JP2003187643A - Low-transmittance transparent conductive base material and its manufacturing method as well as display device applying this base material - Google Patents

Low-transmittance transparent conductive base material and its manufacturing method as well as display device applying this base material

Info

Publication number
JP2003187643A
JP2003187643A JP2001388988A JP2001388988A JP2003187643A JP 2003187643 A JP2003187643 A JP 2003187643A JP 2001388988 A JP2001388988 A JP 2001388988A JP 2001388988 A JP2001388988 A JP 2001388988A JP 2003187643 A JP2003187643 A JP 2003187643A
Authority
JP
Japan
Prior art keywords
transparent
transmittance
low
transparent conductive
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001388988A
Other languages
Japanese (ja)
Inventor
Yoshihiro Otsuka
良広 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001388988A priority Critical patent/JP2003187643A/en
Publication of JP2003187643A publication Critical patent/JP2003187643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Non-Insulated Conductors (AREA)
  • Optical Filters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-transmittance transparent conductive base material, and its manufacturing method as well as a display device, with excellent conductivity, low-reflection characteristics, low-transmittance characteristics, and with a good transmitted color, as well as with reduced manufacturing cost. <P>SOLUTION: With the low-transmittance transparent conductive base material composed of a transparent substrate and a transparent membrane, the transparent membrane is structured with a coloring layer, a transparent conductive layer and a transparent coating layer, with an a* value at -10 to +5, a b* value at -10 to +5, of color index in an L*a*b* color model of the transparent membrane (at a standard light source of D65, a visual field angle of 2 degrees) found from transmittance measured for each 5 nm in a visible light range of 380 to 780 nm and a surface resistivity of the transparent membrane at 5×10<SP>3</SP>Ω/(square) or less, reflectance to be minimum in a reflection profile in a visible light range of 380 to 780 nm of less than 2%, a transmittance of 40 to 60%, and a standard deviation of light transmittance excluding the transparent substrate measured for each 5 nm of 7% or less. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、透明基板とこの透
明基板上に設けられた透明皮膜とを備え、例えばブラウ
ン管等表示装置の前面板(フェースパネル)等に利用さ
れる低透過率透明導電性基材に係り、特に、上記透明皮
膜が透明基板上に順次形成された着色層、透明導電層お
よび透明コート層とで構成されると共に、電界シールド
に好ましいとされる導電特性と低反射特性に加えて、低
透過特性と黒色から青黒色系の良好な透過色を有し、し
かも製造コストの低減が図れる低透過率透明導電性基材
とその製造方法およびこの低透過率透明導電性基材が適
用された表示装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a transparent substrate and a transparent film provided on the transparent substrate, and has a low transmissivity transparent conductive film used for a front plate (face panel) of a display device such as a cathode ray tube. In particular, the transparent film is composed of a colored layer, a transparent conductive layer and a transparent coat layer, which are sequentially formed on a transparent substrate, and the conductive property and the low reflection property are preferable for an electric field shield. In addition, it has a low transmission characteristic and a good transmission color of black to bluish black, and also has a low transmittance transparent conductive base material capable of reducing the manufacturing cost, its manufacturing method, and this low transmittance transparent conductive substrate. The present invention relates to a display device to which a material is applied.

【0002】[0002]

【従来の技術】近年のオフィスオートメーション(O
A)化やインターネット通信の普及などにより、オフィ
スに多くのOA機器が導入され、OA機器のディスプレ
イと向き合って終日作業を行なうという環境は珍しくな
い。そして、ディスプレイ機器の一つである陰極線管
(CRT)に接して仕事を行なう場合、表示画面が見や
すく視覚疲労を感じさせないこと、またCRTの前面ガ
ラス(フェースパネル)の帯電による埃の付着や電撃シ
ョックがないことが望まれる。さらにこれに加えてCR
Tから発生する低周波電磁波の人体に対する悪影響が懸
念されており、このような電磁波が外部に漏洩しないC
RTが望まれている。
2. Description of the Related Art Recent office automation (O
Due to the adoption of A) and the spread of Internet communication, many OA devices have been introduced into offices, and it is not uncommon for the environment to face the display of OA devices and work all day. When working in contact with a cathode ray tube (CRT), which is one of the display devices, the display screen is easy to see and does not cause visual fatigue. Also, dust on the front glass (face panel) of the CRT and electric shock are charged. It is hoped that there will be no shock. In addition to this, CR
There is concern that the low-frequency electromagnetic waves generated from T may adversely affect the human body, and such electromagnetic waves do not leak outside C
RT is desired.

【0003】ところで、電磁波は偏向コイルやフライバ
ックトランスから発生し、CRTの大型化に伴ってます
ます大きな電磁波が発生する傾向にある。そして、磁界
の漏洩は偏向コイルの形状を変える等の工夫で大部分を
防止することができる。また、電界の漏洩に対してもフ
ェースパネル外表面に導電性の透明皮膜を形成すること
により防止できる。この場合、透明皮膜の導電性は帯電
防止用に形成されていた導電性皮膜より高い値が求めら
れている。すなわち、帯電防止用には表面抵抗で108
Ω/□程度で十分とされているが、漏洩電界を防ぐ(電
界シールド)ためには、少なくとも106 Ω/□以下、
好ましくは5×103 Ω/□以下、さらに好ましくは1
3 Ω/□以下である低抵抗の透明皮膜を形成する必要
がある。
By the way, electromagnetic waves are generated from the deflection coil and the flyback transformer, and as the size of the CRT becomes larger, larger electromagnetic waves tend to be generated. Most of the magnetic field leakage can be prevented by changing the shape of the deflection coil. Also, leakage of an electric field can be prevented by forming a conductive transparent film on the outer surface of the face panel. In this case, the electroconductivity of the transparent film is required to be higher than that of the electroconductive film formed for antistatic purposes. That is, the surface resistance is 10 8 for antistatic purposes.
Ω / □ is sufficient, but at least 10 6 Ω / □ or less to prevent leakage electric field (electric field shield),
It is preferably 5 × 10 3 Ω / □ or less, more preferably 1
It is necessary to form a transparent film having a low resistance of 0 3 Ω / □ or less.

【0004】導電性の透明皮膜を形成する方法として従
来からいくつかの提案がなされているが、その一つとし
て、真空蒸着、CVD、スパッタ法などによりフェース
パネル外表面に酸化錫や酸化インジウムなどの導電性酸
化物の皮膜を形成する方法がある。この方法を用いて形
成した透明皮膜は、酸化錫や酸化インジウム単一の組成
で構成されるため、素材の導電性がそのまま現れて電界
シールド効果に十分な低い抵抗値が得られる。また膜厚
を十分薄く、均一に制御でき、かつCRTの解像度を損
なうことなく反射防止の処理もしやすい。
Several proposals have hitherto been made as a method for forming a conductive transparent film. As one of them, tin oxide, indium oxide, etc. are formed on the outer surface of the face panel by vacuum deposition, CVD, sputtering or the like. There is a method of forming a film of the conductive oxide. Since the transparent film formed by this method is composed of a single composition of tin oxide or indium oxide, the conductivity of the material appears as it is, and a sufficiently low resistance value for the electric field shielding effect can be obtained. Further, the film thickness is sufficiently thin and can be uniformly controlled, and the antireflection treatment is easily performed without impairing the resolution of the CRT.

【0005】しかしながら、真空蒸着、CVD、スパッ
タ法などの方法を用いる場合、各CRT毎に雰囲気を制
御して処理しなければならないことから大型の成膜装置
が必要となり、透明皮膜の形成に多大のコストがかかる
ため実用CRTの製造には極めて不都合である。従って
特殊な用途のCRTを除いてこれらの方法では不適切と
考えられ、より安価で高速に行なえる膜形成方法が望ま
れている。
However, when a method such as vacuum deposition, CVD, or sputtering is used, the atmosphere must be controlled for each CRT, so that a large-scale film forming apparatus is required, and a large amount of transparent film can be formed. Therefore, it is extremely inconvenient for manufacturing a practical CRT. Therefore, these methods are considered unsuitable except for CRTs for special purposes, and there is a demand for a cheaper and faster film forming method.

【0006】この様な技術的背景の下、低コストで低い
表面抵抗を実現できるものとして、極微細なインジウム
錫酸化物(ITO)粉末をアルキルシリケートの結合剤
と共にN−メチル−2−ピロリドンを主成分とする極性
溶媒中に分散させた電界シールド用処理液が提案されて
いる(特開平6−279755号公報参照)。
Under such a technical background, as a material that can realize a low surface resistance at a low cost, an ultrafine indium tin oxide (ITO) powder is used together with a binder of alkyl silicate and N-methyl-2-pyrrolidone. A treatment liquid for electric field shielding, which is dispersed in a polar solvent as a main component, has been proposed (see JP-A-6-279755).

【0007】そして、この処理液をフェースパネル外表
面に塗布、乾燥した後、200℃以下の温度で焼成する
ことにより膜厚に応じて104 〜106Ω/□の表面抵
抗値が得られる。この処理液を用いた方法によれば、真
空蒸着やスパッタ法など他の導電性透明皮膜の形成方法
に比べてはるかに簡便であって製造コストも低く、CR
Tの電界シールドへの対応としては極めて有利な方法で
ある。但し、得られる表面抵抗値の低減には限界があ
り、好ましいとされる102 〜103Ω/□台には今ひ
とつ困難であるという側面もあった。
Then, the treatment liquid is applied to the outer surface of the face panel, dried, and then baked at a temperature of 200 ° C. or less to obtain a surface resistance value of 10 4 to 10 6 Ω / □ depending on the film thickness. . The method using this treatment liquid is much simpler than the other methods for forming a conductive transparent film such as a vacuum deposition method and a sputtering method, and the manufacturing cost is low, and the CR
This is an extremely advantageous method for dealing with the electric field shield of T. However, there is a limit to the reduction of the obtained surface resistance value, and there is another aspect that it is difficult to reach the preferable range of 10 2 to 10 3 Ω / □.

【0008】また、上記電磁波の漏洩防止対策に加え
て、CRTにおいては表示画面を見やすくするためにフ
ェースパネル外表面に防眩処理を施して画面の表面反射
を抑えることも行われている。防眩処理は、パネル表面
に微細な凹凸をつけて表面の拡散反射を増加する方法に
よってもなされるが、この方法では解像度が低下して画
質が落ちるためにあまり好ましい方法とはいえず、むし
ろ反射光が入射光に対して破壊的干渉を生ずるように皮
膜の屈折率と膜厚を制御する干渉法によって行われるこ
とが好ましい。このような低反射性を得るために、一般
的には高屈折率膜と低屈折率膜の光学膜厚を(1/4)
λと(1/4)λあるいは(1/2)λと(1/4)λ
に設定した2層構造膜が採用されている。
In addition to the above electromagnetic wave leakage prevention measures, in CRTs, in order to make the display screen easier to see, an antiglare treatment is applied to the outer surface of the face panel to suppress the surface reflection of the screen. Anti-glare treatment is also performed by a method of increasing the diffuse reflection of the surface by making fine unevenness on the panel surface, but this method is not a preferable method because the resolution is lowered and the image quality is deteriorated. It is preferable to perform the interference method by controlling the refractive index and the film thickness of the coating so that the reflected light causes destructive interference with the incident light. In order to obtain such low reflectivity, the optical film thickness of the high refractive index film and the low refractive index film is generally (1/4)
λ and (1/4) λ or (1/2) λ and (1/4) λ
The two-layer structure film set in the above is adopted.

