の中央演算処理回路用供給電圧を出力し、送給モー
タを制御する回路に送給モータ制御回路用供給電圧を出
力し、電磁弁SOLをON・OFFする回路に電磁弁O
N用供給電圧を出力する消耗電極式アーク溶接装置。6. The feeding device built-in control power source according to claim 2 or 3 is connected to the first power cable and the second power cable via a diode, and the feeding device is also provided. A capacitor for auxiliary power supply that supplies stable power to fluctuations in power supply is connected to both ends of the built-in control power supply, and a second central processing circuit supply voltage is supplied to the circuit that controls the feed motor and the solenoid valve. The solenoid valve O is output to the circuit for controlling the feed motor, the feed voltage for the feed motor control circuit is output, and the solenoid valve SOL is turned on and off.
Consumable electrode type arc welding device that outputs N supply voltage.
出力制御電源が、短絡時の出力電流値が3A以下である
消耗電極式アーク溶接装置。7. A consumable electrode type arc welding apparatus, wherein the welding standby output control power source according to claim 2 or 3 has an output current value of 3 A or less when a short circuit occurs.
ル拡散通信方式が、周波数ホッピング方式又はチャープ
方式又は前記各組の方式を融合したハイブリット方式で
ある消耗電極式アーク溶接装置。8. A consumable electrode type arc welding device, wherein the spread spectrum communication system according to claim 2 or 3 is a frequency hopping system, a chirp system or a hybrid system in which the systems of each set are fused.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001391295A JP4739621B2 (en) | 2001-12-25 | 2001-12-25 | Consumable electrode arc welding equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001391295A JP4739621B2 (en) | 2001-12-25 | 2001-12-25 | Consumable electrode arc welding equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003191075A true JP2003191075A (en) | 2003-07-08 |
JP4739621B2 JP4739621B2 (en) | 2011-08-03 |
Family
ID=27598928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001391295A Expired - Fee Related JP4739621B2 (en) | 2001-12-25 | 2001-12-25 | Consumable electrode arc welding equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4739621B2 (en) |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1500456A1 (en) * | 2003-07-24 | 2005-01-26 | Illinois Tool Works Inc. | Remotely controlled welding machine |
EP1586403A1 (en) * | 2004-04-16 | 2005-10-19 | Illinois Tool Works Inc. | Welding system comprising a remote wire feeder where standby power is provided via the weld cable |
US7381922B2 (en) | 2004-10-27 | 2008-06-03 | Illinois Tool Works Inc. | Method and apparatus for remotely controlling a welding system |
JP2010516475A (en) * | 2007-01-24 | 2010-05-20 | ウェルテック エイエス | Arrangement and method of blanket gas supply control to electric welding equipment |
CN102615386A (en) * | 2011-01-27 | 2012-08-01 | 株式会社大亨 | Power supply device for welding and welding machine |
CN101360580B (en) * | 2006-02-22 | 2013-08-14 | 伊利诺斯工具制品有限公司 | A welding-type system with power source and remote device connected through a weld cable using binary phase shift keying for transmitting commands over the weld cable, method for controlling the power |
US8592724B2 (en) | 2004-04-16 | 2013-11-26 | Illinois Tool Works Inc. | Remote wire feeder using binary phase shift keying to modulate communications of command/control signals to be transmitted over a weld cable |
WO2014185396A1 (en) * | 2013-05-15 | 2014-11-20 | 株式会社ダイヘン | Welding apparatus and welding apparatus communication method |
JP2014222807A (en) * | 2013-05-13 | 2014-11-27 | 株式会社ダイヘン | Control circuit for communication device, communication device, welding source device, wire feed device, welding apparatus, welding system, control method, and program |
JP2015016500A (en) * | 2013-07-12 | 2015-01-29 | 株式会社ダイヘン | Welding device |
US8957344B2 (en) | 2009-09-30 | 2015-02-17 | Illinois Tool Works Inc. | Welding system with power line communication |
CN104428096A (en) * | 2012-06-08 | 2015-03-18 | 伊利诺斯工具制品有限公司 | Welding system inrush current control system |
