JP2003185544A - Method for manufacturing microscope observation sample mount in porous body - Google Patents

Method for manufacturing microscope observation sample mount in porous body

Info

Publication number
JP2003185544A
JP2003185544A JP2001387847A JP2001387847A JP2003185544A JP 2003185544 A JP2003185544 A JP 2003185544A JP 2001387847 A JP2001387847 A JP 2001387847A JP 2001387847 A JP2001387847 A JP 2001387847A JP 2003185544 A JP2003185544 A JP 2003185544A
Authority
JP
Japan
Prior art keywords
porous body
sample mount
resin
microscope observation
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001387847A
Other languages
Japanese (ja)
Inventor
Tsunao Tezuka
津奈生 手塚
Takakazu Suzuki
孝和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2001387847A priority Critical patent/JP2003185544A/en
Publication of JP2003185544A publication Critical patent/JP2003185544A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microscope observation sample mount-manufacturing method having a short manufacturing time. <P>SOLUTION: In the method for mounting the microscope observation sample mount of a porous body, a cured resin is subjected to impregnation treatment to the pore section of the porous body by a vacuum impregnation method, a sample mount having a ring type before the curing resin is cured is rotated by a rotary pressurizing apparatus 1 for filling the cured resin into the pore section of the porous body by centrifugal force (1). In the microscope observation sample mount-manufacturing method of a porous body in 1 above, the cured resin is cured in approximately 15 minutes (2). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は多孔質体の顕微鏡観
察試料マウント製作方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a microscope observation sample mount of a porous body.

【0002】[0002]

【従来の技術】例えば、ジェットエンジンのタービンブ
レード、ステーターベーンまたは燃焼室の内壁等の部材
には耐熱性を付与するためにセラミックの溶射コーティ
ングが施してある。
2. Description of the Related Art For example, a member such as a turbine blade of a jet engine, a stator vane or an inner wall of a combustion chamber is provided with a ceramic thermal spray coating for imparting heat resistance.

【0003】溶射コーティング部分は多孔質となってお
り、気孔(ボイド)率、酸化物の量およびクラック等が
適正値か否かの検査を顕微鏡によって行っている。顕微
鏡検査を行う場合、通常は上述の部品の検査対象部分の
切断試料をエポキシ樹脂などの長時間硬化型樹脂に埋め
込んで顕微鏡観察の試料マウントを製作する。
The thermal spray coating portion is porous, and a microscope is used to inspect whether the porosity (void) rate, the amount of oxide, cracks, etc. are proper values. When performing a microscopic inspection, a sample mount for microscopic observation is usually manufactured by embedding a cut sample of a portion to be inspected of the above-mentioned component in a long-time curable resin such as epoxy resin.

【0004】上述の顕微鏡検査用の試料マウントの観察
面を平坦に研磨するときに、気孔(ボイド)があると溶
射コーティング部分が脱落する恐れがあるため、試料を
補強すると共に脱落による誤った解析を予防するため
に、観察面(研磨面)の気孔部分に樹脂を完全に充填す
る必要がある。
When the observation surface of the above-mentioned sample mount for microscopic inspection is polished flat, the sprayed coating portion may fall off if there are pores (voids). Therefore, the sample is reinforced and erroneous analysis due to the dropout occurs. In order to prevent this, it is necessary to completely fill the pores on the observation surface (polished surface) with resin.

【0005】一般的な気孔部分への樹脂の充填方法に
は、室温で硬化し、硬化後にほとんど収縮しないエポキ
シ樹脂を使用した真空含浸法が行われている。
As a general method for filling the resin into the pores, a vacuum impregnation method using an epoxy resin that cures at room temperature and hardly shrinks after curing is performed.

【0006】図3は上述の真空含浸法による顕微鏡検査
用の試料マウント製作方法および真空含浸装置の一例を
説明した図であり、支持板100上に載置した切断試料
101に型リング102をかぶせ、この型リング102
内に硬化型エポキシ樹脂103が注入してある。
FIG. 3 is a view for explaining an example of a method of manufacturing a sample mount for microscopic inspection by the above-mentioned vacuum impregnation method and a vacuum impregnation apparatus, in which a die ring 102 is put on a cut sample 101 placed on a support plate 100. , This mold ring 102
A curable epoxy resin 103 is injected into the inside.

【0007】型リング102は円盤状のリングホルダ1
04の円周部に複数個が配置してあり、このリングホル
ダ104の中心部には真空ポンプに連通する真空引きポ
ート105が設けてある。
The mold ring 102 is a disk-shaped ring holder 1
A plurality of them are arranged on the circumference of 04, and a vacuuming port 105 communicating with a vacuum pump is provided at the center of this ring holder 104.

【0008】上記複数個の型リング102を配置した支
持板100は、釣り鐘状の真空容器106を上部に載置
した真空容器ベース107上に設置してあり、リングホ
ルダ104は釣り鐘状の真空容器106内にすっぽり入
った状態となっている。
The support plate 100 on which the plurality of mold rings 102 are arranged is installed on a vacuum container base 107 on which a bell-shaped vacuum container 106 is placed, and the ring holder 104 is a bell-shaped vacuum container. It is in a state that it completely fits inside 106.

【0009】前記真空引きポート105はこの真空容器
のベース107と真空ポンプ108との間を連通する吸
引管路109に接続してあり、この吸引管路109の途
中には乾燥剤110とグラスウール111を充填したド
ライヤー112および真空度計113が設けてある。ま
た、前記真空容器106の頂部には大気圧に開放可能な
バルブ114が設けてある。
The evacuation port 105 is connected to a suction pipe 109 which connects the base 107 of the vacuum container and the vacuum pump 108, and a desiccant 110 and glass wool 111 are provided in the suction pipe 109. A drier 112 and a vacuum gauge 113 filled with are provided. A valve 114 that can be opened to the atmospheric pressure is provided on the top of the vacuum container 106.

【0010】上記構成の真空含浸装置において、真空ポ
ンプ108を作動させて適宜な真空度にすれば、試料に
存在する気孔内の空気が排出されて気孔内に樹脂が充填
されることになる。
In the vacuum impregnating apparatus having the above structure, when the vacuum pump 108 is operated to obtain an appropriate degree of vacuum, the air in the pores existing in the sample is discharged and the pores are filled with the resin.

【0011】このようにして気孔内に樹脂を含浸させて
樹脂が硬化した後に、観察面を研磨した試料マウントが
図4(a,b)である。なお、図4aは、樹脂にアルミナ充
填剤を添加して樹脂と試料との硬度差を小さくし、樹脂
部の研磨だれを押さえたものであり、図4bは無添加の
ものを示す。
FIG. 4 (a, b) shows a sample mount in which the observation surface is polished after the resin is hardened by impregnating the pores with the resin in this way. It should be noted that FIG. 4a shows that the difference in hardness between the resin and the sample was reduced by adding an alumina filler to the resin, and polishing sag of the resin portion was suppressed, and FIG.

【0012】図5および図6は上述の如き真空含浸装置
において、硬化型エポキシ樹脂を溶射コーティング部分
の気孔に含浸させた試料の顕微鏡写真であり、気孔部に
樹脂が充填されていない部分が若干残った含浸不良の例
である。
FIGS. 5 and 6 are micrographs of a sample obtained by impregnating the pores of the spray-coated portion with a curable epoxy resin in the vacuum impregnating apparatus as described above, and the pores are not filled with resin. This is an example of the remaining impregnation failure.

【0013】なお、図5および図6の上部が試料の表面
側であり、写真の拡大倍率はそれぞれ200倍と500
倍である。
The upper part of FIGS. 5 and 6 is the surface side of the sample, and the magnifications of the photographs are 200 and 500, respectively.
Double.

【0014】上述のように真空含浸のみでは樹脂の含浸
が不十分となるため、真空含浸の後に2気圧程度の空気
圧を有する加圧チャンバー(図示せず)内に型リングの
付いた状態の試料マウントを入れて、全ての気孔内に樹
脂が完全に充填されるようにすることが行われている。
As described above, the vacuum impregnation alone does not sufficiently impregnate the resin. Therefore, after the vacuum impregnation, the sample with the mold ring attached in the pressure chamber (not shown) having an air pressure of about 2 atm. It is practiced to place the mount so that all the pores are completely filled with resin.

【0015】なお、図7および図8は真空含浸に加えて
加圧処理(約2気圧)を行った場合の試料の顕微鏡写真
であり、図7は倍率500倍、図8は倍率200倍であ
る。
7 and 8 are photomicrographs of a sample when pressure treatment (about 2 atm) is performed in addition to vacuum impregnation. FIG. 7 shows a magnification of 500 times, and FIG. 8 shows a magnification of 200 times. is there.

【0016】[0016]

【発明が解決しようとする課題】従来の真空含浸法に使
用するエポキシ樹脂の硬化には約8時間が必要である。
さらに加圧操作が完了するまでに一晩(約12時間)が
必要であり、作業能率が悪くまた緊急の検査には使用で
きないという問題がある。
It takes about 8 hours to cure the epoxy resin used in the conventional vacuum impregnation method.
Further, it requires one night (about 12 hours) until the pressurizing operation is completed, resulting in poor work efficiency and unusable for emergency inspection.

【0017】本発明は上述の如き問題を解決するために
なされたものであり、本発明の課題は、製作時間の短い
顕微鏡観察試料マウント製作方法を提供することであ
る。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method of manufacturing a microscope observation sample mount which requires a short manufacturing time.

【0018】[0018]

【課題を解決するための手段】上述の課題を解決する手
段として請求項1に記載の多孔質体の顕微鏡観察試料マ
ウント製作方法は、多孔質体の顕微鏡観察試料マウント
製作方法にして、前記多孔質体の気孔部に真空含浸法に
より硬化型樹脂を含浸処理し、該硬化型樹脂が硬化する
前の試料マウントを回転させて前記多孔質体の気孔部へ
前記硬化型樹脂を遠心力により充填させることを要旨と
するものである。
As a means for solving the above-mentioned problems, a method for producing a microscope observation sample mount for a porous body according to claim 1 is a method for producing a microscope observation sample mount for a porous body, The pores of the porous body are impregnated with a curable resin by a vacuum impregnation method, and the sample mount before the curable resin is cured is rotated to fill the pores of the porous body with the curable resin by centrifugal force. The main point is to do.

【0019】請求項2に記載の多孔質体の顕微鏡観察試
料マウント製作方法は、請求項1に記載の多孔質体の顕
微鏡観察試料マウント製作方法において、前記硬化型樹
脂が15分前後で硬化する短時間硬化型樹脂であること
を要旨とするものである。
According to a second aspect of the present invention, there is provided a microscope observation sample mount manufacturing method for a porous body, wherein the curable resin is cured in about 15 minutes. The gist is that it is a short-time curable resin.

【0020】[0020]

【発明の実施の形態】以下本発明の実施の形態を図面に
よって説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0021】前述の如き真空含浸の後の加圧操作に代わ
って、本発明では次に説明する回転加圧装置で加圧する
ことを特徴とするものである。
In place of the pressure operation after the vacuum impregnation as described above, the present invention is characterized in that the pressure is applied by the rotary pressure device described below.

【0022】図1は、上述の回転加圧装置1の概念図を
示したものである。回転加圧装置1は、鉛直方向に延伸
する回転軸2を備え、この回転軸2に下端部にマウント
受台3を備えたアーム4を前記回転軸2を含む平面内に
おいてアーム4の上端部を支点5として回動可能に連結
して設けてなるものである。
FIG. 1 is a conceptual diagram of the rotary pressure device 1 described above. The rotary pressurizing device 1 includes a rotating shaft 2 extending in the vertical direction, and an arm 4 having a mount pedestal 3 at a lower end portion of the rotating shaft 2 in an upper end portion of the arm 4 in a plane including the rotating shaft 2. Is rotatably connected as a fulcrum 5.

【0023】なお、前記回転軸2は図示しないモータの
如き回転駆動手段により適宜な回転数での回転駆動がで
きるようになっている。
The rotating shaft 2 can be driven to rotate at an appropriate rotation speed by a rotation driving means such as a motor (not shown).

【0024】上記構成の回転加圧装置1において、切断
試料に注入した樹脂が未硬化の型リング付の試料マウン
ト6をマウント受台3上に観察面が上部に位置するよう
に載置し、回転軸2を回転駆動手段(図示省略)により
適宜な回転数で回転駆動すれば、アーム4は回転軸2と
共に回転すると同時に、回転軸2の回転数が上がるに連
れて図2に示すように段々に水平方向に回動し、回転に
よりアーム4に作用する水平方向の力とアーム4に作用
する重力とがバランスした位置でアームの回動が停止す
る。
In the rotary pressurizing device 1 having the above structure, the sample mount 6 with a mold ring in which the resin injected into the cut sample is uncured is placed on the mount pedestal 3 so that the observation surface is located above. When the rotary shaft 2 is rotationally driven by a rotary drive means (not shown) at an appropriate rotational speed, the arm 4 rotates together with the rotary shaft 2, and at the same time, as the rotational speed of the rotary shaft 2 increases, as shown in FIG. The arm gradually rotates in the horizontal direction, and the arm stops rotating at a position where the horizontal force acting on the arm 4 and the gravity acting on the arm 4 are balanced by the rotation.

【0025】そして、マウント受台3上に載置した注入
樹脂が未硬化の型リング付の試料マウント6には大きな
遠心力Fが作用して、切断試料の気孔部分に樹脂が充填
されることになる。
Then, a large centrifugal force F acts on the sample mount 6 with the mold ring in which the injection resin placed on the mount pedestal 3 is uncured, and the resin is filled in the pores of the cut sample. become.

【0026】なお、この回転加圧装置1においては、短
時間で(数分程度)従来の加圧方法で使用する2気圧以
上に加圧することが可能である。
In the rotary pressurizing device 1, it is possible to pressurize to 2 atm or more used in the conventional pressurizing method in a short time (about several minutes).

【0027】したがって、上述の回転加圧装置1を使用
することにより、例えば、7〜15分で硬化する短時間
硬化型のアクリル樹脂(市販品のデュロフィックス2ま
たはシトフィックスなど)も使用することが可能とな
る。
Therefore, by using the rotary pressurizing device 1 described above, for example, a short-time curable acrylic resin (commercially available Durofix 2 or Citofix) which cures in 7 to 15 minutes can also be used. Is possible.

【0028】すなわち、前述の如き真空含浸装置におい
て短時間硬化型のアクリル樹脂を使用して真空含浸を行
い、アクリル樹脂が硬化する前に上述の回転加圧装置1
により加圧を行えば、短時間でかつ確実に多孔質の気孔
部に樹脂を充填することができる。
That is, vacuum impregnation is carried out in the vacuum impregnating apparatus as described above using a short-time curable acrylic resin, and the rotary pressurizing apparatus 1 is set before the acrylic resin is cured.
By applying the pressure, it is possible to reliably fill the porous pores with the resin in a short time.

【0029】その後、観察面を図示しない研磨装置で研
磨すれば顕微鏡観察試料マウントを短時間で製作するこ
とができる。
Thereafter, the microscope observation sample mount can be manufactured in a short time by polishing the observation surface with a polishing device (not shown).

【0030】[0030]

【発明の効果】請求項1の発明によれば、真空含浸法に
よる含浸後の加圧処理を回転加圧装置による遠心力を利
用して数分程度の短時間で行うので、顕微鏡観察試料マ
ウントを短時間で製作することができる。
According to the first aspect of the present invention, the pressure treatment after impregnation by the vacuum impregnation method is performed in a short time of about several minutes by utilizing the centrifugal force of the rotary pressure device. Can be manufactured in a short time.

【0031】請求項2の発明によれば、真空含浸法によ
る含浸後の加圧処理を回転加圧装置による遠心力を利用
して数分程度の短時間で行うと共に、真空含浸法での含
浸処理に使用する樹脂に15分前後で硬化する短時間硬
化型樹脂を使用するため極めて短時間で顕微鏡観察試料
マウントを製作することができる。
According to the invention of claim 2, the pressure treatment after the impregnation by the vacuum impregnation method is performed in a short time of about several minutes by utilizing the centrifugal force by the rotary pressure device, and the impregnation by the vacuum impregnation method is performed. Since a short-time curable resin that cures in about 15 minutes is used as the resin used for the treatment, the microscope observation sample mount can be manufactured in an extremely short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる回転加圧装置の概念図。FIG. 1 is a conceptual diagram of a rotary pressure device according to the present invention.

【図2】図1の回転加圧装置の作動状態を示す図。FIG. 2 is a diagram showing an operating state of the rotary pressurizing device of FIG.

【図3】従来の真空含浸法による顕微鏡検査用試料マウ
ント製作方法および装置の例。
FIG. 3 is an example of a method and apparatus for manufacturing a sample mount for microscopic inspection by a conventional vacuum impregnation method.

【図4】真空含浸装置によってエポキシ樹脂を含浸させ
た後、観察面を研磨した試料マウントの一例。図4aは
アルミナ充填材入りで図4bは充填材なしの場合。
FIG. 4 is an example of a sample mount in which an observation surface is polished after being impregnated with an epoxy resin by a vacuum impregnation device. Figure 4a shows the case with alumina filler and Figure 4b shows the case without filler.

【図5】真空含浸処理のみで硬化型エポキシ樹脂を溶射
コーティング部分の気孔に含浸させた試料の顕微鏡写真
(倍率200倍)。
FIG. 5 is a photomicrograph (magnification: 200) of a sample obtained by impregnating pores of a thermal spray coating portion with a curable epoxy resin only by vacuum impregnation treatment.

【図6】真空含浸処理のみで硬化型エポキシ樹脂を溶射
コーティング部分の気孔に含浸させた試料の顕微鏡写真
(倍率500倍)。
FIG. 6 is a micrograph (magnification: 500 times) of a sample in which a curable epoxy resin is impregnated into pores of a thermal spray coating portion only by vacuum impregnation treatment.

【図7】真空含浸処理により硬化型エポキシ樹脂を溶射
コーティング部分の気孔に含浸させると共に加圧処理
(約2気圧)を行った場合の試料の顕微鏡写真(倍率5
00倍)。
FIG. 7 is a micrograph of a sample in which a hardening epoxy resin is impregnated in a pore of a thermal spray coating portion by a vacuum impregnation treatment and a pressure treatment (about 2 atm) is performed (magnification: 5).
00 times).

【図8】真空含浸処理により硬化型エポキシ樹脂を溶射
コーティング部分の気孔に含浸させると共に加圧処理
(約2気圧)を行った場合の試料の顕微鏡写真(倍率2
00倍)。
FIG. 8 is a photomicrograph (magnification: 2) of a sample in which a curable epoxy resin is impregnated into the pores of the thermal spray coating portion by vacuum impregnation treatment and pressure treatment (about 2 atm) is performed.
00 times).

【符号の説明】[Explanation of symbols]

1 回転加圧装置 2 回転軸 3 マウント受台 4 アーム 5 支点 6 試料マウント 1 rotary press 2 rotation axes 3 mount pedestal 4 arms 5 fulcrum 6 Sample mount

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多孔質体の顕微鏡観察試料マウント製作
方法にして、前記多孔質体の気孔部に真空含浸法により
硬化型樹脂を含浸処理し、該硬化型樹脂が硬化する前の
試料マウントを回転させて前記多孔質体の気孔部へ前記
硬化型樹脂を遠心力により充填させることを特徴とする
多孔質体の顕微鏡観察試料マウント製作方法。
1. A method for producing a sample mount for observing a porous body under a microscope, wherein a pore-shaped portion of the porous body is impregnated with a curable resin by a vacuum impregnation method, and the sample mount before the curable resin is cured is used. A method of manufacturing a microscope observation sample mount of a porous body, which comprises rotating to fill the pores of the porous body with the curable resin by centrifugal force.
【請求項2】 請求項1に記載の多孔質体の顕微鏡観察
試料マウント製作方法において、前記硬化型樹脂が15
分前後で硬化する短時間硬化型樹脂であることを特徴と
する多孔質体の顕微鏡観察試料マウントの製作方法。
2. The method for manufacturing a microscope observation sample mount for a porous body according to claim 1, wherein the curable resin is 15
A method for manufacturing a sample mount for microscopic observation of a porous body, which is a short-time curable resin that cures in about a minute.
JP2001387847A 2001-12-20 2001-12-20 Method for manufacturing microscope observation sample mount in porous body Pending JP2003185544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001387847A JP2003185544A (en) 2001-12-20 2001-12-20 Method for manufacturing microscope observation sample mount in porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001387847A JP2003185544A (en) 2001-12-20 2001-12-20 Method for manufacturing microscope observation sample mount in porous body

Publications (1)

Publication Number Publication Date
JP2003185544A true JP2003185544A (en) 2003-07-03

Family

ID=27596552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001387847A Pending JP2003185544A (en) 2001-12-20 2001-12-20 Method for manufacturing microscope observation sample mount in porous body

Country Status (1)

Country Link
JP (1) JP2003185544A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535570A (en) * 2014-12-24 2015-04-22 天津大学 Device for testing single molecule force spectroscopy based on centrifugal force
KR101528153B1 (en) * 2013-10-04 2015-06-11 한국원자력연구원 Aparratus to create vacuum state using a hand vacuum pump
JP7468242B2 (en) 2019-08-21 2024-04-16 住友金属鉱山株式会社 Method for impregnating a sample with resin, method for preparing a sample, and method for analyzing a sample

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101528153B1 (en) * 2013-10-04 2015-06-11 한국원자력연구원 Aparratus to create vacuum state using a hand vacuum pump
CN104535570A (en) * 2014-12-24 2015-04-22 天津大学 Device for testing single molecule force spectroscopy based on centrifugal force
JP7468242B2 (en) 2019-08-21 2024-04-16 住友金属鉱山株式会社 Method for impregnating a sample with resin, method for preparing a sample, and method for analyzing a sample

Similar Documents

Publication Publication Date Title
AU2017352143B2 (en) Process and process apparatus for forming protective coating on magnetic pole of permanent magnet motor
CN100467210C (en) Vacuum chuck and suction board
JP5108215B2 (en) Method and apparatus for positioning columnar structure
JP5044220B2 (en) Carbon foam composite tool and method for using the carbon foam composite tool
CN111704743B (en) Ablation-resistant nanoporous resin-based composite material and preparation method thereof
CN106986664B (en) The restorative procedure of carbon fibre reinforced silicon carbide composite material defect
US7021362B2 (en) Shelling apparatus and methods for investment casting
JP2012500730A (en) Polishing method and apparatus for bladed disc (blisk) for turbomachine
JP6612383B2 (en) Method and assembly for forming features in composite parts
US2860961A (en) Method for making abrasive articles
JP2003185544A (en) Method for manufacturing microscope observation sample mount in porous body
JP2015501240A (en) Impregnated clamp mandrels for the production of composite gas turbine casings
CN108947551A (en) A kind of outer heat-insulation composite material and preparation method thereof
US20010054473A1 (en) Method and apparatus for repairing a discrete damaged portion of an article surface
CN110994921A (en) Method for forming potted rotor disc
CA2747382A1 (en) Process and apparatus for producing composite structures
CN105655123A (en) Device and technology for producing high-temperature resistant coil
CN211981598U (en) Motor rotor disc and forming die thereof
JP6612918B2 (en) Method and assembly for forming features in composite parts
CN115536436B (en) Repairing method of carbon fiber toughened ceramic matrix composite member
GB2252315A (en) Fiber-reinforced ceramics
CN213612183U (en) Laser radar outer surface hardening treatment device with top cover
EP1081115B1 (en) Method and apparatus for manufacturing ceramic-based composite member
CN1053387C (en) Method for preparation of improved complex film with coating
CN111004045B (en) Reinforcing method of fiber reinforced silicon carbide ceramic matrix composite