【0009】さらに、これ等対策に加えて、CRTにお
いては輝度とコントラストのバランスが良い画像を得る
ために、表示画面を暗くしてパネル内面に塗布された蛍
光体による外光反射を抑えることも行われる。これは画
面が明るいと白っぽい画像になり、コントラストが低下
してしまうためである。このような画質の低下を避ける
ために、一般的には低透過率のパネルが広く採用されて
おり、そのパネル外表面に前述の2層構造膜を形成する
ことで更に良質な画像を得ている。
In addition to these measures, in a CRT, in order to obtain an image with a good balance of brightness and contrast, the display screen may be darkened to suppress reflection of external light by the phosphor coated on the inner surface of the panel. Done. This is because if the screen is bright, the image becomes whitish and the contrast is reduced. In order to avoid such deterioration of image quality, generally, a panel having a low transmittance is widely adopted, and by forming the above-mentioned two-layer structure film on the outer surface of the panel, a higher quality image can be obtained. There is.

【0010】また、最近では、フェースパネルの外表面
をフラットにして視認性を向上させた平面CRTが急速
に普及しつつある。これに用いられるフラットフェース
パネルは、所望の機械的強度を得るためフェース部の内
表面に曲率があり、画面中心部から周辺部に向かってガ
ラスの厚さが厚くなっている。このようなパネルでは、
低透過率のパネルを用いると中央部と周辺部で輝度差が
生じて画質が低下するという問題から高透過率のパネル
が広く用いられており、そのまま用いるとパネル内面に
塗布された蛍光体による外光反射が増加してコントラス
トが低下するという欠点がある。高コントラストの画像
を得るには、パネル自体への透過光量を低下させて外光
反射を抑える必要があり、パネル外表面に上述の導電性
と低反射性の特性に加えて低透過性を有する透明皮膜を
形成する試みがなされている。
Further, recently, a flat CRT having a flat outer surface of a face panel and improved visibility is rapidly becoming popular. In the flat face panel used for this purpose, the inner surface of the face portion has a curvature in order to obtain a desired mechanical strength, and the thickness of the glass increases from the central portion of the screen toward the peripheral portion. In a panel like this,
A panel with high transmittance is widely used because it causes a difference in brightness between the central portion and the peripheral portion when a panel with low transmittance is used, and image quality deteriorates.If used as is, it depends on the phosphor coated on the inner surface of the panel. There is a drawback that the external light reflection increases and the contrast decreases. In order to obtain a high-contrast image, it is necessary to reduce the amount of light transmitted to the panel itself to suppress reflection of external light. In addition to the above-mentioned conductive and low-reflectivity characteristics, the panel outer surface has low transparency. Attempts have been made to form transparent films.

【0011】更に、上記透明皮膜の低透過性について
は、画面を暗くするだけでなく、蛍光体の発光色である
赤色(R)、緑色(G)、青色(B)の発光強度バラン
スをくずさないような、例えば黒色から青黒色系の透過
色が望ましいとされている。
Further, with respect to the low transparency of the transparent film, not only does the screen become dark, but also the emission intensity balance of red (R), green (G) and blue (B), which are the emission colors of the phosphor, is broken. It is said that a transparent color such as black to bluish black is desirable.

【0012】そこで、これ等要望に対処するため、透明
基板上の上記透明皮膜について、これを着色導電層と透
明コート層から成る2層構造の低透過率透明導電膜で構
成する方法が検討されている。
In order to meet these demands, therefore, a method of constructing the transparent film on the transparent substrate with a low-transmittance transparent conductive film having a two-layer structure consisting of a colored conductive layer and a transparent coat layer has been studied. ing.

【0013】[0013]

【発明が解決しようとする課題】ところで、上記着色導
電層に適用される高い導電性をもった導電性微粒子には
可視光領域に材料特有の光吸収があるため、着色導電層
に要求される所望の透過色が得られないという問題があ
った。
By the way, since the conductive fine particles having high conductivity applied to the colored conductive layer have a light absorption characteristic of the material in the visible light region, they are required for the colored conductive layer. There is a problem that a desired transmission color cannot be obtained.

【0014】この問題に対し上記導電性微粒子における
特有の光吸収を相殺するような着色微粒子を混合して着
色導電層を形成すれば所望の透過色を得ることが可能と
なるが、併用する着色微粒子が着色導電層の導電性を阻
害して表面抵抗を悪化させるため上記透明皮膜に要求さ
れる導電性が得られなくなる別の問題があった。
To solve this problem, it is possible to obtain a desired transmitted color by forming colored conductive layers by mixing colored fine particles that cancel the light absorption peculiar to the above-mentioned conductive fine particles. Since the fine particles impede the conductivity of the colored conductive layer and deteriorate the surface resistance, there is another problem that the conductivity required for the transparent film cannot be obtained.

【0015】本発明はこの様な問題点に着目してなされ
たもので、その課題とするところは、透明皮膜の導電特
性、低反射特性、低透過特性に加えて黒色から青黒色系
の良好な透過色を有し、しかも製造コストの低減が図れ
る低透過率透明導電性基材とその製造方法およびこの低
透過率透明導電性基材が適用された表示装置を提供する
ことにある。
The present invention has been made by paying attention to such problems, and the problem is that in addition to the conductive property, the low reflection property, and the low transmission property of the transparent film, a good black to blue-black system is obtained. It is an object of the present invention to provide a low-transmissivity transparent conductive base material having various transparent colors and capable of reducing the manufacturing cost, a method for manufacturing the same, and a display device to which the low-transmittance transparent conductive base material is applied.

【0016】[0016]

【課題を解決するための手段】すなわち、請求項1に係
る発明は、透明基板とこの透明基板上に設けられた透明
皮膜とで構成される低透過率透明導電性基材を前提と
し、上記透明皮膜が、透明基板上に順次形成された着色
層、透明導電層および透明コート層とで構成されると共
に、可視光線領域380〜780nmにおいて5nm毎
に測定した透過率から求められる上記透明皮膜における
***表色系色指数(標準光源D65、視野角2
度)のa*値が−10〜+5、b*値が−10〜+5の範
囲内にあり、かつ、上記透明皮膜における表面抵抗値が
5×103Ω/□以下、可視光線領域380〜780n
mの反射プロファイルにおいて最小となる反射率が2%
未満、透過率が40〜60%、5nm毎に測定した透明
基板を含まない光線透過率の標準偏差が7%以下である
ことを特徴とする。
That is, the invention according to claim 1 is premised on a low-transmittance transparent conductive substrate comprising a transparent substrate and a transparent film provided on the transparent substrate. In the above transparent film, the transparent film is composed of a colored layer, a transparent conductive layer and a transparent coat layer which are sequentially formed on a transparent substrate, and which is obtained from the transmittance measured every 5 nm in the visible light region of 380 to 780 nm. L * a * b * color system color index (standard light source D65, viewing angle 2
A * value in degrees) is -10 to + 5, b * value is in the range of -10 to + 5, and a surface resistance of the transparent film is 5 × 10 3 Ω / □ or less, the visible light region 380 780n
The minimum reflectance is 2% in the reflection profile of m.
The transmittance is 40 to 60%, and the standard deviation of the light transmittance not including the transparent substrate measured every 5 nm is 7% or less.

【0017】また、請求項2に係る発明は、請求項1記
載の発明に係る低透過率透明導電性基材を前提とし、上
記着色層が、コバルトとアルミニウムを含有する複合酸
化物微粒子若しくは鉄、マンガン、銅を含有する複合酸
化物微粒子またはこれ等2種類の混合体から成る平均粒
径10〜200nmの着色微粒子とバインダーマトリッ
クスを主成分とすることを特徴とし、請求項3に係る発
明は、同じく請求項1記載の発明に係る低透過率透明導
電性基材を前提とし、上記透明導電層が、酸化ルテニウ
ム微粒子から成る平均粒径10〜200nmの導電性微
粒子とバインダーマトリックスを主成分とすることを特
徴とし、請求項4に係る発明は、請求項1記載の発明に
係る低透過率透明導電性基材を前提とし、上記透明コー
ト層が、アルキルシリケートの加水分解物を主成分とす
ることを特徴とするものである。
The invention according to claim 2 is premised on the low-transmittance transparent conductive substrate according to the invention according to claim 1, wherein the coloring layer contains fine particles of complex oxide or iron containing cobalt and aluminum. The invention according to claim 3 is characterized in that the main component is colored fine particles having an average particle size of 10 to 200 nm and composed of a binder matrix, which are fine particles of complex oxide containing manganese, manganese, and copper, or a mixture of these two kinds. Similarly, on the premise of the low-transmittance transparent conductive substrate according to the invention of claim 1, the transparent conductive layer is mainly composed of conductive fine particles of ruthenium oxide fine particles having an average particle size of 10 to 200 nm and a binder matrix. The invention according to claim 4 is based on the low-transmittance transparent conductive substrate according to the invention according to claim 1, wherein the transparent coat layer is an alkyl group. It is characterized in that a main component Riketo hydrolyzate.

【0018】次に、請求項5に係る発明は、請求項1〜
4記載の低透過率透明導電性基材の製造方法を前提と
し、着色微粒子が分散された着色層形成用塗液、導電性
微粒子が分散された導電層形成用塗液、アルキルシリケ
ートの加水分解物が含有された透明コート層形成用塗液
を上記透明基板上に順次塗布して乾燥させた後、100
〜450℃の温度で熱処理することを特徴とする。
Next, the invention according to claim 5 relates to claims 1 to
Based on the method for producing a low-transmittance transparent conductive substrate according to 4, the coating liquid for forming a colored layer in which colored fine particles are dispersed, the coating liquid for forming a conductive layer in which conductive fine particles are dispersed, and the hydrolysis of an alkyl silicate The coating liquid for forming a transparent coating layer containing the product is sequentially coated on the transparent substrate and dried, and then 100
It is characterized in that the heat treatment is performed at a temperature of 450 ° C.