JP2015089555A (en) * | 2013-11-05 | 2015-05-11 | 株式会社ダイヘン | Remote controller for power unit and processing system |
JP2015162707A (en) * | 2014-02-26 | 2015-09-07 | 株式会社ダイヘン | Communication device, welding power supply device, wire feeding device, welding system, and control method |
JP2015173380A (en) * | 2014-03-12 | 2015-10-01 | 株式会社ダイヘン | Communication device, welding power supply, wire feed device and welding system |
US9180544B2 (en) | 2006-11-16 | 2015-11-10 | Illinois Tool Works Inc. | Method and apparatus for wireless remote control communication of a welder |
JP2016007627A (en) * | 2014-06-25 | 2016-01-18 | 株式会社ダイヘン | Welding system and communication method of welding system |
JP2016027683A (en) * | 2014-01-10 | 2016-02-18 | 株式会社ダイヘン | Communication device and welding system |
JP2016515940A (en) * | 2013-03-13 | 2016-06-02 | イリノイ トゥール ワークス インコーポレイティド | Voltage sensing wire feeder with welding procedure memory |
JP2016127517A (en) * | 2015-01-07 | 2016-07-11 | 株式会社ダイヘン | Communication device, welding power supply device, wire feeding device and welding system |
US9463523B2 (en) | 2012-06-08 | 2016-10-11 | Illinois Tool Works Inc. | Controlled waveform welding wire feeder system and method |
US9662735B2 (en) | 2012-06-08 | 2017-05-30 | Illinois Tool Works Inc. | Welding wire feeder power application system and method |
US9718141B2 (en) | 2014-03-28 | 2017-08-01 | Illinois Tool Works Inc. | Systems and methods for prioritization of wireless control of a welding power supply |
US9724778B2 (en) | 2014-03-28 | 2017-08-08 | Illinois Tool Works Inc. | Systems and methods for wireless control of a welding power supply |
US9878393B2 (en) | 2012-06-08 | 2018-01-30 | Illinois Tool Works Inc. | Welding wire feeder power control system and method |
US9943924B2 (en) | 2014-03-28 | 2018-04-17 | Illinois Tool Works Inc. | Systems and methods for wireless control of an engine-driven welding power supply |
US9943925B2 (en) | 2014-12-18 | 2018-04-17 | Illinois Tool Works Inc. | Systems and methods for adaptively controlling weld cable communications |
US9969024B2 (en) | 2014-12-18 | 2018-05-15 | Illinois Tool Works Inc. | Systems and methods for measuring characteristics of a welding cable |
US10118241B2 (en) | 2012-09-07 | 2018-11-06 | Illinois Tool Works Inc. | Welding system with multiple user interface modules |
US10155277B2 (en) | 2012-06-06 | 2018-12-18 | Illinois Tool Works Inc. | Welding device for remotely controlling welding power supply settings |
US10369652B2 (en) | 2015-07-24 | 2019-08-06 | Illinois Tool Works Inc. | Wireless and powerline communications in a welding-type system |
US10384289B2 (en) | 2012-06-08 | 2019-08-20 | Illinois Tool Works Inc. | Welding wire feeder bus control system and method |
US10406621B2 (en) | 2012-06-08 | 2019-09-10 | Illinois Tool Works Inc. | Polarity sensing welding wire feeder system and method |
US10449614B2 (en) | 2014-12-18 | 2019-10-22 | Illinois Tool Works Inc. | Systems and methods for solid state sensor measurements of welding cables |
US10464156B2 (en) | 2014-03-28 | 2019-11-05 | Illinois Tool Works Inc. | Systems and methods for pairing of wireless control devices with a welding power supply |
JP2020019043A (en) * | 2018-08-01 | 2020-02-06 | 株式会社ダイヘン | Power supply device, and processing system |
JP2020089922A (en) * | 2015-10-29 | 2020-06-11 | リンカーン グローバル,インコーポレイテッド | System and method of communicating in welding system over welding power cables |
US10828713B2 (en) | 2014-12-18 | 2020-11-10 | Illinois Tool Works Inc. | Systems and methods for adaptively controlling physical layers for weld cable communications |
US10906119B2 (en) | 2014-12-18 | 2021-02-02 | Illinois Tool Works Inc. | Systems and methods for communication via a welding cable |
US11103948B2 (en) | 2014-08-18 | 2021-08-31 | Illinois Tool Works Inc. | Systems and methods for a personally allocated interface for use in a welding system |
