JP2003188052A - Solid electrolytic capacitor element and manufacturing method thereof, and solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor element and manufacturing method thereof, and solid electrolytic capacitor

Info

Publication number
JP2003188052A
JP2003188052A JP2001383331A JP2001383331A JP2003188052A JP 2003188052 A JP2003188052 A JP 2003188052A JP 2001383331 A JP2001383331 A JP 2001383331A JP 2001383331 A JP2001383331 A JP 2001383331A JP 2003188052 A JP2003188052 A JP 2003188052A
Authority
JP
Japan
Prior art keywords
anode body
electrolytic capacitor
solid electrolytic
conductive polymer
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001383331A
Other languages
Japanese (ja)
Inventor
Yuji Aoki
勇治 青木
Haruhiro Kawai
陽洋 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Toyama Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Toyama Ltd filed Critical NEC Tokin Toyama Ltd
Priority to JP2001383331A priority Critical patent/JP2003188052A/en
Publication of JP2003188052A publication Critical patent/JP2003188052A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide technique for manufacturing a conductive polymer layer in a single layer structure, further having a film thickness of 10 to 50 μm even at an edge where surfaces cross and also a portion of the surface other than the edge in a solid electrolytic capacitor using the conduction polymer layer formed by chemical oxidation polymerization reaction for solid electrolyte. <P>SOLUTION: In a process for forming a polythiophen layer 7A, a distribution state of the amount of adhesion of oxidizer on the outer surface of an anode body is controlled, the oxidizer being adhered to the anode body, thus controlling the thickness of the polythiophen layer 7A. The amount of adhesion of the oxidizer is controlled by controlling a drying speed when the anode body is dipped into an oxidizer solution and is dried after being pulled up. The drying speed of the oxidizer solution is controlled by changing at least one of temperature, humidity, wind velocity, and atmospheric pressure in drying. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質に導電
性高分子を用いた固体電解コンデンサとその素子及びそ
れらの製造方法に関し、特に、導電性高分子の層を化学
酸化重合反応によって形成する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor using a conductive polymer as a solid electrolyte, an element thereof and a method for manufacturing the same, and in particular, forming a layer of a conductive polymer by a chemical oxidative polymerization reaction. Regarding technology.

【0002】[0002]

【従来の技術】この種の固体電解コンデンサの構造とそ
の製造方法について、タンタル固体電解コンデンサを例
にして説明する。一例のコンデンサの断面を示す図3を
参照して、この図に示すタンタル固体電解コンデンサ
は、蓄電作用を行うコンデンサ素子1と、陽極端子2及
び陰極端子3と、外装の樹脂4とからなっている。2つ
の端子2、3は、外部との電気的接続のためにコンデン
サ素子1に取り付けられた端子であり、外装樹脂4はコ
ンデンサ素子1、陽極端子2及び陰極端子3を、上記陽
・陰両端子の一部分を除いて覆っている。
2. Description of the Related Art The structure of a solid electrolytic capacitor of this type and its manufacturing method will be described by taking a tantalum solid electrolytic capacitor as an example. Referring to FIG. 3 showing a cross section of an example of a capacitor, a tantalum solid electrolytic capacitor shown in this figure is composed of a capacitor element 1 that performs a storage action, an anode terminal 2 and a cathode terminal 3, and an outer resin 4. There is. The two terminals 2 and 3 are terminals attached to the capacitor element 1 for electrical connection to the outside, and the exterior resin 4 includes the capacitor element 1, the anode terminal 2 and the cathode terminal 3 at the positive and negative ends. It covers all but one part of the child.

【0003】コンデンサ素子1は、焼結体5と、その焼
結体5の表面に順次設けられた酸化タンタル皮膜6、導
電性高分子層7、グラファイト層8及び銀ペースト層9
と、焼結体5の一端面から導出されている陽極リード1
0とからなっている。
The capacitor element 1 comprises a sintered body 5, a tantalum oxide film 6, a conductive polymer layer 7, a graphite layer 8 and a silver paste layer 9 which are sequentially provided on the surface of the sintered body 5.
And the anode lead 1 led out from one end surface of the sintered body 5.
It consists of 0.

【0004】焼結体5は、金属タンタルの微粉末をプレ
ス成形で円柱或いは角柱に成形し、焼結するなどして得
た多孔質体であって、コンデンサの陽極に当るものであ
る。酸化タンタル皮膜6は、焼結体5を陽極酸化して形
成したもので、焼結体の母材である金属タンタルの酸化
生成物(酸化タンタル:Ta25 )の膜からなり、焼
結体5の外表面のみならず、図示はできないが、内部の
微細孔の表面も残るところなく覆っている。この酸化タ
ンタル皮膜6は、コンデンサの誘電体である。陽極リー
ド10は、コンデンサの陽極である焼結体5と外部との
接続用端子である陽極端子2とを接続するものであっ
て、焼結体5を作る際の、金属タンタル粉末を円柱又は
角柱に成形するとき、同時に柱体の一底面にタンタルワ
イヤーを植え立てることで、製造の当初から焼結体5に
植立されている。陽極端子2はこの陽極リード10に、
例えば抵抗溶接或いはレーザー溶接などの方法で固着さ
れている。尚、以下では、焼結体5と、酸化タンタル皮
膜6と、陽極リード10とを合せたものを陽極体と呼ぶ
ことがある。
The sintered body 5 is a porous body obtained by press-molding fine powder of metal tantalum into a cylinder or a prism, and sintering the powder. The sintered body 5 corresponds to the anode of the capacitor. The tantalum oxide film 6 is formed by anodizing the sintered body 5 and is made of a film of an oxidation product of metal tantalum (tantalum oxide: Ta 2 O 5 ) which is a base material of the sintered body and is sintered. Not only the outer surface of the body 5 but also the surface of the inner micropores, which is not shown, is covered without leaving. This tantalum oxide film 6 is the dielectric of the capacitor. The anode lead 10 connects the sintered body 5 which is the anode of the capacitor and the anode terminal 2 which is a terminal for connecting to the outside, and is made of metal tantalum powder in the form of a cylinder or cylinder when the sintered body 5 is made. At the same time when forming a prism, a tantalum wire is planted on one bottom surface of the column, so that the sintered body 5 is planted from the beginning of manufacturing. The anode terminal 2 is attached to this anode lead 10.
For example, they are fixed by a method such as resistance welding or laser welding. In the following, the combination of the sintered body 5, the tantalum oxide film 6, and the anode lead 10 may be referred to as an anode body.

【0005】上記酸化タンタル皮膜6を覆って設けられ
た導電性高分子層7は、固体電解質である。この導電性
高分子層7の上には、更に、例えばグラファイト層8と
銀ペースト層9とを積層したもののような導電体の層が
形成されていて、上記導電性高分子層7と、グラファイ
ト層8と、銀ペースト層9とでコンデンサの陰極となる
導体層を構成している。そして、この陰極導体層の最外
層に外部との接続用端子である陰極端子3が、導電性接
着剤11などで固着されている。
The conductive polymer layer 7 provided so as to cover the tantalum oxide film 6 is a solid electrolyte. On the conductive polymer layer 7, a conductive material layer such as a graphite layer 8 and a silver paste layer 9 is further formed. The layer 8 and the silver paste layer 9 form a conductor layer that serves as the cathode of the capacitor. Then, the cathode terminal 3, which is a terminal for external connection, is fixed to the outermost layer of the cathode conductor layer with a conductive adhesive 11 or the like.

【0006】本発明との関連で上記導電性高分子層7の
形成方法についていえば、導電性高分子層7は、例えば
ピロールのようなモノマーの電解酸化重合又は化学酸化
重合によって形成される。どちらの形成方法にもそれぞ
れ特徴があるが、本発明は、化学酸化重合反応により導
電性高分子層を形成する方法に係るものである。
Regarding the method of forming the conductive polymer layer 7 in the context of the present invention, the conductive polymer layer 7 is formed by electrolytic oxidative polymerization or chemical oxidative polymerization of a monomer such as pyrrole. Although both forming methods have their own characteristics, the present invention relates to a method of forming a conductive polymer layer by a chemical oxidative polymerization reaction.

【0007】導電性高分子層7を化学酸化重合反応によ
って形成する場合は、概略、以下のようにして形成す
る。すなわち、先ず、例えば上述したモノマーの溶液
と、酸化剤溶液とを準備する。酸化剤溶液は、例えばド
デシルベンゼンスルホン酸第二鉄のような酸化剤を溶質
とし、これを例えばエチルアルコールのような溶媒に溶
解させることで得られる。そして、始めに、酸化タンタ
ル皮膜6の形成までが済んだ陽極体を酸化剤溶液に浸漬
させて、陽極体内部の微細孔の中まで酸化剤溶液を浸透
させる。その後、陽極体を引き上げ、恒温槽内で温風を
送るなどして乾燥させ、陽極体の外表面及び内表面(陽
極体内の微細孔の表面)に酸化剤を付着させる。次に、
上記酸化剤付着済みの陽極体をモノマー溶液に浸漬さ
せ、モノマー溶液を陽極体内部に浸透させる。そして、
陽極体を引き上げ、恒温槽内で温風を送るなどして熱を
与えて化学酸化重合反応をさせる。この一連の操作によ
り、陽極体の内表面、外表面に導電性高分子層7が形成
される。
When the conductive polymer layer 7 is formed by a chemical oxidative polymerization reaction, it is generally formed as follows. That is, first, for example, a solution of the above-mentioned monomer and an oxidant solution are prepared. The oxidant solution can be obtained, for example, by using an oxidant such as ferric dodecylbenzene sulfonate as a solute and dissolving this in a solvent such as ethyl alcohol. Then, first, the anode body having the tantalum oxide film 6 formed thereon is dipped in the oxidant solution to allow the oxidant solution to penetrate into the fine pores inside the anode body. Then, the anode body is pulled up and dried by sending warm air in a constant temperature bath, and the oxidizing agent is attached to the outer surface and the inner surface (the surface of the fine pores in the anode body) of the anode body. next,
The anode body having the oxidant attached is dipped in the monomer solution to allow the monomer solution to permeate the inside of the anode body. And
The anode body is pulled up, and hot air is sent in a constant temperature bath to apply heat to cause a chemical oxidative polymerization reaction. Through this series of operations, the conductive polymer layer 7 is formed on the inner and outer surfaces of the anode body.

【0008】尚、通常、上述の酸化剤溶液への浸漬→引
き上げ→乾燥→モノマー溶液への浸漬→化学酸化重合反
応の一連の操作を1回行っただけでは十分な厚さの導電
性高分子層が得られないので、所要の厚さになるまで数
回、上記一連の操作を繰り返して行う。酸化剤溶液、モ
ノマー溶液への浸漬の順序を上に述べたとは反対にし
て、先にモノマー溶液に浸漬、乾燥させ、そのあと酸化
剤溶液に浸漬させ、化学酸化重合反応させるようにして
も良い。
[0008] Usually, the conductive polymer having a sufficient thickness can be obtained by performing a series of operations of dipping in the above-mentioned oxidizing agent solution → pulling up → drying → dipping in a monomer solution → chemical oxidative polymerization reaction. Since a layer cannot be obtained, the above series of operations is repeated several times until the required thickness is obtained. The order of immersion in the oxidant solution and the monomer solution may be reversed from that described above, and the monomer solution may be first dipped and dried, and then the oxidant solution may be dipped to carry out the chemical oxidative polymerization reaction. .

【0009】ところで、先に述べたように、導電性高分
子層7は、その上のグラファイト層8や銀ペースト層9
と共にコンデンサの陰極として作用する。従って、陰極
の直列抵抗という点からすれば、薄いほうが好ましい。
しかし一方で、導電性高分子層は、外装樹脂4からコン
デンサ素子に加えられる機械的ストレスから素子を保護
する働きもしている。この観点からは、ある程度以上の
厚さでなければならない。すなわち、コンデンサ素子1
は、外装樹脂4を形成するときの加熱や冷却、完成後の
コンデンサを実装用基板にはんだ付けするときの急熱や
急冷あるいは、実装後の実使用における環境の温度変化
などに伴って膨張、収縮を繰り返す。そして、酸化タン
タル皮膜6には、上記の膨張、収縮のたびに外装樹脂4
から機械的ストレスが加わる。導電性高分子層7は、そ
のようなストレスを緩和して酸化タンタル皮膜6を保護
する機能を持っている。従って、ある程度以上の厚さで
あることが必要である。
By the way, as described above, the conductive polymer layer 7 has the graphite layer 8 and the silver paste layer 9 thereon.
It also acts as the cathode of the capacitor. Therefore, from the viewpoint of the series resistance of the cathode, the thinner one is preferable.
On the other hand, however, the conductive polymer layer also functions to protect the element from the mechanical stress applied to the capacitor element by the exterior resin 4. From this point of view, it must have a certain thickness or more. That is, the capacitor element 1
Is heating or cooling when the exterior resin 4 is formed, rapid heat or rapid cooling when the completed capacitor is soldered to a mounting board, or expansion due to temperature change of the environment in actual use after mounting, Repeat contraction. Then, the tantalum oxide film 6 is coated with the exterior resin 4 each time it expands or contracts.
Adds mechanical stress. The conductive polymer layer 7 has a function of relieving such stress and protecting the tantalum oxide film 6. Therefore, it is necessary that the thickness is a certain amount or more.

【0010】上に述べた導電性高分子層7の誘電体酸化
皮膜保護作用と、そのために導電性高分子層7はある程
度以上の厚さにしなければならないということは、例え
ば特開2001−143968号公報に記載されている
ように、既によく知られている。上記公報が開示する固
体電解コンデンサにおいては、導電性高分子層7を化学
酸化重合反応による単層構造のものにした場合、陽極体
のコーナー部(陽極体において、陽極リード10の導出
面と側面とが交わる辺を取りまく部分及び、もう一方の
底面と側面とが交わる辺を取りまく部分)の導電性高分
子層は、それ以外の平面の部分に比べて薄くしか形成さ
れず、そのことが原因でコーナー部では誘電体酸化皮膜
がストレスを受けやすいことに着目して、上記コーナー
部の導電性高分子層の厚さを従来より厚くする工夫をし
ている。そのために、導電性高分子層を化学酸化重合反
応による第1層目と、同じく化学酸化重合反応による第
2層目からなる2層構造にすると共に、第2層目形成時
の反応速度を第1層目形成時の反応速度より速くするよ
うにしたり、更に、第1層目の形成に先立って予めプレ
重合膜層を形成するようにして3層構造にし、プレ重合
膜層形成時の反応速度を第1層目形成時の反応速度より
速くするようにしている。
The above-mentioned action of the conductive polymer layer 7 for protecting the dielectric oxide film and the fact that the conductive polymer layer 7 must have a thickness of a certain degree or more for that purpose are described in, for example, Japanese Unexamined Patent Publication No. 2001-143968. It is already well known as described in Japanese Patent Publication. In the solid electrolytic capacitor disclosed in the above publication, when the conductive polymer layer 7 has a single-layer structure by a chemical oxidative polymerization reaction, the corner portion of the anode body (in the anode body, the lead-out surface and the side surface of the anode lead 10) The conductive polymer layer of the part surrounding the side where the and intersect, and the part surrounding the side where the other bottom and the side intersect) is formed only thinner than the other flat parts, which is the cause. In consideration of the fact that the dielectric oxide film is easily stressed at the corners, the thickness of the conductive polymer layer at the corners is made thicker than before. Therefore, the conductive polymer layer has a two-layer structure including a first layer formed by a chemical oxidative polymerization reaction and a second layer formed by a similar chemical oxidative polymerization reaction, and the reaction rate at the time of forming the second layer is The reaction rate at the time of forming the pre-polymerized film layer may be set to be higher than the reaction rate at the time of forming the first layer, or by forming the pre-polymerized film layer in advance before forming the first layer to form a three-layer structure. The speed is set to be higher than the reaction speed at the time of forming the first layer.

【0011】[0011]

【発明が解決しようとする課題】上述の特開2001−
143968号公報に記載の導電性高分子層形成技術に
よれば、それまでの化学酸化重合反応による単層構造の
導電性高分子層では陽極体のコーナー部の厚さはせいぜ
い1〜2μmであったところ、これを5〜100μmに
厚くできる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
According to the conductive polymer layer forming technique described in Japanese Patent No. 143968, the thickness of the corner portion of the anode body is at most 1 to 2 μm in the conductive polymer layer having a single layer structure by the chemical oxidation polymerization reaction up to that point. By the way, it can be thickened to 5 to 100 μm.

【0012】しかしながら、上記公報記載の導電性高分
子層形成方法においては、導電性高分子層を複層構造に
するというだけでも構造や製造工程が複雑になるのに、
その上に、第2層目形成時の反応速度が第1層目形成時
の反応速度より速くなるようにしなければならないの
で、製造条件の管理が難しくなり、場合によっては製造
設備の新設や増強などが必要になる。
However, in the method of forming a conductive polymer layer described in the above publication, the structure and manufacturing process are complicated even if the conductive polymer layer has a multi-layer structure.
In addition, the reaction rate during the formation of the second layer must be faster than the reaction rate during the formation of the first layer, which makes it difficult to control the production conditions and, in some cases, newly installs or enhances the production equipment. And so on.

【0013】加えて、コーナー部の導電性高分子層こそ
従来より厚くできはするものの、その他の部分の厚さに
ついてはなんら考慮されていない。前述した通り、導電
性高分子層7の厚さは、コンデンサの陰極における直列
抵抗という点からは薄いほうが良く、一方、誘電体酸化
皮膜保護効果という点からは厚いほうが好ましい。しか
しながら、導電性高分子層が厚すぎる場合は、コンデン
サ素子の外形寸法が大きくなるので、外装樹脂4の厚さ
が薄くなってクラックが生じやすくなり、信頼性が低下
してしまう。はなはだしい場合は、素子が外装樹脂4か
ら露出してしまい、コンデンサとして使いものにならな
くなってしまう。上記公報に係る固体電解コンデンサに
おいては、例えばその図13などに見られるように、導
電性高分子層は、コーナー部に比べそれ以外の面の部分
で厚く形成される傾向にある。従って、コーナー部の導
電性高分子層がちょうど適当な厚さであれば、コーナー
部以外の面の部分では厚くなり過ぎて、上述したような
外装樹脂のクラックや外装樹脂からの素子露出の不良が
発生しかねない。
In addition, although the conductive polymer layer at the corner can be made thicker than before, no consideration is given to the thickness of other portions. As described above, the thickness of the conductive polymer layer 7 is preferably thin from the viewpoint of series resistance at the cathode of the capacitor, while it is preferably thick from the viewpoint of the effect of protecting the dielectric oxide film. However, if the conductive polymer layer is too thick, the external dimensions of the capacitor element become large, so that the thickness of the exterior resin 4 becomes thin, cracks are likely to occur, and reliability deteriorates. In the worst case, the element is exposed from the exterior resin 4, making it useless as a capacitor. In the solid electrolytic capacitor according to the above publication, for example, as shown in FIG. 13 and the like, the conductive polymer layer tends to be formed thicker in the other surface portion than in the corner portion. Therefore, if the conductive polymer layer at the corner portion has an appropriate thickness, the surface portion other than the corner portion becomes too thick, resulting in cracks in the exterior resin or defective element exposure from the exterior resin as described above. May occur.

【0014】本発明者らが、化学酸化重合反応による導
電性高分子を固体電解質に用いたコンデンサについて、
導電性高分子層の厚さとコンデンサの洩れ電流不良率及
び外装樹脂4からの素子露出不良率の関係を調査した結
果を図4に示す。図4において、洩れ電流不良率は、コ
ンデンサ素子に外装樹脂4から加わる機械的ストレスが
同じである場合に、酸化タンタル皮膜6に実際に加わる
ストレスは導電性高分子層7の厚さにどのように依存す
るか、つまり、導電性高分子層7のストレス緩和能力を
表していると考えてよいのであるが、その漏れ電流不良
率は、導電性高分子層7が薄ければ薄いほど、高い。言
い換えれば、導電性高分子層7のストレス緩和能力が小
さく、酸化タンタル皮膜6に大きいストレスが加わる。
特に、導電性高分子層7の膜厚が10μm以下では、漏
れ電流不良率が急激に増大する。一方、素子露出不良率
は、導電性高分子層7が厚ければ厚いほど高く、特に、
導電性高分子層7の膜厚が50μm以上では急増する。
従って、導電性高分子層7の厚さは10〜50μmの範
囲であることが望ましいのであるが、上記公報記載の固
体電解コンデンサでは、コーナー部以外の面の部分にお
ける導電性高分子層の厚さを規定していないので、上述
のような素子露出の不良が発生する恐れがある。
The inventors of the present invention have proposed a capacitor using a conductive polymer by a chemical oxidative polymerization reaction as a solid electrolyte.
FIG. 4 shows the result of investigation on the relationship between the thickness of the conductive polymer layer, the defective rate of leakage current of the capacitor, and the defective rate of element exposure from the exterior resin 4. In FIG. 4, when the mechanical stress applied to the capacitor element from the exterior resin 4 is the same, the actual leakage stress applied to the tantalum oxide film 6 depends on the thickness of the conductive polymer layer 7 in FIG. It may be considered that it depends on the above, that is, it represents the stress relieving ability of the conductive polymer layer 7. However, the leakage current defective rate is higher as the conductive polymer layer 7 is thinner. . In other words, the stress relaxation ability of the conductive polymer layer 7 is small, and a large stress is applied to the tantalum oxide film 6.
Particularly, when the film thickness of the conductive polymer layer 7 is 10 μm or less, the leakage current defective rate increases rapidly. On the other hand, the defective element exposure rate is higher as the conductive polymer layer 7 is thicker.
When the film thickness of the conductive polymer layer 7 is 50 μm or more, it rapidly increases.
Therefore, it is desirable that the thickness of the conductive polymer layer 7 is in the range of 10 to 50 μm. However, in the solid electrolytic capacitor described in the above publication, the thickness of the conductive polymer layer on the surface portion other than the corner portion. Since the height is not specified, the above-described defective element exposure may occur.

【0015】後に明らかにするように、陽極体の外表面
における導電性高分子層7の厚さの分布状態は、陽極体
を酸化剤溶液から引き上げた後の乾燥の仕方によって大
きく変わる。上記公報においてはコーナー部以外の面の
部分の導電性高分子層の厚さに関する配慮は何もなされ
ていないし、面の部分の導電性高分子層の厚さとコーナ
ー部の導電性高分子層の厚さとを同時に制御しようとす
る考えも見られない。従って、せっかく導電性高分子層
を2層又は3層の複層構造にし、構造も製造条件も複雑
にするという代償を払って、コーナー部の導電性高分子
層を従来より厚くしても、コーナー部以外の面の部分で
は導電性高分子層が厚くなりすぎて、上述のような外装
樹脂のクラックや外装樹脂からの素子露出による信頼性
の低下や良品率の低下が生じる可能性が大きくなってし
まう。
As will be clarified later, the thickness distribution state of the conductive polymer layer 7 on the outer surface of the anode body greatly changes depending on the drying method after the anode body is pulled out from the oxidant solution. In the above publication, no consideration is given to the thickness of the conductive polymer layer on the surface portion other than the corner portion, and the thickness of the conductive polymer layer on the surface portion and the conductive polymer layer on the corner portion are There is no idea to try to control the thickness at the same time. Therefore, even if the conductive polymer layer at the corner is made thicker than before, at the cost of making the conductive polymer layer a multilayer structure of two or three layers and complicating the structure and manufacturing conditions, It is highly possible that the conductive polymer layer becomes too thick on the surface other than the corners, resulting in a decrease in reliability and a decrease in the yield rate due to the above-mentioned exterior resin cracks and element exposure from the exterior resin. turn into.

【0016】従って、本発明は、固体電解質に化学酸化
重合反応による導電性高分子層を用いた固体電解コンデ
ンサにおいて、導電性高分子層を単層構造で、しかも面
と面の交わりの部分でもそれ以外の部分でも10〜50
μmの膜厚になるように形成する技術を提供することを
目的とする。
Therefore, according to the present invention, in a solid electrolytic capacitor using a conductive polymer layer formed by a chemical oxidative polymerization reaction as a solid electrolyte, the conductive polymer layer has a single-layer structure, and even at the intersections of faces. 10-50 even in other parts
It is an object of the present invention to provide a technique for forming a film having a thickness of μm.

【0017】[0017]

【課題を解決するための手段】本発明の固体電解コンデ
ンサ素子は、弁作用金属の粉末を柱状体に成形し、焼結
し、母材の弁作用金属の酸化皮膜を形成してなる陽極体
と、前記酸化皮膜の表面に形成された導電性高分子の層
とを含む固体電解コンデンサ素子において、前記導電性
高分子の層はモノマーの化学酸化重合によって形成され
た単層構造のものであり、前記柱状体の外表面における
厚さが10μm以上、50μm以下であることを特徴と
する。
The solid electrolytic capacitor element of the present invention is an anode body formed by forming powder of valve action metal into a columnar body and sintering it to form an oxide film of valve action metal of a base material. And a conductive polymer layer formed on the surface of the oxide film, wherein the conductive polymer layer has a single-layer structure formed by chemical oxidative polymerization of monomers. The thickness of the outer surface of the columnar body is 10 μm or more and 50 μm or less.

【0018】上述の固体電解コンデンサ素子は、弁作用
金属の粉末を柱状体に成形し、焼結し、母材の弁作用金
属の酸化皮膜を形成して陽極体を得る過程と、酸化剤と
モノマーとの化学酸化重合反応により、前記酸化皮膜の
表面に導電性高分子の層を形成する過程とを含む固体電
解コンデンサ素子の製造方法において、前記導電性高分
子の層を形成する過程で、前記陽極体に付着させる酸化
剤の、陽極体の外表面における付着量の分布状態を制御
することによって、前記陽極体の外表面に形成される導
電性高分子の層の厚さを前記10μm以上、50μm以
下の範囲内に制御することを特徴とする固体電解コンデ
ンサ素子の製造方法により製造する。
In the solid electrolytic capacitor element described above, a process of forming powder of valve action metal into a columnar body and sintering it to form an oxide film of valve action metal of a base material to obtain an anode body, and an oxidizing agent. In the method for producing a solid electrolytic capacitor element, which comprises a step of forming a conductive polymer layer on the surface of the oxide film by a chemical oxidative polymerization reaction with a monomer, in the step of forming the conductive polymer layer, By controlling the distribution state of the amount of the oxidant attached to the anode body on the outer surface of the anode body, the thickness of the conductive polymer layer formed on the outer surface of the anode body is 10 μm or more. , 50 μm or less, and the solid electrolytic capacitor element is manufactured by the method for manufacturing a solid electrolytic capacitor element.

【0019】[0019]

【発明の実施の形態】次に、本発明の実施の形態につい
て、図面を参照して説明する。本発明の一実施例に係る
タンタル固体電解コンデンサ素子の断面を示す図1と、
従来の技術に係る一例のタンタル固体電解コンデンサの
断面を示す図3とを比較して、どちらの図に示すコンデ
ンサ素子も、固体電解質である導電性高分子の層7A、
7は化学酸化重合反応により形成した単層構造で、その
点では同じである。しかし、本実施例に係るコンデンサ
素子1Aは、エッジ部の導電性高分子層7Aの厚さtE
とエッジ部以外の面の部分の導電性高分子層の厚さtP
とが等しく、10μm≦tE =tP ≦50μmの範囲に
ある点に特徴がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 showing a cross section of a tantalum solid electrolytic capacitor element according to an embodiment of the present invention;
Compared with FIG. 3 showing a cross section of an example of a tantalum solid electrolytic capacitor according to a conventional technique, the capacitor elements shown in both figures show a conductive polymer layer 7A which is a solid electrolyte,
7 is a single layer structure formed by a chemical oxidative polymerization reaction, and is the same in that respect. However, the capacitor element 1A according to the present embodiment has the thickness t E of the conductive polymer layer 7A at the edge portion.
And the thickness t P of the conductive polymer layer on the surface other than the edge portion
Is equal to and is in the range of 10 μm ≦ t E = t P ≦ 50 μm.

【0020】ここで、本実施例に係るコンデンサ素子1
Aは、厚さ:1.5mm、長さ:4mm、幅:3mmの
直方体である。そして、導電性高分子層7Aは、焼結体
の6つの面の部分とそれら6つの面の交わりで作られる
12のエッジ部の全ての部分で、10〜50μmの範囲
の厚さであった。尚、以下では、柱体の全ての辺(角柱
であれば12個の辺、円柱であれば2つの円周)を取り
まく部分を指すときは「エッジ部」と称することにす
る。前述の特開2001−143968号公報における
「コーナー部」と類似の概念であるが、上記公報におけ
る「コーナー部」が、角柱における側面どうしの交わり
で作られる4つの辺を含むか否かが必ずしも明らかでは
ないので、上記4つの辺も含むことを明確にするため
に、敢えて異なる用語を用いる。
Now, the capacitor element 1 according to the present embodiment.
A is a rectangular parallelepiped having a thickness of 1.5 mm, a length of 4 mm and a width of 3 mm. The conductive polymer layer 7A had a thickness in the range of 10 to 50 μm in all of the six face portions of the sintered body and the 12 edge portions formed by the intersection of these six faces. . In the following, when referring to all sides of a columnar body (12 sides in the case of a prism, two circles in the case of a cylinder), they are referred to as "edge portions". Although the concept is similar to the “corner part” in the above-mentioned Japanese Patent Laid-Open No. 2001-143968, whether or not the “corner part” in the above-mentioned publication includes four sides formed by intersections of side surfaces of a prism is not necessarily required. Since it is not clear, different terms are intentionally used to clarify that the above four sides are also included.

【0021】本発明者らは、図1に示すタンタル固体電
解コンデンサ素子を、以下のようにして作製した。先
ず、従来公知の方法で、陽極体を形成する。すなわち、
金属タンタルの粉末をプレス成形し、焼結して直方体
(厚さ:1.5mm、長さ:4mm、幅:3mm)の焼
結体5を形成する。その場合、タンタル粉末のプレス成
形の際、同時に、直方体の一つの底面に陽極リード10
となるタンタルワイヤーを植え立てる。その後、陽極酸
化を行って、焼結体の外表面及び内部の微細孔の表面に
母材の金属タンタルの酸化皮膜6を形成して、陽極体を
得る。
The present inventors produced the tantalum solid electrolytic capacitor element shown in FIG. 1 as follows. First, an anode body is formed by a conventionally known method. That is,
The metal tantalum powder is press-molded and sintered to form a rectangular parallelepiped (thickness: 1.5 mm, length: 4 mm, width: 3 mm) sintered body 5. In that case, the anode lead 10 is formed on one bottom surface of the rectangular parallelepiped at the same time when the tantalum powder is pressed.
Plant the tantalum wire that will become. After that, anodization is performed to form an oxide film 6 of metal tantalum as a base material on the outer surface of the sintered body and the surfaces of the fine pores inside, to obtain an anode body.

【0022】そして、上記酸化タンタル皮膜6の上に、
化学酸化重合反応によって単層のポリチオフェンの層7
Aを形成する。この層が、導電性高分子層である。ポリ
チオフェン層7Aの形成には、モノマー溶液にチオフェ
ンを用い、ドデシルベンゼンスルホン酸第二鉄をエチル
アルコールに溶解させた液を酸化剤溶液に用いる。そし
て、始めに陽極体を上記酸化剤溶液に浸漬させ、引き上
げ、温風を送風して乾燥させ、次いでモノマー溶液に浸
漬させ、引き上げ、温風を送って熱を加え酸化重合させ
るという一連の操作を、ポリチオフェン層7Aが目標の
厚さになるまで繰り返す。
Then, on the tantalum oxide film 6,
Single layer polythiophene layer 7 by chemical oxidative polymerization reaction
Form A. This layer is a conductive polymer layer. To form the polythiophene layer 7A, thiophene is used as the monomer solution, and a solution of ferric dodecylbenzene sulfonate dissolved in ethyl alcohol is used as the oxidant solution. Then, a series of operations of first immersing the anode body in the oxidant solution, pulling it up, blowing warm air to dry it, then immersing it in the monomer solution, pulling it up, sending warm air to heat it for oxidative polymerization Is repeated until the polythiophene layer 7A has a target thickness.

【0023】上述のポリチオフェン層7Aの形成に先だ
って、本発明者らは、酸化剤の乾燥速度とポリチオフェ
ン層の厚さとの関係を、陽極体のエッジ部とそれ以外の
部分について調査した。そして、酸化剤溶液から陽極体
を引き上げた後の乾燥速度を制御することで、陽極体の
エッジ部におけるポリチオフェン層の厚さとエッジ部以
外の部分に形成される厚さとの関係を制御できることを
見い出した。図2に、調査結果を示す。図2を参照し
て、横軸は酸化剤の乾燥速度Vを示す。乾燥速度は、V
=陽極体に付着した酸化剤溶液の重量に対する、乾燥の
進行に伴って減少する1分間当りの重量の比(wt%/
分)で定義した値であり、酸化剤溶液中の溶媒の蒸発速
度に他ならない。縦軸はポリチオフェン層7Aの厚さ
(μm)を示す。黒丸の実線がエッジ部における厚さを
示し、乾燥速度V=0.3wt%/分当りにピークを持
つ、すその広がった山形の曲線を描いている。白丸の破
線はエッジ部以外の面の部分における厚さを示し、乾燥
速度Vの増加に伴って単調に増加していって飽和傾向を
示す曲線を描く。そして、乾燥速度Vが約0.4wt%
/分より遅いとき(グラフ上で、左側)は、エッジ部の
ポリチオフェン層のほうがそれ以外の部分より厚く、一
方、乾燥速度Vが上記0.4wt%/分より早いとき
(同、右側)では、エッジ部のほうがそれ以外の面の部
分より薄くなっている。
Prior to the formation of the above-mentioned polythiophene layer 7A, the present inventors investigated the relationship between the drying rate of the oxidizing agent and the thickness of the polythiophene layer in the edge portion of the anode body and other portions. Then, it was found that the relationship between the thickness of the polythiophene layer at the edge portion of the anode body and the thickness formed at the portion other than the edge portion can be controlled by controlling the drying speed after pulling up the anode body from the oxidant solution. It was Figure 2 shows the survey results. Referring to FIG. 2, the horizontal axis represents the drying rate V of the oxidant. Drying speed is V
= Ratio of the weight per minute that decreases with the progress of drying to the weight of the oxidant solution attached to the anode body (wt% /
Min)), which is nothing but the evaporation rate of the solvent in the oxidant solution. The vertical axis represents the thickness (μm) of the polythiophene layer 7A. A solid line of a black circle indicates the thickness at the edge portion, and a curved mountain-shaped curve having a peak at a drying rate V = 0.3 wt% / min is drawn. The broken line with white circles indicates the thickness of the surface portion other than the edge portion, and a curve showing a saturation tendency that monotonically increases with an increase in the drying speed V is drawn. And the drying speed V is about 0.4 wt%
When it is slower than / min (on the left side in the graph), the polythiophene layer at the edge portion is thicker than the other portions, while when the drying speed V is faster than 0.4 wt% / min (the right side). The edge part is thinner than the other surface parts.

【0024】ポリチオフェン層7Aの厚さが上述のよう
な曲線形状となる理由は、以下のように考えられる。す
なわち、これまで、本発明者らは、酸化剤が未乾燥の場
合について、この場合でも導電性高分子層は形成できる
ものの、陽極体表面には定着しないのでコンデンサ素子
としては使えないこと、従って、固体電解質としての導
電性高分子層の形成における要点は、酸化剤を陽極体表
面で十分乾燥させ、定着させることで導電性高分子層を
陽極体表面に定着させる点にあることを経験している。
陽極体の外表面に形成される導電性高分子層の厚さは、
陽極体に定着させた酸化剤の量に依存する。次に、一般
的に、酸化剤溶液の溶媒には、例えばエチルアルコール
のような有機溶媒が使用されていて、陽極体を酸化剤溶
液に浸漬して引き上げた直後は、エッジ部に比べそれ以
外の面の部分に多くの溶液が付着しており、乾燥、酸化
剤の析出は、液の付着量の少ないエッジ部から始まる。
The reason why the thickness of the polythiophene layer 7A has the curved shape as described above is considered as follows. That is, so far, the present inventors have found that when the oxidizing agent is not dried, the conductive polymer layer can be formed even in this case, but it cannot be used as a capacitor element because it does not fix on the surface of the anode body. Experienced that the main point in the formation of the conductive polymer layer as a solid electrolyte is that the conductive polymer layer is fixed on the surface of the anode body by sufficiently drying and fixing the oxidizing agent on the surface of the anode body. ing.
The thickness of the conductive polymer layer formed on the outer surface of the anode body is
It depends on the amount of the oxidizer fixed on the anode body. Next, in general, an organic solvent such as ethyl alcohol is used as the solvent of the oxidant solution, and immediately after the anode body is immersed in the oxidant solution and pulled up, other than the edge part, A large amount of the solution adheres to the surface part of the surface, and the drying and the deposition of the oxidant start from the edge part where the amount of the liquid adhered is small.

【0025】そこで、先ず、乾燥速度Vが遅い場合を考
えると、この場合は、溶媒がゆっくり蒸発してゆくこと
から、乾燥が遅れる面の部分の未乾燥の液が乾燥の進ん
だエッジ部に引き寄せられてゆき、結局、乾燥が終わっ
た後では、エッジ部への酸化剤の付着量のほうが面の部
分への付着量より多くなっている。そして、この酸化剤
の付着量の違いが、導電性高分子層の厚さの違いとなっ
て現れる。これが、図2に示すグラフにおける、乾燥速
度Vが0.4wt%/分以下の領域である。
Therefore, first, considering the case where the drying speed V is slow, in this case, since the solvent slowly evaporates, the undried liquid on the surface of the surface where the drying is delayed will reach the edge where the drying has proceeded. After being attracted and eventually after drying, the amount of the oxidant attached to the edge portion is larger than the amount of the oxidant attached to the surface portion. Then, the difference in the adhesion amount of the oxidant appears as the difference in the thickness of the conductive polymer layer. This is a region where the drying rate V is 0.4 wt% / min or less in the graph shown in FIG.

【0026】一方、乾燥速度Vが速いときは、溶媒がす
ばやく蒸発してしまい、面の部分の液がエッジ部へ引き
寄せられていく暇がないので、乾燥後の陽極体への酸化
剤の付着状態は、酸化剤溶液から引き上げた直後の陽極
体の、各部位への酸化剤溶液の付着状態をそのまま反映
したものになる。つまり、エッジ部への酸化剤の付着量
のほうが面の部分への付着量より少なくなり、導電性高
分子層もエッジ部のほうが薄くなる。これが、図2に示
すグラフにおける、乾燥速度Vが0.4wt%/分以上
の領域である。
On the other hand, when the drying speed V is high, the solvent evaporates quickly, and there is no time to draw the liquid of the surface portion to the edge portion, so that the oxidizer adheres to the anode body after drying. The state directly reflects the state of adhesion of the oxidant solution to each part of the anode body immediately after being pulled up from the oxidant solution. That is, the amount of the oxidant attached to the edge portion becomes smaller than the amount of the oxidant attached to the surface portion, and the conductive polymer layer also becomes thinner at the edge portion. This is a region where the drying rate V is 0.4 wt% / min or more in the graph shown in FIG.

【0027】なお、乾燥速度がある限度を越えて遅くな
る(V=0.3wt%/分以下)と、陽極体の表面が濡
れたままで乾燥しないので、形成された導電性高分子は
エッジ部でも平面部でも定着しにくくなって薄くなり、
さらに遅い場合(V=0.1wt%/分以下)では、殆
ど形成されなくなる。一方、乾燥速度が十分速い場合
(V=0.7wt%/分以上)では、エッジ部、平面部
とも陽極体に付着する液量で決まる飽和傾向を示す。
When the drying speed becomes slower than a certain limit (V = 0.3 wt% / min or less), the surface of the anode body remains wet and does not dry, so that the conductive polymer formed has an edge portion. However, it becomes difficult to fix even on the flat part and it becomes thin,
In the later case (V = 0.1 wt% / min or less), almost no formation occurs. On the other hand, when the drying speed is sufficiently high (V = 0.7 wt% / min or more), both the edge portion and the flat surface portion show a saturation tendency determined by the amount of liquid adhering to the anode body.

【0028】以上の結果から、酸化剤溶液の乾燥速度V
を0.4wt%/分近辺にすれば、エッジ部のポリチオ
フェン層の厚さとそれ以外の部分の厚さとを同一にする
ことができる。酸化剤の乾燥速度Vは、乾燥時の湿度、
温度、風速及び気圧によって制御できる。本実施例で
は、温度:25℃、湿度:60%RH、風速:0.5m
/s、気圧:1気圧の条件で、酸化剤の乾燥を行った。
From the above results, the drying rate V of the oxidant solution is
Is about 0.4 wt% / min, the thickness of the polythiophene layer at the edge portion and the thickness of other portions can be made the same. The drying rate V of the oxidant is
It can be controlled by temperature, wind speed and atmospheric pressure. In this embodiment, temperature: 25 ° C., humidity: 60% RH, wind speed: 0.5 m
The oxidizing agent was dried under the conditions of / s and atmospheric pressure: 1 atmospheric pressure.

【0029】図2に示す調査結果によれば、酸化剤溶液
の乾燥速度Vが正確に0.4wt%/分でなくても、V
=0.1〜0.5wt%/分の範囲内に制御すれば、陽
極体の外表面上のポリチオフェン層全体の厚さを10〜
50μm以内に収めることができる。このとき、エッジ
部におけるポリチオフェン層の厚さtE と面の部分の厚
さtP とは、乾燥速度Vを変えることによって、エッジ
部のほうを厚くするようにも、平面部分のほうを厚くす
るようにも、どちらにでもできるが、両方の厚さの差Δ
tは、乾燥速度V=0.5wt%/分のとき最大で、t
P =50μm、tE =30μm、Δt=20μmであっ
た。
According to the investigation results shown in FIG. 2, even if the drying rate V of the oxidant solution is not exactly 0.4 wt% / min, V
= 0.1 to 0.5 wt% / min, the total thickness of the polythiophene layer on the outer surface of the anode body is 10 to 10.
It can be set within 50 μm. At this time, the thickness t E of the polythiophene layer at the edge portion and the thickness t P of the surface portion are made thicker at the flat portion so that the flat portion is thicker by changing the drying speed V. You can do it either way, but the difference between both thicknesses Δ
t is the maximum when the drying speed V = 0.5 wt% / min.
P = 50 μm, t E = 30 μm, and Δt = 20 μm.

【0030】乾燥速度Vは、温度、湿度、風速、気圧に
よって制御するが、上述した数値に限定する必要はな
い。温度、湿度、風速、気圧の4要因を変化させるとい
うことは、陽極体の表面における溶媒の蒸気圧を変化さ
せて酸化剤溶液の乾燥速度Vを制御するということであ
るから、乾燥速度Vが0.1〜0.5wt%/分の範囲
内なるようにできさえすれば、上記4要因の数値を固定
すべき必然性はない。また、上記4要因を変化させる場
合でも、どの要因を変化させてもよい。更には、一つの
要因に限らず、いくつかの複数の要因を組み合せて変え
るようにしてもよい。
The drying speed V is controlled by temperature, humidity, wind speed and atmospheric pressure, but it is not necessary to limit it to the above-mentioned numerical values. Changing the four factors of temperature, humidity, wind speed, and atmospheric pressure means changing the vapor pressure of the solvent on the surface of the anode body to control the drying rate V of the oxidant solution. There is no need to fix the numerical values of the above four factors as long as the values are within the range of 0.1 to 0.5 wt% / min. Further, even when changing the above four factors, any factor may be changed. Furthermore, the number of factors is not limited to one, and some factors may be combined and changed.

【0031】なお、本実施例は、モノマー及び酸化剤溶
液に、それぞれチオフェン及びドデシルベンゼンスルホ
ン酸第二鉄のエチルアルコール溶液を用いた例である
が、例えばピロールのような他のモノマーや、例えばド
デシルベンゼン第二銅、ブチルナフタレンスルホンサン
第二鉄あるいはブチルナフタレンスルホンサン第二銅の
ような他の酸化剤を用いた場合でも本実施例と同様の作
用効果が得られることを確認した。
This example is an example in which an ethyl alcohol solution of thiophene and ferric dodecylbenzene sulfonate is used as the monomer and the oxidant solution, but other monomers such as pyrrole, for example, It was confirmed that the same action and effect as in the present example can be obtained even when another oxidizing agent such as cupric dodecylbenzene, ferric butylnaphthalene sulfonesan or cupric butylnaphthalenesulfonesan is used.

【0032】尚また、本実施例は、タンタル固体電解コ
ンデンサに本発明を適用した例であるが、タンタル以外
の例えばアルミニウムのような他の弁作用金属を用いた
コンデンサ素子に適用して、本実施例と同様の作用効果
を得ることができることは、明らかであろう。
Although the present embodiment is an example in which the present invention is applied to a tantalum solid electrolytic capacitor, the present invention is applied to a capacitor element using another valve action metal other than tantalum, such as aluminum. It will be apparent that the same effect as the embodiment can be obtained.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
固体電解質に化学酸化重合反応による導電性高分子層を
用いた固体電解コンデンサにおいて、導電性高分子層を
単層構造にし、しかも面と面の交わりの部分とそれ以外
の部分とで均等に、10〜50μmの膜厚に形成できる
ようにすることができる。
As described above, according to the present invention,
In a solid electrolytic capacitor using a conductive polymer layer by a chemical oxidative polymerization reaction in the solid electrolyte, the conductive polymer layer has a single-layer structure, moreover, even at the intersection of the surface and the surface and the other part, It can be formed to have a film thickness of 10 to 50 μm.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るタンタル固体電解コン
デンサ素子の断面図である。
FIG. 1 is a sectional view of a tantalum solid electrolytic capacitor element according to an embodiment of the present invention.

【図2】酸化剤の乾燥速度と導電性高分子層の厚さとの
関係を、陽極体のエッジ部とそれ以外の部分とについて
示す図である。
FIG. 2 is a diagram showing a relationship between a drying rate of an oxidant and a thickness of a conductive polymer layer in an edge portion of an anode body and other portions.

【図3】従来の技術に係る固体電解コンデンサの断面図
である。
FIG. 3 is a cross-sectional view of a conventional solid electrolytic capacitor.

【図4】導電性高分子層の厚さと漏れ電流不良率及び素
子露出不良率の関係を示す図である。
FIG. 4 is a diagram showing the relationship among the thickness of a conductive polymer layer, the leakage current defect rate, and the element exposure defect rate.

【符号の説明】[Explanation of symbols]

1A コンデンサ素子 2 陽極端子 3 陰極端子 4 外装樹脂 5 焼結体 6 酸化タンタル皮膜 7A 導電性高分子層 8 グラファイト層 9 銀ペースト層 10 陽極リード 11 導電性接着剤 1A capacitor element 2 Anode terminal 3 cathode terminal 4 Exterior resin 5 Sintered body 6 Tantalum oxide film 7A conductive polymer layer 8 Graphite layer 9 Silver paste layer 10 Anode lead 11 Conductive adhesive

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 弁作用金属の粉末を柱状体に成形し、焼
結し、母材の弁作用金属の酸化皮膜を形成してなる陽極
体と、前記酸化皮膜の表面に形成された導電性高分子の
層とを含む固体電解コンデンサ素子において、 前記導電性高分子の層はモノマーの化学酸化重合によっ
て形成された単層構造のものであり、前記柱状体の外表
面における厚さが10μm以上、50μm以下であるこ
とを特徴とする固体電解コンデンサ素子。
1. An anode body comprising a valve metal powder formed into a columnar body and sintered to form an oxide film of a valve metal of a base material, and a conductive material formed on the surface of the oxide film. In a solid electrolytic capacitor element including a polymer layer, the conductive polymer layer has a single layer structure formed by chemical oxidative polymerization of monomers, and the columnar body has a thickness of 10 μm or more on an outer surface. And 50 μm or less, a solid electrolytic capacitor element.
【請求項2】 前記柱状体の各々の面が交わる部分にお
ける導電性高分子層の厚さと、それ以外の部分における
導電性高分子層の厚さとの差異が±20μm以下である
ことを特徴とする請求項1に記載の固体電解コンデンサ
素子。
2. The difference between the thickness of the conductive polymer layer in the portion where each surface of the columnar body intersects and the thickness of the conductive polymer layer in the other portion is ± 20 μm or less. The solid electrolytic capacitor element according to claim 1.
【請求項3】 請求項1又は請求項2に記載の固体電解
コンデンサ素子を製造する方法であって、弁作用金属の
粉末を柱状体に成形し、焼結し、母材の弁作用金属の酸
化皮膜を形成して陽極体を得る過程と、酸化剤とモノマ
ーとの化学酸化重合反応により、前記酸化皮膜の表面に
導電性高分子の層を形成する過程とを含む固体電解コン
デンサ素子の製造方法において、 前記導電性高分子の層を形成する過程で、前記陽極体に
付着させる酸化剤の、陽極体の外表面における付着量の
分布状態を制御することによって、前記陽極体の外表面
に形成される導電性高分子の層の厚さを前記10μm以
上、50μm以下の範囲内に制御することを特徴とする
固体電解コンデンサ素子の製造方法。
3. A method for manufacturing the solid electrolytic capacitor element according to claim 1 or 2, wherein a powder of valve action metal is formed into a columnar body and sintered to obtain a valve action metal of a base material. Manufacture of a solid electrolytic capacitor element including a step of forming an oxide film to obtain an anode body and a step of forming a layer of a conductive polymer on the surface of the oxide film by a chemical oxidative polymerization reaction of an oxidizing agent and a monomer In the method, in the process of forming the layer of the conductive polymer, the oxidizing agent to be attached to the anode body, by controlling the distribution state of the deposition amount on the outer surface of the anode body, to the outer surface of the anode body. A method for manufacturing a solid electrolytic capacitor element, characterized in that the thickness of the conductive polymer layer formed is controlled within the range of 10 μm or more and 50 μm or less.
【請求項4】 前記導電性高分子の層を形成する過程で
は、酸化剤を含む溶液中に陽極体を浸漬させ、引き上
げ、乾燥して陽極体に酸化剤を付着させる酸化剤付着過
程と、前記酸化剤を付着させた陽極体をモノマーを含む
溶液中に浸漬させてモノマーを付着させる過程と、酸化
剤とモノマーとを化学酸化重合反応させる過程とをこの
順に行うことを少なくとも1回以上繰り返して行い、 各々の前記酸化剤付着過程における乾燥の速度を制御す
ることにより、前記陽極体の外表面における酸化剤の付
着量の分布状態を制御することを特徴とする、請求項3
に記載の固体電解コンデンサ素子の製造方法。
4. The step of forming the conductive polymer layer, the step of immersing the anode body in a solution containing an oxidant, the process of pulling it up and drying to attach the oxidant to the anode body, The step of immersing the anode body having the oxidant attached thereto in a solution containing the monomer to attach the monomer and the step of causing the oxidant and the monomer to undergo a chemical oxidative polymerization reaction in this order are repeated at least once or more. 4. The distribution state of the amount of attached oxidant on the outer surface of the anode body is controlled by controlling the drying speed in each process of attaching the oxidant.
A method for manufacturing the solid electrolytic capacitor element as described in 1.
【請求項5】 前記酸化剤付着過程における乾燥の速度
Vを、前記酸化剤を含む溶液における、浸漬により陽極
体に付着した重量に対する乾燥により1分間当りに減少
する重量の%比で表したとき、0.1wt%/分≦V≦
0.5wt%/分とすることを特徴とする、請求項4に
記載の固体電解コンデンサ素子の製造方法。
5. The rate of drying V in the process of depositing the oxidant is expressed as a percentage of the weight of the solution containing the oxidant, which decreases per minute with respect to the weight deposited on the anode body by immersion. , 0.1 wt% / min ≦ V ≦
The solid electrolytic capacitor element manufacturing method according to claim 4, wherein the solid electrolytic capacitor element is 0.5 wt% / min.
【請求項6】 弁作用金属の粉末を柱状体に成形し、焼
結し、母材の弁作用金属の酸化皮膜を形成して陽極体を
得る過程と、 前記陽極体を前記酸化剤を含む溶液中に浸漬させ、引き
上げ、陽極体に付着した酸化剤を含む溶液の乾燥の速度
V=浸漬により陽極体に付着した重量/乾燥により1分
間当りに減少する重量が、0.1wt%/分≦V≦0.
5wt%/分となるように乾燥させ、モノマーを含む溶
液中に浸漬させ、引き上げ、前記酸化剤とモノマーとを
化学重合反応させることを少なくとも1回以上繰り返し
て、前記陽極体の外表面における厚さが10μm以上、
50μm以下になるように、導電性高分子の層を形成す
る過程とを含む固体電解コンデンサ素子の製造方法。
6. A process of forming a powder of valve metal into a columnar body and sintering it to form an oxide film of valve metal of a base material to obtain an anode body, and the anode body containing the oxidizing agent. The rate of drying of the solution containing the oxidant attached to the anode body by immersing in the solution, pulling up, V = weight attached to anode body by immersion / weight reduced per minute by drying is 0.1 wt% / min ≤V≤0.
The thickness on the outer surface of the anode body is repeated at least once by drying to 5 wt% / min, immersing in a solution containing a monomer, pulling it up, and chemically polymerizing the oxidant and the monomer. Is 10 μm or more,
And a step of forming a layer of a conductive polymer so as to have a thickness of 50 μm or less.
【請求項7】 前記陽極体に付着した酸化剤を含む溶液
の乾燥の速度を、乾燥雰囲気の温度、湿度、気圧及び風
速により制御することを特徴とする、請求項4乃至6の
何れか1項に記載の固体電解コンデンサ素子の製造方
法。
7. The method according to claim 4, wherein the rate of drying the solution containing the oxidant attached to the anode body is controlled by the temperature, humidity, atmospheric pressure and wind speed of the drying atmosphere. Item 7. A method for manufacturing a solid electrolytic capacitor element as described in the item.
【請求項8】 請求項1に記載の固体電解コンデンサ素
子に外部との接続のための陽極端子及び陰極端子を設
け、外装を施してなる固体電解コンデンサであって、前
記弁作用金属にTaを用いたことを特徴とする固体電解
コンデンサ。
8. A solid electrolytic capacitor in which the solid electrolytic capacitor element according to claim 1 is provided with an anode terminal and a cathode terminal for connection to the outside, and an exterior is provided, wherein Ta is used for the valve action metal. A solid electrolytic capacitor characterized by being used.
JP2001383331A 2001-12-17 2001-12-17 Solid electrolytic capacitor element and manufacturing method thereof, and solid electrolytic capacitor Pending JP2003188052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001383331A JP2003188052A (en) 2001-12-17 2001-12-17 Solid electrolytic capacitor element and manufacturing method thereof, and solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001383331A JP2003188052A (en) 2001-12-17 2001-12-17 Solid electrolytic capacitor element and manufacturing method thereof, and solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2003188052A true JP2003188052A (en) 2003-07-04

Family

ID=27593414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001383331A Pending JP2003188052A (en) 2001-12-17 2001-12-17 Solid electrolytic capacitor element and manufacturing method thereof, and solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2003188052A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005048277A1 (en) 2003-11-13 2005-05-26 Showa Denko K.K. Solid electrolyte capacitor
EP1746613A1 (en) 2005-07-20 2007-01-24 H.C. Starck GmbH & Co. KG Electrolytic capacitors having polymeric outer layer and process of their production
JP2007059853A (en) * 2005-07-29 2007-03-08 Showa Denko Kk Method for forming solid electrolyte layer, and composite material manufactured using this method
JP2007123855A (en) * 2005-09-27 2007-05-17 Showa Denko Kk Solid electrolytic capacitor and manufacturing method thereof
US7279015B2 (en) 2004-05-05 2007-10-09 H.C. Starck Gmbh Process for the producing of electrolytic capacitors
US7377947B2 (en) 2005-04-11 2008-05-27 H.C. Starck Gmbh Electrolyte capacitors having a polymeric outer layer and process for their production
JP2008186841A (en) * 2007-01-26 2008-08-14 Nippon Chemicon Corp Method for manufacturing solid-state electrolytic capacitor
US7495892B2 (en) 2005-04-27 2009-02-24 Showa Denko K.K. Solid electrolytic capacitor
DE102007048212A1 (en) 2007-10-08 2009-04-09 H.C. Starck Gmbh Process for the preparation of electrolytic capacitors with polymeric interlayer
DE102009007594A1 (en) 2009-02-05 2010-08-12 H.C. Starck Clevios Gmbh Process for the preparation of electrolytic capacitors with a polymeric outer layer.
JP2010192831A (en) * 2009-02-20 2010-09-02 Nec Tokin Corp Solid electrolytic capacitor
EP2950317A1 (en) 2014-05-30 2015-12-02 Heraeus Deutschland GmbH & Co. KG Two or polyfunctional compounds as adhesion primers for conductive polymers
EP2950316A1 (en) 2014-05-30 2015-12-02 Heraeus Deutschland GmbH & Co. KG Monofunctional amines as adhesion primers for conductive polymers
CN112863881A (en) * 2019-11-28 2021-05-28 三星电机株式会社 Solid electrolytic capacitor and method for manufacturing the same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005048277A1 (en) 2003-11-13 2005-05-26 Showa Denko K.K. Solid electrolyte capacitor
US7436652B2 (en) 2003-11-13 2008-10-14 Showa Denko K.K. Solid electrolyte capacitor
US7279015B2 (en) 2004-05-05 2007-10-09 H.C. Starck Gmbh Process for the producing of electrolytic capacitors
US7377947B2 (en) 2005-04-11 2008-05-27 H.C. Starck Gmbh Electrolyte capacitors having a polymeric outer layer and process for their production
US7495892B2 (en) 2005-04-27 2009-02-24 Showa Denko K.K. Solid electrolytic capacitor
US7411779B2 (en) 2005-07-20 2008-08-12 H.C. Starck Gmbh Electrolytic capacitors with a polymeric outer layer and process for the production thereof
EP1746613A1 (en) 2005-07-20 2007-01-24 H.C. Starck GmbH & Co. KG Electrolytic capacitors having polymeric outer layer and process of their production
JP4730654B2 (en) * 2005-07-29 2011-07-20 株式会社村田製作所 Solid electrolyte layer forming method and composite material produced using the method
JP2007059853A (en) * 2005-07-29 2007-03-08 Showa Denko Kk Method for forming solid electrolyte layer, and composite material manufactured using this method
JP2007123855A (en) * 2005-09-27 2007-05-17 Showa Denko Kk Solid electrolytic capacitor and manufacturing method thereof
JP2008186841A (en) * 2007-01-26 2008-08-14 Nippon Chemicon Corp Method for manufacturing solid-state electrolytic capacitor
DE102007048212A1 (en) 2007-10-08 2009-04-09 H.C. Starck Gmbh Process for the preparation of electrolytic capacitors with polymeric interlayer
US9251961B2 (en) 2007-10-08 2016-02-02 Heraeus Precious Metals Gmbh & Co. Kg Methods for producing electrolytic capacitors having a polymeric intermediate layer, capacitors produced thereby and uses thereof
WO2010089111A1 (en) 2009-02-05 2010-08-12 H.C. Starck Clevios Gmbh Process for producing electrolytic capacitors with a polymeric outer layer
EP2750152A1 (en) 2009-02-05 2014-07-02 Heraeus Precious Metals GmbH & Co. KG Process for producing electrolytic capacitors with a polymeric outer layer
US8882856B2 (en) 2009-02-05 2014-11-11 Heraeus Precious Metals Gmbh & Co. Kg Process for producing electrolytic capacitors with a polymeric outer layer
US9111680B2 (en) 2009-02-05 2015-08-18 Heraeus Precious Metals Gmbh & Co. Kg Process for producing electrolytic capacitors with a polymeric outer layer
DE102009007594A1 (en) 2009-02-05 2010-08-12 H.C. Starck Clevios Gmbh Process for the preparation of electrolytic capacitors with a polymeric outer layer.
JP2010192831A (en) * 2009-02-20 2010-09-02 Nec Tokin Corp Solid electrolytic capacitor
EP2950317A1 (en) 2014-05-30 2015-12-02 Heraeus Deutschland GmbH & Co. KG Two or polyfunctional compounds as adhesion primers for conductive polymers
EP2950316A1 (en) 2014-05-30 2015-12-02 Heraeus Deutschland GmbH & Co. KG Monofunctional amines as adhesion primers for conductive polymers
WO2015181347A1 (en) 2014-05-30 2015-12-03 Heraeus Deutschland GmbH & Co. KG Two or polyfunctional compounds as adhesion primers for conductive polymers
WO2015181348A1 (en) 2014-05-30 2015-12-03 Heraeus Deutschland GmbH & Co. KG Monofunctional amines as adhesion primers for conductive polymers
CN112863881A (en) * 2019-11-28 2021-05-28 三星电机株式会社 Solid electrolytic capacitor and method for manufacturing the same
US11521801B2 (en) * 2019-11-28 2022-12-06 Samsung Electro-Mechanics Co., Ltd. Solid electrolyte capacitor and fabrication method thereof

Similar Documents

Publication Publication Date Title
KR0159127B1 (en) Solid electrolytic capacitor and process for production thereof
JP2682478B2 (en) Chip-shaped solid electrolytic capacitor and manufacturing method thereof
JP2003188052A (en) Solid electrolytic capacitor element and manufacturing method thereof, and solid electrolytic capacitor
JP3231689B2 (en) Solid electrolytic capacitor using conductive polymer and method for manufacturing the same
US6215651B1 (en) Solid electrolyte capacitor using conductive polymer
JP5772763B2 (en) Solid electrolytic capacitor
JPH1145825A (en) Manufacture of solid electrolytic capacitor
JP5062770B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3087654B2 (en) Method for manufacturing solid electrolytic capacitor using conductive polymer
JP2000216061A (en) Manufacture for solid-state electrolytic capacitor
JP2004186684A (en) Solid electrolytic capacitor and manufacturing method therefor
JP4547780B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007173454A (en) Solid electrolytic capacitor
JP4803741B2 (en) Manufacturing method of solid electrolytic capacitor
TWI283877B (en) Solid electrolytic capacitor and method for producing the same
JPH11135377A (en) Solid electrolytic capacitor and its manufacture
JP2007103468A (en) Electrolytic capacitor and manufacturing method thereof
JP2002270468A (en) Capacitor manufacturing method and capacitor
JPH09306787A (en) Manufacture of solid-state electrolytic capacitor
JP2007103406A (en) Manufacturing method of solid electrolytic capacitor
JP4066473B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4117727B2 (en) Manufacturing method of solid electrolytic capacitor
JP3074742B2 (en) Method for manufacturing solid electrolytic capacitor
JP2010141180A (en) Solid-state electrolytic capacitor, and method of manufacturing the same
JPH0338011A (en) Manufacture of solid electrolytic capacitor

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20040524

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071017