【0019】また、請求項6に係る発明は、装置本体と
この前面側に配置された前面板を備える表示装置を前提
とし、上記前面板として請求項1〜4のいずれかに記載
の低透過率透明導電性基材がその透明基板側を装置本体
側に対向させて組込まれていることを特徴とするもので
ある。
Further, the invention according to claim 6 is premised on a display device comprising a device body and a front plate arranged on the front side thereof, and the low transmission according to any one of claims 1 to 4 as the front plate. The transparent conductive substrate is incorporated with its transparent substrate side facing the apparatus body side.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0021】まず、本発明に係る低透過率透明導電性基
材は透明基板と透明皮膜から成り、この透明皮膜が、透
明基板上に順次形成された着色層、透明導電層および透
明コート層とで構成されると共に、可視光線領域380
〜780nmにおいて5nm毎に測定した透過率から求
められる上記透明皮膜におけるL***表色系色指数
(標準光源D65、視野角2度)のa*値が−10〜+
5、b*値が−10〜+5の範囲内にあり、かつ、上記
透明皮膜における表面抵抗値が5×103Ω/□以下、
可視光線領域380〜780nmの反射プロファイルに
おいて最小となる反射率が2%未満、透過率が40〜6
0%、5nm毎に測定した透明基板を含まない光線透過
率の標準偏差が7%以下であることを特徴としている
(請求項1)。
First, the low transmissivity transparent conductive substrate according to the present invention comprises a transparent substrate and a transparent film, and the transparent film comprises a colored layer, a transparent conductive layer and a transparent coat layer which are sequentially formed on the transparent substrate. And visible region 380
The a * value of the L * a * b * colorimetric color index (standard light source D65, viewing angle 2 degrees) in the transparent film obtained from the transmittance measured every 5 nm at ˜780 nm is −10 to +.
5, b * value is in the range of −10 to +5, and the surface resistance value of the transparent film is 5 × 10 3 Ω / □ or less,
The minimum reflectance in the visible light region 380 to 780 nm reflection profile is less than 2%, and the transmittance is 40 to 6
It is characterized in that the standard deviation of the light transmittance not including the transparent substrate measured at 0% and 5 nm intervals is 7% or less (claim 1).

【0022】そして、本発明に係る低透過率透明導電性
基材の上記透明皮膜は、着色層、透明導電層および透明
コート層の3層構造により構成されており、従来の着色
導電層について、透過色の調整を担う着色層と導電性を
担う透明導電層とに分けることによって上述した導電性
と透過色の両立という問題点の解決を図っている。
The transparent film of the low-transmissivity transparent conductive substrate according to the present invention has a three-layer structure of a colored layer, a transparent conductive layer and a transparent coat layer. By separating the colored layer that controls the transmission color and the transparent conductive layer that controls the conductivity, the problem of achieving both the conductivity and the transmission color is solved.

【0023】従って、上記着色層を形成する着色微粒子
については必ずしも導電性は必要でなく、透明導電層を
形成する導電性微粒子が有する光吸収を相殺して例えば
黒色に近い透過色が得られるようになるなら任意であ
る。
Therefore, the colored fine particles forming the colored layer do not necessarily need to be conductive, and the light absorption of the conductive fine particles forming the transparent conductive layer is canceled to obtain a transmitted color close to black, for example. Is optional.

【0024】また、着色微粒子と導電性微粒子について
は、その平均粒径がそれぞれ10〜200nmであるこ
とが望ましい。平均粒径10nm以下の微粒子は製造が
困難となることがあると同時に、塗料化において分散が
容易でなく実用的でないことがあるからである。また、
200nmを超えると、形成した透明皮膜における可視
光線の散乱が大きくなって膜のヘーズが高くなることが
あり、実用的でないことがあるからである。尚、ここで
いう平均粒径とは、透過電子顕微鏡(TEM)で観察さ
れる一次粒子の平均粒径を示している。また、ヘーズと
は透明な基材の曇りとして観察される現象であり、ヘー
ズ値とは全透過率に対する拡散透過光の割合を数値化し
たものである。そして、ヘーズ値が高いと人間の目には
透明基材の曇りとして認識されるものである。
It is desirable that the colored fine particles and the conductive fine particles each have an average particle diameter of 10 to 200 nm. This is because fine particles having an average particle diameter of 10 nm or less may be difficult to manufacture, and at the same time, they may not be easily dispersed and are not practical when used as a coating material. Also,
This is because if it exceeds 200 nm, scattering of visible light in the formed transparent film becomes large and the haze of the film becomes high, which may be impractical. The average particle size referred to here is the average particle size of primary particles observed with a transmission electron microscope (TEM). Moreover, haze is a phenomenon observed as cloudiness of a transparent substrate, and haze value is a numerical value of the ratio of diffuse transmitted light to the total transmittance. When the haze value is high, it is perceived by the human eye as cloudiness of the transparent base material.

【0025】次に、着色層を形成する着色微粒子および
透明導電層を形成する導電性微粒子については請求項1
の要件を満たすことを前提に任意の材料が適用できる。
Next, the colored fine particles forming the colored layer and the conductive fine particles forming the transparent conductive layer are claimed in claim 1.
Any material can be applied, provided that it satisfies the requirement of.

【0026】ここで、導電性微粒子として用いられる酸
化ルテニウム微粒子(請求項3)は高い導電性と着色力
を有しており、低抵抗で低透過性の皮膜を形成できる材
料として好適であるが、青色と赤色の可視光線を吸収す
る性質があることから皮膜の透過色が緑色になることが
ある。
Here, the ruthenium oxide fine particles (claim 3) used as the conductive fine particles have high conductivity and coloring power, and are suitable as a material capable of forming a film having low resistance and low permeability. , The transmission color of the film may be green due to its property of absorbing visible light of blue and red.

【0027】これに対して、着色微粒子として用いられ
るコバルトとアルミニウムを含有する複合酸化物微粒子
若しくは鉄、マンガン、銅を含有する複合酸化物微粒子
(請求項2)は緑色の可視光線を吸収する性質があるこ
とから、例えば、この着色微粒子が適用された着色層と
上記酸化ルテニウム微粒子が適用された透明導電層とを
組み合わせることにより皮膜の透過色が青紫色になる。
On the other hand, the complex oxide fine particles containing cobalt and aluminum or the complex oxide fine particles containing iron, manganese and copper (claim 2) used as coloring fine particles have the property of absorbing green visible light. Therefore, for example, by combining the colored layer to which the colored fine particles are applied with the transparent conductive layer to which the ruthenium oxide fine particles are applied, the transmitted color of the film becomes bluish purple.

【0028】ここで、鉄、マンガン、銅を含有する上記
複合酸化物としては、例えば、化学式(Cu,Fe,M
n)(Fe,Mn)24で表されるスピネル構造の化合
物が挙げられ、鉄を20重量%以下、マンガンを20〜
50重量%、銅を10〜40重量%含有するものが好適
に用いられる。この複合酸化物は、高い着色力を有した
黒化顔料で、微量の添加で皮膜の透過率を低下させるこ
とができる。
Here, examples of the above complex oxide containing iron, manganese, and copper include those represented by the chemical formulas (Cu, Fe, M).
n) A compound having a spinel structure represented by (Fe, Mn) 2 O 4 may be mentioned.
Those containing 50% by weight and 10 to 40% by weight of copper are preferably used. This complex oxide is a blackening pigment having a high coloring power, and the transmittance of the film can be reduced by adding a small amount of it.

【0029】尚、これらの着色微粒子を上述した酸化ル
テニウム微粒子と組み合わせて単一層内に並存させた場
合、材料特有の光吸収が相殺されて上述したように所望
の透過色が得られるが、着色微粒子には導電性がないた
め酸化ルテニウムと混合して形成された単一層では上述
したように導電性が阻害されその表面抵抗が増加してし
まう。
When these colored fine particles are combined with the above-mentioned ruthenium oxide fine particles and made to coexist in a single layer, the light absorption peculiar to the material is canceled out to obtain a desired transmitted color as described above. Since the fine particles have no conductivity, the conductivity of the single layer formed by mixing with ruthenium oxide is hindered and the surface resistance thereof is increased as described above.

【0030】一方、本発明に係る低透過率透明導電性基
材の上記透明皮膜は、着色層、透明導電層および透明コ
ート層の3層構造により構成されており、透過色の調整
を担う着色層と導電性を担う透明導電層とに分けている
ため、酸化ルテニウム微粒子の導電性を損なうことなく
透明皮膜の透過色を改善することができる。
On the other hand, the transparent film of the low transmittance transparent electroconductive substrate according to the present invention has a three-layer structure of a colored layer, a transparent electroconductive layer and a transparent coat layer, and coloring for controlling the transmission color. Since the layer and the transparent conductive layer that is responsible for conductivity are separated, it is possible to improve the transmission color of the transparent film without impairing the conductivity of the ruthenium oxide fine particles.

【0031】次に、本発明に係る低透過率透明導電性基
材の製造方法において着色層の形成に使用される着色層
形成用塗液は以下のような方法で製造することができ
る。
Next, the colored layer forming coating liquid used for forming the colored layer in the method for producing a low transmittance transparent conductive substrate according to the present invention can be produced by the following method.

【0032】例えば、コバルトとアルミニウムを含有す
る複合酸化物微粒子若しくは鉄、マンガン、銅を含有す
る複合酸化物微粒子またはこれ等2種類の混合体から成
る微粒子を、分散剤および溶剤と混合し、ペイントシェ
ーカー、サンドミル、超音波分散機等の装置を使用して
粒径10〜200nmまで分散処理を行って均一な分散
液を得た後、これを溶剤とアルキルシリケートの加水分
解物で希釈して着色層形成用塗液として得ることができ
る。
For example, fine particles of complex oxide containing cobalt and aluminum or fine particles of complex oxide containing iron, manganese, and copper, or fine particles of a mixture of these two types are mixed with a dispersant and a solvent to prepare a paint. After using a device such as a shaker, sand mill, or ultrasonic disperser to perform a dispersion treatment to a particle size of 10 to 200 nm to obtain a uniform dispersion liquid, dilute it with a solvent and a hydrolyzate of an alkyl silicate to color it. It can be obtained as a layer-forming coating liquid.

【0033】同様に、上記透明導電層の形成に使用され
る導電層形成用塗液は、例えば、導電性微粒子としての
酸化ルテニウム微粒子を分散剤、溶剤と混合し、上述の
分散装置を使用して分散粒径10〜200nmまで分散
処理を行って均一な分散液を得た後、これを溶剤で希釈
して製造することができる。
Similarly, the conductive layer-forming coating liquid used for forming the transparent conductive layer is prepared by mixing, for example, ruthenium oxide fine particles as conductive fine particles with a dispersant and a solvent, and using the above-mentioned dispersing device. It can be manufactured by performing a dispersion treatment to obtain a uniform dispersion liquid with a dispersion particle diameter of 10 to 200 nm, and then diluting this with a solvent.

【0034】次に、本発明に係る低透過率透明導電性基
材の製造方法において透明コート層の形成に使用される
透明コート層形成用塗液および上記着色層形成用塗液に
用いられるアルキルシリケートの加水分解物は、市販の
エチルシリケート28[Si(OC2H5)4]、メチル
シリケート39[Si(OCH34]、エチルシリケー
ト40[Sin(n-1)(OC25(2n+2)]、および、
メチルシリケート51[Sin(n-1)(OCH3
(2n+2)]等のアルキルシリケートを水、溶剤、微量の酸
と混合・攪拌して加水分解物を得た後、これを有機溶剤
で希釈して製造することができる。加水分解反応を促進
させるための酸としては、例えば、硝酸や塩酸などを用
いることができる。
Next, in the method for producing a low-transmittance transparent conductive substrate according to the present invention, the transparent coating layer-forming coating liquid used for forming the transparent coating layer and the alkyl used for the colored layer-forming coating liquid. hydrolyzate of silicates, commercial ethyl silicate 28 [Si (OC 2 H5) 4], methyl silicate 39 [Si (OCH 3) 4 ], ethyl silicate 40 [Si n O (n- 1) (OC 2 H 5 ) (2n + 2) ], and
Methyl silicate 51 [Si n O (n-1) (OCH 3 )
(2n + 2) ] and other alkyl silicates are mixed and stirred with water, a solvent, and a small amount of acid to obtain a hydrolyzate, which can be diluted with an organic solvent for production. As the acid for promoting the hydrolysis reaction, for example, nitric acid, hydrochloric acid or the like can be used.

【0035】そして、透明基板上に着色層、透明導電層
および透明コート層の3層構造から成る上記透明皮膜を
形成するには以下の方法で行なうことができる。
The following method can be used to form the above-mentioned transparent film having a three-layer structure of a colored layer, a transparent conductive layer and a transparent coat layer on the transparent substrate.

【0036】例えば、ガラス基板、プラスチック基板等
の透明基板上に、スプレーコート、スピンコート、ワイ
ヤーバーコート、ドクターブレードコート等の手法に
て、上述した着色層形成用塗液、導電層形成用塗液、お
よび、透明コート層形成用塗液を順次塗布し乾燥させた
後、大気中で100〜450℃の温度で熱処理して各塗
布膜の硬化を行い3層構造から成る上記透明皮膜を形成
する。
For example, a transparent substrate such as a glass substrate or a plastic substrate is coated on the transparent substrate such as a spray substrate, a spin coater, a wire bar coater, a doctor blade coater or the like with the above-mentioned coloring layer forming coating liquid or conductive layer forming coating liquid. Liquid and a coating liquid for forming a transparent coating layer are sequentially applied and dried, and then each coating film is cured by heat treatment at a temperature of 100 to 450 ° C. in the atmosphere to form the above transparent film having a three-layer structure. To do.

【0037】各塗布膜の熱処理温度については、真空封
着前のフェースパネルに成膜する場合はガラス軟化点直
下の450℃まで昇温可能であるが、封着後のCRT完
成球の成膜に対しては加熱温度が高いと爆発の危険性が
あるため200℃以下で行なうことが好ましい。例え
ば、透明コート層形成用塗液などにアルキルシリケート
の加水分解物が適用された場合、熱処理中には、シリケ
ートの縮重合化と溶媒成分の蒸発が起こり、塗布膜は収
縮、乾燥、硬化する。シリケートの縮重合反応が完了す
るのは200〜250℃であるが、100℃以上であれ
ば少量の未反応、未蒸発インク成分の残存は避けられな
いもののかなり強固な膜が形成できる。一般的には高い
温度の方が好ましく、特に250℃以上の時はシリケー
トのゲル縮合反応や乾燥化は完了し、これが膜を更に収
縮させるため導電性微粒子の充填密度が上がり、表面抵
抗が低下する。また、導電性微粒子間の接触状態も溶媒
成分の蒸発に伴い改善されて表面抵抗の安定化や経時変
化が改善される。
Regarding the heat treatment temperature of each coating film, when the film is formed on the face panel before vacuum sealing, the temperature can be raised to 450 ° C. just below the glass softening point, but the film formation of the CRT completed sphere after sealing is performed. On the other hand, if the heating temperature is high, there is a risk of explosion. For example, when a hydrolyzate of an alkyl silicate is applied to a coating liquid for forming a transparent coat layer, during the heat treatment, polycondensation of the silicate and evaporation of the solvent component occur, and the coating film shrinks, dries and cures. . The polycondensation reaction of the silicate is completed at 200 to 250 ° C., but if it is 100 ° C. or higher, a considerably strong film can be formed although a small amount of unreacted and unvaporized ink components remain. Generally, a higher temperature is preferable, and especially when the temperature is 250 ° C. or higher, the gel condensation reaction and drying of the silicate are completed, and this further shrinks the film, which increases the packing density of the conductive fine particles and lowers the surface resistance. To do. Further, the contact state between the conductive fine particles is also improved with the evaporation of the solvent component, so that the surface resistance is stabilized and the change with time is improved.

【0038】[0038]

【実施例】以下、本発明の実施例について具体的に説明
する。尚、明細書中の『部』は『重量部』を示し、ま
た、平均分散粒径は大塚電子(株)社製の粒度分布計
(ELS−800)を用いて測定した平均粒径を示して
いる。
EXAMPLES Examples of the present invention will be specifically described below. In the specification, "part" means "part by weight", and the average dispersed particle size means the average particle size measured by using a particle size distribution meter (ELS-800) manufactured by Otsuka Electronics Co., Ltd. ing.

【0039】[実施例1]コバルトとアルミニウムを含
有する複合酸化物微粒子として大日精化工業(株)社製
商品名TMブルーを用い、TMブルー20.0部、水
40.0部、エタノール19.0部、イソプロパノール
3.4部、分散剤17.6部の割合で混合した後、ボー
ルミルを使用して分散処理した。処理後のTMブルー微
粒子の平均分散粒径は113nmであった。
[Example 1] As a composite oxide fine particle containing cobalt and aluminum, TM blue manufactured by Dainichiseika Kogyo Co., Ltd. was used, and 20.0 parts of TM blue, 40.0 parts of water and 19 parts of ethanol were used. After mixing in a ratio of 0.0 part, 3.4 parts of isopropanol and 17.6 parts of a dispersant, dispersion treatment was performed using a ball mill. The average dispersed particle diameter of the TM blue fine particles after the treatment was 113 nm.

【0040】この処理液をエタノールとイソプロパノー
ルで希釈し、TMブルー10.0部、水20.0部、エ
タノール52.0部、イソプロパノール9.2部、分散
剤8.8部からなる着色層形成用のTMブルー分散液を
調製した(A液)。
This treatment liquid was diluted with ethanol and isopropanol to form a colored layer containing 10.0 parts of TM blue, 20.0 parts of water, 52.0 parts of ethanol, 9.2 parts of isopropanol and 8.8 parts of a dispersant. TM blue dispersion liquid for liquid was prepared (liquid A).

【0041】次に、多摩化学工業(株)社製メチルシリ
ケート51を19.6部、エタノール54.8部、イソ
プロパノール9.7部、水2.1部の混合溶液を攪拌し
ながら、これに60%硝酸0.1部、水7.9部、エタ
ノール4.9部、イソプロパノール0.9部の混合溶液
を滴下した後、1時間攪拌してアルキルシリケートの加
水分解物を調製した(B液)。
Next, a mixed solution of 19.6 parts of methyl silicate 51 manufactured by Tama Chemical Industry Co., Ltd., 54.8 parts of ethanol, 9.7 parts of isopropanol, and 2.1 parts of water was stirred while stirring. A mixed solution of 0.1 part of 60% nitric acid, 7.9 parts of water, 4.9 parts of ethanol and 0.9 part of isopropanol was added dropwise and stirred for 1 hour to prepare a hydrolyzate of alkyl silicate (solution B). ).

【0042】更に、住友金属鉱山(株)社製酸化ルテニ
ウム微粒子14.0部、ジアセトンアルコール80.7
部、分散剤5.3部の割合で混合した後、ボールミルを
使用して分散処理した。処理後のRuO2微粒子の平均
分散粒径は82nmであった。この処理液をエタノール
とイソプロパノールで希釈して、RuO2微粒子7.0
部、ジアセトンアルコール40.4部、エタノール4
2.5部、イソプロパノール7.5部、分散剤2.6部
からなる導電層形成用のRuO2分散液を調製した(C
液)。
Further, 14.0 parts of ruthenium oxide fine particles manufactured by Sumitomo Metal Mining Co., Ltd., 80.7 diacetone alcohol
Parts and 5.3 parts of the dispersant, and then dispersed using a ball mill. The average dispersed particle diameter of the RuO 2 fine particles after the treatment was 82 nm. This treatment liquid was diluted with ethanol and isopropanol to give RuO 2 fine particles of 7.0.
Parts, diacetone alcohol 40.4 parts, ethanol 4
A RuO 2 dispersion liquid for forming a conductive layer was prepared, which was composed of 2.5 parts, 7.5 parts of isopropanol, and 2.6 parts of a dispersant (C
liquid).

【0043】次に、上記B液7.0部、プロピレングリ
コールモノメチルエーテル30.0部、ジアセトンアル
コール15.0部、エタノール40.8部、イソプロパ
ノール7.2部を混合し、透明コート層形成用塗液とし
てのシリケート液を調製した(D液)。
Next, 7.0 parts of the above liquid B, 30.0 parts of propylene glycol monomethyl ether, 15.0 parts of diacetone alcohol, 40.8 parts of ethanol, and 7.2 parts of isopropanol were mixed to form a transparent coat layer. A silicate liquid as a coating liquid for liquid was prepared (liquid D).

【0044】次に、上記A液40.0部、B液10.0
部、プロピレングリコールモノメチルエーテル15.0
部、エタノール29.7部、イソプロパノール5.3部
の割合で混合し、TMブルーが4.00重量%含有され
た着色層形成用塗液を調製した。
Next, 40.0 parts of the above liquid A and liquid 10.0
Part, propylene glycol monomethyl ether 15.0
Parts, 29.7 parts of ethanol, and 5.3 parts of isopropanol were mixed to prepare a coating liquid for forming a colored layer containing 4.00% by weight of TM blue.

【0045】そして、この塗液を約40℃に加温したガ
ラス基板上にスピンコート法で塗布し乾燥して着色層を
形成させた。
Then, this coating solution was applied onto a glass substrate heated to about 40 ° C. by a spin coating method and dried to form a colored layer.

【0046】次に、得られた着色層付きガラス基板を約
40℃に再加温し、その上にC液12.7部、プロピレ
ングリコールモノメチルエーテル10.0部、ジメチル
ホルムアミド5.0部、エタノール61.5部、イソプ
ロパノール10.8部の割合で混合し調製したRuO2
微粒子を0.89重量%含有する導電層形成用塗液をス
ピンコート法で塗布し乾燥させた。
Next, the obtained glass substrate with a colored layer was reheated to about 40 ° C., and 12.7 parts of the liquid C, 10.0 parts of propylene glycol monomethyl ether, 5.0 parts of dimethylformamide were added thereto. RuO 2 prepared by mixing 61.5 parts of ethanol and 10.8 parts of isopropanol.
A conductive layer-forming coating liquid containing 0.89% by weight of fine particles was applied by a spin coating method and dried.

【0047】続けて、その上にD液を同様に塗布し乾燥
させ、着色層、導電層、透明コート層からなる3層構造
の透明皮膜を有する低透過率透明導電性基材を得た。
Subsequently, the liquid D was similarly applied thereon and dried to obtain a low-transmittance transparent conductive substrate having a three-layered transparent film composed of a coloring layer, a conductive layer and a transparent coating layer.

【0048】[実施例2]鉄、マンガン、銅の複合酸化
物微粒子として、鉄を約3重量%、マンガンを約40重
量%、銅を約25重量%含有する大日精化工業(株)社
製 商品名TMブラックを用い、TMブラック15.0
部、水46.8部、エタノール21.3部、イソプロパ
ノール3.7部、分散剤13.2部の割合で混合し、ボ
ールミルを使用して解砕処理した。処理後のTMブラッ
クの平均分散粒径は110nmであった。
[Example 2] As a composite oxide fine particle of iron, manganese and copper, Dainichi Seika Kogyo Co., Ltd. containing about 3% by weight of iron, about 40% by weight of manganese and about 25% by weight of copper. Using the product name TM Black, TM Black 15.0
Parts, 46.8 parts of water, 21.3 parts of ethanol, 3.7 parts of isopropanol, and 13.2 parts of a dispersant, and the mixture was crushed using a ball mill. The average dispersed particle size of TM black after the treatment was 110 nm.

【0049】この処理液をエタノールとイソプロパノー
ルで希釈し、TMブラックが10.0部、水31.2
部、エタノール42.5部、イソプロパノール7.5
部、分散剤8.8部からなるTMブラックの濃縮分散液
を調製した(E液)。
This treatment solution was diluted with ethanol and isopropanol, and TM black was added in an amount of 10.0 parts and water was added in an amount of 31.2.
Parts, ethanol 42.5 parts, isopropanol 7.5
Parts and 8.8 parts of a dispersant, a concentrated dispersion of TM black was prepared (liquid E).

【0050】次に、A液21.0部、E液0.6部、B
液10.0部、プロピレングリコールモノメチルエーテ
ル15.0部、エタノール45.4部、イソプロパノー
ル8.0部の割合で混合し、TMブルーを2.10重量
%、TMブラックを0.06重量%含有する着色層形成
用塗液を調製した。この塗液を約40℃に加温したガラ
ス基板上にスピンコート法で塗布し乾燥して着色層を形
成させた。
Next, 21.0 parts of solution A, 0.6 parts of solution E, and B
Liquid 10.0 parts, propylene glycol monomethyl ether 15.0 parts, ethanol 45.4 parts, isopropanol 8.0 parts were mixed in a ratio of TM blue 2.10 wt% and TM black 0.06 wt%. A coating liquid for forming a colored layer was prepared. This coating solution was applied on a glass substrate heated to about 40 ° C. by a spin coating method and dried to form a colored layer.

【0051】次に、得られた着色層付きガラス基板を約
40℃に再加温し、その上にC液13.6部、プロピレ
ングリコールモノメチルエーテル10.0部、ヂメチル
ホルムアミド5.0部、エタノール60.7部、イソプ
ロパノール10.7部の割合で混合して作製したRuO
2微粒子を0.95重量%含有する導電層形成用塗液を
スピンコート法で塗布し乾燥させた。続けて、その上に
D液を同様に塗布し乾燥させて、着色層、導電層、透明
コート層からなる3層構造の透明皮膜を有する低透過率
透明導電性基材を得た。
Next, the obtained glass substrate with a colored layer was reheated to about 40 ° C., and 13.6 parts of the liquid C, 10.0 parts of propylene glycol monomethyl ether and 5.0 parts of dimethylformamide were added thereto. , 60.7 parts of ethanol and 10.7 parts of isopropanol were mixed to prepare RuO.
2 A conductive layer forming coating liquid containing 0.95% by weight of fine particles was applied by a spin coating method and dried. Subsequently, the liquid D was similarly applied onto it and dried to obtain a low-transmittance transparent conductive substrate having a three-layered transparent film composed of a colored layer, a conductive layer and a transparent coat layer.

【0052】[実施例3]上記A液14.0部、E液
0.9部、B液10.0部、プロピレングリコールモノ
メチルエーテル15.0部、エタノール51.1部、イ
ソプロパノール9.0部の割合で混合し、TMブルーを
1.40重量%、TMブラックを0.09重量%含有す
る着色層形成用塗液を調製した。
Example 3 Solution A 14.0 parts, Solution E 0.9 parts, Solution B 10.0 parts, Propylene glycol monomethyl ether 15.0 parts, Ethanol 51.1 parts, Isopropanol 9.0 parts. To prepare a colored layer forming coating liquid containing 1.40% by weight of TM blue and 0.09% by weight of TM black.

【0053】この塗液を約40℃に加温したガラス基板
上にスピンコート法で塗布し乾燥して着色層を形成させ
た。
This coating solution was applied on a glass substrate heated to about 40 ° C. by spin coating and dried to form a colored layer.

【0054】次に、得られた着色層付きガラス基板を約
40℃に再加温し、その上にC液13.6部、プロピレ
ングリコールモノメチルエーテル10.0部、ジメチル
ホルムアミド5.0部、エタノール60.7部、イソプ
ロパノール10.7部の割合で混合して調製したRuO
2微粒子を0.95重量%含有する導電層形成用塗液を
スピンコート法で塗布し乾燥させた。
Next, the obtained glass substrate with a colored layer was reheated to about 40 ° C., and 13.6 parts of C liquid, 10.0 parts of propylene glycol monomethyl ether, 5.0 parts of dimethylformamide were added thereto. RuO prepared by mixing 60.7 parts of ethanol and 10.7 parts of isopropanol
2 A conductive layer forming coating liquid containing 0.95% by weight of fine particles was applied by a spin coating method and dried.

【0055】続けて、その上にD液を同様に塗布し乾燥
させて、着色層、導電層、透明コート層からなる3層構
造の透明皮膜を有する低透過率透明導電性基材を得た。
Subsequently, the liquid D was similarly applied thereon and dried to obtain a low-transmittance transparent conductive substrate having a three-layered transparent coating consisting of a colored layer, a conductive layer and a transparent coating layer. .

【0056】[実施例4]上記A液30.0部、E液
1.3部、B液10.0部、プロピレングリコールモノ
メチルエーテル15.0部、エタノール37.1部、イ
ソプロパノール6.6部の割合で混合し、TMブルーを
3.00重量%、TMブラックを0.13重量%含有す
る着色層形成用塗液を調製した。
Example 4 Liquid A 30.0 parts, Liquid E 1.3 parts, Liquid B 10.0 parts, Propylene glycol monomethyl ether 15.0 parts, Ethanol 37.1 parts, Isopropanol 6.6 parts. Were mixed at a ratio of 3.00% by weight to prepare a coating liquid for forming a colored layer containing TM blue at 3.00% by weight and TM black at 0.13% by weight.

【0057】この塗液を約40℃に加温したガラス基板
上にスピンコート法で塗布し乾燥して着色層を形成させ
た。
This coating solution was applied onto a glass substrate heated to about 40 ° C. by a spin coating method and dried to form a colored layer.

【0058】次に、得られた着色層付きガラス基板を約
40℃に再加温し、その上にC液8.6部、プロピレン
グリコールモノメチルエーテル10.0部、ジメチルホ
ルムアミド5.0部、エタノール64.9部、イソプロ
パノール11.5部の割合で混合して調製したRuO2
微粒子を0.60重量%含有する導電層形成用塗液をス
ピンコート法で塗布し乾燥させた。
Next, the obtained glass substrate with a colored layer was reheated to about 40 ° C., and 8.6 parts of C liquid, 10.0 parts of propylene glycol monomethyl ether, 5.0 parts of dimethylformamide, RuO 2 prepared by mixing 64.9 parts of ethanol and 11.5 parts of isopropanol.
A conductive layer-forming coating liquid containing 0.60% by weight of fine particles was applied by a spin coating method and dried.

【0059】続けて、その上にD液を同様に塗布し乾燥
させて、着色層、導電層、透明コート層からなる3層構
造の透明皮膜を有する低透過率透明導電性基材を得た。
Subsequently, the liquid D was similarly applied onto it and dried to obtain a low-transmittance transparent conductive substrate having a three-layered transparent coating consisting of a colored layer, a conductive layer and a transparent coating layer. .

【0060】[比較例1]上記C液12.7部、A液4
0.0部、プロピレングリコールモノメチルエーテル1
0.0部、ジメチルホルムアミド5.0部、エタノール
27.5部、イソプロパノール4.8部の割合で混合し
てRuO2微粒子0.89重量%とTMブルー4.00
重量%を含有する着色導電層形成用塗液を調製した。
[Comparative Example 1] 12.7 parts of the above liquid C, liquid A 4
0.0 parts, propylene glycol monomethyl ether 1
0.0 parts of dimethylformamide, 5.0 parts of ethanol, 27.5 parts of ethanol, and 4.8 parts of isopropanol were mixed to obtain 0.89% by weight of RuO 2 fine particles and TM blue 4.00.
A coating liquid for forming a colored conductive layer containing a weight% was prepared.

【0061】この塗液を約40℃に加温したガラス基板
上にスピンコート法で塗布し乾燥させたが、粒子が凝集
してしまい着色導電層を形成できなった。
This coating solution was applied onto a glass substrate heated to about 40 ° C. by a spin coating method and dried, but the particles were aggregated and the colored conductive layer could not be formed.

【0062】[比較例2]上記C液13.6部、A液2
1.0部、E液0.6部、プロピレングリコールモノメ
チルエーテル10部、ジメチルホルムアミド5部、エタ
ノール42.3部、イソプロパノール7.5部の割合で
混合してRuO2微粒子0.95重量%、TMブルー
2.10重量%、TMブラック0.06重量%を含有す
る着色導電層形成用塗液を調製した。
[Comparative Example 2] 13.6 parts of the above C liquid, A liquid 2
1.0 part, E solution 0.6 part, propylene glycol monomethyl ether 10 parts, dimethylformamide 5 parts, ethanol 42.3 parts, isopropanol 7.5 parts by mixing in a ratio of RuO 2 fine particles 0.95% by weight, A colored conductive layer forming coating liquid containing 2.10% by weight of TM blue and 0.06% by weight of TM black was prepared.

【0063】この塗液を約40℃に加温したガラス基板
上にスピンコート法で塗布し乾燥させた。続けて、その
上にD液を同様に塗布し乾燥させて、着色導電層と透明
コート層からなる2層構造の透明皮膜を有する低透過率
透明導電性基材を得た。
This coating solution was applied on a glass substrate heated to about 40 ° C. by a spin coating method and dried. Subsequently, the liquid D was similarly applied thereon and dried to obtain a low-transmittance transparent conductive substrate having a two-layered transparent film composed of a colored conductive layer and a transparent coat layer.

【0064】[比較例3]上記C液13.6部、A液1
4.0部、E液0.9部、プロピレングリコールモノメ
チルエーテル10部、ジメチルホルムアミド5部、エタ
ノール48.0部、イソプロパノール8.5部の割合で
混合してRuO2微粒子0.95重量%、TMブルー
1.40重量%、TMブラック0.09重量%を含有す
る着色導電層形成用塗液を調製した。
[Comparative Example 3] 13.6 parts of the above C liquid, A liquid 1
4.0 parts, E solution 0.9 parts, propylene glycol monomethyl ether 10 parts, dimethylformamide 5 parts, ethanol 48.0 parts, and isopropanol 8.5 parts by mixing in a ratio of RuO 2 fine particles 0.95% by weight, A colored conductive layer forming coating liquid containing 1.40% by weight of TM blue and 0.09% by weight of TM black was prepared.

【0065】この塗液を約40℃に加温したガラス基板
上にスピンコート法で塗布し乾燥させた。続けて、その
上にD液を同様に塗布し乾燥させて、着色導電層と透明
コート層からなる2層構造の透明皮膜を有する低透過率
透明導電性基材を得た。
This coating solution was applied on a glass substrate heated to about 40 ° C. by a spin coating method and dried. Subsequently, the liquid D was similarly applied thereon and dried to obtain a low-transmittance transparent conductive substrate having a two-layered transparent film composed of a colored conductive layer and a transparent coat layer.

【0066】[比較例4]上記C液8.6部、A液3
0.0部、E液1.3部、プロピレングリコールモノメ
チルエーテル10部、ジメチルホルムアミド5部、エタ
ノール38.3部、イソプロパノール6.8部の割合で
混合してRuO2微粒子0.60重量%、TMブルー
3.00重量%、TMブラック0.13重量%を含有す
る着色導電層形成用塗液を調製した。
[Comparative Example 4] 8.6 parts of the above C liquid, A liquid 3
0.0 parts, 1.3 parts of E liquid, 10 parts of propylene glycol monomethyl ether, 5 parts of dimethylformamide, 38.3 parts of ethanol, and 6.8 parts of isopropanol, and mixed with RuO 2 fine particles 0.60% by weight, A colored conductive layer forming coating solution containing 3.00% by weight of TM blue and 0.13% by weight of TM black was prepared.

【0067】この塗液を約40℃に加温したガラス基板
上にスピンコート法で塗布し乾燥させた。続けて、その
上にD液を同様に塗布し乾燥させて、着色導電層と透明
コート層からなる2層構造の透明皮膜を有する低透過率
透明導電性基材を得た。
This coating solution was applied on a glass substrate heated to about 40 ° C. by spin coating and dried. Subsequently, the liquid D was similarly applied thereon and dried to obtain a low-transmittance transparent conductive substrate having a two-layered transparent film composed of a colored conductive layer and a transparent coat layer.

【0068】[比較例5]上記C液15.0部、プロピ
レングリコールモノメチルエーテル10.0部、エタノ
ール63.7部、イソプロパノール11.3部の割合で
混合してRuO2微粒子を1.05重量%含有する導電
層形成用塗液を調製した。
[Comparative Example 5] The above C liquid (15.0 parts), propylene glycol monomethyl ether (10.0 parts), ethanol (63.7 parts) and isopropanol (11.3 parts) were mixed in a ratio of 1.05 parts by weight of RuO 2 fine particles. % To prepare a conductive layer-forming coating liquid.

【0069】この塗液を約40℃に加温したガラス基板
上にスピンコート法で塗布し乾燥させた。続けて、その
上にD液を同様に塗布し乾燥させて、透明導電層と透明
コート層からなる2層構造の透明皮膜を有する低透過率
透明導電性基材を得た。
This coating solution was applied on a glass substrate heated to about 40 ° C. by spin coating and dried. Subsequently, the liquid D was similarly applied thereon and dried to obtain a low-transmittance transparent conductive substrate having a transparent coating having a two-layer structure composed of a transparent conductive layer and a transparent coat layer.

【0070】こうして得られた各実施例に係る低透過率
透明導電性基材と各比較例に係る低透過率透明導電性基
材を電気炉で熱処理し、その透明皮膜における膜特性を
測定した。
The low transmittance transparent conductive base material according to each example and the low transmittance transparent conductive base material according to each comparative example thus obtained were heat-treated in an electric furnace, and the film characteristics of the transparent film were measured. .

【0071】以下の表1に熱処理を180℃で30分間
行った結果を示し、また、表2には450℃で30分間
行った結果を示す。
Table 1 below shows the results of heat treatment at 180 ° C. for 30 minutes, and Table 2 shows the results of heat treatment at 450 ° C. for 30 minutes.

【0072】そして、表面抵抗値は三菱油化(株)社製
の表面抵抗計ロレスタAP(MCP−T350)を用い
て測定し、透過率とヘーズ値は村上色彩技術研究所製の
ヘーズメータ(HR−200)を用いて測定した。ま
た、ボトム反射を含む反射率、透過色指数、および、透
過率の標準偏差は、日立製作所(株)社製の分光光度計
(U−4000)を用いて測定した。また、上記ボトム
反射率とは低透過率透明導電性基材の反射プロファイル
において極小の反射率をいい、ボトム波長とは反射率が
極小における波長を意味している。
The surface resistance value was measured using a surface resistance meter Loresta AP (MCP-T350) manufactured by Mitsubishi Petrochemical Co., Ltd., and the transmittance and haze value were measured by Murakami Color Research Laboratory haze meter (HR -200). The reflectance including the bottom reflection, the transmitted color index, and the standard deviation of the transmittance were measured using a spectrophotometer (U-4000) manufactured by Hitachi, Ltd. Further, the bottom reflectance means the minimum reflectance in the reflection profile of the low transmittance transparent conductive substrate, and the bottom wavelength means the wavelength at which the reflectance is minimum.

【0073】尚、本明細書における透過率および透過プ
ロファイルは、ガラス基板を除く2層構造若しくは3層
構造の透明皮膜における透過率と透過プロファイルを用
いており、以下のようにして求めている。
The transmittance and the transmission profile in this specification are obtained as follows by using the transmittance and the transmission profile of a transparent coating having a two-layer structure or a three-layer structure excluding a glass substrate.

【0074】ガラス基板を除く透明皮膜の透過率(%)
=〔(ガラス基板を含む透過率)/(ガラス基板の透過
率)〕×100 この様にして得られた各低透過率透明導電性基材の透過
プロファイルを、図1(実施例1および比較例5に係る
180℃で30分間熱処理した基材)、図3(実施例
2、比較例2および比較例5に係る180℃で30分間
熱処理した基材)、図5(実施例3、比較例3および比
較例5に係る180℃で30分間熱処理した基材)、図
7(実施例1および比較例5に係る450℃で30分間
熱処理した基材)、図9(実施例2、比較例2および比
較例5に係る450℃で30分間熱処理した基材)、図
11(実施例3、比較例3および比較例5に係る450
℃で30分間熱処理した基材)および図13(実施例
4、比較例4および比較例5に係る450℃で30分間
熱処理した基材)に示し、また、上記分光光度計(U−
4000)で測定された各低透過率透明導電性基材の反
射プロファイルを、図2(実施例1および比較例5に係
る180℃で30分間熱処理した基材)、図4(実施例
2、比較例2および比較例5に係る180℃で30分間
熱処理した基材)、図6(実施例3、比較例3および比
較例5に係る180℃で30分間熱処理した基材)、図
8(実施例1および比較例5に係る450℃で30分間
熱処理した基材)、図10(実施例2、比較例2および
比較例5に係る450℃で30分間熱処理した基材)、
図12(実施例3、比較例3および比較例5に係る45
0℃で30分間熱処理した基材)および図14(実施例
4、比較例4および比較例5に係る450℃で30分間
熱処理した基材)に示す。
Transmittance (%) of transparent film excluding glass substrate
= [(Transmittance including glass substrate) / (transmittance of glass substrate)] x 100 The transmission profile of each low-transmittance transparent conductive substrate thus obtained is shown in Fig. 1 (Example 1 and Comparative Example). (Base material heat-treated at 180 ° C. for 30 minutes according to Example 5), FIG. 3 (base material heat-treated at 180 ° C. for 30 minutes according to Example 2, Comparative Example 2 and Comparative Example 5), FIG. 5 (Example 3, comparison) Base material heat-treated at 180 ° C. for 30 minutes according to Example 3 and Comparative Example 5), FIG. 7 (base material heat-treated at 450 ° C. for 30 minutes according to Example 1 and Comparative Example 5), FIG. 9 (Example 2, comparison) Substrate heat-treated at 450 ° C. for 30 minutes according to Example 2 and Comparative Example 5), FIG. 11 (450 according to Example 3, Comparative Example 3 and Comparative Example 5)
The substrate which was heat-treated at 30 ° C. for 30 minutes) and FIG. 13 (the substrate which was heat-treated at 450 ° C. for 30 minutes according to Example 4, Comparative Example 4 and Comparative Example 5), and the spectrophotometer (U-
4000), the reflection profile of each low-transmissivity transparent conductive base material is shown in FIG. 2 (base material heat-treated at 180 ° C. for 30 minutes according to Example 1 and Comparative Example 5), and FIG. (Base material heat-treated at 180 ° C. for 30 minutes according to Comparative Example 2 and Comparative Example 5), FIG. 6 (base material heat-treated at 180 ° C. for 30 minutes according to Example 3, Comparative Example 3 and Comparative Example 5), FIG. Base material heat-treated at 450 ° C. for 30 minutes according to Example 1 and Comparative Example 5), FIG. 10 (base material heat-treated at 450 ° C. for 30 minutes according to Example 2, Comparative Example 2 and Comparative Example 5),
FIG. 12 (45 according to Example 3, Comparative Example 3 and Comparative Example 5)
14) (base material heat-treated at 0 ° C. for 30 minutes) and FIG. 14 (base material heat-treated at 450 ° C. for 30 minutes according to Example 4, Comparative Example 4, and Comparative Example 5).

【0075】[0075]

【表1】 注1:可視光線波長領域380〜780nmにおいて5
nm毎に測定したガラス基板を除く透過率から標準光源
D65、視野角2度として求めた値である。
[Table 1] Note 1: 5 in the visible light wavelength range 380 to 780 nm
It is a value obtained as a standard light source D65 and a viewing angle of 2 degrees from the transmittance excluding the glass substrate measured for each nm.

【0076】注2:可視光線波長領域380〜780n
mにおいて5nm毎に測定したガラス基板を除く透過率
(%)に対する値である。
Note 2: Visible light wavelength region 380 to 780n
It is a value for the transmittance (%) excluding the glass substrate measured every 5 nm in m.

【0077】[0077]

【表2】 注1:可視光線波長領域380〜780nmにおいて5
nm毎に測定したガラス基板を除く透過率から標準光源
D65、視野角2度として求めた値である。
[Table 2] Note 1: 5 in the visible light wavelength range 380 to 780 nm
It is a value obtained as a standard light source D65 and a viewing angle of 2 degrees from the transmittance excluding the glass substrate measured for each nm.

【0078】注2:可視光線波長領域380〜780n
mにおいて5nm毎に測定したガラス基板を除く透過率
(%)に対する値である。
Note 2: Visible light wavelength region 380 to 780n
It is a value for the transmittance (%) excluding the glass substrate measured every 5 nm in m.

【0079】[確 認] (1)表1および表2に示された結果から分かるよう
に、比較例2〜4の2層構造の低透過率透明導電性基材
では表面抵抗値とヘーズ値が著しく悪化しているのに対
して、各実施例の着色層を設けた3層構造の低透過率透
明導電性基材は電界シールドに好ましいとされる5×1
3Ω/□以下の表面抵抗値が得られると共に、良好な
ヘーズ値と反射特性が得られていることが確認される。
[Confirmation] (1) As can be seen from the results shown in Table 1 and Table 2, the surface resistance value and the haze value of the low-transmittance transparent conductive base materials having the two-layer structure of Comparative Examples 2 to 4 were confirmed. However, the low-transmissivity transparent conductive substrate having a three-layer structure provided with the colored layer of each example is considered to be preferable for the electric field shield.
It is confirmed that a surface resistance value of 0 3 Ω / □ or less is obtained, and good haze value and reflection characteristics are obtained.

【0080】(2)また、表1および表2に示された結
果から分かるように、比較例5の低透過率透明導電性基
材では透過色指数におけるb*値が条件の+5を超えて
しまい求められる光線透過色にならないことが確認され
る。
(2) Further, as can be seen from the results shown in Tables 1 and 2, in the low transmittance transparent conductive substrate of Comparative Example 5, the b * value in the transmitted color index exceeded the condition +5. It is confirmed that the desired light transmission color is not obtained.

【0081】(3)また、表1と表2に記載された数値
から分かるように、透明皮膜塗布形成後の熱処理を高温
で行えば、更に高性能の低透過率透明導電性基材が得ら
れることも確認される。
(3) Further, as can be seen from the numerical values shown in Tables 1 and 2, if the heat treatment after forming the transparent film coating is carried out at a high temperature, a transparent conductive substrate having a low transmittance can be obtained. It is also confirmed that

【0082】(4)更に、表1と表2および図1〜図1
4に示された結果から分かるように、各実施例の透過率
の標準偏差は比較例5よりも小さくなっており、光線透
過色が改善されていることが確認される。
(4) Further, Tables 1 and 2 and FIGS.
As can be seen from the results shown in Fig. 4, the standard deviation of the transmittance of each Example is smaller than that of Comparative Example 5, and it is confirmed that the light transmission color is improved.

【0083】[0083]

【発明の効果】請求項1〜4記載の発明に係る低透過率
透明導電性基材によれば、透明基板上に順次形成された
着色層、透明導電層および透明コート層から成る3層構
造の透明皮膜により、40〜60%の低透過率で、電界
シールドに好ましいとされる導電性および表面反射を抑
制する低反射性を備え、さらに良好な透過色を可能とす
る効果を有している。
According to the low-transmissivity transparent conductive base material of the present invention, a three-layer structure comprising a colored layer, a transparent conductive layer and a transparent coat layer which are sequentially formed on a transparent substrate. The transparent film of 40 to 60% has a low transmittance, has the conductivity which is preferable for the electric field shield and the low reflectivity which suppresses the surface reflection, and has an effect of enabling a better transmitted color. There is.

【0084】また、請求項5記載の発明に係る低透過率
透明導電性基材の製造方法によれば、透明基板上に着色
層形成用塗液、導電層形成用塗液、透明コート層形成用
塗液を順次塗布して乾燥させた後、熱処理するだけで低
透過率透明導電性基材が得られるため、請求項1〜4記
載の低透過率透明導電性基材を簡便かつ低コストに製造
できる効果を有している。
According to the method for producing a low-transmissivity transparent conductive substrate according to the invention of claim 5, a colored layer forming coating liquid, a conductive layer forming coating liquid, and a transparent coating layer forming are formed on a transparent substrate. The low-transmittance transparent conductive substrate can be obtained simply and at low cost because the low-transmittance transparent conductive substrate can be obtained simply by heat-treating after sequentially applying the coating liquid for coating and drying. It has the effect that it can be manufactured.

【0085】更に、請求項5記載の発明に係る表示装置
によれば、前面板として請求項1〜4のいずれかに記載
の低透過率透明導電性基材がその透明基板側を装置本体
側に対向させて組込まれているため、表示装置に表面反
射を抑制する低反射性を具備させることが可能となる効
果を有している。
Further, according to the display device of the invention described in claim 5, as the front plate, the low-transmissivity transparent conductive base material according to any one of claims 1 to 4 is arranged such that its transparent substrate side is on the device body side. Since it is incorporated so as to face the above, it has an effect that the display device can be provided with low reflectivity for suppressing surface reflection.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1および比較例5に係る180℃で30
分間熱処理した低透過率透明導電性基材の透過プロファ
イルを示すグラフ図。
FIG. 1 shows the results of Example 1 and Comparative Example 5 for 30 at 180 ° C.
The graph figure which shows the transmission profile of the low transmittance transparent electroconductive base material heat-processed for a minute.

【図2】実施例1および比較例5に係る180℃で30
分間熱処理した低透過率透明導電性基材の反射プロファ
イルを示すグラフ図。
FIG. 2 shows the results of Example 1 and Comparative Example 5 at 180 ° C. for 30 minutes.
The graph figure which shows the reflection profile of the low transmittance transparent electroconductive base material heat-processed for a minute.

【図3】実施例2、比較例2および比較例5に係る18
0℃で30分間熱処理した低透過率透明導電性基材の透
過プロファイルを示すグラフ図。
FIG. 3 shows 18 according to Example 2, Comparative Example 2 and Comparative Example 5;
The graph figure which shows the transmission profile of the low transmittance | permeability transparent conductive base material heat-processed at 0 degreeC for 30 minutes.

【図4】実施例2、比較例2および比較例5に係る18
0℃で30分間熱処理した低透過率透明導電性基材の反
射プロファイルを示すグラフ図。
FIG. 4 shows 18 according to Example 2, Comparative Example 2 and Comparative Example 5;
The graph which shows the reflection profile of the low transmittance transparent electroconductive base material heat-processed at 0 degreeC for 30 minutes.

【図5】実施例3、比較例3および比較例5に係る18
0℃で30分間熱処理した低透過率透明導電性基材の透
過プロファイルを示すグラフ図。
FIG. 5 shows 18 according to Example 3, Comparative Example 3 and Comparative Example 5;
The graph figure which shows the transmission profile of the low transmittance | permeability transparent conductive base material heat-processed at 0 degreeC for 30 minutes.

【図6】実施例3、比較例3および比較例5に係る18
0℃で30分間熱処理した低透過率透明導電性基材の反
射プロファイルを示すグラフ図。
FIG. 6 shows 18 according to Example 3, Comparative Example 3 and Comparative Example 5;
The graph which shows the reflection profile of the low transmittance transparent electroconductive base material heat-processed at 0 degreeC for 30 minutes.

【図7】実施例1および比較例5に係る450℃で30
分間熱処理した低透過率透明導電性基材の透過プロファ
イルを示すグラフ図。
FIG. 7: 30 at 450 ° C. according to Example 1 and Comparative Example 5
The graph figure which shows the transmission profile of the low transmittance transparent electroconductive base material heat-processed for a minute.

【図8】実施例1および比較例5に係る450℃で30
分間熱処理した低透過率透明導電性基材の反射プロファ
イルを示すグラフ図。
FIG. 8: 30 at 450 ° C. according to Example 1 and Comparative Example 5
The graph figure which shows the reflection profile of the low transmittance transparent electroconductive base material heat-processed for a minute.

【図9】実施例2、比較例2および比較例5に係る45
0℃で30分間熱処理した低透過率透明導電性基材の透
過プロファイルを示すグラフ図。
FIG. 9 shows 45 according to Example 2, Comparative Example 2 and Comparative Example 5.
The graph figure which shows the transmission profile of the low transmittance | permeability transparent conductive base material heat-processed at 0 degreeC for 30 minutes.

【図10】実施例2、比較例2および比較例5に係る4
50℃で30分間熱処理した低透過率透明導電性基材の
反射プロファイルを示すグラフ図。
FIG. 10 is a graph of 4 according to Example 2, Comparative Example 2 and Comparative Example 5;
The graph figure which shows the reflection profile of the low transmittance transparent electroconductive base material heat-processed at 50 degreeC for 30 minutes.

【図11】実施例3、比較例3および比較例5に係る4
50℃で30分間熱処理した低透過率透明導電性基材の
透過プロファイルを示すグラフ図。
11 is a diagram relating to Example 3, Comparative Example 3 and Comparative Example 5; FIG.
The graph figure which shows the transmission profile of the low transmittance | permeability transparent conductive base material heat-processed at 50 degreeC for 30 minutes.

【図12】実施例3、比較例3および比較例5に係る4
50℃で30分間熱処理した低透過率透明導電性基材の
反射プロファイルを示すグラフ図。
FIG. 12 is a graph of 4 according to Example 3, Comparative Example 3 and Comparative Example 5;
The graph figure which shows the reflection profile of the low transmittance transparent electroconductive base material heat-processed at 50 degreeC for 30 minutes.

【図13】実施例4、比較例4および比較例5に係る4
50℃で30分間熱処理した低透過率透明導電性基材の
透過プロファイルを示すグラフ図。
13 is a diagram relating to Example 4, Comparative Example 4 and Comparative Example 5; FIG.
The graph figure which shows the transmission profile of the low transmittance | permeability transparent conductive base material heat-processed at 50 degreeC for 30 minutes.

【図14】実施例4、比較例4および比較例5に係る4
50℃で30分間熱処理した低透過率透明導電性基材の
反射プロファイルを示すグラフ図。
14 is a diagram relating to Example 4, Comparative Example 4 and Comparative Example 5; FIG.
The graph figure which shows the reflection profile of the low transmittance transparent electroconductive base material heat-processed at 50 degreeC for 30 minutes.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02B 1/11 H01B 13/00 503B 5C032 5/22 H01J 9/20 A 5G307 H01B 13/00 503 29/88 5G323 H01J 9/20 G02B 1/10 A 29/88 Z Fターム(参考) 2H048 CA01 CA05 CA09 CA14 CA19 CA24 2K009 AA06 BB02 CC03 CC09 CC21 CC42 DD02 DD06 EE01 EE03 4F100 AA17B AA17C AA19B AA23B AG00 AH06D AK01B AK01C AR00B AR00C AR00D AT00A BA02 BA04 BA07 CB00B CB00C CC00D DE01C EH462 EJ422 GB41 JG01C JG04B JL10B JN01A JN01B JN01C JN01D JN06B YY00B 4G059 AA07 AC04 AC08 AC11 EA01 EA05 EA07 EB07 EB09 GA02 GA12 5C028 AA07 AA10 5C032 AA02 DD10 5G307 FA01 FA02 FB01 FC03 FC09 FC10 5G323 BA02 BB01 BB02 BC01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G02B 1/11 H01B 13/00 503B 5C032 5/22 H01J 9/20 A 5G307 H01B 13/00 503 29/88 5G323 H01J 9/20 G02B 1/10 A 29/88 Z F-term (reference) 2H048 CA01 CA05 CA09 CA14 CA19 CA24 2K009 AA06 BB02 CC03 CC09 CC21 CC42 DD02 DD06 EE01 EE03 4F100 AA17B AA17C AA19B AA23B AG00 AH06D AK01B AK01C AR00B AR00C AR00D AT00A BA02 BA04 BA07 CB00B CB00C CC00D DE01C EH462 EJ422 GB41 JG01C JG04B JL10B JN01A JN01B JN01C JN01D JN06B YY00B 4G059 AA07 AC04 AC08 AC11 EA01 EA05 EA07 EB07 EB09 GA02 GA12 5C028 AA07 AA10 5C032 AA02 DD10 5G307 FA01 FA02 FB01 FC03 FC09 FC10 5G323 BA02 BB01 BB02 BC01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】透明基板とこの透明基板上に設けられた透
明皮膜とで構成される低透過率透明導電性基材におい
て、 上記透明皮膜が、透明基板上に順次形成された着色層、
透明導電層および透明コート層とで構成されると共に、
可視光線領域380〜780nmにおいて5nm毎に測
定した透過率から求められる上記透明皮膜におけるL*
**表色系色指数(標準光源D65、視野角2度)の
*値が−10〜+5、b*値が−10〜+5の範囲内に
あり、かつ、上記透明皮膜における表面抵抗値が5×1
3Ω/□以下、可視光線領域380〜780nmの反
射プロファイルにおいて最小となる反射率が2%未満、
透過率が40〜60%、5nm毎に測定した透明基板を
含まない光線透過率の標準偏差が7%以下であることを
特徴とする低透過率透明導電性基材。
1. A low-transmittance transparent conductive substrate comprising a transparent substrate and a transparent film provided on the transparent substrate, wherein the transparent film is a colored layer formed in sequence on the transparent substrate.
Along with a transparent conductive layer and a transparent coat layer,
L * in the transparent film obtained from the transmittance measured every 5 nm in the visible light region 380 to 780 nm
a * b * colorimetric color index (standard light source D65, viewing angle 2 degrees) has a * value within the range of -10 to +5 and b * value of -10 to +5, and the surface of the transparent film Resistance value is 5 × 1
0 3 Ω / □ or less, the minimum reflectance in the reflection profile in the visible light region 380 to 780 nm is less than 2%,
A low-transmissivity transparent conductive substrate having a transmittance of 40 to 60%, a standard deviation of light transmittance not including a transparent substrate measured every 5 nm of 7% or less.
【請求項2】上記着色層が、コバルトとアルミニウムを
含有する複合酸化物微粒子若しくは鉄、マンガン、銅を
含有する複合酸化物微粒子またはこれ等2種類の混合体
から成る平均粒径10〜200nmの着色微粒子とバイ
ンダーマトリックスを主成分とすることを特徴とする請
求項1記載の低透過率透明導電性基材。
2. The colored layer, wherein the average particle diameter is 10 to 200 nm, which is composed of composite oxide fine particles containing cobalt and aluminum, or composite oxide fine particles containing iron, manganese, and copper, or a mixture of these two kinds. The low-transmissivity transparent conductive substrate according to claim 1, which comprises colored fine particles and a binder matrix as main components.
【請求項3】上記透明導電層が、酸化ルテニウム微粒子
から成る平均粒径10〜200nmの導電性微粒子とバ
インダーマトリックスを主成分とすることを特徴とする
請求項1記載の低透過率透明導電性基材。
3. The transparent conductive layer with low transmittance according to claim 1, wherein the transparent conductive layer is mainly composed of conductive fine particles of ruthenium oxide fine particles having an average particle size of 10 to 200 nm and a binder matrix. Base material.
【請求項4】上記透明コート層が、アルキルシリケート
の加水分解物を主成分とすることを特徴とする請求項1
記載の低透過率透明導電性基材。
4. The transparent coating layer contains a hydrolyzate of an alkyl silicate as a main component.
The low-transmittance transparent conductive substrate described.
【請求項5】請求項1〜4記載の低透過率透明導電性基
材の製造方法において、 着色微粒子が分散された着色層形成用塗液、導電性微粒
子が分散された導電層形成用塗液、アルキルシリケート
の加水分解物が含有された透明コート層形成用塗液を上
記透明基板上に順次塗布して乾燥させた後、100〜4
50℃の温度で熱処理することを特徴とする低透過率透
明導電性基材の製造方法。
5. The method for producing a low-transmittance transparent conductive substrate according to any one of claims 1 to 4, wherein a coloring layer-forming coating liquid in which colored fine particles are dispersed, and a conductive layer-forming coating in which conductive fine particles are dispersed. Liquid, a coating liquid for forming a transparent coat layer containing a hydrolyzate of an alkyl silicate, is sequentially applied on the transparent substrate and dried, and then 100 to 4
A method for producing a low-transmissivity transparent conductive substrate, which comprises heat treatment at a temperature of 50 ° C.
【請求項6】装置本体とこの前面側に配置された前面板
を備える表示装置において、 上記前面板として請求項1〜4のいずれかに記載の低透
過率透明導電性基材がその透明基板側を装置本体側に対
向させて組込まれていることを特徴とする表示装置。
6. A display device comprising a device main body and a front plate arranged on the front side thereof, wherein the low transmittance transparent conductive base material according to claim 1 is used as the front plate. A display device characterized in that it is incorporated with the side facing the device body side.
JP2001388988A 2001-12-21 2001-12-21 Low-transmittance transparent conductive base material and its manufacturing method as well as display device applying this base material Pending JP2003187643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001388988A JP2003187643A (en) 2001-12-21 2001-12-21 Low-transmittance transparent conductive base material and its manufacturing method as well as display device applying this base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001388988A JP2003187643A (en) 2001-12-21 2001-12-21 Low-transmittance transparent conductive base material and its manufacturing method as well as display device applying this base material

Publications (1)

Publication Number Publication Date
JP2003187643A true JP2003187643A (en) 2003-07-04

Family

ID=27597327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001388988A Pending JP2003187643A (en) 2001-12-21 2001-12-21 Low-transmittance transparent conductive base material and its manufacturing method as well as display device applying this base material

Country Status (1)

Country Link
JP (1) JP2003187643A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2525971A1 (en) * 2009-11-30 2012-11-28 The Government of the United States of America as represented by the Secretary of the Navy Ruo2 coatings
US9910545B2 (en) 2008-07-18 2018-03-06 Nitto Denko Corporation Transparent conductive film and touch panel
US10651478B2 (en) 2007-10-05 2020-05-12 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Electrodes having Pt nanoparticles on RuO2 nanoskins

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906501B2 (en) 2007-10-05 2014-12-09 The United States Of America As Represented By The Secretary Of The Navy RuO2 coatings
US10651478B2 (en) 2007-10-05 2020-05-12 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Electrodes having Pt nanoparticles on RuO2 nanoskins
US9910545B2 (en) 2008-07-18 2018-03-06 Nitto Denko Corporation Transparent conductive film and touch panel
EP2525971A1 (en) * 2009-11-30 2012-11-28 The Government of the United States of America as represented by the Secretary of the Navy Ruo2 coatings
JP2013512130A (en) * 2009-11-30 2013-04-11 アメリカ合衆国 RuO2 coating
EP2525971A4 (en) * 2009-11-30 2015-02-25 Us Gov Sec Navy Ruo2 coatings

Similar Documents

Publication Publication Date Title
US6143418A (en) Transparent conductive film, low-reflectivity transparent conductive film, and display device
JPH09286936A (en) Applying solution for forming transparent conductive film, transparent conductive film using the same and its formation
US6423404B1 (en) Low-transmission transparent layered structure, production method thereof and display device using the layered structure
JP3266323B2 (en) Composite functional materials
JP3399270B2 (en) Transparent conductive film and composition for forming the same
US6333596B1 (en) Functional film and cathode ray tube employing the same
JP2003187643A (en) Low-transmittance transparent conductive base material and its manufacturing method as well as display device applying this base material
JP4043941B2 (en) Transparent conductive film and display device
JP2859783B2 (en) Paint for forming antistatic / high refractive index film, transparent material laminate with antistatic / antireflective film and display device
JP2003301141A (en) Coating liquid for forming transparent electroconductive layer having low transmittance and front panel of display device
JP2892250B2 (en) Paint for forming antistatic / high refractive index film, transparent laminate with antistatic / antireflective film and display device
JP2002071911A (en) Transparent base material with low transmittance, method of manufacturing the same, and display device adapting transparent base material with low transmittance
US7132169B2 (en) Composition for forming coating layer and flat monitor panel for display device having coating layer prepared from the same
JP3451808B2 (en) Low reflective transparent conductive film and method for forming the same
JP4271438B2 (en) Transparent conductive film forming paint, transparent conductive film, method for producing the same, and display device including the same
JP2005099421A (en) Low transmittance transparent conductive substrate and its manufacturing method, coating liquid for forming low transmittance transparent conductive layer used for manufacturing the substrate, and display device applied with the substrate
US6570317B1 (en) Cathode-ray tube and method for manufacturing the same
JP2005048056A (en) Coating liquid for forming low transmission transparent electroconductive film, low transmission transparent electroconductive film, low transmission transparent electroconductive base material and display applied with this base material
KR100329578B1 (en) Cathode ray tube employing functional film
JP3217275B2 (en) Low reflection conductive laminated film and cathode ray tube
KR100394054B1 (en) Cathod ray tube
JP2005050668A (en) Coating liquid for forming transparent conductive film with low transmissivity, transparent conductive film with low transmissivity, base material for transparent conductive film with low transmissivity, and display device adopting the base material
JP2003109433A (en) Transparent conductive film, paint for forming it, and display device using it
JPH09161561A (en) Coating liquid for formation of dark-colored translucent conductive film
JP2003137601A (en) Coating liquid for forming low-transmittance antistatic film, low-transmittance antistatic film to which this coating liquid is applied, method of manufacturing low- transmittance antistatic base material and display device to which this base material is applied