US11198190B2 (en) | 2014-12-18 | 2021-12-14 | Illinois Tool Works Inc. | Systems and methods for duplex communications over a welding cable |
US11491573B2 (en) | 2015-08-17 | 2022-11-08 | Illinois Tool Works Inc. | Portable advanced process module |
US11817006B2 (en) | 2019-02-19 | 2023-11-14 | Ilinois Tool Works Inc. Assignee | Weld modules for weld training systems |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6342274B2 (en) | 2014-09-18 | 2018-06-13 | 株式会社ダイヘン | Welding system and welding system communication method |
JP2016132030A (en) | 2015-01-22 | 2016-07-25 | 株式会社ダイヘン | Welding system, welding power supply device, wire feeding device, and welding system communication method |
IL270900B1 (en) | 2017-06-06 | 2024-08-01 | Verrica Pharmaceuticals Inc | Treatment of cutaneous disorders |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59193767A (en) * | 1983-04-18 | 1984-11-02 | Matsushita Electric Ind Co Ltd | Arc welding device |
JPS59193768A (en) * | 1983-04-18 | 1984-11-02 | Matsushita Electric Ind Co Ltd | Arc welding device |
JPS59193765A (en) * | 1983-04-18 | 1984-11-02 | Matsushita Electric Ind Co Ltd | Arc welding machine |
JPS61137675A (en) * | 1984-12-10 | 1986-06-25 | Nippon Steel Corp | Automatic welder |
JPH0234277A (en) * | 1988-07-22 | 1990-02-05 | Matsushita Electric Ind Co Ltd | Arc welding equipment |
JPH02121423A (en) * | 1988-10-31 | 1990-05-09 | Hitachi Ltd | Band narrowing system for spread spectrum radio communication |
JPH02172338A (en) * | 1988-12-26 | 1990-07-03 | G D S:Kk | Continuous chirp modulation system spread spectrum communication equipment |
JPH03107839A (en) * | 1989-09-22 | 1991-05-08 | Hitachi Ltd | Organic compound having perfluoroalkyl group and monomolecular film formed by using the same and application thereof |
JP2000326070A (en) * | 1999-05-21 | 2000-11-28 | Hioki Ee Corp | Delay time measuring instrument for ac arc welding machine with automatic voltage reducing device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03107839U (en) * | 1990-02-19 | 1991-11-06 |
-
2001
- 2001-12-25 JP JP2001391295A patent/JP4739621B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59193767A (en) * | 1983-04-18 | 1984-11-02 | Matsushita Electric Ind Co Ltd | Arc welding device |
JPS59193768A (en) * | 1983-04-18 | 1984-11-02 | Matsushita Electric Ind Co Ltd | Arc welding device |
JPS59193765A (en) * | 1983-04-18 | 1984-11-02 | Matsushita Electric Ind Co Ltd | Arc welding machine |
JPS61137675A (en) * | 1984-12-10 | 1986-06-25 | Nippon Steel Corp | Automatic welder |
JPH0234277A (en) * | 1988-07-22 | 1990-02-05 | Matsushita Electric Ind Co Ltd | Arc welding equipment |
JPH02121423A (en) * | 1988-10-31 | 1990-05-09 | Hitachi Ltd | Band narrowing system for spread spectrum radio communication |
JPH02172338A (en) * | 1988-12-26 | 1990-07-03 | G D S:Kk | Continuous chirp modulation system spread spectrum communication equipment |
JPH03107839A (en) * | 1989-09-22 | 1991-05-08 | Hitachi Ltd | Organic compound having perfluoroalkyl group and monomolecular film formed by using the same and application thereof |
JP2000326070A (en) * | 1999-05-21 | 2000-11-28 | Hioki Ee Corp | Delay time measuring instrument for ac arc welding machine with automatic voltage reducing device |
Cited By (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8487216B2 (en) | 2003-07-24 | 2013-07-16 | Illinois Tool Works Inc. | Remotely controlled welding machine |
US10144085B2 (en) | 2003-07-24 | 2018-12-04 | Illinois Tool Works Inc. | Remotely controlled welding machine |
EP1500456A1 (en) * | 2003-07-24 | 2005-01-26 | Illinois Tool Works Inc. | Remotely controlled welding machine |
US7205503B2 (en) | 2003-07-24 | 2007-04-17 | Illinois Tool Works Inc. | Remotely controlled welding machine |
US8658940B2 (en) | 2003-07-24 | 2014-02-25 | Illinois Tool Works Inc. | Remotely controlled welding machine |
US10758994B2 (en) | 2004-04-16 | 2020-09-01 | Illinois Tool Works Inc. | Weld cable communications controller module |
US9012807B2 (en) | 2004-04-16 | 2015-04-21 | Illinois Tool Works Inc. | Remote wire feeder using binary phase shift keying to modulate communications of command/control signals to be transmitted over a weld cable |
EP1586403A1 (en) * | 2004-04-16 | 2005-10-19 | Illinois Tool Works Inc. | Welding system comprising a remote wire feeder where standby power is provided via the weld cable |
US9162311B2 (en) | 2004-04-16 | 2015-10-20 | Illinois Tool Works Inc. | Method and system for a remote wire feeder where standby power and system control are provided via weld cables |
EP2286948A1 (en) * | 2004-04-16 | 2011-02-23 | Illinois Tool Works Inc. | Welding system comprising a remote wire feeder where standby power is provided via the weld cable |
US8592724B2 (en) | 2004-04-16 | 2013-11-26 | Illinois Tool Works Inc. | Remote wire feeder using binary phase shift keying to modulate communications of command/control signals to be transmitted over a weld cable |
US11517972B2 (en) | 2004-04-16 | 2022-12-06 | Illinois Tool Works Inc. | Systems for improving signal quality of command/control signals to be transmitted over a weld cable |
US11235413B2 (en) | 2004-04-16 | 2022-02-01 | Illinois Tool Works Inc. | Method and system for a remote wire feeder where standby power and system control are provided via weld cables |
US7180029B2 (en) | 2004-04-16 | 2007-02-20 | Illinois Tool Works Inc. | Method and system for a remote wire feeder where standby power and system control are provided via weld cables |
US7902484B2 (en) | 2004-10-27 | 2011-03-08 | Illinois Tool Works Inc. | Method and apparatus for remotely controlling a welding system |
US7381922B2 (en) | 2004-10-27 | 2008-06-03 | Illinois Tool Works Inc. | Method and apparatus for remotely controlling a welding system |
CN101360580B (en) * | 2006-02-22 | 2013-08-14 | 伊利诺斯工具制品有限公司 | A welding-type system with power source and remote device connected through a weld cable using binary phase shift keying for transmitting commands over the weld cable, method for controlling the power |
US11148220B2 (en) | 2006-11-16 | 2021-10-19 | Illinois Tool Works Inc. | Method and apparatus for wireless remote control communication of a welder |
US9180544B2 (en) | 2006-11-16 | 2015-11-10 | Illinois Tool Works Inc. | Method and apparatus for wireless remote control communication of a welder |
US8530778B2 (en) | 2007-01-24 | 2013-09-10 | Alexander Binzel Schweisstechnik Gmbh & Co. Kg | Arrangement and method for blanket gas supply control for an electrical welding apparatus |
JP2010516475A (en) * | 2007-01-24 | 2010-05-20 | ウェルテック エイエス | Arrangement and method of blanket gas supply control to electric welding equipment |
US9796038B2 (en) | 2009-09-30 | 2017-10-24 | Illinois Tool Works Inc. | Welding system with power line communication |
US8957344B2 (en) | 2009-09-30 | 2015-02-17 | Illinois Tool Works Inc. | Welding system with power line communication |
CN102615386A (en) * | 2011-01-27 | 2012-08-01 | 株式会社大亨 | Power supply device for welding and welding machine |
US10155277B2 (en) | 2012-06-06 | 2018-12-18 | Illinois Tool Works Inc. | Welding device for remotely controlling welding power supply settings |
US10843288B2 (en) | 2012-06-08 | 2020-11-24 | Illinois Tool Works Inc. | Welding wire feeder power control system and method |
US9878393B2 (en) | 2012-06-08 | 2018-01-30 | Illinois Tool Works Inc. | Welding wire feeder power control system and method |
US10105781B2 (en) | 2012-06-08 | 2018-10-23 | Illinois Tool Works Inc. | Welding system inrush current control system and method |
US10406621B2 (en) | 2012-06-08 | 2019-09-10 | Illinois Tool Works Inc. | Polarity sensing welding wire feeder system and method |
US9463523B2 (en) | 2012-06-08 | 2016-10-11 | Illinois Tool Works Inc. | Controlled waveform welding wire feeder system and method |
US9662735B2 (en) | 2012-06-08 | 2017-05-30 | Illinois Tool Works Inc. | Welding wire feeder power application system and method |
US10384289B2 (en) | 2012-06-08 | 2019-08-20 | Illinois Tool Works Inc. | Welding wire feeder bus control system and method |
CN104428096A (en) * | 2012-06-08 | 2015-03-18 | 伊利诺斯工具制品有限公司 | Welding system inrush current control system |
US10118241B2 (en) | 2012-09-07 | 2018-11-06 | Illinois Tool Works Inc. | Welding system with multiple user interface modules |
US11278980B2 (en) | 2012-09-07 | 2022-03-22 | Illinois Tool Works Inc. | Welding system with multiple user interface modules |
US11007610B2 (en) | 2013-03-13 | 2021-05-18 | Illinois Tool Works Inc. | Voltage sensing wire feeder with weld procedure memories |
JP2016515940A (en) * | 2013-03-13 | 2016-06-02 | イリノイ トゥール ワークス インコーポレイティド | Voltage sensing wire feeder with welding procedure memory |
US10076809B2 (en) | 2013-03-13 | 2018-09-18 | Illinois Tool Works Inc. | Voltage sensing wire feeder with weld procedure memories |
JP2014222807A (en) * | 2013-05-13 | 2014-11-27 | 株式会社ダイヘン | Control circuit for communication device, communication device, welding source device, wire feed device, welding apparatus, welding system, control method, and program |
JP2014240089A (en) * | 2013-05-15 | 2014-12-25 | 株式会社ダイヘン | Welding device and communication method of the welding device |
WO2014185396A1 (en) * | 2013-05-15 | 2014-11-20 | 株式会社ダイヘン | Welding apparatus and welding apparatus communication method |
JP2015016500A (en) * | 2013-07-12 | 2015-01-29 | 株式会社ダイヘン | Welding device |
JP2015089555A (en) * | 2013-11-05 | 2015-05-11 | 株式会社ダイヘン | Remote controller for power unit and processing system |
JP2016027683A (en) * | 2014-01-10 | 2016-02-18 | 株式会社ダイヘン | Communication device and welding system |
JP2015162707A (en) * | 2014-02-26 | 2015-09-07 | 株式会社ダイヘン | Communication device, welding power supply device, wire feeding device, welding system, and control method |
JP2015173380A (en) * | 2014-03-12 | 2015-10-01 | 株式会社ダイヘン | Communication device, welding power supply, wire feed device and welding system |
US9943924B2 (en) | 2014-03-28 | 2018-04-17 | Illinois Tool Works Inc. | Systems and methods for wireless control of an engine-driven welding power supply |
US9724778B2 (en) | 2014-03-28 | 2017-08-08 | Illinois Tool Works Inc. | Systems and methods for wireless control of a welding power supply |
US11440120B2 (en) | 2014-03-28 | 2022-09-13 | Illinois Tool Works Inc. | Systems and methods for pairing of wireless control devices with a welding power supply |
US9718141B2 (en) | 2014-03-28 | 2017-08-01 | Illinois Tool Works Inc. | Systems and methods for prioritization of wireless control of a welding power supply |
US10464156B2 (en) | 2014-03-28 | 2019-11-05 | Illinois Tool Works Inc. | Systems and methods for pairing of wireless control devices with a welding power supply |
US10525545B2 (en) | 2014-03-28 | 2020-01-07 | Illinois Tool Works Inc. | Systems and methods for wireless control of an engine-driven welding power supply |
JP2016007627A (en) * | 2014-06-25 | 2016-01-18 | 株式会社ダイヘン | Welding system and communication method of welding system |
US12042889B2 (en) | 2014-08-18 | 2024-07-23 | Illinois Tool Works Inc. | Systems and methods for a personally allocated interface for use in a welding system |
US11103948B2 (en) | 2014-08-18 | 2021-08-31 | Illinois Tool Works Inc. | Systems and methods for a personally allocated interface for use in a welding system |
US10828713B2 (en) | 2014-12-18 | 2020-11-10 | Illinois Tool Works Inc. | Systems and methods for adaptively controlling physical layers for weld cable communications |
US9969024B2 (en) | 2014-12-18 | 2018-05-15 | Illinois Tool Works Inc. | Systems and methods for measuring characteristics of a welding cable |
US10906119B2 (en) | 2014-12-18 | 2021-02-02 | Illinois Tool Works Inc. | Systems and methods for communication via a welding cable |
US9943925B2 (en) | 2014-12-18 | 2018-04-17 | Illinois Tool Works Inc. | Systems and methods for adaptively controlling weld cable communications |
US11198190B2 (en) | 2014-12-18 | 2021-12-14 | Illinois Tool Works Inc. | Systems and methods for duplex communications over a welding cable |
US10449614B2 (en) | 2014-12-18 | 2019-10-22 | Illinois Tool Works Inc. | Systems and methods for solid state sensor measurements of welding cables |
JP2016127517A (en) * | 2015-01-07 | 2016-07-11 | 株式会社ダイヘン | Communication device, welding power supply device, wire feeding device and welding system |
US10369652B2 (en) | 2015-07-24 | 2019-08-06 | Illinois Tool Works Inc. | Wireless and powerline communications in a welding-type system |
US11491573B2 (en) | 2015-08-17 | 2022-11-08 | Illinois Tool Works Inc. | Portable advanced process module |
JP7104088B2 (en) | 2015-10-29 | 2022-07-20 | リンカーン グローバル,インコーポレイテッド | Systems and methods of communicating over welding power cables in welding systems |
JP2020089922A (en) * | 2015-10-29 | 2020-06-11 | リンカーン グローバル,インコーポレイテッド | System and method of communicating in welding system over welding power cables |
JP7159516B2 (en) | 2018-08-01 | 2022-10-25 | 株式会社ダイヘン | Power supply and processing system |
JP2020019043A (en) * | 2018-08-01 | 2020-02-06 | 株式会社ダイヘン | Power supply device, and processing system |
US11817006B2 (en) | 2019-02-19 | 2023-11-14 | Ilinois Tool Works Inc. Assignee | Weld modules for weld training systems |
Also Published As
Publication number | Publication date |
---|---|
JP4739621B2 (en) | 2011-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003191075A (en) | Consumable electrode type arc welding equipment | |
JP4777589B2 (en) | Non-consumable electrode arc welding equipment | |
JP2003154455A (en) | Consumable electrode type arc welding equipment | |
CA2775282C (en) | Welding systems with auxiliary powered conduit used for powering and exchanging data | |
US20190344371A1 (en) | Wireless and powerline communications in a welding-type system | |
US7381922B2 (en) | Method and apparatus for remotely controlling a welding system | |
US20140076872A1 (en) | Weld cable communications controller module | |
CN102481653B (en) | For the accessory power supply supply of welding machine | |
JP2003088957A (en) | Consumable electrode arc welding equipment | |
JP6396091B2 (en) | Welding system and welding system communication method | |
JPH11252810A (en) | Onboard charging apparatus of battery vehicle | |
CN105008081A (en) | Power source for reducing electromagnetic interference and power consumption | |
JP2015071178A (en) | Wire feeding device and welding system | |
US6137697A (en) | Universal switched power converter with demagnetising | |
US20190126380A1 (en) | Ac-dc techniques in a portable multi-process welding and cutting machine | |
CN105108270A (en) | Multifunctional integrated welding machine system | |
JPH06182548A (en) | Battery arc welding device | |
JPH0910937A (en) | Arc welding machine | |
CN112475568B (en) | Arc guiding control method and device for double-voltage plasma cutting machine | |
JP2018125800A (en) | Communication system, and welding system | |
JP3443176B2 (en) | Arc processing equipment | |
JPS59193765A (en) | Arc welding machine | |
JP2568270B2 (en) | Communication device | |
JP6231294B2 (en) | Communication device control circuit, communication device, welding power supply device, wire feeding device, welding device, welding system, control method, and program | |
KR102502690B1 (en) | Welding apparatus with initial conditions and crater welding mode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070626 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090512 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100406 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110223 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110426 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110428 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140513 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |