JP2003190959A - Electric demineralizer - Google Patents

Electric demineralizer

Info

Publication number
JP2003190959A
JP2003190959A JP2001399511A JP2001399511A JP2003190959A JP 2003190959 A JP2003190959 A JP 2003190959A JP 2001399511 A JP2001399511 A JP 2001399511A JP 2001399511 A JP2001399511 A JP 2001399511A JP 2003190959 A JP2003190959 A JP 2003190959A
Authority
JP
Japan
Prior art keywords
chamber
water
treated
supplied
desalination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001399511A
Other languages
Japanese (ja)
Other versions
JP3727585B2 (en
Inventor
Yohei Takahashi
洋平 高橋
Kunio Fujiwara
邦夫 藤原
Takayoshi Kawamoto
孝善 川本
Osamu Nakanishi
收 中西
Toru Akiyama
徹 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001399511A priority Critical patent/JP3727585B2/en
Publication of JP2003190959A publication Critical patent/JP2003190959A/en
Application granted granted Critical
Publication of JP3727585B2 publication Critical patent/JP3727585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inhibit scale formation in a concentration chamber in a so-called multipass-type electric demineralizer where water is serially supplied to a plurality of demineralization chambers. <P>SOLUTION: The demineralization chambers and the concentration chamber are formed by setting cation exchange membranes and anion exchange membranes between a positive electrode and a negative electrode so that they are alternately disposed at least partially. At least three demineralization chambers are formed, and the chambers are connected in series. The water to be treated is serially supplied to the chambers. Between the demineralization chamber to which the water to be treated is first supplied and the demineralization chamber to which the water to be treated is secondly supplied, one or more other demineralization chamber is disposed. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、所謂電気式脱塩装
置における改良に関するものである。
TECHNICAL FIELD The present invention relates to an improvement in a so-called electric desalination apparatus.

【0002】[0002]

【従来の技術】電気式脱塩装置とは、正負の電極間に陽
イオン(カチオン)交換膜及び陰イオン(アニオン)交
換膜を配列して濃縮室及び脱塩室を交互に形成し、電位
勾配を駆動源として、脱塩室内において被処理液体中の
イオンをイオン交換膜を通して濃縮室へと移動・分離さ
せることによって、液体中のイオン成分を除去するもの
である。
2. Description of the Related Art An electric demineralizer is a device in which a cation (cation) exchange membrane and an anion (anion) exchange membrane are arranged between positive and negative electrodes to alternately form a concentrating chamber and a desalting chamber. By using the gradient as a driving source, the ions in the liquid to be treated are moved / separated through the ion exchange membrane to the concentration chamber in the desalting chamber to remove the ionic components in the liquid.

【0003】図1に典型的な電気式脱塩装置の概念を示
す。図1に示す電気式脱塩装置は、陰極(−)と陽極
(+)の間に、陰イオン交換膜A、陽イオン交換膜Cが
交互に配列されて、脱塩室及び濃縮室が形成されてい
る。この陰イオン交換膜と陽イオン交換膜との交互配列
を更に繰り返すことにより、複数の脱塩室が並列に形成
される。必要に応じて、脱塩室や濃縮室内にはイオン交
換体が充填されて、これにより室内でのイオンの移動が
促進される。また、両電極に接する区画は一般に極室
(陽極室又は陰極室)と称される。このような電気式脱
塩装置の運転においては、陽極及び陰極に電圧を印加す
ると共に、脱塩室、濃縮室、極室に水が供給される。濃
縮室に供給される水は濃縮水、脱塩室に供給される水は
被処理水、また極室に供給される水は極水と称される。
このように被処理水及び濃縮水を脱塩室及び濃縮室にそ
れぞれ導入すると、水中の陽イオン及び陰イオンはそれ
ぞれ陰極側及び陽極側に引かれるが、イオン交換膜が同
種のイオンのみを選択的に透過するため、被処理水中の
陽イオン(Ca2+、Na+、Mg2+、H+など)は、陽イ
オン交換膜Cを通して陰極側の濃縮室へ、また陰イオン
(Cl-、SO4 2-、HSiO3 -、CO3 2-、HCO3 -
OH-など)は、陰イオン交換膜Aを通して陽極側の濃
縮室へ移動する。一方、濃縮室から脱塩室への陰イオン
の移動及び濃縮室から脱塩室への陽イオンの移動は、イ
オン交換膜の異種イオン遮断性のために阻止される。こ
の結果、脱塩室においては、イオン濃度の低められた脱
塩水が得られ、濃縮室においては、イオン濃度の高めら
れた濃縮水が得られる。
FIG. 1 shows the concept of a typical electric desalination apparatus. In the electric desalination apparatus shown in FIG. 1, an anion exchange membrane A and a cation exchange membrane C are alternately arranged between a cathode (−) and an anode (+) to form a desalination chamber and a concentration chamber. Has been done. By further repeating the alternating arrangement of the anion exchange membrane and the cation exchange membrane, a plurality of desalting chambers are formed in parallel. If necessary, the desalting chamber or the concentration chamber is filled with an ion exchanger to promote the movement of ions inside the chamber. The compartment in contact with both electrodes is generally called a polar chamber (anode chamber or cathode chamber). In the operation of such an electric desalination apparatus, a voltage is applied to the anode and the cathode, and water is supplied to the desalting chamber, the concentrating chamber and the polar chamber. Water supplied to the concentrating chamber is called concentrated water, water supplied to the desalting chamber is called treated water, and water supplied to the polar chamber is called polar water.
When the water to be treated and the concentrated water are thus introduced into the desalting chamber and the concentrating chamber, respectively, cations and anions in the water are attracted to the cathode side and the anode side, respectively, but the ion exchange membrane selects only ions of the same type. Therefore, cations (Ca 2+ , Na + , Mg 2+ , H +, etc.) in the water to be treated pass through the cation exchange membrane C to the concentration chamber on the cathode side, and anions (Cl , SO 4 2-, HSiO 3 -, CO 3 2-, HCO 3 -,
OH ) moves through the anion exchange membrane A to the concentration chamber on the anode side. On the other hand, the movement of anions from the concentration chamber to the desalting chamber and the movement of cations from the concentration chamber to the desalting chamber are blocked by the foreign ion blocking property of the ion exchange membrane. As a result, demineralized water having a reduced ion concentration is obtained in the demineralizing chamber, and concentrated water having an increased ion concentration is obtained in the concentrating chamber.

【0004】このような電気式脱塩装置においては、脱
塩室を複数個形成して、それらを直列に接続して、各脱
塩室へ被処理水を直列に供給することにより、生成水の
純度をより高いものとするという運転法が行われる場合
がある(当該技術においては、マルチパス型電気式脱塩
装置と呼ばれている)。この概念を図2に示す。図2に
示す電気式脱塩装置は、陽極(+)と陰極(−)との間
に、陽イオン交換膜(C)と陰イオン交換膜(A)とを
交互に配置して、複数の濃縮室(C1,C2,C3,C
4)及び脱塩室(D1,D2,D3)を形成している。
Kは極室を表す。脱塩室への供給水(被処理水)は、ま
ずD1に導入され、次にD2,D3へと直列に供給され
る。一方、このような形式の電気式脱塩装置において
は、濃縮室への供給水(濃縮水)に関しても、まずC1
に導入され、次に、C2,C3,C4へというように直
列に供給されることが通常である。このように被処理水
を複数の脱塩室へ直列に供給することにより、各脱塩室
において陽イオン及び陰イオンが逐次除去されるので、
最終的にイオン濃度が極めて低い脱塩水が得られる。即
ち、D1,D2,D3と脱塩段階が増すにつれて、被処
理水中のイオン濃度が累積的に低くなり、最終段階の脱
塩室D3からは、極めて低いイオン濃度の処理水(脱塩
水)が得られる。
In such an electric desalination apparatus, a plurality of desalination chambers are formed, they are connected in series, and the water to be treated is supplied in series to each desalination chamber, thereby producing water. There is a case where an operation method of making the purity of the product is higher (referred to in the art as a multi-pass type electric desalination apparatus). This concept is shown in FIG. The electric desalination apparatus shown in FIG. 2 has a plurality of cation exchange membranes (C) and anion exchange membranes (A) alternately arranged between an anode (+) and a cathode (−). Concentration chamber (C1, C2, C3, C
4) and the desalting chambers (D1, D2, D3) are formed.
K represents a polar chamber. The supply water (water to be treated) to the desalting chamber is first introduced into D1, and then supplied in series to D2 and D3. On the other hand, in the electric desalination apparatus of this type, the supply water (concentrated water) to the concentrating chamber must first be C1.
It is usually supplied to C2, C3, C4 and so on in series. By supplying the water to be treated in series to the plurality of desalting chambers in this manner, cations and anions are sequentially removed in each desalting chamber,
Finally, demineralized water having an extremely low ion concentration is obtained. That is, the ion concentration in the water to be treated becomes cumulatively lower as the number of desalting stages such as D1, D2 and D3 increases, and treated water (demineralized water) having an extremely low ion concentration is discharged from the desalting chamber D3 at the final stage. can get.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図2に
示すような直列接続型(マルチパス型)の電気式脱塩装
置においては、初期段階の濃縮室内において炭酸カルシ
ウムなどのスケールが析出するという問題があった。こ
の問題は、初期段階の脱塩室においては比較的高濃度の
イオンが隣接する濃縮室へと移動するため、例えば、図
2の第2濃縮室C2においては、第1脱塩室D1からの
比較的高濃度のカルシウムイオン(Ca2+)などと、第
2脱塩室D2からの比較的高濃度の炭酸イオン(CO3
2-)などが導入され、これに更に第1濃縮室C1で濃縮
水中に導入された炭酸イオンとが合わさり、これらが第
2濃縮室C2内で反応して炭酸カルシウムのスケールを
形成するためであると考えられる。なお、より後段の脱
塩室(図2ではD3)においては、被処理水中のカルシ
ウムイオン(Ca2+)や炭酸イオン(CO3 2-)などの
濃度は低くなっており、主として水の解離によって水素
イオン(H+)と水酸イオン(OH-)とが生成している
と考えられる。
However, in the serial connection type (multi-pass type) electric desalination apparatus as shown in FIG. 2, the problem that scales such as calcium carbonate are deposited in the concentration chamber at the initial stage. was there. This problem is because, in the demineralization chamber at the initial stage, relatively high-concentration ions move to the adjacent concentrating chamber. Therefore, for example, in the second concentrating chamber C2 in FIG. A relatively high concentration of calcium ions (Ca 2+ ) and a relatively high concentration of carbonate ions (CO 3 from the second desalting chamber D2).
2- ) and the like are introduced, and further, carbonate ions introduced into the concentrated water in the first concentrating chamber C1 are combined with each other, and these react in the second concentrating chamber C2 to form a scale of calcium carbonate. It is believed that there is. In the desalting chamber (D3 in Fig. 2) at a later stage, the concentrations of calcium ions (Ca 2+ ) and carbonate ions (CO 3 2- ) in the water to be treated are low, and the dissociation of water mainly occurs. It is considered that hydrogen ions (H + ) and hydroxide ions (OH ) are generated by the above.

【0006】[0006]

【課題を解決するための手段】本発明者らは、このよう
な問題を解決すべく鋭意研究を重ねた結果、複数の脱塩
室を有し、各脱塩室へ被処理水を直列に供給する所謂マ
ルチパス型の電気式脱塩装置において、被処理水を脱塩
室へ供給する順番を工夫することによって、上記のスケ
ール形成の問題を解決することができることを見出し、
本発明を完成するに至った。
As a result of intensive studies to solve such a problem, the present inventors have a plurality of desalting chambers, and water to be treated is connected in series to each desalting chamber. In the so-called multi-pass type electric desalination apparatus for supplying, by devising the order of supplying the water to be treated to the desalination chamber, it was found that the above-mentioned problem of scale formation can be solved,
The present invention has been completed.

【0007】即ち、本発明は、正負の両電極間に陽イオ
ン交換膜及び陰イオン交換膜を少なくとも一部交互に配
列することによって脱塩室と濃縮室とが形成されてお
り、少なくとも3つの脱塩室が形成され、各脱塩室が直
列に接続されていて被処理水が各脱塩室に直列に供給さ
れる電気式脱塩装置において、1番目に被処理水が供給
される脱塩室と2番目に被処理水が供給される脱塩室と
の間に1つ以上の他の脱塩室が配列されていることを特
徴とする電気式脱塩装置に関する。
That is, according to the present invention, a desalting chamber and a concentrating chamber are formed by alternately arranging at least a part of a cation exchange membrane and an anion exchange membrane between both positive and negative electrodes, and at least three chambers are formed. In the electric desalination apparatus in which the desalination chamber is formed, the desalination chambers are connected in series, and the water to be treated is supplied to each desalination chamber in series, The present invention relates to an electric desalination apparatus in which one or more other desalination chambers are arranged between a salt chamber and a desalination chamber to which water to be treated is secondly supplied.

【0008】[0008]

【発明の実施の形態】本発明の一態様に係る電気式脱塩
装置の構成例を図3に示す。図3に示す電気式脱塩装置
は、脱塩室が3つ、濃縮室が4つ形成されている。被処
理水は、1番目の脱塩室D1を通過した後、濃縮室C2
を介して脱塩室D1と隣接する脱塩室D2を飛び越えて
脱塩室D3に導入され、脱塩室D3を通過した後に次
に、D1とD3の間に配列されている脱塩室D2に導入
される。脱塩室D2からの排出水が脱塩水として回収さ
れる。
BEST MODE FOR CARRYING OUT THE INVENTION FIG. 3 shows a structural example of an electric desalination apparatus according to one embodiment of the present invention. The electric desalination apparatus shown in FIG. 3 has three desalination chambers and four concentration chambers. The water to be treated has passed through the first desalination chamber D1 and then has been concentrated in the concentration chamber C2.
Through the desalting chamber D1 adjacent to the desalting chamber D1 to be introduced into the desalting chamber D3, and after passing through the desalting chamber D3, the desalting chamber D2 arranged between D1 and D3. Will be introduced to. The discharged water from the desalination chamber D2 is collected as desalted water.

【0009】脱塩室D1では、比較的イオン濃度の高い
被処理水が導入され、相当程度の濃度のカルシウムイオ
ン(Ca2+)や炭酸イオン(CO3 2-)が、それぞれ、
陽イオン交換膜(C)及び陰イオン交換膜(A)を通過
して、隣接する濃縮室C2及びC1に移動する。被処理
水は、次に、脱塩室D3に送られ、D1よりは量は少な
いが、ある程度の量のカルシウムイオン(Ca2+)や炭
酸イオン(CO3 2-)が、同様に、それぞれ、陽イオン
交換膜(C)及び陰イオン交換膜(A)を通過して、隣
接する濃縮室C4及びC3に移動する。次に、被処理水
は、脱塩室D2に送られるが、ここでは被処理水中のカ
ルシウムイオン(Ca2+)や炭酸イオン(CO3 2-)の
濃度が極めて低くなっているために、主として水の解離
によって水素イオン(H+)と水酸イオン(OH-)とが
生成し、これらがそれぞれ、陽イオン交換膜(C)及び
陰イオン交換膜(A)を通過して、隣接する濃縮室C3
及びC2に移動する。
In the desalting chamber D1, water to be treated having a relatively high ion concentration is introduced, and calcium ions (Ca 2+ ) and carbonate ions (CO 3 2- ) having a considerable concentration are respectively generated.
It passes through the cation exchange membrane (C) and the anion exchange membrane (A) and moves to the adjacent concentrating chambers C2 and C1. The water to be treated is then sent to the desalting chamber D3, which has a smaller amount than D1, but a certain amount of calcium ions (Ca 2+ ) and carbonate ions (CO 3 2− ) are similarly generated, respectively. , And passes through the cation exchange membrane (C) and the anion exchange membrane (A) and moves to the adjacent concentrating chambers C4 and C3. Next, the water to be treated is sent to the desalting chamber D2, where the concentration of calcium ions (Ca 2+ ) and carbonate ions (CO 3 2− ) in the water to be treated is extremely low, Hydrogen ions (H + ) and hydroxide ions (OH ) are produced mainly by the dissociation of water, and these pass through the cation exchange membrane (C) and the anion exchange membrane (A) to be adjacent to each other. Concentration chamber C3
And C2.

【0010】本発明に係る電気式脱塩装置によれば、上
記に説明したような被処理水の供給方法を採用している
ために、1番目に被処理水が供給される脱塩室や2番目
に被処理水が供給される脱塩室という初期段階の脱塩室
に隣接する濃縮室内において、カルシウムイオンなどと
炭酸イオンなどの濃度が高くなって炭酸カルシウムなど
のスケールを形成するのを抑制することができる。
According to the electric desalination apparatus of the present invention, since the treated water supply method described above is adopted, the desalination chamber to which the treated water is supplied first and Second, in the concentration chamber adjacent to the desalting chamber at the initial stage where the water to be treated is supplied, the concentration of calcium ions and carbonate ions is increased to form scales such as calcium carbonate. Can be suppressed.

【0011】更に、本発明に係る電気式脱塩装置におい
ては、脱塩室への被処理水の供給を上記のように構成す
るのに加えて、図4に示すように、各濃縮室C1、C
2、C3、C4への濃縮水の供給を並列に行えば、濃縮
室でのカルシウムイオンや炭酸イオンなどの蓄積を抑え
ることで、濃縮室での炭酸カルシウムなどの析出をより
一層抑制することができるので好ましい。従って、本発
明の好ましい態様は、上記に規定する電気式脱塩装置に
おいて、各濃縮室に、並列に水が供給されていることを
更に特徴とする電気式脱塩装置に関する。
Further, in the electric desalination apparatus according to the present invention, in addition to the above-described structure for supplying the water to be treated to the desalination chamber, as shown in FIG. , C
By supplying concentrated water to C2, C3, and C4 in parallel, the precipitation of calcium carbonate and the like in the concentrating chamber can be further suppressed by suppressing the accumulation of calcium ions and carbonate ions in the concentrating chamber. It is preferable because it is possible. Therefore, a preferred embodiment of the present invention relates to the electric desalination apparatus as defined above, further characterized in that water is supplied in parallel to the respective concentration chambers.

【0012】また、電気式脱塩装置で処理される被処理
水のイオン濃度がより高い場合には、更に多数の脱塩室
を構成すると共に、2番目に被処理水が供給される脱塩
室と、3番目に被処理水が供給される脱塩室との間に
も、1つ以上の他の脱塩室を配列することによって、濃
縮室内でのスケールの形成を更に抑制することが望まし
い。なお、この場合、3番目に被処理水が供給される脱
塩室の配列位置は、2番目に被処理水が供給される脱塩
室との間に1つ以上の他の脱塩室が配列されると共に、
1番目に被処理水が供給される脱塩室との間にも1つ以
上の他の脱塩室が配列されることが望ましい。従って、
本発明の更なる態様は、上記に規定する電気式脱塩装置
において、1番目に被処理水が供給される脱塩室と2番
目に被処理水が供給される脱塩室との間、並びに3番目
に被処理水が供給される脱塩室と1番目に被処理水が供
給される脱塩室及び2番目に被処理水が供給される脱塩
室との間に、1つ以上の他の脱塩室が配列されているこ
とを更に特徴とする電気式脱塩装置に関する。
Further, when the ion concentration of the water to be treated by the electric desalination apparatus is higher, a larger number of desalination chambers are constructed and the desalination in which the water to be treated is secondly supplied. By arranging at least one other desalting chamber between the chamber and the third desalting chamber to which the water to be treated is supplied, it is possible to further suppress the formation of scale in the concentrating chamber. desirable. In this case, the arrangement position of the desalination chamber to which the treated water is third supplied is one or more other desalination chambers between the desalination chamber to which the treated water is second supplied. Arranged,
It is desirable that one or more other desalination chambers are arranged between the first desalination chamber and the water to be treated. Therefore,
A further aspect of the present invention is, in the electric desalination apparatus defined above, between a desalination chamber to which the water to be treated is first supplied and a desalination chamber to which the water to be treated is secondly supplied, And between the third desalination chamber to which the treated water is supplied, the first desalination chamber to which the treated water is supplied, and the second desalination chamber to which the treated water is supplied. The present invention further relates to an electric desalination apparatus further characterized in that other desalination chambers are arranged.

【0013】かかる態様の電気式脱塩装置の構成例を図
5に示す。図5に示す電気式脱塩装置は、5つの脱塩室
D1,D2,D3,D4,D5及び6つの濃縮室C1,
C2,C3,C4,C5,C6を有しており、脱塩室へ
の被処理水の供給は、D1,D5,D3,D4,D2の
順に行われる。このような本発明の更に他の態様によ
り、より後段の脱塩室に隣接する濃縮室においても、カ
ルシウムイオン及び炭酸イオンの濃度増大による炭酸カ
ルシウムスケールの発生を防止することが可能になる。
なお、このように、1番目に被処理水が供給される脱塩
室と2番目に被処理水が供給される脱塩室との間、並び
に3番目に被処理水が供給される脱塩室と1番目に被処
理水が供給される脱塩室及び2番目に被処理水が供給さ
れる脱塩室との間に1つ以上の他の脱塩室を配列させる
ためには、脱塩装置が少なくとも5つの脱塩室を有する
ことが必要であることは当業者には容易に理解できるで
あろう。
FIG. 5 shows an example of the structure of the electric desalination apparatus of this aspect. The electric desalination apparatus shown in FIG. 5 has five desalination chambers D1, D2, D3, D4, D5 and six concentration chambers C1,
It has C2, C3, C4, C5 and C6, and the water to be treated is supplied to the desalination chamber in the order of D1, D5, D3, D4 and D2. According to such a further aspect of the present invention, it is possible to prevent the generation of calcium carbonate scale due to an increase in the concentration of calcium ions and carbonate ions even in the concentration chamber adjacent to the desalting chamber in the subsequent stage.
In this way, between the desalination chamber in which the water to be treated is first supplied and the desalination chamber in which the water to be treated is secondly supplied, and the desalination chamber in which the water to be treated is thirdly supplied. In order to arrange one or more other desalination chambers between the chamber and the desalination chamber where the treated water is first supplied and the desalination chamber where the second treated water is supplied, Those skilled in the art will readily understand that it is necessary for the salt system to have at least 5 desalting chambers.

【0014】より多数の脱塩室を形成し、より後段の脱
塩室に隣接する濃縮室でのスケール形成を防止するため
の脱塩室の直列接続の仕方は、上記の記載を参照すれば
当業者には明らかであり、それぞれの場合に最低いくつ
の脱塩室を有することが必要であるかも、当業者には容
易に理解できるであろう。
Regarding the method for connecting the desalting chambers in series in order to form a larger number of desalting chambers and prevent scale formation in the concentrating chamber adjacent to the subsequent desalting chamber, refer to the above description. It will be obvious to a person skilled in the art, and it will also be readily apparent to those skilled in the art how many desalination chambers it is necessary to have in each case.

【0015】本発明を適用することのできる電気式脱塩
装置において、電気式脱塩装置を構成するイオン交換膜
としては、陽イオン交換膜としては例えば、NEOSEPTA C
MX(トクヤマソーダ)などを、陰イオン交換膜としては
例えばNEOSEPTA AMX(トクヤマソーダ)などを使用する
ことができる。
In the electric desalination apparatus to which the present invention can be applied, the ion exchange membrane constituting the electric desalination apparatus is, for example, a cation exchange membrane such as NEOSEPTA C
MX (Tokuyama soda) or the like can be used as the anion exchange membrane, for example, NEOSEPTA AMX (tokuyama soda) or the like.

【0016】電気式脱塩装置においては、脱塩室及び/
又は濃縮室内にイオン交換体を配置することによって、
これら室内におけるイオンの移動を促進させることがで
きる。本発明は、このような態様の電気式脱塩装置にお
いても適用することができる。かかる目的で脱塩室及び
/又は濃縮室内に充填するイオン交換体としては、例え
ば、イオン交換樹脂ビーズを用いることができる。この
ような目的で用いることのできるイオン交換樹脂ビーズ
としては、当該技術において公知の、ポリスチレンをジ
ビニルベンゼンで架橋したビーズなどを基材樹脂として
用いて製造したものを用いることができる。例えば、ス
ルホン基を有する強酸性カチオン交換樹脂を製造する場
合には、上記の基材樹脂を硫酸やクロロスルホン酸のよ
うなスルホン化剤で処理してスルホン化を行い、基材に
スルホン基を導入することによって、強酸性カチオン交
換樹脂を得る。また、例えば4級アンモニウム基を有す
る強塩基性アニオン交換樹脂を製造する場合には、基材
樹脂をクロロメチル化処理した後、トリメチルアミンの
ような3級アミンを反応させて4級アンモニウム化を行
うことにより、強塩基性アニオン交換樹脂を得る。この
ような製造方法は当該技術において周知であり、またこ
のような手法によって製造されたイオン交換樹脂ビーズ
は、例えば、Dowex MONOSPHERE 650C(ダウケミカ
ル)、Amberlite IR-120B(ローム&ハース)、Dowex M
ONOSPHERE 550A(ダウケミカル)、Amberlite IRA-400
(ローム&ハース)などの商品名で市販されている。
In the electric desalination apparatus, a desalting chamber and / or
Or by placing the ion exchanger in the concentration chamber,
The movement of ions in these chambers can be promoted. The present invention can also be applied to the electric desalination apparatus of such an aspect. For example, ion exchange resin beads can be used as the ion exchanger to be filled in the desalting chamber and / or the concentrating chamber for this purpose. As the ion exchange resin beads that can be used for such a purpose, there can be used those known in the art, which are produced by using beads obtained by crosslinking polystyrene with divinylbenzene as a base resin. For example, in the case of producing a strongly acidic cation exchange resin having a sulfone group, the above-mentioned base resin is treated with a sulfonating agent such as sulfuric acid or chlorosulfonic acid to be sulfonated, so that the base has a sulfone group. By introducing, a strongly acidic cation exchange resin is obtained. Further, for example, in the case of producing a strongly basic anion exchange resin having a quaternary ammonium group, the base resin is subjected to chloromethylation treatment, and then a tertiary amine such as trimethylamine is reacted to perform quaternary ammoniumation. As a result, a strongly basic anion exchange resin is obtained. Such production methods are well known in the art, and ion exchange resin beads produced by such methods are commercially available from, for example, Dowex MONOSPHERE 650C (Dow Chemical), Amberlite IR-120B (Rohm & Haas), Dowex M.
ONOSPHERE 550A (Dow Chemical), Amberlite IRA-400
It is marketed under the product names such as (Rohm & Haas).

【0017】また、本発明は、脱塩室及び/又は濃縮室
内において、陽イオン交換膜側に陽イオン交換繊維材
料、陰イオン交換膜側に陽イオン交換繊維材料をそれぞ
れ対向して配置し、必要により、両イオン交換繊維材料
の間に被処理水の流路を形成するスペーサーを配置した
形態の電気式脱塩装置においても適用することができる
し、更には、本発明者らが先に国際出願(PCY/JP99/013
91;国際公開WO 99/48820)において提案した方式の電
気式脱塩装置に適用することもできる。かかる電気式脱
塩装置は、脱塩室及び/又は濃縮室内において、陽イオ
ン交換膜側に陽イオン交換繊維材料、陰イオン交換膜側
に陽イオン交換繊維材料をそれぞれ対向して配置すると
共に、これらイオン交換繊維材料の間に、イオン交換機
能が付与されているイオン伝導スペーサーを装填してい
る。このように、脱塩室及び/又は濃縮室内にイオン交
換体として、カチオン交換膜側にカチオン交換繊維材料
を、アニオン交換膜側にアニオン交換繊維材料をそれぞ
れ向かい合わせて配置し、更にこれらイオン交換繊維材
料の間に、イオン交換機能を付与したイオン伝導スペー
サを用いると、被処理水を分散して流しやすくするの
で、運転電圧の上昇を著しく軽減させることができると
同時に、スペーサのイオン捕捉機能により脱塩率も著し
く向上し、炭酸成分、シリカ成分、有機炭素成分(TO
C)も良好に除去することができる。
Further, according to the present invention, in the desalting chamber and / or the concentrating chamber, a cation exchange fiber material is disposed on the cation exchange membrane side, and a cation exchange fiber material is disposed on the anion exchange membrane side so as to face each other. If necessary, the present invention can be applied to an electric desalination apparatus in which a spacer that forms a flow path for water to be treated is arranged between both ion-exchange fiber materials, and further, the present inventors first International application (PCY / JP99 / 013
91; International Publication WO 99/48820), and can be applied to an electric desalination apparatus of the system proposed. Such an electric desalination apparatus, in the desalination chamber and / or concentration chamber, the cation exchange fiber material on the side of the cation exchange membrane, the cation exchange fiber material on the side of the anion exchange membrane, while facing each other, An ion-conducting spacer having an ion-exchange function is loaded between these ion-exchange fiber materials. In this way, as the ion exchanger in the desalting chamber and / or the concentrating chamber, the cation exchange fiber material is placed on the cation exchange membrane side, and the anion exchange fiber material is placed on the anion exchange membrane side, respectively. By using an ion-conducting spacer with an ion-exchange function between the fiber materials, the water to be treated can be dispersed and made easier to flow, so the increase in operating voltage can be significantly reduced, and at the same time the ion-trapping function of the spacer can be reduced. The desalination rate is also significantly improved by this, and carbonic acid components, silica components, organic carbon components (TO
C) can also be removed satisfactorily.

【0018】上記に示したような構成の電気式脱塩装置
において用いられるイオン交換繊維材料としては、高分
子繊維基材にイオン交換基をグラフト重合法によって導
入したものが好ましく用いられる。高分子繊維よりなる
グラフト化基材は、ポリオレフィン系高分子、例えばポ
リエチレンやポリプロピレンなどの一種の単繊維であっ
てもよく、また、軸芯と鞘部とが異なる高分子によって
構成される複合繊維であってもよい。用いることのでき
る複合繊維の例としては、ポリオレフィン系高分子、例
えばポリエチレンを鞘成分とし、鞘成分として用いたも
の以外の高分子、例えばポリプロピレンを芯成分とした
芯鞘構造の複合繊維が挙げられる。かかる複合繊維材料
に、イオン交換基を、放射線グラフト重合法を利用して
導入したものが、イオン交換能力に優れ、厚みが均一に
製造できるので、本発明において用いられるイオン交換
繊維材料として好ましい。イオン交換繊維材料の形態と
しては、織布、不織布などを挙げることができる。
As the ion-exchange fiber material used in the electric desalination apparatus having the above-mentioned structure, a material obtained by introducing an ion-exchange group into a polymer fiber base material by a graft polymerization method is preferably used. The grafted substrate made of polymer fibers may be a type of monofilament such as a polyolefin-based polymer, for example, polyethylene or polypropylene, or a composite fiber composed of polymers having different axial cores and sheaths. May be Examples of the conjugate fiber that can be used include a polyolefin-based polymer, for example, a polymer having a sheath component of polyethylene and a polymer other than that used as the sheath component, for example, a composite fiber having a core-sheath structure having polypropylene as a core component. . An ion-exchange fiber material used in the present invention is preferable because an ion-exchange group is introduced into such a composite fiber material by utilizing a radiation graft polymerization method because the ion-exchange capacity is excellent and a uniform thickness can be produced. Examples of the form of the ion exchange fiber material include woven fabric and non-woven fabric.

【0019】また、上記に示すような態様の電気式脱塩
装置において用いられるイオン伝導スペーサーとして
は、ポリオレフィン系高分子製樹脂、例えば、従来電気
透析槽において使用されていたポリエチレン製の斜交網
(ネット)を基材として、これに、放射線グラフト法を
用いてイオン交換機能を付与したものが、イオン伝導性
に優れ、被処理水の分散性に優れているので、好まし
い。なお、放射線グラフト重合法とは、高分子基材に放
射線を照射してラジカルを形成させ、これにモノマーを
反応させることによってモノマーを基材中に導入すると
いう技法である。
As the ion conductive spacer used in the electric desalination apparatus of the above-mentioned mode, a polyolefin polymer resin, for example, a polyethylene diagonal cross net which has been conventionally used in an electrodialysis tank. It is preferable to use (net) as a base material, to which an ion-exchange function is applied by using a radiation graft method, because it has excellent ion conductivity and dispersibility in water to be treated. The radiation graft polymerization method is a technique of irradiating a polymer base material with radiation to form radicals, and reacting the radicals with a monomer to introduce the monomer into the base material.

【0020】放射線グラフト重合法に用いることができ
る放射線としては、α線、β線、ガンマ線、電子線、紫
外線等を挙げることができるが、本発明においてはガン
マ線や電子線を好ましく用いる。放射線グラフト重合法
には、グラフト基材に予め放射線を照射した後、グラフ
トモノマーと接触させて反応させる前照射グラフト重合
法と、基材とモノマーの共存下に放射線を照射する同時
照射グラフト重合法とがあるが、本発明においては、い
ずれの方法も用いることができる。また、モノマーと基
材との接触方法により、モノマー溶液に基材を浸漬させ
たまま重合を行う液相グラフト重合法、モノマーの上記
に基材を接触させて重合を行う気相グラフト重合法、基
材をモノマー溶液に浸漬した後モノマー溶液から取り出
して気相中で反応を行わせる含浸気相グラフト重合法な
どを挙げることができるが、いずれの方法も本発明にお
いて用いることができる。
As the radiation which can be used in the radiation graft polymerization method, α rays, β rays, gamma rays, electron rays, ultraviolet rays and the like can be mentioned. In the present invention, gamma rays and electron rays are preferably used. The radiation graft polymerization method includes a pre-irradiation graft polymerization method in which a graft base material is previously irradiated with radiation and then brought into contact with a graft monomer to react, and a simultaneous irradiation graft polymerization method in which radiation is irradiated in the coexistence of the base material and the monomer. However, any method can be used in the present invention. Further, by the contact method of the monomer and the substrate, a liquid phase graft polymerization method of performing the polymerization while the substrate is immersed in the monomer solution, a gas phase graft polymerization method of performing the polymerization by contacting the substrate with the above monomer. An example is an impregnated gas phase graft polymerization method in which a substrate is immersed in a monomer solution and then taken out from the monomer solution to carry out the reaction in a gas phase. Any method can be used in the present invention.

【0021】これら繊維基材及びスペーサー基材に導入
するイオン交換基としては、特に限定されることなく種
々のカチオン交換基又はアニオン交換基を用いることが
できる。例えば、カチオン交換基としては、スルホン基
などの強酸性カチオン交換基、リン酸基などの中酸性カ
チオン交換基、カルボキシル基などの弱酸性カチオン交
換基、アニオン交換基としては、第1級〜第3級アミノ
基などの弱塩基性アニオン交換基、第4アンモニウム基
などの強塩基性アニオン交換基を用いることができ、或
いは、上記カチオン交換基及びアニオン交換基の両方を
併有するイオン交換体を用いることもできる。
The cation exchange group introduced into the fiber base material and the spacer base material is not particularly limited, and various cation exchange groups or anion exchange groups can be used. For example, as a cation exchange group, a strong acidic cation exchange group such as a sulfone group, a medium acidic cation exchange group such as a phosphate group, a weak acidic cation exchange group such as a carboxyl group, and an anion exchange group include primary to primary A weakly basic anion exchange group such as a tertiary amino group and a strongly basic anion exchange group such as a quaternary ammonium group can be used, or an ion exchanger having both the above cation exchange group and anion exchange group can be used. It can also be used.

【0022】これらの各種イオン交換基は、これらのイ
オン交換基を有するモノマーを用いてグラフト重合、好
ましくは放射線グラフト重合を行うか、又はこれらのイ
オン交換基に転換可能な基を有する重合性モノマーを用
いてグラフト重合を行った後に当該基をイオン交換基に
転換することによって、繊維基材又はスペーサー基材に
導入することができる。この目的で用いることのできる
イオン交換基を有するモノマーとしては、アクリル酸
(AAc)、メタクリル酸、スチレンスルホン酸ナトリ
ウム(SSS)、メタリルスルホン酸ナトリウム、アリ
ルスルホン酸ナトリウム、ビニルスルホン酸ナトリウ
ム、ビニルベンジルトリメチルアンモニウムクロライド
(VBTAC)、ジエチルアミノエチルメタクリレー
ト、ジメチルアミノプロピルアクリルアミドなどを挙げ
ることができる。例えば、スチレンスルホン酸ナトリウ
ムをモノマーとして用いて放射線グラフト重合を行うこ
とにより、基材に直接、強酸性カチオン交換基であるス
ルホン基を導入することができ、また、ビニルベンジル
トリメチルアンモニウムクロライドをモノマーとして用
いて放射線グラフト重合を行うことにより、基材に直
接、強塩基性アニオン交換基である第4級アンモニウム
基を導入することができる。また、イオン交換基に転換
可能な基を有するモノマーとしては、アクリロニトリ
ル、アクロレイン、ビニルピリジン、スチレン、クロロ
メチルスチレン、メタクリル酸グリシジル(GMA)な
どが挙げられる。例えば、メタクリル酸グリシジルを放
射線グラフト重合によって基材に導入し、次に亜硫酸ナ
トリウムなどのスルホン化剤を反応させることによって
強酸性カチオン交換基であるスルホン基を基材に導入し
たり、又はクロロメチルスチレンをグラフト重合した後
に、基材をトリメチルアミン水溶液に浸漬して4級アン
モニウム化を行うことによって、強塩基性アニオン交換
基である第4級アンモニウム基を基材に導入することが
できる。
These various ion-exchange groups are subjected to graft polymerization, preferably radiation graft polymerization, using a monomer having these ion-exchange groups, or a polymerizable monomer having a group convertible into these ion-exchange groups. Can be introduced into the fiber base material or the spacer base material by converting the group into an ion exchange group after carrying out the graft polymerization with. Examples of the monomer having an ion exchange group that can be used for this purpose include acrylic acid (AAc), methacrylic acid, sodium styrenesulfonate (SSS), sodium methallylsulfonate, sodium allylsulfonate, sodium vinylsulfonate, and vinyl. Examples thereof include benzyltrimethylammonium chloride (VBTAC), diethylaminoethyl methacrylate, dimethylaminopropyl acrylamide and the like. For example, by performing radiation graft polymerization using sodium styrene sulfonate as a monomer, it is possible to directly introduce a sulfonic acid group which is a strongly acidic cation exchange group into a substrate, and vinyl benzyl trimethyl ammonium chloride is used as a monomer. By carrying out radiation graft polymerization using the quaternary ammonium group, which is a strongly basic anion-exchange group, can be directly introduced into the substrate. Examples of the monomer having a group that can be converted into an ion exchange group include acrylonitrile, acrolein, vinylpyridine, styrene, chloromethylstyrene, glycidyl methacrylate (GMA) and the like. For example, glycidyl methacrylate is introduced into a substrate by radiation graft polymerization, and then a sulfonating group which is a strongly acidic cation exchange group is introduced into the substrate by reacting with a sulfonating agent such as sodium sulfite, or chloromethyl. After the styrene is graft-polymerized, the base material is immersed in a trimethylamine aqueous solution for quaternary ammonium conversion, whereby a quaternary ammonium group which is a strongly basic anion exchange group can be introduced into the base material.

【0023】[0023]

【実施例】以下の実施例により、本発明をより具体的に
説明するが、本発明はこれらによって限定されるもので
はない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0024】[0024]

【製造例1】強酸性カチオン交換不織布の製造 基材として、繊維径17μmのポリエチレン(鞘)/ポ
リプロピレン(芯)の複合繊維よりなる目付55g/m2
厚さ0.35mmの熱融着不織布を用い、窒素雰囲気下で
電子線(150kGy)を照射した。
[Production Example 1] As a base material for producing a strongly acidic cation exchange nonwoven fabric, a basis weight of 55 g / m 2 composed of a composite fiber of polyethylene (sheath) / polypropylene (core) having a fiber diameter of 17 μm,
An electron beam (150 kGy) was irradiated in a nitrogen atmosphere using a heat-bonding nonwoven fabric having a thickness of 0.35 mm.

【0025】電子線照射処理後の熱融着不織布を、メタ
クリル酸グリシジルの10%メタノール溶液中に浸漬
し、45℃で4時間反応させた。反応後の不織布を60
℃のジメチルホルムアミド溶液に5時間浸漬してホモポ
リマーを除去し、メタクリル酸グリシジルグラフト不織
布(グラフト率:131%)を得た。このグラフト不織
布を、亜硫酸ナトリウム:イソプロピルアルコール:水
=1:1:8(重量比)の溶液に浸漬し、80℃で10
時間反応させ、強酸性カチオン交換不織布(中性塩分解
容量2.72meq/g)を得た。
The heat-bonded nonwoven fabric after the electron beam irradiation treatment was dipped in a 10% methanol solution of glycidyl methacrylate and reacted at 45 ° C. for 4 hours. 60 after reaction
The homopolymer was removed by immersing in a dimethylformamide solution at ℃ for 5 hours to obtain a glycidyl methacrylate graft nonwoven fabric (grafting rate: 131%). This graft non-woven fabric was dipped in a solution of sodium sulfite: isopropyl alcohol: water = 1: 1: 8 (weight ratio) and heated at 80 ° C. for 10 minutes.
The reaction was carried out for a time to obtain a strongly acidic cation exchange nonwoven fabric (neutral salt decomposition capacity 2.72 meq / g).

【0026】強塩基性アニオン交換不織布の製造 基材として、繊維径17μmのポリエチレン(鞘)/ポ
リプロピレン(芯)の複合繊維よりなる目付55g/m2
厚さ0.35mmの熱融着不織布を用い、窒素雰囲気下で
電子線(150kGy)を照射した。
As a base material for producing a strongly basic anion exchange nonwoven fabric, a basis weight of 55 g / m 2 composed of a composite fiber of polyethylene (sheath) / polypropylene (core) having a fiber diameter of 17 μm,
An electron beam (150 kGy) was irradiated in a nitrogen atmosphere using a heat-bonding nonwoven fabric having a thickness of 0.35 mm.

【0027】クロロメチルスチレン(セイミケミカル社
製、商品名:CMS-AM)を活性アルミナ充填層に通液させ
て、重合禁止剤を取り除き、窒素曝気して脱酸素を行っ
た。脱酸素処理後のクロロメチルスチレン溶液中に、照
射済みの不織布基材を浸漬して、50℃で6時間反応さ
せた。その後、クロロメチルスチレン溶液から不織布を
取り出し、トルエン中に3時間浸漬して、ホモポリマー
を除去し、クロロメチルスチレングラフト不織布(グラ
フト率:161%)を得た。得られたクロロメチルスチ
レングラフト不織布を、トリメチルアミン水溶液(10
wt%)中で、4級アンモニウム化させた後、水酸化ナト
リウム水溶液で再生処理して、4級アンモニウム基を有
する強塩基性アニオン交換不織布(中性塩分解容量:3
50meq/m2)を得た。
Chloromethylstyrene (manufactured by Seimi Chemical Co., Ltd., trade name: CMS-AM) was passed through the activated alumina packed layer to remove the polymerization inhibitor, and deaeration was carried out by aeration with nitrogen. The irradiated non-woven fabric substrate was immersed in the chloromethylstyrene solution after the deoxidation treatment and reacted at 50 ° C. for 6 hours. Then, the nonwoven fabric was taken out from the chloromethylstyrene solution and immersed in toluene for 3 hours to remove the homopolymer to obtain a chloromethylstyrene graft nonwoven fabric (graft ratio: 161%). The obtained chloromethylstyrene-grafted nonwoven fabric was treated with a trimethylamine aqueous solution (10
wt%), after quaternary ammonium conversion, it is regenerated with an aqueous sodium hydroxide solution and strongly basic anion exchange nonwoven fabric having a quaternary ammonium group (neutral salt decomposition capacity: 3
50 meq / m 2 ) was obtained.

【0028】[0028]

【製造例2】強酸性カチオン伝導スペーサの製造 イオン伝導スペーサの基材として、厚み1.2mm、ピッ
チ3mmのポリエチレン製斜交網を用いた。
Production Example 2 Production of Strongly Acidic Cation Conducting Spacer As a base material of the ion conducting spacer, a diagonal cross net made of polyethylene having a thickness of 1.2 mm and a pitch of 3 mm was used.

【0029】ドライアイスで冷却しながら、ポリエチレ
ン製斜交網に窒素雰囲気中でγ線(150kGy)を照射
した。このγ線照射済み斜交網を、スチレンモノマー
(和光純薬製)中に浸漬して、30℃で3時間反応させ
て、スチレングラフト斜交網(グラフト率:90%)を得
た。このスチレングラフト斜交網を、クロロスルホン酸
及び1,2−ジクロロエタンの混合溶液(クロロスルホ
ン酸:1,2−ジクロロエタン=25:75(重量
比))に、30℃で1時間浸漬して、ベンゼン環にスル
ホン基を導入し、メタノールで洗浄後、水酸化ナトリウ
ム水溶液(5wt%)を用いて加水分解を行い、塩酸で再
生して、カチオン伝導スペーサ(中性塩分解容量:28
0meq/m2)を得た。
While being cooled with dry ice, the polyethylene diagonal net was irradiated with γ rays (150 kGy) in a nitrogen atmosphere. This γ-ray-irradiated cross network was immersed in a styrene monomer (manufactured by Wako Pure Chemical Industries, Ltd.) and reacted at 30 ° C. for 3 hours to obtain a styrene graft cross network (graft ratio: 90%). This styrene graft cross network was immersed in a mixed solution of chlorosulfonic acid and 1,2-dichloroethane (chlorosulfonic acid: 1,2-dichloroethane = 25: 75 (weight ratio)) at 30 ° C. for 1 hour, After introducing a sulfone group into the benzene ring and washing with methanol, hydrolysis is carried out using an aqueous solution of sodium hydroxide (5 wt%) and regeneration is carried out with hydrochloric acid, and a cation conductive spacer (neutral salt decomposition capacity: 28
0 meq / m 2 ) was obtained.

【0030】強塩基性アニオン交換伝導スペーサの製造 イオン伝導スペーサの基材として、厚み1.2mm、ピッ
チ3mmのポリエチレン製斜交網を用いた。
Production of Strongly Basic Anion Exchange Conductive Spacer As a base material of the ion conductive spacer, a diagonal cross net made of polyethylene having a thickness of 1.2 mm and a pitch of 3 mm was used.

【0031】ドライアイスで冷却しながら、ポリエチレ
ン製斜交網に窒素雰囲気中でγ線(150kGy)を照射
した。このγ線照射済み斜交網を、予め活性アルミナに
よって重合禁止剤を取り除いたクロロメチルスチレン
(m体70%:p体30%;セイミケミカル社製;商品
名CMS-AM)中に浸漬し、50℃で5時間反応させて、ク
ロロメチルスチレングラフト斜交網(グラフト率:90
%)を得た。このグラフト斜交網を10wt%トリメチル
アミン水溶液を用いて4級アンモニウム化を行い、水酸
化ナトリウム溶液で再生して、強塩基性アニオン伝導ス
ペーサ(中性塩分解容量267meq/m2)を得た。
While cooling with dry ice, the polyethylene diagonal net was irradiated with γ rays (150 kGy) in a nitrogen atmosphere. This γ-ray-irradiated cross network was immersed in chloromethylstyrene (m-body 70%: p-body 30%; Seimi Chemical Co .; trade name CMS-AM) from which the polymerization inhibitor was removed by activated alumina in advance, After reacting at 50 ° C. for 5 hours, a chloromethylstyrene graft crosslink network (graft ratio: 90
%) Was obtained. The graft crosslink network was quaternized with an aqueous 10 wt% trimethylamine solution and regenerated with a sodium hydroxide solution to obtain a strongly basic anion conductive spacer (neutral salt decomposition capacity: 267 meq / m 2 ).

【0032】[0032]

【実施例1】電極間にアニオン交換膜(トクヤマソーダ
製、商品名NEOSEPTA AMX)及びカチオン交換膜(トクヤ
マソーダ製、商品名NEOSEPTA CMX)を交互に配列するこ
とによって、図4に示す、脱塩室を3つ、濃縮室を4つ
有する電気式脱塩装置を構成した。脱塩室の厚さは5m
m、濃縮室及び極室の厚さは3mmとした。脱塩室D1,
D2,D3内には、カチオン交換膜側に上記製造例1で
製造したカチオン交換不織布を、アニオン交換膜側に上
記製造例1で製造したアニオン交換不織布をそれぞれ1
枚配置し、両交換不織布の間に、上記製造例2で製造し
たアニオン伝導スペーサーを2枚充填した。また、濃縮
室C1,C2,C3,C4には、カチオン交換膜側に上
記製造例2で製造したカチオン伝導スペーサーを、アニ
オン交換膜側に上記製造例2で製造したアニオン伝導ス
ペーサーを、それぞれ1枚ずつ充填した。また、陽極室
には上記製造例2で製造したカチオン伝導スペーサー
を、陰極室には上記製造例2で製造したアニオン伝導ス
ペーサーを、それぞれ2枚ずつ充填した。
Example 1 Desalination shown in FIG. 4 by alternately arranging anion exchange membranes (made by Tokuyama Soda, trade name NEOSEPTA AMX) and cation exchange membranes (made by Tokuyama Soda, trade name NEOSEPTA CMX) between electrodes. An electric desalination apparatus having 3 chambers and 4 concentration chambers was constructed. Desalination chamber thickness is 5m
The thickness of m, the concentration chamber and the polar chamber was 3 mm. Desalination chamber D1,
In each of D2 and D3, the cation exchange nonwoven fabric produced in Production Example 1 was prepared on the cation exchange membrane side, and the anion exchange nonwoven fabric produced in Production Example 1 was prepared on the anion exchange membrane side.
Two sheets of the anion-conducting spacer produced in the above Production Example 2 were filled between the two exchanged non-woven fabrics. Further, in each of the concentrating chambers C1, C2, C3, C4, the cation-conducting spacer manufactured in the above Production Example 2 on the side of the cation exchange membrane and the anion-conducting spacer manufactured in the above Production Example 2 on the side of the anion exchange membrane 1 It was filled one by one. Further, the anode chamber was filled with the cation-conducting spacer produced in Production Example 2 and the cathode chamber was filled with the anion-conducting spacer produced in Production Example 2, two sheets each.

【0033】両電極間に0.1Aの直流電流を印加し、
図4に示すように、脱塩室には、0.2MΩのRO処理
水(流量5L/h)を、D1,D3,D2の順番に直列
に供給し、各濃縮室及び極室には、それぞれ0.2MΩ
のRO処理水(流量3L/h)を並列に供給した。10
00時間の運転を行ったところ、脱塩室D2からは17
〜18MΩ以上の純水が継続して得られた。1000時
間運転後、装置を分解して各室内を目視で観察したとこ
ろ、いずれの室内においてもスケールの蓄積は見られな
かった。
A direct current of 0.1 A is applied between both electrodes,
As shown in FIG. 4, 0.2 MΩ RO-treated water (flow rate 5 L / h) was supplied in series to the demineralization chamber in the order of D1, D3, and D2. 0.2 MΩ each
RO treated water (flow rate 3 L / h) was supplied in parallel. 10
After running for 00 hours, 17
Pure water of -18 MΩ or more was continuously obtained. After operating for 1000 hours, the device was disassembled and each room was visually observed. As a result, accumulation of scale was not found in any room.

【0034】[0034]

【比較例1】実施例1と同じ構成の電気式脱塩装置を用
い、図2に示すように、脱塩室には、0.2MΩのRO
処理水(流量5L/h)を、D1,D2,D3の順番に
直列に供給し、濃縮室及び極室には、0.2MΩのRO
処理水(流量3L/h)を、K(陰極室),C4,C
3,C2,C1,K(陽極室)の順に直列に供給した他
は、実施例1と同様に実験を行った。1000時間の運
転を行ったところ、脱塩室D3からは17〜18MΩ以
上の純水が継続して得られた。1000時間運転後、装
置を分解して各室内を目視で観察したところ、濃縮室C
1,C2,C3内において、スケールがアニオン交換膜
上に蓄積していた。
COMPARATIVE EXAMPLE 1 An electric desalination apparatus having the same structure as that of Example 1 was used, and as shown in FIG.
Treated water (flow rate 5 L / h) was supplied in series in the order of D1, D2 and D3, and 0.2 MΩ RO was supplied to the concentrating chamber and the polar chamber.
Treated water (flow rate 3 L / h) with K (cathode chamber), C4, C
An experiment was conducted in the same manner as in Example 1 except that 3, C2, C1, and K (anode chamber) were supplied in series. When the operation was performed for 1000 hours, pure water of 17 to 18 MΩ or more was continuously obtained from the desalting chamber D3. After operating for 1000 hours, the device was disassembled and each room was visually observed to find that the concentration room C
In 1, C2 and C3, scale was accumulated on the anion exchange membrane.

【0035】[0035]

【発明の効果】本発明によれば、マルチパス型の電気式
脱塩装置において、濃縮室内でスケールが形成するとい
う問題を解消することができる。
According to the present invention, it is possible to solve the problem of scale formation in the concentrating chamber in the multi-pass type electric desalination apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】電気式脱塩装置の概念を示す図である。FIG. 1 is a diagram showing the concept of an electric desalination apparatus.

【図2】従来のマルチパス型電気式脱塩装置の概念を示
す図である。
FIG. 2 is a diagram showing a concept of a conventional multi-pass type electric desalination apparatus.

【図3】本発明の一態様に係るマルチパス型電気式脱塩
装置の概念を示す図である。
FIG. 3 is a diagram showing a concept of a multi-pass type electric desalination apparatus according to one embodiment of the present invention.

【図4】本発明の他の態様に係るマルチパス型電気式脱
塩装置の概念を示す図である。
FIG. 4 is a diagram showing the concept of a multi-pass type electric desalination apparatus according to another aspect of the present invention.

【図5】本発明の更に他の態様に係るマルチパス型電気
式脱塩装置の概念を示す図である。
FIG. 5 is a diagram showing a concept of a multi-pass type electric desalination apparatus according to still another aspect of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川本 孝善 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 中西 收 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 秋山 徹 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D006 GA17 HA47 JA04A JA04C JA30A JA41A JA42A JA43A JA44A JA55A KE02Q KE06Q KE18Q MA03 MA13 MA14 MB07 PA01 PB02 PB25 PB26 PC02 4D061 DA02 DB13 EA09 EB01 EB13 EB19 EB39 GC02 GC12 GC20   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takayoshi Kawamoto             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION (72) Inventor, Nakanishi             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION (72) Inventor Toru Akiyama             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION F-term (reference) 4D006 GA17 HA47 JA04A JA04C                       JA30A JA41A JA42A JA43A                       JA44A JA55A KE02Q KE06Q                       KE18Q MA03 MA13 MA14                       MB07 PA01 PB02 PB25 PB26                       PC02                 4D061 DA02 DB13 EA09 EB01 EB13                       EB19 EB39 GC02 GC12 GC20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正負の両電極間に陽イオン交換膜及び陰
イオン交換膜を少なくとも一部交互に配列することによ
って脱塩室と濃縮室とが形成されており、少なくとも3
つの脱塩室が形成され、各脱塩室が直列に接続されてい
て被処理水が各脱塩室に直列に供給される電気式脱塩装
置において、1番目に被処理水が供給される脱塩室と2
番目に被処理水が供給される脱塩室との間に1つ以上の
他の脱塩室が配列されていることを特徴とする電気式脱
塩装置。
1. A desalting chamber and a concentrating chamber are formed by alternately arranging at least a part of a cation exchange membrane and an anion exchange membrane between both positive and negative electrodes, and at least 3
In the electric desalination apparatus in which two desalting chambers are formed, the desalting chambers are connected in series, and the treated water is supplied to each desalting chamber in series, the treated water is supplied first. Desalination chamber and 2
Secondly, one or more other desalination chambers are arranged between the desalination chamber to which the water to be treated is supplied and the electric desalination device.
【請求項2】 各濃縮室に、並列に水が供給される請求
項1に記載の電気式脱塩装置。
2. The electric desalination apparatus according to claim 1, wherein water is supplied in parallel to each concentrating chamber.
【請求項3】 1番目に被処理水が供給される脱塩室と
2番目に被処理水が供給される脱塩室との間、並びに3
番目に被処理水が供給される脱塩室と1番目に被処理水
が供給される脱塩室及び2番目に被処理水が供給される
脱塩室との間に、1つ以上の他の脱塩室が配列されてい
る請求項1又は2に記載の電気式脱塩装置。
3. A desalting chamber to which the water to be treated is first supplied and a desalting chamber to which the water to be treated is secondly supplied, and 3
Between the desalination chamber to which the treated water is supplied second, the desalination chamber to which the treated water is first supplied and the desalination chamber to which the treated water is secondly supplied, one or more other The desalination apparatus according to claim 1 or 2, wherein the desalination chambers are arranged.
【請求項4】 脱塩室及び/又は濃縮室内において、陽
イオン交換膜側に陽イオン交換繊維材料、陰イオン交換
膜側にイオン交換繊維材料が対向して配置され、その間
の被処理水流路にイオン交換機能が付与されているイオ
ン伝導スペーサーが装填されている請求項1〜3のいず
れかに記載の電気式脱塩装置。
4. A deionization chamber and / or a concentration chamber, in which a cation exchange fiber material is disposed on the side of the cation exchange membrane and an ion exchange fiber material is disposed on the side of the anion exchange membrane so as to face each other, and the water to be treated flow passage therebetween. The electric desalination apparatus according to any one of claims 1 to 3, wherein an ion-conducting spacer having an ion-exchange function is loaded in.
JP2001399511A 2001-12-28 2001-12-28 Electric desalination equipment Expired - Fee Related JP3727585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001399511A JP3727585B2 (en) 2001-12-28 2001-12-28 Electric desalination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001399511A JP3727585B2 (en) 2001-12-28 2001-12-28 Electric desalination equipment

Publications (2)

Publication Number Publication Date
JP2003190959A true JP2003190959A (en) 2003-07-08
JP3727585B2 JP3727585B2 (en) 2005-12-14

Family

ID=27604504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001399511A Expired - Fee Related JP3727585B2 (en) 2001-12-28 2001-12-28 Electric desalination equipment

Country Status (1)

Country Link
JP (1) JP3727585B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048736A (en) * 2006-08-21 2008-03-06 Samsung Electronics Co Ltd Method for separating microorganism from sample by using electrodialysis and means for capturing microorganism, and microorganism-separating device therefor
US7722751B2 (en) 2005-05-25 2010-05-25 Samung Electronics Co., Ltd. Apparatus for regulating salt concentration using electrodialysis, lab-on-a-chip including the same, and method of regulating salt concentration using the apparatus
JP2013039510A (en) * 2011-08-12 2013-02-28 Japan Organo Co Ltd Electric deionized water production apparatus
WO2013039677A1 (en) * 2011-09-16 2013-03-21 General Electric Company Electrodialysis method and apparatus for passivating scaling species
JP2014501174A (en) * 2010-12-29 2014-01-20 ゼネラル・エレクトリック・カンパニイ Electrodesalting device and method with improved scaling resistance
CN115140812A (en) * 2022-07-04 2022-10-04 西安西热水务环保有限公司 Two-stage continuous electric desalting system and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722751B2 (en) 2005-05-25 2010-05-25 Samung Electronics Co., Ltd. Apparatus for regulating salt concentration using electrodialysis, lab-on-a-chip including the same, and method of regulating salt concentration using the apparatus
JP2008048736A (en) * 2006-08-21 2008-03-06 Samsung Electronics Co Ltd Method for separating microorganism from sample by using electrodialysis and means for capturing microorganism, and microorganism-separating device therefor
JP2014501174A (en) * 2010-12-29 2014-01-20 ゼネラル・エレクトリック・カンパニイ Electrodesalting device and method with improved scaling resistance
JP2013039510A (en) * 2011-08-12 2013-02-28 Japan Organo Co Ltd Electric deionized water production apparatus
WO2013039677A1 (en) * 2011-09-16 2013-03-21 General Electric Company Electrodialysis method and apparatus for passivating scaling species
JP2014530091A (en) * 2011-09-16 2014-11-17 ゼネラル・エレクトリック・カンパニイ Electrodialysis method and apparatus for passivating scale-generating species
US9339765B2 (en) 2011-09-16 2016-05-17 General Electric Company Electrodialysis method and apparatus for passivating scaling species
JP2017164748A (en) * 2011-09-16 2017-09-21 ゼネラル・エレクトリック・カンパニイ Electrodialysis method and apparatus for passivating scaling species
CN115140812A (en) * 2022-07-04 2022-10-04 西安西热水务环保有限公司 Two-stage continuous electric desalting system and method

Also Published As

Publication number Publication date
JP3727585B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
JP4343105B2 (en) Electric desalination equipment
US9260325B2 (en) Electrical deionization apparatus
JP4065664B2 (en) Electric desalination equipment
JP3801821B2 (en) Electric desalination equipment
JP4303242B2 (en) Electric desalination module and apparatus equipped with the module
JP3394372B2 (en) Electric regeneration type desalination equipment
JP4489511B2 (en) Bipolar chamber and electrochemical liquid processing apparatus having the bipolar chamber
JP2003190820A (en) Electric demineralizing apparatus
JP3727585B2 (en) Electric desalination equipment
JP2008132492A (en) Electric demineralizer
JP3727586B2 (en) Electric desalination equipment
JP4291156B2 (en) Electric desalination equipment
JP2006026488A (en) Electric desalter
JP2003190960A (en) Electric demineralizer
JP2003190821A (en) Electric demineralizing apparatus
JP2003190962A (en) Ion exchanger and electric demineralizer
JP2003190963A (en) Ion exchanger and electric demineralizer
JP2006175408A (en) Ion-conductive spacer, method of manufacturing the same and electric demineralization device or electrodialyzer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050928

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees