JP2003185158A - Flow detecting method for hot water heater and hot water heater - Google Patents

Flow detecting method for hot water heater and hot water heater

Info

Publication number
JP2003185158A
JP2003185158A JP2001387091A JP2001387091A JP2003185158A JP 2003185158 A JP2003185158 A JP 2003185158A JP 2001387091 A JP2001387091 A JP 2001387091A JP 2001387091 A JP2001387091 A JP 2001387091A JP 2003185158 A JP2003185158 A JP 2003185158A
Authority
JP
Japan
Prior art keywords
temperature
hot water
flow rate
terminal
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001387091A
Other languages
Japanese (ja)
Inventor
Takashi Ikezawa
剛史 池澤
Hideya Suyama
英也 壽山
Atsushi Yoshimoto
厚志 吉本
Kazuya Kawauchi
一哉 川内
Takaaki Sato
崇昭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Noritz Corp
Original Assignee
Tokyo Gas Co Ltd
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Noritz Corp filed Critical Tokyo Gas Co Ltd
Priority to JP2001387091A priority Critical patent/JP2003185158A/en
Publication of JP2003185158A publication Critical patent/JP2003185158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot water heater capable of accurately computing the water passing flow at the terminal. <P>SOLUTION: The flow Q2 flowing through the low temperature terminal c is found not by a direct detecting means such as a flow sensor, but by the numerical expression Q2=Q1×(T1-T3)/(T3-T2) from a water passing temperature T1 detected by a temperature sensor 2, a water passing flow Q1 of a by-pass pipe F, a water passing temperature T2 detected by a temperature sensor 3, and a water passing temperature T3 detected by a temperature sensor 4. In advance, the detection errors of the respective temperature sensors 1 to 3 are computed as correction values α, β, an the correction values are used to compute the numerical expression Q2=Q1×(T1-T3-α)/(T3-T2-β). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、温水暖房装置の流
量検出方法および温水暖房装置に関し、より詳細には、
温水暖房装置において端末に流れる湯水の流量を流量セ
ンサを用いずに検出する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate detecting method for a hot water heating system and a hot water heating system, and more specifically,
The present invention relates to a technique for detecting the flow rate of hot water flowing through a terminal in a hot water heating device without using a flow rate sensor.

【0002】[0002]

【従来の技術】(温水暖房装置の基本構成)従来より温
水エアコンやパネルヒータさらには床暖房パネルといっ
た種々の暖房機に温水を供給する温水暖房装置が知られ
ている。このような温水暖房装置に用いられる暖房機
は、供給される温水の温度の高低によって高温端末(上
記温水エアコンやパネルヒータ等)と低温端末(上記床
暖房パネル等)とに区別されている。そのため、一台の
温水暖房装置でこれらの暖房機に温水を供給する場合、
従来より図2に示すような回路構成が採用されている。
2. Description of the Related Art (Basic Structure of Hot Water Heating Device) A hot water heating device for supplying hot water to various heaters such as a hot water air conditioner, a panel heater, and a floor heating panel has been conventionally known. The heater used in such a hot water heating apparatus is classified into a high temperature terminal (such as the hot water air conditioner and the panel heater) and a low temperature terminal (such as the floor heating panel) according to the temperature of the supplied hot water. Therefore, when supplying hot water to these heaters with one hot water heater,
Conventionally, a circuit configuration as shown in FIG. 2 has been adopted.

【0003】すなわち、この図2に示す温水暖房装置
は、一台の熱交換器(熱交換手段)aを用いて高温端末
bと低温端末cとに温水を供給する回路であって、上記
熱交換器aで加熱された高温の温水(高温水)を高温端
末b、膨張タンクd、循環ポンプeを経て再び熱交換器
aに循環させる高温水循環回路(図中の一点鎖線参照)
と、上記熱交換器aの上流側(具体的には循環ポンプe
の下流側)で分岐した温水(低温水)を低温端末c、膨
張タンクd、循環ポンプeを経て再び低温端末cに循環
させる低温水循環回路(図中の二点鎖線参照)とを有し
ている。
That is, the hot water heating apparatus shown in FIG. 2 is a circuit for supplying hot water to a high temperature terminal b and a low temperature terminal c by using one heat exchanger (heat exchanging means) a. High-temperature water circulation circuit for circulating high-temperature hot water (high-temperature water) heated by the exchanger a through the high-temperature terminal b, the expansion tank d, and the circulation pump e to the heat exchanger a again (see the chain line in the figure).
And the upstream side of the heat exchanger a (specifically, the circulation pump e
And a low temperature water circulation circuit (see a chain double-dashed line in the figure) that circulates the hot water (low temperature water) branched at the downstream side) through the low temperature terminal c, the expansion tank d, and the circulation pump e to the low temperature terminal c again. There is.

【0004】ここで、膨張タンクdは、大気に開放さ
れ、かつ図外の上水道と接続された補水タンクであり、
この膨張タンクdには上記高温端末bで熱量を奪われた
温水が循環している。また、上記高温端末bの熱動弁g
の上流側と膨張タンクdの上流側との間には、上記低温
端末cに流れ込む湯水の温度を一定に保つなどの目的の
ための混合バイパスとしてバイパス配管fが配されてい
る。
Here, the expansion tank d is a replenishing water tank which is open to the atmosphere and is connected to the water supply (not shown),
The expansion tank d circulates the hot water deprived of heat at the high temperature terminal b. Further, the thermal valve g of the high temperature terminal b
A bypass pipe f is arranged between the upstream side of the expansion tank and the upstream side of the expansion tank d as a mixing bypass for the purpose of keeping the temperature of the hot water flowing into the low temperature terminal c constant.

【0005】なお、バイパス管fは充分に細いため、低
温端末cの流量変化にかかわらず、ほぼ一定流量とな
る。このため、上記バイパス配管fに流れる湯水の流量
は常に一定とされている。なお、低温端末cは複数の端
末を並列接続可能とされており、図示例では3台の低温
端末c1 〜c3 が配設された場合が示されており、各低
温端末c1 〜c3 の上流側にはそれぞれ熱動弁h1 〜h
3 が設けられている。
Since the bypass pipe f is sufficiently thin, it has a substantially constant flow rate regardless of the flow rate change of the low temperature terminal c. Therefore, the flow rate of the hot water flowing through the bypass pipe f is always constant. Note that the low temperature terminal c is configured such that a plurality of terminals can be connected in parallel, and in the illustrated example, three low temperature terminals c 1 to c 3 are provided, and the low temperature terminals c 1 to c are shown. The thermal valves h 1 to h are provided on the upstream side of 3 respectively.
Three are provided.

【0006】(低温端末の流量検出)ところで、このよ
うな構成よりなる温水暖房装置においては、循環ポンプ
eの機外揚程を一定に保つ制御を行っており、そのため
に低温端末cに流れる温水の流量検出を行っている。
(Detection of Flow Rate at Low Temperature Terminal) By the way, in the hot water heating apparatus having such a structure, control is performed to keep the pump head of the circulation pump e constant, and therefore the hot water flowing to the low temperature terminal c is controlled. Flow rate is detected.

【0007】具体的には、熱交換器aから出力される湯
水の温度を検出するための温度センサ1と、低温端末c
から出力される湯水の温度を検出するための温度センサ
2と、バイパス配管fの出力と低温端末cの出力とが合
流した湯水の温度を検出する温度センサ3とを設け、こ
れらの検出結果を温水暖房装置の制御部5を入力し、該
制御部5において低温端末cの流量を演算によって求め
ている。
Specifically, the temperature sensor 1 for detecting the temperature of the hot water output from the heat exchanger a and the low temperature terminal c
A temperature sensor 2 for detecting the temperature of the hot water output from the device and a temperature sensor 3 for detecting the temperature of the hot water at which the output of the bypass pipe f and the output of the low temperature terminal c merge are provided. The controller 5 of the hot water heating device is input, and the controller 5 calculates the flow rate of the low temperature terminal c.

【0008】すなわち、温度センサ1の検出温度をT
1、温度センサ2での検出温度をT2、温度センサ3で
の検出温度をT3、バイパス配管fに流れる流量をQ1
(このQ1はバイパス配管fは充分に細いため低温端末
cの流量変化にかかわらずほぼ一定流量となるので、そ
の値を制御部5に予め記憶させておく)とすると、制御
部5では低温端末cに流れる流量Q2を、 Q2=Q1×(T1−T3)/(T3−T2)・・・(1) として求めている。
That is, the temperature detected by the temperature sensor 1 is T
1. The temperature detected by the temperature sensor 2 is T2, the temperature detected by the temperature sensor 3 is T3, and the flow rate of the bypass pipe f is Q1.
(This Q1 has a substantially constant flow rate regardless of the flow rate change of the low temperature terminal c because the bypass pipe f is sufficiently thin. Therefore, the value is stored in the control unit 5 in advance). The flow rate Q2 flowing in c is calculated as Q2 = Q1 * (T1-T3) / (T3-T2) (1).

【0009】[0009]

【発明が解決しようとする課題】しかしながら、このよ
うに温度センサ1〜3を用いて低温端末cの流量Q2を
求める構成では、温度センサのバラツキ(検出誤差)に
より流量Q2の演算結果に狂いを生じ、流量Q2の検出
精度が低下するという問題があった。
However, in the configuration in which the flow rate Q2 of the low temperature terminal c is obtained by using the temperature sensors 1 to 3 as described above, the calculation result of the flow rate Q2 is distorted due to the variation (detection error) of the temperature sensor. However, there is a problem in that the detection accuracy of the flow rate Q2 decreases.

【0010】本発明はかかる従来の問題点に鑑みて提案
されたもので、端末の通水流量の演算を正確に行い得る
温水暖房装置を提供することを目的とする。
The present invention has been proposed in view of the above conventional problems, and an object of the present invention is to provide a hot water heating apparatus capable of accurately calculating the water flow rate of a terminal.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る温水暖房装置の流量検出方法は、ほぼ
流量一定とみなせる第一の流路と、第二の流路と、これ
ら第一および第二の流路が合流する第三の流路とを有
し、各流路に通水温度を検出する温度検出手段が設けら
れた温水暖房装置であって、上記第一の流路の流量をQ
1、上記第一の流路での検出温度をT1、第二の流路で
の検出温度をT2、第三の流路での検出温度をT3とし
た場合に上記第二の流路の流量(Q2)を、下記の数式
(1) によって演算するものにおいて、上記各流路に同一
温度の流体を流してその際に上記各温度検出手段で検出
される検出温度から下記の数式(2) によって第一の補正
値(α)を演算するとともに、下記の数式(3) によって
第二の補正値(β)を演算し、上記数式(1) により上記
第二の流路の流量(Q2)を演算する際に、これら第一
および第二の補正値により上記数式(1) を下記の数式
(4) のように補正して第二の流路の流量(Q2)を演算
することを特徴とする。 記 Q2=Q1×(T1−T3)/(T3−T2)・・・数式(1) α=T1−T3・・・数式(2) β=T3−T2・・・数式(3) Q2=Q1×(T1−T3−α)/(T3−T2−β)・・・数式(4)
In order to achieve the above object, a method for detecting a flow rate of a hot water heating apparatus according to the present invention comprises a first flow path which can be regarded as a substantially constant flow rate, and a second flow path A hot water heating device having a third flow passage in which the first and second flow passages merge, and a temperature detecting means for detecting the water flow temperature in each flow passage, wherein the first flow is the same. Q of flow rate
1. When the detected temperature in the first flow path is T1, the detected temperature in the second flow path is T2, and the detected temperature in the third flow path is T3, the flow rate of the second flow path (Q2) is the following formula
In the calculation according to (1), the first correction value (α) is calculated by the following equation (2) from the detected temperature detected by the temperature detecting means when the fluid having the same temperature is flown through the respective flow paths. ), The second correction value (β) is calculated by the following formula (3), and the second flow rate (Q2) is calculated by the formula (1). The above formula (1) is converted into the following formula by the first and second correction values.
It is characterized in that the flow rate (Q2) of the second flow path is calculated by performing correction as in (4). Note Q2 = Q1 × (T1-T3) / (T3-T2) ... Equation (1) α = T1-T3 ... Equation (2) β = T3-T2 ... Equation (3) Q2 = Q1 × (T1-T3-α) / (T3-T2-β) ... Equation (4)

【0012】また、本発明に係る温水暖房装置は、熱交
換手段から出力される温水を高温端末、補水タンク、循
環ポンプを経由して熱交換手段に循環させる高温水循環
回路と、上記高温端末をバイパスして熱交換手段から補
水タンクに温水を供給する定流量バイパス流路と、上記
高温水循環回路と配管の一部を共用し、上記熱交換手段
の上流側を分岐して低温端末、補水タンク、循環ポンプ
を経由して上記低温端末に温水を循環させる低温水循環
回路と、上記熱交換手段から出力される湯水の温度(T
1)を検出する第一の温度検出手段と、上記低温端末か
ら出力される湯水の温度(T2)を検出する第二の温度
検出手段と、上記定流量バイパス流路と上記低温端末の
出力が合流した湯水の温度(T3)を検出する第三の温
度検出手段と、これら各温度検出手段の検出温度および
定流量バイパス流路の流量(Q1)から数式Q1×(T
1−T3)/(T3−T2)を用いて低温端末の流量
(Q2)を演算する制御手段とを有する温水暖房装置に
おいて、上記制御手段が、上記熱交換手段の熱源の動作
および上記高温端末への通水を停止させた状態で上記循
環ポンプを動作させ、その際に上記各温度検出手段で検
出される検出温度から数式(T1−T3)により演算さ
れる第一の補正値(α)と数式(T3−T2)から演算
される第二の第二の補正値(β)とを記憶する記憶手段
を備え、低温端末の流量(Q2)を演算する際に上記記
憶手段に記憶された第一および第二の補正値に基づき下
記の数式により低温端末の流量(Q2)を演算する制御
構成を備えたことを特徴とする。 記 Q2=Q1×(T1−T3−α)/(T3−T2−β)
Further, the hot water heating apparatus according to the present invention includes a hot water circulation circuit for circulating hot water output from the heat exchange means to the heat exchange means via a high temperature terminal, a replenishment tank, and a circulation pump, and the high temperature terminal. A constant flow rate bypass flow path for bypassing and supplying hot water from the heat exchange means to the replenishment tank and a part of the piping for the high temperature water circulation circuit are shared, and the upstream side of the heat exchange means is branched to a low temperature terminal and a replenishment tank. , A low temperature water circulation circuit for circulating hot water to the low temperature terminal via a circulation pump, and a temperature (T
The first temperature detecting means for detecting 1), the second temperature detecting means for detecting the temperature (T2) of the hot water output from the low temperature terminal, the constant flow rate bypass flow path and the output of the low temperature terminal. From the third temperature detecting means for detecting the temperature (T3) of the combined hot and cold water, the detected temperature of each of these temperature detecting means and the flow rate (Q1) of the constant flow rate bypass passage, the numerical formula Q1 × (T
1-T3) / (T3-T2), and a control means for calculating the flow rate (Q2) of the low-temperature terminal, wherein the control means operates the heat source of the heat exchange means and the high-temperature terminal. The first correction value (α) calculated by the mathematical expression (T1-T3) from the detected temperature detected by the temperature detecting means at that time while operating the circulation pump with the water flow to the And storage means for storing a second second correction value (β) calculated from the equation (T3-T2), and stored in the storage means when calculating the flow rate (Q2) of the low temperature terminal. It is characterized in that a control configuration for calculating the flow rate (Q2) of the low temperature terminal by the following mathematical expression based on the first and second correction values is provided. Note Q2 = Q1 × (T1-T3-α) / (T3-T2-β)

【0013】[0013]

【発明の実施の形態】以下、本発明に係る温水暖房装置
の流量検出方法を適用した温水暖房装置を図面に基づい
て詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A hot water heating apparatus to which a flow rate detecting method for a hot water heating apparatus according to the present invention is applied will be described below in detail with reference to the drawings.

【0014】本発明に係る温水暖房装置の一実施形態を
図1に示す。この温水暖房装置1は、低温端末cの流量
を流量センサを用いずに演算によって検出するように構
成されたものであって、温水暖房回路中に三個の温度セ
ンサ1〜3が設けられるとともに、温水暖房装置の制御
部(制御手段)5が後述する演算処理を行うように構成
されている。
An embodiment of the hot water heating apparatus according to the present invention is shown in FIG. The hot water heating device 1 is configured to detect the flow rate of the low temperature terminal c by calculation without using a flow rate sensor, and three temperature sensors 1 to 3 are provided in the hot water heating circuit. The control unit (control means) 5 of the hot water heating device is configured to perform a calculation process described later.

【0015】なお、図1の温水暖房回路において、図2
と構成が共通する部分については同一の符号を付して説
明を省略する。また、説明の便宜上、温水暖房回路中の
分岐点ないし合流点にはそれぞれA〜Eの符号を付して
おく。
In addition, in the hot water heating circuit of FIG.
The same reference numerals are given to portions having the same configuration as the above, and description thereof will be omitted. Further, for convenience of explanation, the branching points or confluence points in the hot water heating circuit are denoted by reference numerals A to E, respectively.

【0016】上記温度センサ1〜3は、いずれも配管中
を流れる湯水の温度を検出するための温度検出手段であ
って、各温度センサ1〜3はいずれもその検出値が上記
制御部5に伝達されるように制御部5と電気的に接続さ
れている。
The temperature sensors 1 to 3 are all temperature detecting means for detecting the temperature of hot and cold water flowing in the pipe, and the detected values of the temperature sensors 1 to 3 are stored in the control unit 5. It is electrically connected to the control unit 5 so as to be transmitted.

【0017】具体的には、上記温度センサ1は、熱交換
器aから出力される湯水の温度を検出するためのもので
あって、図示例では熱交換器aの下流側近傍位置に配設
されている。また、温度センサ2は、低温端末cから出
力される湯水の温度を検出するためのものであって、図
示例では低温端末cの出力端Dの下流側であってバイパ
ス配管fとの合流点Bの上流側に配設されている。さら
に、温度センサ3は、上記合流点Bの下流側近傍位置に
配設され、バイパス配管fの出力と低温端末cの出力と
が合流した湯水の温度を検出できるように配置されてい
る。
Specifically, the temperature sensor 1 is for detecting the temperature of the hot water output from the heat exchanger a, and is arranged at a position near the downstream side of the heat exchanger a in the illustrated example. Has been done. Further, the temperature sensor 2 is for detecting the temperature of the hot water output from the low temperature terminal c, and is a downstream side of the output end D of the low temperature terminal c in the illustrated example, and a confluence point with the bypass pipe f. It is arranged on the upstream side of B. Further, the temperature sensor 3 is arranged near the downstream side of the confluence point B, and is arranged so as to detect the temperature of the hot and cold water where the output of the bypass pipe f and the output of the low temperature terminal c merge.

【0018】なお、これらの各温度センサ1〜3の具体
的な配設位置は、各温度センサが検出対象とする湯水の
温度が検出できる位置であれば適宜設計変更可能であ
る。たとえば、上記温度センサ1は、熱交換器aの出力
温度の検出を目的とするから、図示例の位置だけでなく
バイパス配管f中に設けることも可能である。また、温
度センサ2は、低温端末cの出力温度の検出が目的であ
るから、低温端末cの出力端Dと合流点Bとの間であれ
ばいずれの位置に設置することもできる。さらに温度セ
ンサ3は、合流点Bで合流した湯水の温度の検出が目的
であるから、合流点Bから補水タンクdまでの間に設置
されていれば良い。
Incidentally, the specific arrangement positions of these temperature sensors 1 to 3 can be appropriately changed as long as the temperature sensors can detect the temperature of the hot water to be detected. For example, since the temperature sensor 1 is intended to detect the output temperature of the heat exchanger a, it can be provided not only at the position shown in the drawing but also in the bypass pipe f. Further, since the temperature sensor 2 is intended to detect the output temperature of the low temperature terminal c, it can be installed at any position between the output end D of the low temperature terminal c and the junction B. Further, since the temperature sensor 3 is intended to detect the temperature of the hot water that has joined at the joining point B, it may be installed between the joining point B and the replenishment tank d.

【0019】一方、上記制御部5は、温水暖房装置1の
各部の動作(たとえば熱交換器aの運転や熱動弁g,h
の開閉、循環ポンプeの運転など)を制御するコントロ
ーラであって、具体的にはこれら各部に対する動作指令
を制御信号(電気信号)として出力するマイクロコンピ
ュータで構成される。
On the other hand, the control section 5 operates the respective parts of the hot water heating system 1 (for example, the operation of the heat exchanger a and the heat operated valves g and h).
Controller, which controls the opening and closing of the circuit, the operation of the circulation pump e, and the like, and is specifically configured by a microcomputer that outputs an operation command to each of these parts as a control signal (electrical signal).

【0020】このマイクロコンピュータの詳細は図示し
ないが、周知の如く所定の演算処理等を行う中央処理装
置(CPU)と、プログラムやデータを記憶した記憶装
置(ROM,RAMなど)と、信号の入出力を制御する
入出力制御装置(I/Oポート)とを主要部として構成
される。
Although details of the microcomputer are not shown, as is well known, a central processing unit (CPU) for performing predetermined arithmetic processing, a storage device (ROM, RAM, etc.) for storing programs and data, and input of signals. An input / output control device (I / O port) for controlling output is configured as a main part.

【0021】そして、この上記記憶装置(記憶手段)に
は、制御プログラムとともに、上記バイパス配管fに流
れる流量をQ1(このQ1は通路が充分に細いため流量
は一定となる)と、後述するようにして演算される第一
の補正値αと第二の補正値βなどが記憶され、制御プロ
グラムの実行によって以下のようにして低温端末cの流
量の演算が行われる。
The storage device (storage means) stores the control program together with the flow rate of the flow in the bypass pipe f as Q1 (this Q1 has a sufficiently narrow passage so that the flow rate is constant), as will be described later. The first correction value α, the second correction value β, and the like that are calculated by the above are stored, and the flow rate of the low temperature terminal c is calculated as follows by executing the control program.

【0022】イ:第一および第二の補正値の演算 上記補正値α,βの演算にあたっては、まず、制御部5
が図外の燃焼装置(バーナ)の燃焼を停止させるととも
に、上記高温端末bの熱動弁gを閉じる制御を実行す
る。これらの制御は通常の暖房動作と同様に制御部5か
ら燃焼装置および熱動弁gに対して所定の制御信号を与
えることにより実行される。その際、燃焼装置の燃焼が
既に停止していたり、熱動弁gが既に閉じている場合に
は、その状態を維持する制御が実行される。
A: Calculation of first and second correction values In calculating the correction values α and β, first, the control unit 5
Controls the combustion of a combustion device (burner) (not shown) and executes control to close the thermal valve g of the high temperature terminal b. These controls are executed by giving a predetermined control signal to the combustion device and the thermal valve g from the control unit 5 as in the normal heating operation. At that time, if the combustion of the combustion device has already stopped or the thermal valve g has already closed, control for maintaining that state is executed.

【0023】そして、燃焼装置の動作停止および高温端
末bへの通水遮断が行われると、次に制御部5は、循環
ポンプeに対して動作開始を指示する制御信号を出力
し、循環ポンプeを動作させる。
When the operation of the combustion device is stopped and water is cut off to the high temperature terminal b, the control unit 5 then outputs a control signal for instructing the circulation pump e to start the operation, and the circulation pump e. e is operated.

【0024】循環ポンプeが動作を開始すると、上記熱
動弁gが閉じていることから、補水タンクd内の湯水
が、循環ポンプe、分岐点C、熱交換器a、分岐点A、
合流点Bを経て補水タンクdに循環するとともに、分岐
点Cで分岐された湯水が低温端末c、合流点D,E,B
を経て補水タンクdに循環する。
When the circulation pump e starts to operate, the hot water valve g is closed, so that the hot and cold water in the replenishment tank d is circulated by the circulation pump e, the branch point C, the heat exchanger a, the branch point A,
The hot water circulates through the junction B to the replenishment tank d, and the hot and cold water branched at the junction C is at the low temperature terminal c and the junctions D, E, and B.
And is circulated to the replenishment tank d.

【0025】制御部5は、循環ポンプeが動作を開始し
てから所定時間(たとえば数分)経過後に各温度センサ
1〜3で検出される検出温度から下記の数式(2),(3) に
より上記第一の補正値αおよび第二の補正値βを演算
し、その演算結果を制御部5の記憶装置に記憶させる。 記 α=T1−T3・・・数式(2) β=T3−T2・・・数式(3) なお、上記数式においては、温度センサ1での検出温度
をT1、温度センサ2での検出温度をT2、温度センサ
3での検出温度をT3とする(以下においても同じ)。
The control unit 5 uses the following equations (2) and (3) based on the temperatures detected by the temperature sensors 1 to 3 after a predetermined time (for example, several minutes) has passed since the circulation pump e started operating. Thus, the first correction value α and the second correction value β are calculated, and the calculation result is stored in the storage device of the control unit 5. Note: α = T1-T3 ... Equation (2) β = T3-T2 ... Equation (3) In the above equation, the temperature detected by the temperature sensor 1 is T1, and the temperature detected by the temperature sensor 2 is Let T2 be the temperature detected by the temperature sensor 3 (the same applies below).

【0026】ここで、上記数式(2),(3) の演算にあた
り、検出温度T1〜T3として、循環ポンプeが動作し
てから所定時間経過後の検出温度を用いるのは、配管内
の湯水を循環させることにより配管内の湯水の温度を均
一(同一温度)にするためである。したがって、このよ
うな目的を達成できる範囲で上記所定時間は、上記配管
の内径やその長さ等を考慮して適宜設定される。また、
このとき上記補水タンクdに設けられる図外の補水弁を
開いて補水タンクd内に上水道の水を落とし込み、上記
検出温度を水道水の温度にさせるようにしてもよい。
Here, in the calculation of the above equations (2) and (3), as the detected temperatures T1 to T3, the detected temperature after a lapse of a predetermined time from the operation of the circulation pump e is used. This is to make the temperature of the hot and cold water in the pipe uniform (the same temperature) by circulating. Therefore, the predetermined time is appropriately set in consideration of the inner diameter of the pipe, the length thereof, etc. within a range in which such an object can be achieved. Also,
At this time, a water supply valve (not shown) provided in the water supply tank d may be opened to drop the water of the water supply into the water supply tank d so that the detected temperature becomes the temperature of the tap water.

【0027】ロ:低温端末の流量検出 このようにして第一および第二の補正値α,βが演算さ
れ、制御部5の記憶装置に記憶されると、以後、制御部
5は低温端末cの流量検出を以下のようにして行う。
(B) Flow rate detection of the low temperature terminal When the first and second correction values α and β are calculated and stored in the storage device of the control unit 5, the control unit 5 thereafter controls the low temperature terminal c. The flow rate detection is performed as follows.

【0028】すなわち、まず制御部5は、流量の検出を
行う低温端末c(以下においては低温端末c1 の流量検
出を行うものとする)の熱動弁h1 を開く旨の制御信号
を出力するとともに、循環ポンプeの運転を開始させる
制御信号を出力して循環ポンプeを動作させ、配管内の
湯水を循環させる。その際、上記燃焼装置に対しても燃
焼運転の開始を指示する制御信号を出力し、熱交換器a
による加熱を開始させる。
That is, first, the control section 5 outputs a control signal for opening the thermal valve h 1 of the low temperature terminal c (hereinafter, the flow rate of the low temperature terminal c 1 is detected) for detecting the flow rate. At the same time, a control signal for starting the operation of the circulation pump e is output to operate the circulation pump e to circulate the hot water in the pipe. At that time, a control signal for instructing the start of the combustion operation is also output to the above-mentioned combustion device, and the heat exchanger a
To start heating.

【0029】この時、制御部5は流量の検出対象となる
低温端末c1 以外の低温端末c2, 3 に対しては熱動弁
2,3 を閉じることを指令する制御信号を出力し、流
量検出を行う低温端末c1 以外の低温端末c2,3 への
通水を遮断しておく。また、高温端末bの熱動弁gに対
しても弁を閉じる旨の制御信号を出力し、高温端末bへ
の通水を遮断しておくことは上記補正値α,βの演算の
場合と同様である。
At this time, the control unit 5 becomes a flow rate detection target.
Low temperature terminal c1Other than low temperature terminal c2,c 3For thermal valve
h2,h3Output a control signal to instruct the
Low temperature terminal c to detect quantity1Other than low temperature terminal c2,c3To
Cut off water flow. In addition, the hot valve b of the high temperature terminal b
Even if the control signal to close the valve is output, the high temperature terminal b is output.
It is necessary to shut off the water flow in the calculation of the above correction values α and β.
It is similar to the case.

【0030】これにより、熱交換器aから出力される温
水は、図1中に矢符で示したように、分岐点Aおよび合
流点Bを経て補水タンクdに導かれ、ここで温度が一旦
下げられて循環ポンプe、分岐点Cを経て熱交換器aに
循環する回路と、上記分岐点Cで分岐された温水が、熱
動弁h1 および低温端末c1 を通過し、合流点D,E,
Bを経て補水タンクdに導かれる回路に流れる。つま
り、上記合流点Bでは低温端末c1 を経た温水と、熱交
換器aからバイパス配管(定流量バイパス流路)f経て
供給される一定水量の温水とが合流する。
As a result, the hot water output from the heat exchanger a is guided to the replenishment tank d via the branch point A and the junction point B, as shown by the arrow in FIG. The circuit that is lowered and circulates to the heat exchanger a through the circulation pump e and the branch point C, and the hot water that is branched at the branch point C passes through the thermal valve h 1 and the low temperature terminal c 1 and joins at the confluence point D. , E,
It flows to the circuit led to the replenishment tank d via B. That is, at the merging point B, the hot water that has passed through the low temperature terminal c 1 and the hot water having a constant amount of water that is supplied from the heat exchanger a through the bypass pipe (constant flow rate bypass flow path) f join together.

【0031】このようにして配管内で湯水が循環される
と、次に制御部5では上記温度センサ1〜3での検出温
度とバイパス配管fを流れる流量とに基づいて以下の数
式(4) に基づいて低温端末c3 の通水流量の演算を行
う。
When hot and cold water is circulated in the pipe in this way, the following equation (4) is then calculated in the controller 5 based on the temperature detected by the temperature sensors 1 to 3 and the flow rate flowing through the bypass pipe f. Based on the above, the water flow rate of the low temperature terminal c 3 is calculated.

【0032】なお、ここでバイパス配管fの経路は充分
に細いため、低温端末cに流れる流量Q2の変化にかか
わらずバイパス配管fの流量Q1はほぼ一定(この流量
Q1は制御部5内に記憶しておく)となるので、低温端
末c1 に流れる温水の流量Q2は、下記の数式(1) を基
本式として演算可能である。 記 Q2=Q1×(T1−T3)/(T3−T2)・・・数式(1)
Since the path of the bypass pipe f is sufficiently thin, the flow rate Q1 of the bypass pipe f is almost constant regardless of the change of the flow rate Q2 flowing to the low temperature terminal c (this flow rate Q1 is stored in the control unit 5). Therefore, the flow rate Q2 of the hot water flowing through the low temperature terminal c 1 can be calculated using the following formula (1) as a basic formula. Note Q2 = Q1 × (T1-T3) / (T3-T2) ... Equation (1)

【0033】この数式(1) は、合流点Bにおける入水
(バイパス配管fからの入水と低温端末c1 からの入
水)と、合流後の出水との間では熱量(温度×流量)が
等しくなることに基づいて定立されたものであり、この
数式(1) によって演算される低温端末c1 の流量Q2
は、上記各温度センサ1〜3に検出誤差がないことを前
提としている。
In this mathematical expression (1), the amount of heat (temperature × flow rate) is equal between the water entering at the junction B (water entering from the bypass pipe f and water entering from the low temperature terminal c 1 ) and the water coming out after the joining. The flow rate Q2 of the low temperature terminal c 1 calculated by the equation (1)
Is premised on that each of the temperature sensors 1 to 3 has no detection error.

【0034】そのため、本発明では上記温度センサ1〜
3の検出誤差を考慮して、この数式(1) を上記補正値
α,βで補正した下記の数式(4) を用いて低温端末c1
の流量Q2が演算される。 記 Q2=Q1×(T1−T3−α)/(T3−T2−β)・・・数式(4)
Therefore, in the present invention, the temperature sensors 1 to
In consideration of the detection error of 3, the low temperature terminal c 1 is calculated by using the following formula (4) in which the formula (1) is corrected by the correction values α and β.
The flow rate Q2 of is calculated. Note Q2 = Q1 × (T1-T3-α) / (T3-T2-β) ... Equation (4)

【0035】つまり、ここで各温度センサ1〜3のバラ
ツキなどによる検出誤差をそれぞれx,y,zとし、ま
た上記温度センサ1〜3で検出されるべき本来の温度
(真の温度)をそれぞれT真1,T真2,T真3とする
と、上記各温度センサ1〜3で検出される温度は、T1
=T真1+x、T2=T真2+y、T3=T真3+zと
なることから、上記数式(1) を用いた演算を行ったので
は、下記の数式(1) ′に示すように、上記検出誤差x,
y,zが加算され、演算結果に誤差を生じてしまう。
記 Q2=Q1×〔(T真1+x)−(T真3+z)〕/〔(T真3+z)−(T 真2−y)〕・・・数式(1) ′
That is, here, the detection errors due to variations in the temperature sensors 1 to 3 are respectively defined as x, y, and z, and the original temperatures (true temperatures) to be detected by the temperature sensors 1 to 3 are respectively defined. Assuming T true 1, T true 2 and T true 3, the temperatures detected by the temperature sensors 1 to 3 are T 1
= T true 1 + x, T2 = T true 2 + y, and T3 = T true 3 + z, the calculation using the above formula (1) may be performed as shown in the following formula (1) ′. Error x,
y and z are added, and an error occurs in the calculation result.
Note Q2 = Q1 × [(T true 1 + x)-(T true 3 + z)] / [(T true 3 + z)-(T true 2-y)] ... Equation (1) ′

【0036】つまり、上記数式(1) ′では、低温端末c
1 の流量Q2を演算するにあたり、温度センサ1〜3の
検出誤差分が式中の分子に(x−z)として、また、分
母に(z−y)として現れる。
That is, in the above equation (1) ', the low temperature terminal c
In calculating the flow rate Q2 of 1, the detection error components of the temperature sensors 1 to 3 appear as (x-z) in the numerator and (z-y) in the denominator.

【0037】一方、上記数式(2),(3) は温度センサ1〜
3の検出誤差をx,y,z考慮すると、上記補正値α,
βは、それぞれ α=(T真1+x)−(T真3+z)=x−z・・・数式(2) ′ β=(T真3+z)−(T真2+y)=z−y・・・数式(3) ′ と置き換えられる。
On the other hand, the above equations (2) and (3) are represented by the temperature sensors 1 to
Considering the detection error of 3, the correction values α,
β is α = (T true 1 + x) − (T true 3 + z) = x−z ... Equation (2) ′ β = (T true 3 + z) − (T true 2 + y) = z−y ... (3) is replaced with ′.

【0038】したがって、上記数式(1) ′の分子から上
記第一の補正値αを減算し、分母から上記第二の補正値
βを減算して数式(4) を定立すると、数式(1) ′から温
度センサ1〜3の検出誤差x,y,zを除去することが
できる。換言すれば、上記数式(4) を用いて低温端末c
1 の流量Q2を演算することにより、温度センサ1〜3
の検出誤差x,y,zによる流量Q2の演算の誤差を解
消できる。
Therefore, if the first correction value α is subtracted from the numerator of the mathematical expression (1) ′ and the second correction value β is subtracted from the denominator, and the mathematical expression (4) is established, the mathematical expression (1) is obtained. It is possible to remove the detection errors x, y, z of the temperature sensors 1 to 3 from '. In other words, using the above equation (4), the low temperature terminal c
By calculating the flow rate Q2 of 1 , the temperature sensors 1-3
The error in the calculation of the flow rate Q2 due to the detection errors x, y, and z can be eliminated.

【0039】なお、このようにして低温端末c1 の通水
流量の検出が行われると、次に制御部5は、低温端末c
2,3 についても上述した手順と同様の手順で熱動弁h
2, 3 を順次開いて、各低温端末c2,3 の通水流量の
演算を行う。
In this way, the low temperature terminal c1Water flow
When the flow rate is detected, the control unit 5 then controls the low temperature terminal c.
2,c3Also for the heat valve h
2,h 3Sequentially open each low temperature terminal c2,c3Of water flow
Calculate.

【0040】このように、本発明では上記数式(4) を用
いて低温端末cの流量Q2を演算することにより、温度
センサ1〜3にバラツキがあっても各低温端末c1 〜c
3 の流量Q2を正確に演算することができる。
As described above, in the present invention, the flow rate Q2 of the low temperature terminals c is calculated by using the above equation (4), so that even if the temperature sensors 1 to 3 are varied, the respective low temperature terminals c 1 to c are calculated.
The flow rate Q2 of 3 can be accurately calculated.

【0041】なお、上述した実施形態はあくまでも本発
明の好適な実施態様を示すものであって、本発明はこれ
に限定されることなくその発明の範囲内で種々の設計変
更が可能である。
The above-described embodiment is merely a preferred embodiment of the present invention, and the present invention is not limited to this, and various design changes can be made within the scope of the invention.

【0042】たとえば、上述した実施形態では、本発明
に係る温水暖房装置の流量検出方法を、低温端末cの流
量検出に用いた場合を示したが、この流量検出方法は循
環回路内の他の部位の流量検出に応用することも可能で
ある。つまり、本発明の流量検出方法は、二つの入水路
が合流して一の出水路を構成する場合であって、第一の
流路に流れる湯水の温度(T1)とその流量(Q1)、
および第二の流路に流れる湯水の温度(T2)、さらに
上記これらの流路が合流する流路の湯水温度(T3)を
知ることができるのであれば、循環回路の他の部位(た
とえば、高温端末)の流量検出にも応用できる。
For example, in the above-described embodiment, the case where the flow rate detecting method of the hot water heating apparatus according to the present invention is used to detect the flow rate of the low temperature terminal c is shown. However, this flow rate detecting method is not used in the circulation circuit. It is also possible to apply it to the flow rate detection of a part. That is, the flow rate detecting method of the present invention is a case where two water inlets join to form one water outlet, and the temperature (T1) of hot water flowing in the first flow path and its flow rate (Q1),
And the temperature (T2) of the hot water flowing in the second flow path, and the hot water temperature (T3) of the flow path where these flow paths merge, the other parts of the circulation circuit (for example, It can also be applied to the flow rate detection of high temperature terminals.

【0043】また、上記実施形態では、制御部5による
低温端末cの流量検出についてのみ示したが、この検出
結果に基づいて温水暖房装置の自己診断を行わせること
もできる。つまり、制御部5内に予め各低温端末cの流
量の基準値を記憶させておき、検出された流量と基準値
とを比較して配管の詰まりなどを検出させることも可能
である。
Further, in the above embodiment, only the flow rate detection of the low temperature terminal c by the control unit 5 is shown, but the self-diagnosis of the hot water heating system can be performed based on the detection result. That is, it is possible to store the reference value of the flow rate of each low temperature terminal c in advance in the control unit 5 and compare the detected flow rate with the reference value to detect clogging of the pipe.

【0044】[0044]

【発明の効果】以上詳述したように、本発明によれば、
たとえば温水暖房装置の低温端末の流量検出などにおい
て、流量センサを用いることなく演算によって流量を検
出できる。しかも、温度センサのバラツキなどの検出誤
差を流量の演算式からなくすことができるので、演算精
度を向上でき、その結果、循環ポンプの機外揚程を一定
に保つ制御の精度が向上する。
As described in detail above, according to the present invention,
For example, in detecting the flow rate of a low temperature terminal of a hot water heater, the flow rate can be detected by calculation without using a flow rate sensor. Moreover, since the detection error such as the variation of the temperature sensor can be eliminated from the calculation formula of the flow rate, the calculation accuracy can be improved, and as a result, the accuracy of the control for keeping the out-of-machine lift of the circulation pump constant can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る温水暖房装置の流量検出方法を適
用した温水暖房装置の回路構成を示す概略構成図であ
る。
FIG. 1 is a schematic configuration diagram showing a circuit configuration of a hot water heating apparatus to which a flow rate detecting method for a hot water heating apparatus according to the present invention is applied.

【図2】従来の温水暖房装置の回路構成を示す概略構成
図である。
FIG. 2 is a schematic configuration diagram showing a circuit configuration of a conventional hot water heating device.

【符号の説明】[Explanation of symbols]

1〜3 温度センサ(温度検出手段) 5 制御部(記憶手段) a 熱交換器 b 高温端末 c 低温端末 d 補水タンク e 循環ポンプ f バイパス配管(定流量バイパス流路) g,h 熱動弁 1-3 temperature sensor (temperature detection means) 5 Control unit (storage means) a heat exchanger b High temperature terminal c Low temperature terminal d Water tank e Circulation pump f Bypass piping (constant flow rate bypass flow path) g, h thermal valve

フロントページの続き (72)発明者 壽山 英也 兵庫県神戸市中央区江戸町93番地 株式会 社ノーリツ内 (72)発明者 吉本 厚志 兵庫県神戸市中央区江戸町93番地 株式会 社ノーリツ内 (72)発明者 川内 一哉 兵庫県神戸市中央区江戸町93番地 株式会 社ノーリツ内 (72)発明者 佐藤 崇昭 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 Fターム(参考) 3L070 AA01 BB18 DD01 DE09 DF07 DG05 DG06 Continued front page    (72) Inventor Hideya Toyama             93 Edo-cho, Chuo-ku, Kobe-shi, Hyogo Stock Association             Company Noritsu (72) Inventor Atsushi Yoshimoto             93 Edo-cho, Chuo-ku, Kobe-shi, Hyogo Stock Association             Company Noritsu (72) Inventor Kazuya Kawauchi             93 Edo-cho, Chuo-ku, Kobe-shi, Hyogo Stock Association             Company Noritsu (72) Inventor Takaaki Sato             1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas             Within the corporation F term (reference) 3L070 AA01 BB18 DD01 DE09 DF07                       DG05 DG06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ほぼ流量一定とみなせる第一の流路と、
第二の流路と、これら第一および第二の流路が合流する
第三の流路とを有し、各流路に通水温度を検出する温度
検出手段が設けられた温水暖房装置であって、前記第一
の流路の流量をQ1、前記第一の流路での検出温度をT
1、第二の流路での検出温度をT2、第三の流路での検
出温度をT3とした場合に前記第二の流路の流量(Q
2)を、下記の数式(1) によって演算するものにおい
て、 前記各流路に同一温度の流体を流してその際に前記各温
度検出手段で検出される検出温度から下記の数式(2) に
よって第一の補正値(α)を演算するとともに、下記の
数式(3) によって第二の補正値(β)を演算し、 前記数式(1) により前記第二の流路の流量(Q2)を演
算する際に、これら第一および第二の補正値により前記
数式(1) を下記の数式(4) のように補正して第二の流路
の流量(Q2)を演算することを特徴とする温水暖房装
置の流路検出方法。 記 Q2=Q1×(T1−T3)/(T3−T2)・・・数式(1) α=T1−T3・・・数式(2) β=T3−T2・・・数式(3) Q2=Q1×(T1−T3−α)/(T3−T2−β)・・・数式(4)
1. A first flow path that can be regarded as a substantially constant flow rate,
In a hot water heating device having a second flow path and a third flow path where these first and second flow paths merge, each temperature path is provided with a temperature detecting means for detecting the water flow temperature. Therefore, the flow rate of the first flow path is Q1, and the temperature detected in the first flow path is T
1. When the detected temperature in the second flow path is T2 and the detected temperature in the third flow path is T3, the flow rate of the second flow path (Q
2) is calculated by the following mathematical expression (1), the fluid having the same temperature is made to flow through each of the flow paths, and the detected temperature detected by each of the temperature detecting means at that time is calculated by the following mathematical expression (2). The first correction value (α) is calculated, the second correction value (β) is calculated by the following formula (3), and the flow rate (Q2) of the second flow path is calculated by the formula (1). At the time of calculation, the flow rate (Q2) of the second flow path is calculated by correcting the formula (1) with the first and second correction values as the following formula (4). Method for detecting a flow path of a hot water heater. Note Q2 = Q1 × (T1-T3) / (T3-T2) ... Equation (1) α = T1-T3 ... Equation (2) β = T3-T2 ... Equation (3) Q2 = Q1 × (T1-T3-α) / (T3-T2-β) ... Equation (4)
【請求項2】 熱交換手段から出力される温水を高温端
末、補水タンク、循環ポンプを経由して熱交換手段に循
環させる高温水循環回路と、前記高温端末をバイパスし
て熱交換手段から補水タンクに温水を供給する定流量バ
イパス流路と、前記高温水循環回路と配管の一部を共用
し、前記熱交換手段の上流側を分岐して低温端末、補水
タンク、循環ポンプを経由して前記低温端末に温水を循
環させる低温水循環回路と、前記熱交換手段から出力さ
れる湯水の温度(T1)を検出する第一の温度検出手段
と、前記低温端末から出力される湯水の温度(T2)を
検出する第二の温度検出手段と、前記定流量バイパス流
路と前記低温端末の出力が合流した湯水の温度(T3)
を検出する第三の温度検出手段と、これら各温度検出手
段の検出温度および定流量バイパス流路の流量(Q1)
から数式Q1×(T1−T3)/(T3−T2)を用い
て低温端末の流量(Q2)を演算する制御手段とを有す
る温水暖房装置において、 前記制御手段が、前記熱交換手段の熱源の動作および前
記高温端末への通水を停止させた状態で前記循環ポンプ
を動作させ、その際に前記各温度検出手段で検出される
検出温度から数式(T1−T3)により演算される第一
の補正値(α)と数式(T3−T2)から演算される第
二の第二の補正値(β)とを記憶する記憶手段を備え、
低温端末の流量(Q2)を演算する際に前記記憶手段に
記憶された第一および第二の補正値に基づき下記の数式
により低温端末の流量(Q2)を演算する制御構成を備
えたことを特徴とする温水暖房装置。 記 Q2=Q1×(T1−T3−α)/(T3−T2−β)
2. A high-temperature water circulation circuit for circulating hot water output from the heat exchange means to the heat exchange means via a high-temperature terminal, a replenishment tank, and a circulation pump, and a bypass tank for bypassing the high-temperature terminal to the replenishment tank. A constant flow rate bypass flow path for supplying hot water to the high temperature water circulation circuit and a part of the piping are shared, and the upstream side of the heat exchanging means is branched to a low temperature terminal, a replenishment tank, and a circulation pump to cool A low-temperature water circulation circuit for circulating hot water to the terminal, a first temperature detection means for detecting the temperature (T1) of the hot water output from the heat exchange means, and a temperature (T2) of the hot water output from the low-temperature terminal. The second temperature detecting means for detecting, the temperature of the hot water at which the constant flow bypass flow passage and the output of the low temperature terminal merge (T3)
For detecting the temperature, the temperature detected by each of these temperature detecting means, and the flow rate (Q1) of the constant flow rate bypass passage.
From the equation Q1 × (T1−T3) / (T3−T2) to a controller for calculating the flow rate (Q2) of the low temperature terminal, the controller includes a heat source for the heat exchanging means. The circulation pump is operated in a state in which the operation and the passage of water to the high-temperature terminal are stopped, and at that time, the first temperature calculated by the formula (T1-T3) from the detected temperature detected by each of the temperature detecting means. Storage means for storing the correction value (α) and the second second correction value (β) calculated from the equation (T3-T2),
When the flow rate (Q2) of the low temperature terminal is calculated, a control configuration for calculating the flow rate (Q2) of the low temperature terminal based on the first and second correction values stored in the storage means is used. Characteristic hot water heating system. Note Q2 = Q1 × (T1-T3-α) / (T3-T2-β)
JP2001387091A 2001-12-20 2001-12-20 Flow detecting method for hot water heater and hot water heater Pending JP2003185158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001387091A JP2003185158A (en) 2001-12-20 2001-12-20 Flow detecting method for hot water heater and hot water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001387091A JP2003185158A (en) 2001-12-20 2001-12-20 Flow detecting method for hot water heater and hot water heater

Publications (1)

Publication Number Publication Date
JP2003185158A true JP2003185158A (en) 2003-07-03

Family

ID=27596026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001387091A Pending JP2003185158A (en) 2001-12-20 2001-12-20 Flow detecting method for hot water heater and hot water heater

Country Status (1)

Country Link
JP (1) JP2003185158A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052708A (en) * 2010-08-31 2012-03-15 Noritz Corp Hot-water heater
JP2015083905A (en) * 2013-10-25 2015-04-30 リンナイ株式会社 Heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052708A (en) * 2010-08-31 2012-03-15 Noritz Corp Hot-water heater
JP2015083905A (en) * 2013-10-25 2015-04-30 リンナイ株式会社 Heating device

Similar Documents

Publication Publication Date Title
CA2590842A1 (en) Fuel cell system with refrigerant flow control, and cooling apparatus for fuel cell
CN112189118A (en) Boiler for both heating and hot water and control method thereof
JP2007322131A (en) Apparatus for measuring temperature of oil for engine test
JP2003185158A (en) Flow detecting method for hot water heater and hot water heater
JP2019027615A (en) Heating hot water supply device
JP2007278674A (en) Water heater
JP2021519457A (en) Regulator to control gaseous or liquid fluids to a constant target temperature
JP4956005B2 (en) Instant water heater
JP2007107842A (en) Hot water system
KR930003986B1 (en) Water rate control device in hot water boiler
JP5742138B2 (en) Hot water heater
JP2021001712A (en) Water heater and hot water supply system
JP4140746B2 (en) Method for detecting flow rate of hot water heater, hot water heater and diagnostic device
JP3971507B2 (en) Gas water heater with remembrance function
JP2004036960A (en) Supply control method for fluid supply device, and fluid supply device
JP7341028B2 (en) heat source device
JP2000009344A (en) Hot water supply apparatus
JP2560578B2 (en) Bypass mixing type water heater
JPH11281150A (en) Hot water heater with reheating of bathtub water
JPH11248150A (en) Combustor
JP2552586B2 (en) Inlet water temperature detection method and hot water supply control method in water heater
JP3021934B2 (en) Hot water heating system
JPH11287435A (en) Combustion apparatus
JPH10153343A (en) Hot water supply device with additional heating and hot water fill-up function
JP2023023748A (en) Coolant control device and method of marine internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051006

A131 Notification of reasons for refusal

Effective date: 20051018

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060228

Free format text: JAPANESE INTERMEDIATE CODE: A02