JP2003183025A - Fe2O3 AND METHOD FOR PRODUCING THE SAME - Google Patents

Fe2O3 AND METHOD FOR PRODUCING THE SAME

Info

Publication number
JP2003183025A
JP2003183025A JP2001384209A JP2001384209A JP2003183025A JP 2003183025 A JP2003183025 A JP 2003183025A JP 2001384209 A JP2001384209 A JP 2001384209A JP 2001384209 A JP2001384209 A JP 2001384209A JP 2003183025 A JP2003183025 A JP 2003183025A
Authority
JP
Japan
Prior art keywords
solution
iron
aqueous solution
ppm
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001384209A
Other languages
Japanese (ja)
Other versions
JP3931960B2 (en
Inventor
Takahiro Kikuchi
孝宏 菊地
Yukiko Nakamura
由紀子 中村
Koji Ikeda
幸司 池田
Yukio Makiishi
幸雄 槙石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001384209A priority Critical patent/JP3931960B2/en
Publication of JP2003183025A publication Critical patent/JP2003183025A/en
Application granted granted Critical
Publication of JP3931960B2 publication Critical patent/JP3931960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide Fe<SB>2</SB>O<SB>3</SB>containing smaller amount of Cl, SO<SB>4</SB><SP>2-</SP>, Na, K, Ca and Mg among unavoidable impurities, and to provide a method for producing the same. <P>SOLUTION: The Fe<SB>2</SB>O<SB>3</SB>consisting of Fe<SB>2</SB>O<SB>3</SB>and unavoidable impurities comprises a content of Cl of 300 ppm or less, a content of S converted to SO<SB>4</SB><SP>2-</SP>of 300 ppm or less and a total content of Na, K, Ca and Mg of less than 100 ppm. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、チップインダクタ
などの小型磁気素子に適した高純度Fe2 3 およびそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high-purity Fe 2 O 3 suitable for small magnetic elements such as chip inductors and a method for manufacturing the same.

【0002】[0002]

【従来の技術】携帯電話をはじめとする携帯電子機器の
普及に伴い、チップインダクタ等のチップ部品が多用さ
れている。電子機器のさらなる高機能化、小型軽量化に
対応したチップ部品についても一層の小型化が進んでい
る。積層チップインダクタは、印刷法やドクターブレー
ド法を用いて成形したフェライト層と、印刷法で成形さ
れた内部電極を積層、焼結して製造され、導体電極間の
電気的導通は、スルーホールを用いて接続する方法など
により行われている。このような積層チップインダクタ
は、例えば特開平4−180610号公報に開示されて
いる。このような積層型のチップインダクタは小型化に
有利であるとともに、外鉄構造をとる為に、漏洩磁束が
小さく高密度実装にも適している。
2. Description of the Related Art With the spread of portable electronic devices such as mobile phones, chip components such as chip inductors are widely used. The miniaturization of chip parts, which are compatible with higher functionality and smaller size and lighter weight of electronic devices, is also progressing. Multilayer chip inductors are manufactured by stacking and sintering a ferrite layer molded using the printing method and the doctor blade method, and an internal electrode molded using the printing method. It is performed by the method of connecting using. Such a multilayer chip inductor is disclosed in, for example, Japanese Patent Application Laid-Open No. 4-180610. Such a laminated type chip inductor is advantageous for miniaturization, and since it has an outer iron structure, it has a small leakage magnetic flux and is suitable for high-density mounting.

【0003】チップインダクタを構成するフェライト原
料は、Fe2 3 、NiO、ZnO、CuO等を混合、
仮焼、粉砕して得られる。Fe2 3 には、塩化鉄(F
eCl2 )を原料とした塩化鉄系Fe2 3 と、硫酸鉄
(FeSO4 )を原料とした硫酸鉄系Fe2 3 が存在
する。これらのうち、塩化鉄系Fe2 3 は、塩化鉄を
起源とするClを多く含有し、硫酸鉄系Fe2 3 は、
硫酸鉄を起源とするSO4 2-を多く含有する。例えば噴
霧焙焼法により製造される塩化鉄系Fe2 3では、原
料起源のClが通常1000ppm以上残留している。
焙焼後に水洗処理を行ったFe2 3 でもClが500
ppm程度は残留する。一方、硫酸鉄系Fe2 3
は、原料起源のSO4 2-が2000ppm程度残留して
いる。したがって、従来のFe2 3 の製造方法では、
製造されたFe2 3 に含まれるClおよびSO4 2-
同時に低減することはできなかった。
The ferrite raw material forming the chip inductor is a mixture of Fe 2 O 3 , NiO, ZnO, CuO, etc.
It is obtained by calcination and crushing. Fe 2 O 3 contains iron chloride (F
eCl 2) and iron chloride Fe 2 O 3 in which the raw material, there are iron sulfate group Fe 2 O 3 in which the ferrous sulfate (FeSO 4) as a raw material. Of these, iron chloride Fe 2 O 3 contains a large amount of Cl originating from iron chloride, and iron sulfate Fe 2 O 3 contains
It contains a large amount of SO 4 2− derived from iron sulfate. For example, iron chloride-based Fe 2 O 3 produced by the spray roasting method usually contains 1000 ppm or more of Cl originating from the raw material.
Even if Fe 2 O 3 was washed with water after roasting, Cl was 500.
About ppm remains. On the other hand, about 2000 ppm of SO 4 2− originating from the raw material remains in the iron sulfate-based Fe 2 O 3 . Therefore, in the conventional manufacturing method of Fe 2 O 3 ,
It was not possible to simultaneously reduce Cl and SO 4 2− contained in the produced Fe 2 O 3 .

【0004】製造されたFe2 3 にClおよびSO4
2-が上記した量で含まれている場合でも、Mn- Zn系
フェライトの製造のように高温(1000℃程度)で仮
焼を行う場合には、Fe2 3 に含まれるClやSO4
2- はほとんど揮発してしまうため、仮焼後に残留する
ClやSO4 2- は非常に少なくなり、その後の工程で影
響を及ぼすことはほとんどない。しかしチップインダク
タなどの小型磁気素子でよく用いられるNi- Cu- Z
n系フェライトの製造では、Mn- Zn系に比べ低温
(700℃程度)で仮焼を行うことが多い。このためフ
ェライト仮焼紛中にClやSO4 2- が残存し、その後の
工程で悪影響を及ぼす。例えば製造されたフェライトに
ClやSO4 2- が多く残存すると、Agなどの電極とフ
ェライトとが積層した構造を取る場合に、フェライトに
含まれるClやSO4 2- がAgと反応して、電極が断線
するなどの問題が発生しやすくなる。小型磁気素子の小
型化が進むとフェライト層や電極層の厚みもさらに薄く
なるため、電極が断線するなどの問題も一層起こりやす
くなる。このため、ClとSO4 2- の含有量が両方とも
少ないFe2 3 が求められている。
Cl and SO 4 were added to the Fe 2 O 3 produced.
Even when 2- is contained in the above amount, when calcination is performed at a high temperature (about 1000 ° C.) as in the production of Mn-Zn ferrite, Cl or SO 4 contained in Fe 2 O 3 is used.
Since 2- is almost volatilized, Cl and SO 4 2- remaining after the calcination are extremely small, and there is almost no influence in the subsequent steps. However, Ni-Cu-Z, which is often used in small magnetic elements such as chip inductors
In the production of n-type ferrite, calcination is often performed at a lower temperature (about 700 ° C.) than that of Mn-Zn type. For this reason, Cl and SO 4 2− remain in the ferrite calcined powder, which adversely affects the subsequent steps. For example, when a large amount of Cl or SO 4 2− remains in the manufactured ferrite, when a structure in which an electrode such as Ag and the ferrite are laminated is adopted, Cl or SO 4 2− contained in the ferrite reacts with Ag, Problems such as disconnection of electrodes are likely to occur. As miniaturization of the small magnetic element progresses, the thickness of the ferrite layer and the electrode layer also becomes thinner, so that problems such as disconnection of the electrode are more likely to occur. Therefore, Fe 2 O 3 containing both Cl and SO 4 2- in a small amount is required.

【0005】またチップインダクタなどの小型磁気素子
用のFe2 3 では、900℃程度の温度で焼成を行っ
ても高い焼結密度と高い磁気特性が得られるように、低
温(700℃程度)で仮焼することにより粒成長を抑制
し、簡単な粉砕で小粒径化することが求められている。
しかし、Fe2 3 中に、湿式法の中和工程で使用され
るNaOH、Ca(OH)2 等のアルカリ溶液を起源と
するNa, K, CaおよびMgを多く含有していると、
低温で仮焼できない、900℃程度の温度で焼成した場
合に焼結密度が上がらない、あるいは高い磁気特性が得
られないなどの問題が生じる。したがってNa, K, C
aおよびMgについてもできるだけ含有量が少ないFe
2 3 が求められている。
Fe 2 O 3 for small magnetic elements such as chip inductors has a low temperature (about 700 ° C.) so that a high sintering density and high magnetic properties can be obtained even if firing is performed at a temperature of about 900 ° C. It is required to suppress grain growth by calcination in order to reduce the grain size by simple pulverization.
However, when Fe 2 O 3 contains a large amount of Na, K, Ca and Mg originating from an alkaline solution such as NaOH, Ca (OH) 2 used in the neutralization step of the wet method,
There are problems that it cannot be calcined at a low temperature, the sintering density does not increase when fired at a temperature of about 900 ° C., or high magnetic properties cannot be obtained. Therefore Na, K, C
Fe containing as little a and Mg as possible
2 O 3 is required.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記の問題
を解決するため、Cl, SO4 2- , Na, K, Caおよ
びMgの含有量が少ないFe2 3 およびその製造方法
を提供することを課題とする。
In order to solve the above problems, the present invention provides Fe 2 O 3 containing a small amount of Cl, SO 4 2− , Na, K, Ca and Mg, and a method for producing the same. The task is to do.

【0007】[0007]

【課題を解決するための手段】上記の課題は、以下に示
す本発明により達成される。 (1) 含有量が300ppm以下のClと、SO4 2-
換算での含有量が300ppm以下のSと、合計含有量
が100ppm未満のNa,K,CaおよびMgと、を
含むFe23 。 (2)鉄塩を含む水溶液とアルカリ水溶液とを混合、中
和して、水酸化鉄を含む溶液を製造する中和工程と、前
記溶液中の水酸化鉄を酸化して、Fe3 4 粒子を生成
するFe3 4 製造工程と、前記Fe3 4 粒子を含む
溶液に酸を添加して、該溶液のpHを2〜6.5に調整
するpH調整工程と、前記pH調整工程でpHが2〜
6.5に調整された前記溶液から、Fe3 4粒子を分
離する分離工程と、前記分離工程で分離された前記Fe
3 4 粒子を加熱酸化してFe2 3 を製造するFe2
3 製造工程とを有するFe2 3 の製造方法であっ
て、前記中和工程における、前記アルカリ水溶液と前記
鉄塩を含む水溶液との間に、下記(1)式および(2)
式で表される関係が成り立つことを特徴とするFe 2
3 の製造方法。
[Means for Solving the Problems] The above problems will be described below.
It is achieved by the present invention. (1) SO with a Cl content of 300 ppm or lessFour 2-
S content of 300ppm or less in conversion and total content
With less than 100 ppm of Na, K, Ca and Mg,
Fe containing2O3. (2) Mixing an aqueous solution containing an iron salt and an alkaline aqueous solution, medium
And a neutralization step of producing a solution containing iron hydroxide,
By oxidizing iron hydroxide in the solution, Fe3OFourGenerate particles
Fe3OFourManufacturing process and Fe3OFourContains particles
Adjust the pH of the solution to 2-6.5 by adding acid to the solution
And a pH adjustment step of
From the solution adjusted to 6.5, Fe3OFourMin the particles
The separation step of separating and the Fe separated in the separation step
3OFourFe by heating and oxidizing the particles2O3Fe manufacturing2
O3Fe with manufacturing process2O3Is a manufacturing method of
In the neutralization step, the alkaline aqueous solution and the
Between the aqueous solution containing the iron salt, the following formula (1) and (2)
Fe characterized by the fact that the relationship expressed by the equation holds 2O
3Manufacturing method.

【数2】 ((1)式中、[OH- ]は前記アルカリ水溶液中の水
酸基のmol数、[Fe 2+]は前記鉄塩を含む水溶液中
のFe2+のmol数、[Fe3+]は前記鉄塩を含む水溶
液中のFe3+のmol数を示す。)
[Equation 2] (In the formula (1), [OH-] Is water in the alkaline aqueous solution
Acid group mol number, [Fe 2+] Is in an aqueous solution containing the iron salt
Fe2+Mol number of [Fe3+] Is a water solution containing the iron salt
Fe in liquid3+Shows the mol number of. )

【0008】[0008]

【発明の実施の形態】以下に、本発明を詳細に説明す
る。本発明のFe2 3 は、Clの含有量が300pp
m以下であり、かつSO4 2 - 換算でのSの含有量が30
0ppm以下であることを特徴とする。Cl含有量およ
び/またはSO4 2-換算でのS含有量が300ppmを
超える場合、製造されるフェライト中のClおよび/ま
たはSO4 2- の含有量が多くなり、Agなどの電極とフ
ェライトを積層した構造を取る場合に、フェライトに含
まれるClおよび/SO4 2-がAgと反応することによ
り電極が断線するなどの問題が発生しやすくなる。ま
た、Clおよび/またはSO4 2- を多く含有すると、低
温で仮焼した際に、フェライトの焼結密度が充分に上が
らないという問題を有する。本発明のFe2 3 は、C
lおよびSO4 2-換算でのS含有量がそれぞれ300p
pm以下であるため、上記した電極の断線問題やフェラ
イトの焼結密度の問題が解消されている。ClおよびS
4 2-換算でのSの含有量はそれぞれ、より好ましくは
200ppm以下であり、100ppm未満であること
が特に好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below. Fe 2 O 3 of the present invention has a Cl content of 300 pp.
m or less, and SO 4 2 - content of S in terms 30
It is characterized by being 0 ppm or less. If the Cl content and / or the S content in terms of SO 4 2− exceeds 300 ppm, the content of Cl and / or SO 4 2− in the manufactured ferrite will increase, and the electrode such as Ag and the ferrite will be In the case of a laminated structure, Cl and / SO 4 2- contained in ferrite react with Ag, so that a problem such as disconnection of the electrode is likely to occur. Further, when Cl and / or SO 4 2− is contained in a large amount, there is a problem that the sintered density of ferrite does not increase sufficiently when calcined at a low temperature. Fe 2 O 3 of the present invention is C
and S content in terms of SO 4 2- is 300p each
Since it is pm or less, the above-mentioned problem of electrode disconnection and the problem of sintered density of ferrite are solved. Cl and S
The content of S in terms of O 4 2− is more preferably 200 ppm or less, and particularly preferably less than 100 ppm.

【0009】本発明のFe2 3 は、主に湿式法での中
和時に使用されるアルカリ溶液を起源とするNa,K,
CaおよびMgの含有量が低く、具体的にはこれらの合
計含有量が100ppm未満であることを特徴とする。
Na,K,CaおよびMgの含有量が高い場合、具体的
は合計含有量が100ppm以上である場合、仮焼工程
でフェライト化するのに必要な温度が上昇するため、低
温で仮焼できなくなる問題が生じる。また900℃程度
の低温で焼成する場合に焼結密度が充分に上がらない、
あるいは高い磁気特性が得られないなどの問題を生じ
る。本発明のFe 2 3 は、Na,K,CaおよびMg
の合計含有量が100ppm未満であることにより、低
温での仮焼が可能であり、また、フェライトの焼結工程
でより低温から焼結が開始するため、900℃程度の低
温で焼成しても焼結密度が高く、高い初透磁率を示すフ
ェライト焼結体を得ることができる。Na,K,Caお
よびMgの合計含有量は、好ましくは80ppm未満で
あり、50ppm未満であることがより好ましく、30
ppm未満であることがもっとも好ましい。
Fe of the present invention2O3Is mainly in the wet method
Na, K, which originates from the alkaline solution used in Japanese
The content of Ca and Mg is low.
The total content is less than 100 ppm.
If the content of Na, K, Ca and Mg is high,
Is the calcination process when the total content is 100 ppm or more
Therefore, the temperature required to turn ferrite into
There is a problem that calcination cannot be performed at high temperatures. Also about 900 ℃
Sintering density does not rise sufficiently when firing at low temperature
Or problems such as high magnetic properties are not obtained
It Fe of the present invention 2O3Is Na, K, Ca and Mg
Is low because the total content of
Calcination at high temperature is possible, and the ferrite sintering process is also possible.
Since sintering starts at a lower temperature in
Even if it is fired at a high temperature, the sintered density is high, and it shows a high initial permeability.
It is possible to obtain a cerite sintered body. Na, K, Ca
And the total content of Mg is preferably less than 80 ppm
Yes, more preferably less than 50 ppm, 30
Most preferably, it is less than ppm.

【0010】本発明のFe2 3 は、好ましくは比表面
積が6〜60m2 /gである。比表面積が6m2 /g未
満のFe2 3 では、仮焼時間を充分下げることができ
ず、そのため仮焼工程で粒成長が進み、粉砕時間を長く
する必要があり、粉砕機器からの不純物の混入(コンタ
ミ)も増加するため、小型磁気素子用として相応しくな
い。逆に比表面積が60m2 /gを超えるFe2 3
は、仮焼温度は低下できるものの反応性が高くなるた
め、仮焼工程で粒成長が進みやすい。このため、やはり
粉砕時間が長くなり、粉砕機器からのコンタミが増加す
るため、小型磁気素子用として適さないものとなる。F
2 3 の比表面積が6〜60m2 /gであれば、仮焼
工程で粒成長が進みすぎることがなく、その結果短時間
で所定の粒径まで粉砕することができ、粉砕機器からの
コンタミが少なく、小型磁気素子用フェライト粉末とし
て特に適したものとなる。より好ましいFe2 3 の比
表面積は10〜40m2 /gである。
Fe 2 O 3 of the present invention preferably has a specific surface area of 6 to 60 m 2 / g. Fe 2 O 3 having a specific surface area of less than 6 m 2 / g cannot sufficiently reduce the calcination time. Therefore, grain growth proceeds in the calcination step, and it is necessary to lengthen the crushing time. It is not suitable for a small magnetic element because it also increases the contamination. On the other hand, with Fe 2 O 3 having a specific surface area of more than 60 m 2 / g, the calcination temperature can be lowered but the reactivity becomes high, so that grain growth is likely to proceed in the calcination step. For this reason, the crushing time also becomes long, and the contamination from the crushing equipment increases, which is not suitable for a small magnetic element. F
When the specific surface area of e 2 O 3 is 6 to 60 m 2 / g, the grain growth does not proceed excessively in the calcination step, and as a result, it is possible to pulverize to a predetermined grain size in a short time. Therefore, it is particularly suitable as a ferrite powder for small magnetic elements. The more preferable specific surface area of Fe 2 O 3 is 10 to 40 m 2 / g.

【0011】本発明のFe2 3 は、上記以外に、Fe
2 3 の物性に悪影響を及ぼさない限り、Fe2 3
不可避的不純物として公知の元素または化合物を通常の
含有量で含んでもよい。例えば不可避的不純物として
は、Si,Mn,Al,Cr,Ni,Co,P,Bやこ
れらの酸化物などである。
Fe 2 O 3 of the present invention is
As long as it does not adversely affect the physical properties of the 2 O 3, it may contain the usual content of known elements or compounds as unavoidable impurities Fe 2 O 3. For example, unavoidable impurities include Si, Mn, Al, Cr, Ni, Co, P, B and oxides thereof.

【0012】次に本発明のFe2 3 の製造方法につい
て説明する。本発明では、いわゆる湿式法によりFe2
3 を製造する。すなわち、塩化鉄、硫酸鉄のような鉄
塩を含む水溶液をアルカリ水溶液で中和して、水酸化鉄
を得、これを酸化して、一旦Fe3 4 を製造して、こ
れをさらに加熱酸化することによりFe2 3 を製造す
る、本発明のFe2 3 の製造方法では、まず鉄塩を含
む水溶液に、アルカリ水溶液を混合して、溶液を中和さ
せる。これにより、水溶液中で鉄塩が解離して生成した
Fe2+(第一鉄イオン)、Fe3+(第二鉄イオン)から
Fe(OH)2 (水酸化第一鉄)、Fe(OH)3 (水
酸化第二鉄)が生成する。原料の鉄塩は、塩化第一鉄、
塩化第二鉄、硫酸第一鉄および硫酸第二鉄のいずれでも
よく、またはこれらいずれか2以上の組み合わせであっ
てもよい。
Next, the method for producing Fe 2 O 3 of the present invention will be described. In the present invention, the so-called wet method is used for Fe 2
The production of O 3. That is, an aqueous solution containing an iron salt such as iron chloride or iron sulfate is neutralized with an alkaline aqueous solution to obtain iron hydroxide, which is then oxidized to produce Fe 3 O 4 , which is further heated. In the method for producing Fe 2 O 3 of the present invention, which produces Fe 2 O 3 by oxidation, first, an alkaline aqueous solution is mixed with an aqueous solution containing an iron salt to neutralize the solution. As a result, Fe 2+ (ferrous iron ion) and Fe 3+ (ferric ion) produced by dissociation of the iron salt in the aqueous solution are converted into Fe (OH) 2 (ferrous hydroxide), Fe (OH ) 3 (ferric hydroxide) is produced. The raw iron salt is ferrous chloride,
It may be any of ferric chloride, ferrous sulfate and ferric sulfate, or a combination of any two or more thereof.

【0013】なかでも水溶液中にFe2+とFe3+が存在
すると、生成するFe3 4 (マグネタイト)を小粒径
化することができる。またFe3 4 中にNa,K,C
aおよびMgを取り込みやすくなる。このためFe2+
Fe3+を含む水溶液を使用することが好ましい。なお、
Fe2+とFe3+を含む水溶液を使用する場合、溶液中に
おけるFe2+濃度が、Fe3+濃度よりも高いことが好ま
しい。より好ましくは、溶液中におけるFe3+濃度は、
Fe2+とFe3+の合計濃度に対して2〜50%である。
溶液中におけるFe2+とFe3+の含有割合がこのような
範囲であれば、途中工程で生成するFe3 4 の粒径を
小さく制御することができ、粒度分布がシャープで、し
かも分散性に優れたFe3 4 を得ることができる。こ
のようなFe3 4 を加熱、酸化すれば、比表面積が6
〜60m2 /g、より好ましくは10〜40m2 /gの
Fe2 3 を得ることができる。
Above all, when Fe 2+ and Fe 3+ are present in the aqueous solution, the produced Fe 3 O 4 (magnetite) can be reduced in particle size. Also, in Fe 3 O 4 , Na, K, C
It becomes easy to take in a and Mg. Therefore, it is preferable to use an aqueous solution containing Fe 2+ and Fe 3+ . In addition,
When an aqueous solution containing Fe 2+ and Fe 3+ is used, the Fe 2+ concentration in the solution is preferably higher than the Fe 3+ concentration. More preferably, the Fe 3+ concentration in the solution is
It is 2 to 50% with respect to the total concentration of Fe 2+ and Fe 3+ .
If the content ratio of Fe 2+ and Fe 3+ in the solution is in such a range, the particle size of Fe 3 O 4 produced in the intermediate step can be controlled to be small, the particle size distribution is sharp, and the dispersion is good. Fe 3 O 4 having excellent properties can be obtained. When such Fe 3 O 4 is heated and oxidized, the specific surface area becomes 6
~60m 2 / g, more preferably it is possible to obtain a Fe 2 O 3 of 10 to 40 m 2 / g.

【0014】アルカリ水溶液としては、水酸化ナトリウ
ム、水酸化カリウム、水酸化カルシウム、水酸化マグネ
シウムなどのアルカリ金属若しくはアルカリ土類金属の
水酸化物や、炭酸ナトリウムのようなアルカリ金属若し
くは炭酸アルカリ土類金属の炭酸塩の水溶液、またはア
ンモニア水溶液等の一般的なアルカリ水溶液を使用する
ことができる。ただし、本発明の製造方法では、後で詳
述するように、生成したFe3 4 に、アルカリ金属や
アルカリ土類金属を一度取り込ませる必要があるため、
アンモニア水溶液よりは、アルカリ金属若しくはアルカ
リ土類金属の水酸化物若しくは炭酸塩等の水溶液のほう
が好ましい。
Examples of the alkaline aqueous solution include hydroxides of alkali metals or alkaline earth metals such as sodium hydroxide, potassium hydroxide, calcium hydroxide and magnesium hydroxide, and alkali metals or alkaline earth carbonates such as sodium carbonate. It is possible to use an aqueous solution of a metal carbonate or a general alkaline aqueous solution such as an aqueous ammonia solution. However, in the production method of the present invention, as described later in detail, since it is necessary to once incorporate the alkali metal or the alkaline earth metal into the produced Fe 3 O 4 ,
An aqueous solution of an alkali metal or alkaline earth metal hydroxide or carbonate is preferred to an aqueous ammonia solution.

【0015】本発明のFe2 3 の製造方法では、この
中和工程の際に、アルカリ水溶液と、鉄塩を含む水溶液
との間に下記(1)式および(2)式で示される関係が
成り立つ。
In the method for producing Fe 2 O 3 of the present invention, in the neutralization step, the relationship represented by the following formulas (1) and (2) is established between the alkaline aqueous solution and the aqueous solution containing the iron salt. Holds.

【数3】 ((1)式中、[OH- ]は前記アルカリ水溶液中の水
酸基のmol数、[Fe 2+]は前記鉄塩を含む水溶液中
のFe2+のmol数、[Fe3+]は前記鉄塩を含む水溶
液中のFe3+のmol数を示す。)
[Equation 3] (In the formula (1), [OH-] Is water in the alkaline aqueous solution
Acid group mol number, [Fe 2+] Is in an aqueous solution containing the iron salt
Fe2+Mol number of [Fe3+] Is a water solution containing the iron salt
Fe in liquid3+Shows the mol number of. )

【0016】本発明のFe2 3 の製造方法では、アル
カリ水溶液の水酸基濃度と鉄塩を含む水溶液の鉄イオン
濃度の間に上式で示される関係が成り立つことにより、
後の工程で生成されるFe3 4 に、前記中和工程で使
用されるアルカリ水溶液を起源とするNa,K,Caお
よびMgが取り込まれやすくなる。本発明のFe2 3
の製造方法において、生成されるFe3 4 に、Na,
K,CaおよびMgを一度取り込ませるのは、それによ
り生成されるFe3 4 にClやSO4 2- が取り込まれ
にくくなるからである。この結果、生成されるFe3
4 中のClおよびSO4 2- の含有量は、低く保たれる。
生成されるFe3 4 にNa,K,CaおよびMgが一
度取り込まれないと、Fe3 4 中のClおよびSO4
2-の含有量が高くなり、従って、製造されるFe2 3
でのClおよびSO4 2- の含有量が高くなり、上で述べ
た問題が生じる。
Fe of the present invention2O3In the manufacturing method of
Hydroxyl Concentration of Potassium Aqueous Solution and Iron Ion of Aqueous Solution Containing Iron Salt
Since the relationship shown by the above equation holds between the concentrations,
Fe produced in a later step3OFourUsed in the neutralization step
Na, K, Ca derived from the alkaline aqueous solution used
And Mg are easily taken in. Fe of the present invention2O 3
Fe produced in the manufacturing method of3OFour, Na,
It is because it takes in K, Ca and Mg once.
Fe produced by3OFourCl or SOFour 2-Is captured
Because it becomes difficult. As a result, Fe produced3O
FourCl and SO inFour 2-The content of is kept low.
Fe produced3OFourWith Na, K, Ca and Mg
If not taken in, Fe3OFourCl and SO inFour
2-Content of Fe is higher, and thus Fe produced2O3
Cl and SO atFour 2-Higher content of the above mentioned
Have problems.

【0017】上記(1)式は、水酸基と鉄イオンの当量
比を示すものである。(1)式の値が0.95未満の場
合、Fe3 4 中に、ClやSが取り込まれる量が多く
なり過ぎ、最終的に得られるFe2 3 中のCl,Sの
含有量が300ppmを超えてしまう。(1)式の値が
1.5超の場合、使用するアルカリ水溶液の量が多くな
るため、後のpH調整工程で多量の酸が必要となるの
で、コストが高くなる。また使用するアルカリ水溶液の
種類によってはFe3 4 以外の相も生じる。上記
(2)式は、中和に用いるアルカリ水溶液の体積と鉄塩
を含む水溶液の体積の比を示すものである。(2)式の
値が0.1未満の場合、例えば、(1)式を満たすため
には、使用するアルカリ水溶液の濃度が高くなり、溶液
中の溶質(アルカリ成分)の量が溶解度よりも高くなっ
て、アルカリ金属塩、アルカリ土類金属塩のような溶液
のアルカリ成分が析出しやすくなる。この傾向は、水酸
化ナトリウム水溶液の場合顕著である。(2)式の値が
3.5超の場合、Fe3 4中に、ClやSの取り込ま
れる量が多くなり過ぎ、最終的に得られるFe2 3
のCl,Sの含有量が300ppmを超えてしまう。
The above formula (1) shows the equivalent ratio of hydroxyl group to iron ion. When the value of the formula (1) is less than 0.95, the amount of Cl and S incorporated into Fe 3 O 4 becomes too large, and the content of Cl and S in the finally obtained Fe 2 O 3 is increased. Exceeds 300 ppm. When the value of the equation (1) is more than 1.5, the amount of the alkaline aqueous solution used is large, and a large amount of acid is required in the subsequent pH adjusting step, resulting in high cost. Further, phases other than Fe 3 O 4 are also generated depending on the type of alkaline aqueous solution used. The above formula (2) shows the ratio of the volume of the alkaline aqueous solution used for neutralization to the volume of the aqueous solution containing the iron salt. When the value of the formula (2) is less than 0.1, for example, in order to satisfy the formula (1), the concentration of the alkaline aqueous solution used becomes high, and the amount of solute (alkali component) in the solution is higher than the solubility. As the temperature rises, alkali components of the solution such as alkali metal salts and alkaline earth metal salts are more likely to be deposited. This tendency is remarkable in the case of an aqueous sodium hydroxide solution. When the value of the formula (2) is more than 3.5, the amount of Cl and S incorporated into Fe 3 O 4 becomes too large, and the content of Cl and S in the finally obtained Fe 2 O 3 is increased. Exceeds 300 ppm.

【0018】本発明のFe2 3 の製造方法では、上記
手順で鉄塩を含む水溶液をアルカリ水溶液で中和して、
水酸化鉄を生成させた後、酸素含有ガスを通気すること
により、溶液中の水酸化鉄を酸化してFe3 4 粒子を
生成させる。この場合、酸化に用いる酸素含有ガスとし
ては、通常空気が用いられる。酸化時の水溶液温度は5
0〜100℃が好ましい。50℃よりも低温では針状の
含水酸化物が生成するため好ましくない。また100℃
よりも高温での合成は可能であるが、設備が大掛かりに
なるなど工業的には適さない。この酸化工程は、溶液中
の水酸化鉄がすべて消費された段階で終了する。
In the method for producing Fe 2 O 3 of the present invention, the aqueous solution containing an iron salt is neutralized with an alkaline aqueous solution according to the above procedure,
After the iron hydroxide is produced, the oxygen-containing gas is bubbled in to oxidize the iron hydroxide in the solution to produce Fe 3 O 4 particles. In this case, air is usually used as the oxygen-containing gas used for the oxidation. The temperature of the aqueous solution during oxidation is 5
0-100 degreeC is preferable. If the temperature is lower than 50 ° C, acicular hydrous oxide is formed, which is not preferable. Also 100 ℃
Although it can be synthesized at a higher temperature than that, it is not industrially suitable due to the large equipment. This oxidation process ends when all the iron hydroxide in the solution has been consumed.

【0019】この酸化によりFe3 4 を生成させる工
程の後、Fe3 4 は通常スラリーの状態で溶液中に存
在する。本発明のFe2 3 の製造方法では、このスラ
リーを含む溶液に酸を添加して、溶液のpHを2〜6.
5に調整する。溶液のpHを2〜6.5に調整するの
は、生成したFe3 4 に一度取り込まれたNa,K,
CaおよびMgを再びFe3 4 から溶液へと溶出させ
るためである。本工程では、塩酸、硫酸、硝酸および酢
酸といった通常の酸を用いることができる。また、加熱
により容易に分解する有機酸類も用いることが可能であ
る。ただし残留してフェライト特性に悪影響を及ぼすよ
うな酸は好ましくない。
After the step of producing Fe 3 O 4 by this oxidation, Fe 3 O 4 is usually present in the solution in the form of slurry. In the method for producing Fe 2 O 3 of the present invention, an acid is added to a solution containing this slurry to adjust the pH of the solution to 2 to 6.
Adjust to 5. The pH of the solution is adjusted to 2 to 6.5 by adjusting Na, K, which is once incorporated into the produced Fe 3 O 4 ,
This is because Ca and Mg are eluted again from Fe 3 O 4 into the solution. In this step, ordinary acids such as hydrochloric acid, sulfuric acid, nitric acid and acetic acid can be used. It is also possible to use organic acids that are easily decomposed by heating. However, an acid that remains and adversely affects the ferrite characteristics is not preferable.

【0020】本工程でFe3 4 中からNa,K,Ca
およびMgが除去されることにより、後工程で製造され
るFe2 3 のNa,K,CaおよびMgの合計含有量
が100ppm未満に保たれる。本工程は、特開平8−
133742号公報に示されたオキシ水酸化鉄又はマグ
ネタイトの沈殿物を脱水して得られるケーキを水に分散
させ、pHを6〜8に調整後、脱水、水洗を行い、次い
で再度脱水ケーキを水に分散させ、酸によりpHを2〜
5の範囲に調整する方法に比べて、工程が少なく操作が
容易である。本工程において、酸添加後のpHが低い
と、Fe3 4 中に残留するNa,K,CaおよびMg
をより低減することができるが、pHが2よりも低い場
合にはClやSO4 2- などの酸の残留成分が増えたり、
製造設備などが腐食しやすくなるため好ましくない。p
Hが6.5を超える場合には、Na,K,MgおよびC
aを充分除去することができず、後工程で製造されるF
23 のNa,K,CaおよびMgの合計濃度が10
0ppmを超える。
In this step, Na, K and Ca are extracted from Fe 3 O 4.
By removing Mg and Mg, the total content of Na, K, Ca and Mg of Fe 2 O 3 produced in the subsequent step is kept below 100 ppm. This process is described in JP-A-8-
The cake obtained by dehydrating the precipitate of iron oxyhydroxide or magnetite disclosed in Japanese Patent No. 133742 is dispersed in water, and after adjusting the pH to 6 to 8, dehydration and washing are performed, and then the dehydrated cake is water-rehydrated again. Disperse in, and adjust the pH to 2 with acid.
Compared with the method of adjusting to the range of 5, the number of steps is small and the operation is easy. In this step, if the pH after addition of the acid is low, Na, K, Ca and Mg remaining in Fe 3 O 4 will remain.
However, when the pH is lower than 2 , the residual components of acids such as Cl and SO 4 2− increase,
It is not preferable because the manufacturing equipment is likely to be corroded. p
When H exceeds 6.5, Na, K, Mg and C
Since a cannot be sufficiently removed, F produced in a later step
e 2 O 3 has a total concentration of Na, K, Ca and Mg of 10
Exceeds 0 ppm.

【0021】本工程で酸添加後の溶液のpHは、より好
ましくは3〜6.5であり、さらに好ましくは4〜6で
ある。また、酸を添加する際の溶液の温度は50℃以上
が好ましい。常温でpHを調整するのに比べ、50℃以
上で酸を添加し、pHを調整することで一層Na,K,
CaおよびMgの除去率が向上する。
The pH of the solution after addition of the acid in this step is more preferably 3 to 6.5, further preferably 4 to 6. The temperature of the solution when adding the acid is preferably 50 ° C. or higher. Compared to adjusting the pH at room temperature, by adding acid at 50 ° C or higher and adjusting the pH, Na, K, and
The removal rate of Ca and Mg is improved.

【0022】本発明のFe2 3 の製造方法では、溶液
のpHを上記範囲に調整した後、溶液を脱水(ろ過)す
ることによりFe3 4 を分離する。前工程でpHを2
〜6.5に調整したことで、Na,K,CaおよびMg
がFe3 4 から溶液へと溶出しているため、脱水(ろ
過)にすることによりFe3 4 とNa,K,Caおよ
びMgとを完全に分離することができ、高純度のFe3
4 粒子が得られる。本発明において、溶液のpHが2
〜6.5に調整されているのは、ろ過時まででよく、ろ
過後はpHが6.5以上に上昇してもFe3 4 中のN
a,K,CaおよびMgの濃度は増加しない。ろ過方法
としては、フィルタープレスなど通常の方法を用いるこ
とができる。ろ過により得られたFe3 4 ケーキは、
通常の方法で水洗(脱塩)、さらに乾燥、解砕すること
により高純度のFe3 4 粉末が得られる。
In the method for producing Fe 2 O 3 of the present invention, Fe 3 O 4 is separated by adjusting the pH of the solution to the above range and then dehydrating (filtering) the solution. PH 2 in the previous step
By adjusting to ~ 6.5, Na, K, Ca and Mg
Since There has been eluted into the solution from Fe 3 O 4, Fe 3 O 4 and Na by dehydration (filtration), K, can be completely separate the Ca and Mg, high purity Fe 3
O 4 particles are obtained. In the present invention, the pH of the solution is 2
It may be adjusted to ~ 6.5 until the time of filtration, and after the filtration, even if the pH rises to 6.5 or higher, the N in Fe 3 O 4 is increased.
The concentrations of a, K, Ca and Mg do not increase. As a filtration method, a usual method such as a filter press can be used. The Fe 3 O 4 cake obtained by filtration is
High-purity Fe 3 O 4 powder can be obtained by washing with water (desalting), drying and crushing by a usual method.

【0023】本発明のFe2 3 の製造方法では、この
ようにして得られたFe3 4 粒子を加熱酸化すること
により、Fe2 3 を得る。この時、加熱酸化温度が2
00〜300℃程度の低温であればマグヘマイト(γ−
Fe2 3 )が得られ、300℃以上500℃程度以下
の温度であればヘマタイト(α−Fe2 3 )が得られ
る。いずれも、フェライトとした場合、小型磁気素子用
として適したものであり、必要とされる条件、用途等に
応じて、加熱酸化温度を調節することにより、マグヘマ
イトまたはヘマタイトを選択的に得ることができる。ま
た、このようにして得られたFe2 3 は、酸化ニッケ
ル、酸化亜鉛、酸化銅、酸化マンガンなどと混合、仮焼
してフェライト粉末とする。フェライト粉末は、例え
ば、バインダーを混合してペーストとした後、印刷法や
ドクターブレード法などで磁性材層を形成させ、焼成
後、積層チップインダクタや平面インダクタとすること
ができる。また、フェライト粉末とポリビニルアルコー
ル(PVA)などの結合剤や微量の添加元素を添加し
て、造粒、成形した後、焼成してフェライトコアとする
こともできる。
[0023] In the manufacturing method of the Fe 2 O 3 of the present invention, by heating and oxidation Thus the Fe 3 O 4 particles obtained by, obtain Fe 2 O 3. At this time, the heating oxidation temperature is 2
Maghemite (γ-
Fe 2 O 3 ) is obtained, and hematite (α-Fe 2 O 3 ) is obtained at a temperature of 300 ° C. or higher and about 500 ° C. or lower. Both of them are suitable for small magnetic elements when ferrite is used, and maghemite or hematite can be selectively obtained by adjusting the heating oxidation temperature according to the required conditions, application, etc. it can. The Fe 2 O 3 thus obtained is mixed with nickel oxide, zinc oxide, copper oxide, manganese oxide and the like and calcined to obtain ferrite powder. The ferrite powder can be used, for example, as a laminated chip inductor or a planar inductor after forming a magnetic material layer by a printing method or a doctor blade method after mixing a binder to form a paste. Alternatively, a ferrite powder and a binder such as polyvinyl alcohol (PVA) or a small amount of an additional element may be added, granulated and molded, and then fired to obtain a ferrite core.

【0024】[0024]

【実施例】以下、実施例により本発明の方法をさらに説
明する。なお、実施例において、Fe2 3 およびフェ
ライトの評価は、以下の方法により実施した。酸化鉄の分析 比表面積:BET法にて分析 Cl、SO4 2- :蛍光X線で分析 Na、K、CaおよびMg:ICP(誘導結合プラズマ
原子蛍光分析)で分析 フェライトの評価 仮焼可能温度:XRDによりスピネル化率が90%以上
となる最低温度
EXAMPLES Hereinafter, the method of the present invention will be further explained with reference to Examples.
Reveal In the examples, Fe2O3And fe
The light was evaluated by the following method.Iron oxide analysis Specific surface area: BET analysis Cl, SOFour 2-: Fluorescent X-ray analysis Na, K, Ca and Mg: ICP (inductively coupled plasma
Atomic fluorescence analysis) Evaluation of ferrite Calcinable temperature: Spinelization rate of 90% or more by XRD
Minimum temperature

【0025】(実施例1〜4)塩化第一鉄溶液と塩化第
二鉄溶液を溶液中のFe3+濃度がFe3+/Total-
Fe=8%になるように混合し、水を加えて全Fe濃度
0.58mol/l、溶液量25.75リットルに調製
した。内容積40リットルの容器に、8mol/lのN
aOH溶液4.25リットルを入れ、そこに窒素ガスを
通気し攪拌しながら上記の塩化鉄溶液を混合した。この
溶液を窒素雰囲気のまま90℃まで昇温し、pHを1
0.2±0.1に保持しながら、空気を10l/min
通気して酸化を行いFe3 4 粒子を合成した。反応が
終了した後、反応溶液が90℃の状態で硫酸を添加して
表1に示すpHに調整した。その後、脱塩、ろ過、乾
燥、解砕してFe3 4 粉末を得た。この粉末を450
℃で2時間加熱酸化して酸化鉄(ヘマタイト:α−Fe
2 3 )とした。次にこの酸化鉄を用いてフェライト粉
末を作製した。フェライト粉末の試作は得られた酸化鉄
を用いてFe2 3 :NiO:ZnO:CuO=49:
11:30:10になるように秤量し、これをボールミ
ルで1時間混合した後、乾燥させた。この粉末を600
℃以上で仮焼してNiCuZnフェライト粉末とした。
仮焼はXRDでスピネル化率が90%以上となる最低温
度で2時間行った。さらにボールミルで粉砕を行い、比
表面積が6m2 /g以上になるまで続けた。得られた粉
砕紛は乾燥後、PVA溶液を混合して造粒した後、トロ
イダル形状にプレス成形した。得られた成形体を900
℃で焼成して焼結体を得た。焼結密度は焼結体の重量と
寸法から算出した。初透磁率はLCRメータを用いて9
00℃で焼成したコアについて測定した。結果を表1に
示した。
(Examples 1 to 4) The ferrous chloride solution and the ferric chloride solution contained in the solution had an Fe 3+ concentration of Fe 3+ / Total-
The mixture was mixed so that Fe = 8%, and water was added to prepare a total Fe concentration of 0.58 mol / l and a solution amount of 25.75 liters. 8 mol / l N in a container with an internal volume of 40 liters
4.25 liters of aOH solution was put therein, and the above iron chloride solution was mixed with nitrogen gas by agitating the solution. The temperature of this solution was raised to 90 ° C in a nitrogen atmosphere, and the pH was adjusted to 1
Air is maintained at 0.2 ± 0.1 while air is supplied at 10 l / min
Fe 3 O 4 particles were synthesized by aeration and oxidation. After the reaction was completed, sulfuric acid was added to the reaction solution at 90 ° C. to adjust the pH shown in Table 1. Then, desalting, filtration, drying and crushing were performed to obtain Fe 3 O 4 powder. 450 this powder
Iron oxide (hematite: α-Fe)
2 O 3 ). Next, a ferrite powder was produced using this iron oxide. The ferrite powder was trial-produced by using the obtained iron oxide and Fe 2 O 3 : NiO: ZnO: CuO = 49:
It was weighed to be 11:30:10, mixed with a ball mill for 1 hour, and then dried. 600 of this powder
It was calcined at a temperature of not less than ° C to obtain NiCuZn ferrite powder.
The calcination was performed by XRD for 2 hours at the lowest temperature at which the spinelization rate was 90% or more. Further, it was pulverized with a ball mill and continued until the specific surface area became 6 m 2 / g or more. The obtained pulverized powder was dried, mixed with a PVA solution for granulation, and then press-molded into a toroidal shape. The obtained molded body is 900
A sintered body was obtained by firing at ℃. The sintered density was calculated from the weight and size of the sintered body. The initial permeability is 9 using the LCR meter.
The measurement was performed on cores fired at 00 ° C. The results are shown in Table 1.

【0026】(比較例1、2)反応終了後の溶液に硫酸
を添加してpHを表3に示す値に調整した点以外は、実
施例1〜4と同じ条件で試料の作製および評価を実施し
た。結果を表3に示した。
(Comparative Examples 1 and 2) Samples were prepared and evaluated under the same conditions as in Examples 1 to 4 except that sulfuric acid was added to the solution after the reaction to adjust the pH to the value shown in Table 3. Carried out. The results are shown in Table 3.

【0027】(実施例5)塩化第一鉄溶液と塩化第二鉄
溶液を溶液中のFe3+濃度がFe3+/Total- Fe
=1.5%になるように混合し、水を加えて全Fe濃度
0.71mol/l、溶液量25.25リットルに調整
した。内容積40リットルの容器に、8mol/lのN
aOH溶液4.75リットルを入れ、そこに窒素ガスを
通気し攪拌しながら上記の塩化鉄溶液を混合した。この
溶液を窒素雰囲気のまま80℃まで昇温し、pHを8.
5±0.2に保持しながら、空気を10l/min通気
して酸化を行いFe3 4 粒子を合成した。反応を終了
した後、反応溶液を55℃まで冷却し、塩酸を添加して
pH4.0に調整した。その後、脱塩、ろ過、乾燥、解
砕してFe3 4 粉末を得た。この粉末を230℃で3
時間加熱酸化して酸化鉄(マグヘマイト:γ−Fe2
3 )とした。評価は実施例1〜4と同様に行った。表1
に結果を示した。
(Embodiment 5) The ferrous chloride solution and the ferric chloride solution contained in the solution had an Fe 3+ concentration of Fe 3+ / Total-Fe.
= 1.5%, and water was added to adjust the total Fe concentration to 0.71 mol / l and the solution amount to 25.25 liters. 8 mol / l N in a container with an internal volume of 40 liters
4.75 liters of aOH solution was put therein, and the above iron chloride solution was mixed with nitrogen gas by agitating the solution. The temperature of this solution was raised to 80 ° C. in a nitrogen atmosphere and the pH was adjusted to 8.
While maintaining at 5 ± 0.2, air was blown at 10 l / min for oxidation to synthesize Fe 3 O 4 particles. After the reaction was completed, the reaction solution was cooled to 55 ° C., and hydrochloric acid was added to adjust the pH to 4.0. Then, desalting, filtration, drying and crushing were performed to obtain Fe 3 O 4 powder. This powder at 230 ℃ 3
Iron oxide (maghemite: γ-Fe 2 O)
3 ) and. The evaluation was performed in the same manner as in Examples 1 to 4. Table 1
The results are shown in.

【0028】(実施例6)塩化第一鉄溶液と塩化第二鉄
溶液を溶液中のFe3+濃度がFe3+/Total- Fe
=6.5%になるように混合し、水を加えて全Fe濃度
0.71mol/l、溶液量25.25リットルに調整
した。内容積40リットルの容器に、8mol/lのN
aOH溶液4.75リットルを入れ、そこに窒素ガスを
通気し攪拌しながら上記の塩化鉄溶液を混合した。以
降、実施例5と同条件で試料の作製、評価を行った。結
果を表1に示した。
(Example 6) A ferrous chloride solution and a ferric chloride solution were mixed so that the Fe 3+ concentration in the solution was Fe 3+ / Total-Fe.
= 6.5%, and water was added to adjust the total Fe concentration to 0.71 mol / l and the solution amount to 25.25 liters. 8 mol / l N in a container with an internal volume of 40 liters
4.75 liters of aOH solution was put therein, and the above iron chloride solution was mixed with nitrogen gas by agitating the solution. Thereafter, a sample was prepared and evaluated under the same conditions as in Example 5. The results are shown in Table 1.

【0029】(実施例7)塩化第一鉄溶液と塩化第二鉄
溶液を溶液中のFe3+濃度がFe3+/Total- Fe
3+=12%になるように混合し、水を加えて全Fe濃度
0.72mol/l、溶液量25リットルに調整した。
内容積40リットルの容器に、8mol/lのNaOH
溶液5リットルを入れ、そこに窒素ガスを通気し攪拌し
ながら上記の塩化鉄溶液を混合した。以降、実施例5と
同条件で試料の作製、評価を行った。結果を表1に示し
た。
(Embodiment 7) The ferrous chloride solution and the ferric chloride solution have Fe 3+ concentration in the solution of Fe 3+ / Total-Fe
The mixture was mixed so that 3 + = 12%, and water was added to adjust the total Fe concentration to 0.72 mol / l and the solution amount to 25 liters.
8 mol / l NaOH in a container with an internal volume of 40 liters
5 liters of the solution was put therein, and the above iron chloride solution was mixed while agitating nitrogen gas and stirring it. Thereafter, a sample was prepared and evaluated under the same conditions as in Example 5. The results are shown in Table 1.

【0030】(実施例8)塩化第一鉄溶液と塩化第二鉄
溶液を溶液中のFe3+濃度がFe3+/Total- Fe
=24%になるように混合し、水を加えて全Fe濃度
0.72mol/l、溶液量25リットルに調整した。
内容積40リットルの容器に、8mol/lのNaOH
溶液5リットルを入れ、そこに窒素ガスを通気し攪拌し
ながら上記の塩化鉄溶液を混合した。以降、実施例5と
同条件で試料の作製、評価を行った。結果を表1に示し
た。
(Embodiment 8) The ferrous chloride solution and the ferric chloride solution have Fe 3+ concentration in the solution of Fe 3+ / Total-Fe.
= 24%, and water was added to adjust the total Fe concentration to 0.72 mol / l and the solution amount to 25 liters.
8 mol / l NaOH in a container with an internal volume of 40 liters
5 liters of the solution was put therein, and the above iron chloride solution was mixed while agitating nitrogen gas and stirring it. Thereafter, a sample was prepared and evaluated under the same conditions as in Example 5. The results are shown in Table 1.

【0031】(実施例9)塩化第一鉄溶液と塩化第二鉄
溶液を溶液中のFe3+濃度がFe3+/Total- Fe
=32%になるように混合し、水を加えて全Fe濃度
0.72mol/l、溶液量24.5リットルに調整し
た。内容積40リットルの容器に、8mol/lのNa
OH溶液5.5リットルを入れ、そこに窒素ガスを通気
し攪拌しながら上記の塩化鉄溶液を混合した。以降、実
施例5と同条件で試料の作製、評価を行った。結果を表
1に示した。
(Example 9) The ferrous chloride solution and the ferric chloride solution had Fe 3+ concentration in the solution of Fe 3+ / Total-Fe
= 32%, and water was added to adjust the total Fe concentration to 0.72 mol / l and the solution amount to 24.5 liters. 8 mol / l Na in a container with an internal volume of 40 liters
5.5 L of an OH solution was added, and the above iron chloride solution was mixed with nitrogen gas by agitating the solution. Thereafter, a sample was prepared and evaluated under the same conditions as in Example 5. The results are shown in Table 1.

【0032】(実施例10)塩化第一鉄溶液と塩化第二
鉄溶液を溶液中のFe3+濃度がFe3+/Total- F
e=46%になるように混合し、水を加えて全Fe濃度
0.73mol/l、溶液量24リットルに調整した。
内容積40リットルの容器に、8mol/lのNaOH
溶液5.5リットルを入れ、そこに窒素ガスを通気し攪
拌しながら上記の塩化鉄溶液を混合した。以降、実施例
5と同条件で試料の作製、評価を行った。結果を表1に
示した。
(Embodiment 10) The ferrous chloride solution and the ferric chloride solution contained in the solution had an Fe 3+ concentration of Fe 3+ / Total-F.
The mixture was mixed so that e = 46%, and water was added to adjust the total Fe concentration to 0.73 mol / l and the solution amount to 24 liters.
8 mol / l NaOH in a container with an internal volume of 40 liters
5.5 liters of the solution was added thereto, and nitrogen gas was bubbled through the solution to mix the above iron chloride solution with stirring. Thereafter, a sample was prepared and evaluated under the same conditions as in Example 5. The results are shown in Table 1.

【0033】(比較例3)反応終了後の溶液に塩酸を添
加してpH1.7に調整した以外は、すべて実施例5と
同条件で試料の作製、評価を行った。結果を表3に示し
た。 (比較例4)反応終了後の溶液に塩酸を添加してpH
7.2に調整した以外は、すべて実施例5と同条件で試
料の作製、評価を行った。結果を表3に示した。 (比較例5)実施例7の条件で、中和工程での溶液の混
合条件を変更した。すなわち、塩化第一鉄溶液と塩化第
二鉄溶液を溶液中のFe3+濃度がFe3+/Total-
Fe=12%になるように混合し、水を加えて全Fe濃
度3.0mol/l、溶液量6リットルに調整した。内
容積40リットルの容器に、1.67mol/lのNa
OH溶液24リットルを入れ、そこに窒素ガスを通気し
攪拌しながら上記の塩化鉄溶液を混合した。以降、実施
例5と同条件で試料の作製、評価を行った。結果を表3
に示した。
Comparative Example 3 A sample was prepared and evaluated under the same conditions as in Example 5, except that hydrochloric acid was added to the solution after the reaction to adjust the pH to 1.7. The results are shown in Table 3. (Comparative Example 4) Hydrochloric acid was added to the solution after completion of the reaction to adjust the pH.
A sample was prepared and evaluated under the same conditions as in Example 5, except that the sample was adjusted to 7.2. The results are shown in Table 3. (Comparative Example 5) The mixing conditions of the solution in the neutralization step were changed under the conditions of Example 7. That is, the ferrous chloride solution and the ferric chloride solution have an Fe 3+ concentration of Fe 3+ / Total-
The mixture was mixed so that Fe = 12%, and water was added to adjust the total Fe concentration to 3.0 mol / l and the solution amount to 6 liters. In a container with an internal volume of 40 liters, 1.67 mol / l Na
24 liters of OH solution was put therein, and the above iron chloride solution was mixed with nitrogen gas by agitating. Thereafter, a sample was prepared and evaluated under the same conditions as in Example 5. The results are shown in Table 3.
It was shown to.

【0034】(実施例11〜14)容器に8.1mol
/lのNaOH溶液4リットルを入れ、そこに窒素ガス
を通気し攪拌しながら0.62mol/lの硫酸第一鉄
溶液26リットルを混合した。この溶液を窒素雰囲気の
まま85℃まで昇温し、pHを8.5±0.2に調整し
ながら、空気を10l/min通気して酸化を行いFe
3 4 粒子を合成した。反応が終了した後、反応溶液が
85℃の状態で硫酸を添加して所定のpHに調整した。
その後、脱塩、ろ過、乾燥、解砕してFe3 4 粉末を
得た。得られたFe3 4 は400℃で1時間加熱酸化
して酸化鉄(ヘマタイト:α−Fe23 )とし、実施
例1と同じ評価を行った。結果を表2に示した。
(Examples 11 to 14) 8.1 mol in a container
4 liter of NaOH solution of 1 / l was introduced, and 26 liter of 0.62 mol / l ferrous sulfate solution was mixed with nitrogen gas while stirring. The temperature of this solution was raised to 85 ° C. in a nitrogen atmosphere, and while adjusting the pH to 8.5 ± 0.2, air was blown at 10 l / min to oxidize Fe.
3 O 4 particles were synthesized. After the reaction was completed, sulfuric acid was added to the reaction solution at a temperature of 85 ° C. to adjust the pH to a predetermined value.
Then, desalting, filtration, drying and crushing were performed to obtain Fe 3 O 4 powder. The obtained Fe 3 O 4 was heated and oxidized at 400 ° C. for 1 hour to form iron oxide (hematite: α-Fe 2 O 3 ) and the same evaluation as in Example 1 was performed. The results are shown in Table 2.

【0035】(比較例6)比較例6では、Fe3 4
生成後、溶液のpHを2〜6.5に調整せずに、Fe2
3 を生成させた。2.8mol/lのNaOH溶液1
4リットルとFe2+濃度1.5mol/lの硫酸第一鉄
溶液14リットルを混合した。この溶液を窒素雰囲気の
まま90℃まで昇温し、pHを6.8±0.1に制御し
ながら空気を10l/min通気して酸化を行いFe3
4 粒子を合成した。その後、脱塩、ろ過、乾燥、解砕
してFe3 4 粉末を得た。得られたFe3 4 は40
0℃で1時間加熱して酸化鉄(ヘマタイト:α−Fe2
3 )とした。得られたFe2 3 を用いて、実施例と
同条件で評価を行った。結果を表3に示した。
Comparative Example 6 In Comparative Example 6, after the formation of Fe 3 O 4 , the pH of the solution was adjusted to 2 to 6.5 and Fe 2
O 3 was produced. 2.8 mol / l NaOH solution 1
4 liters and 14 liters of ferrous sulfate solution having Fe 2+ concentration of 1.5 mol / l were mixed. The temperature of this solution was raised to 90 ° C. in a nitrogen atmosphere, and while controlling the pH at 6.8 ± 0.1, air was passed through at 10 l / min to oxidize Fe 3
O 4 particles were synthesized. Then, desalting, filtration, drying and crushing were performed to obtain Fe 3 O 4 powder. The Fe 3 O 4 obtained is 40
Iron oxide (hematite: α-Fe 2
O 3 ). The Fe 2 O 3 obtained was evaluated under the same conditions as in the examples. The results are shown in Table 3.

【0036】(比較例7)塩化第一鉄溶液を用いて噴霧
焙焼法で製造し、水洗処理していない酸化鉄を用いて実
施例1〜4と同条件で評価を行った。結果を表3に示し
た。 (比較例8)比較例3と同様に噴霧焙焼法で製造し、焙
焼後に水洗処理を行った酸化鉄を用いて、実施例1〜4
と同条件で評価を行った。結果を表3に示した。
(Comparative Example 7) Evaluation was carried out under the same conditions as in Examples 1 to 4 using iron oxide produced by a spray roasting method using a ferrous chloride solution and not washed with water. The results are shown in Table 3. (Comparative Example 8) Examples 1 to 4 using iron oxide produced by the spray roasting method as in Comparative Example 3 and subjected to a washing treatment after roasting.
Evaluation was performed under the same conditions as above. The results are shown in Table 3.

【0037】(実施例15〜18)硫酸第一鉄溶液と硫
酸第二鉄溶液を、溶液中のFe3+濃度がFe3+/Tot
al- Fe=5%になるように混合し、水を加えて全F
e濃度0.82mol/l、溶液量25.5リットルに
調整した。内容積30リットルの容器に、10mol/
lのNaOH溶液を4.5リットル入れ、そこに窒素ガ
スを通気し攪拌しながら上記の硫酸鉄溶液を混合した。
この溶液を窒素雰囲気のまま75℃まで昇温し、pHを
10.3±0.1に保持しながら、空気を10l/mi
n通気して酸化を行いFe3 4 粒子を合成した。反応
が終了した後、反応溶液を60℃まで冷却し、塩酸を添
加して所定のpHに調整した。その後、脱塩、ろ過、乾
燥、解砕してFe3 4 粉末を得た。この粉末を250
℃で2時間加熱酸化して酸化鉄(マグヘマイト:γ−F
2 3 )とした。評価は実施例1〜4と同条件で行っ
た。結果を表3に示した。
(Examples 15 to 18) A ferrous sulfate solution and a ferric sulfate solution were mixed so that the Fe 3+ concentration in the solution was Fe 3+ / Tot.
Mix so that al-Fe = 5%, add water and add all F
e The concentration was adjusted to 0.82 mol / l and the solution amount was adjusted to 25.5 liters. 10 mol / in a container with an internal volume of 30 liters
4.5 liters of NaOH solution (1 liter) was put therein, and the above iron sulfate solution was mixed with nitrogen gas by agitating the solution.
The temperature of this solution was raised to 75 ° C. in a nitrogen atmosphere, and while maintaining the pH at 10.3 ± 0.1, air was supplied at 10 l / mi.
Fe 3 O 4 particles were synthesized by carrying out oxidation by passing n. After the reaction was completed, the reaction solution was cooled to 60 ° C. and hydrochloric acid was added to adjust the pH to a predetermined value. Then, desalting, filtration, drying and crushing were performed to obtain Fe 3 O 4 powder. 250 this powder
Iron oxide (maghemite: γ-F)
e 2 O 3 ). The evaluation was performed under the same conditions as in Examples 1 to 4. The results are shown in Table 3.

【0038】(実施例19〜22、比較例9)表4に示
すような条件の塩化第一鉄溶液と塩化第二鉄溶液の混合
溶液、および炭酸ナトリウム溶液を調製した。内容積4
0リットルの容器に、アルカリ溶液を投入し、そこに窒
素ガスを通気し攪拌しながら塩化鉄溶液を混合した。こ
の溶液を85℃まで昇温し、pH調整を行わずに、空気
を10l/min通気して酸化を行い、Fe3 4 粒子
を合成した。反応が終了した後、反応溶液を60℃まで
冷却し、塩酸を添加して所定のpHに調整した。その
後、脱塩、ろ過、乾燥、 解砕してFe3 4 粉末を得
た。この粉末を430℃で2時間加熱して酸化鉄(ヘマ
タイト:α−Fe2 3 )とした。評価は実施例1〜4
と同条件で行った。結果を表4に示した。表4の結果か
ら、アルカリ溶液と鉄塩を含む溶液の当量比は、0.9
5〜1.5の範囲が好ましいことがわかる。
Examples 19 to 22 and Comparative Example 9 A mixed solution of a ferrous chloride solution and a ferric chloride solution under the conditions shown in Table 4 and a sodium carbonate solution were prepared. Inner volume 4
An alkaline solution was put into a 0 liter container, and nitrogen gas was bubbled through the alkaline solution to mix the iron chloride solution with stirring. The temperature of this solution was raised to 85 ° C., and without adjusting the pH, air was blown at 10 l / min for oxidation to synthesize Fe 3 O 4 particles. After the reaction was completed, the reaction solution was cooled to 60 ° C. and hydrochloric acid was added to adjust the pH to a predetermined value. Then, desalting, filtration, drying and crushing were performed to obtain Fe 3 O 4 powder. This powder was heated at 430 ° C. for 2 hours to form iron oxide (hematite: α-Fe 2 O 3 ). Evaluation is made in Examples 1 to 4.
I went under the same conditions. The results are shown in Table 4. From the results in Table 4, the equivalent ratio of the alkaline solution and the solution containing the iron salt was 0.9.
It can be seen that the range of 5 to 1.5 is preferable.

【0039】(実施例23〜26、比較例10)表5に
示すような条件の塩化鉄第一鉄溶液と塩化第二鉄溶液の
混合溶液、および水酸化カリウム溶液を調製した。内容
積40リットルの容器に、アルカリ溶液を投入し、そこ
に窒素ガスを通気し攪拌しながら塩化鉄溶液を混合し
た。この溶液を80℃まで昇温し、pH調整を行わず
に、空気を10l/min通気して酸化を行い、Fe3
4 粒子を合成した。反応が終了した後、反応溶液を6
0℃まで冷却し、塩酸を添加して所定のpHに調整し
た。その後、脱塩、ろ過、乾燥、解砕してFe3 4
末を得た。この粉末を430℃で2時間加熱して酸化鉄
(ヘマタイト:α−Fe2 3 )とした。評価は実施例
1〜4と同条件で行った。結果を表5に示した。実施例
23〜26、比較例5、比較例10などの結果から、ア
ルカリ溶液と鉄塩を含む溶液の体積比は0.1〜3.5
の範囲が好ましいことがわかる。
(Examples 23 to 26, Comparative Example 10) A mixed solution of a ferrous iron chloride solution and a ferric chloride solution under the conditions shown in Table 5 and a potassium hydroxide solution were prepared. An alkaline solution was put into a container having an internal volume of 40 liters, and nitrogen gas was bubbled through the container to mix the iron chloride solution with stirring. The temperature of this solution was raised to 80 ° C., and without adjusting pH, air was blown at 10 l / min to oxidize Fe 3
O 4 particles were synthesized. After the reaction is completed, add 6 to the reaction solution.
After cooling to 0 ° C., hydrochloric acid was added to adjust the pH to a predetermined level. Then, desalting, filtration, drying and crushing were performed to obtain Fe 3 O 4 powder. This powder was heated at 430 ° C. for 2 hours to form iron oxide (hematite: α-Fe 2 O 3 ). The evaluation was performed under the same conditions as in Examples 1 to 4. The results are shown in Table 5. From the results of Examples 23 to 26, Comparative Example 5, and Comparative Example 10, the volume ratio of the alkaline solution and the solution containing the iron salt was 0.1 to 3.5.
It can be seen that the range is preferable.

【0040】実施例および比較例から、Clの含有量が
300ppm以下で、SO4 2-換算のS含有量が300
ppm以下で、K、Na、CaおよびMgの合計含有量
が100未満で、かつ比表面積が6〜60m2 /gのF
2 3 を用いてフェライトを作製する場合、700℃
程度の低温で仮焼が可能であり、900℃以下の低温で
焼成しても高い焼結密度と、初透磁率が得られることが
確認できる。
From the examples and comparative examples, the Cl content is 300 ppm or less, and the SO 4 2- equivalent S content is 300.
F of less than 100 ppm, total content of K, Na, Ca and Mg less than 100 and specific surface area of 6 to 60 m 2 / g
When making ferrite using e 2 O 3 , 700 ℃
It can be confirmed that calcination is possible at about low temperature, and high sintering density and initial magnetic permeability can be obtained even by firing at low temperature of 900 ° C. or lower.

【0041】[0041]

【発明の効果】本発明の製造方法を用いれば、塩化鉄お
よび硫酸鉄のいずれを原料とした場合であっても、製造
されるFe2 3 に含まれるClとSO4 2-が同時に低
減される。これは塩化鉄と硫酸鉄とが混在する原料を用
いてFe2 3 を製造する場合に特に効果的である。本
発明のFe2 3 を用いてフェライトを製造する場合、
低温の仮焼が可能で、900℃の低温で焼成しても高い
焼結密度、初透磁率を得ることができる。また、本発明
の製法により、上記のFe2 3 を得ることができる。
According to the production method of the present invention, Cl and SO 4 2- contained in Fe 2 O 3 produced can be reduced at the same time regardless of whether iron chloride or iron sulfate is used as a raw material. To be done. This is particularly effective when Fe 2 O 3 is produced using a raw material in which iron chloride and iron sulfate are mixed. When producing ferrite using Fe 2 O 3 of the present invention,
It can be calcined at a low temperature, and even if it is fired at a low temperature of 900 ° C, a high sintered density and an initial magnetic permeability can be obtained. Further, the above-mentioned Fe 2 O 3 can be obtained by the production method of the present invention.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【表4】 [Table 4]

【0046】[0046]

【表5】 [Table 5]

フロントページの続き (72)発明者 池田 幸司 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 槙石 幸雄 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 Fターム(参考) 4G002 AA03 AB02 AE02 Continued front page    (72) Inventor Koji Ikeda             1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Made in Kawasaki             Chiba Steel Works, Ltd. (72) Inventor Yukio Makiishi             1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Made in Kawasaki             Chiba Steel Works, Ltd. F-term (reference) 4G002 AA03 AB02 AE02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】含有量が300ppm以下のClと、 SO4 2-換算での含有量が300ppm以下のSと、 合計含有量が100ppm未満のNa,K,Caおよび
Mgと、を含むFe23
1. Fe 2 containing Cl with a content of 300 ppm or less, S with a content of SO 4 2− of 300 ppm or less, and Na, K, Ca, and Mg with a total content of less than 100 ppm. O 3 .
【請求項2】鉄塩を含む水溶液とアルカリ水溶液とを混
合、中和して、水酸化鉄を含む溶液を製造する中和工程
と、 前記溶液中の水酸化鉄を酸化して、Fe3 4 粒子を生
成するFe3 4 製造工程と、 前記Fe3 4 粒子を含む溶液に酸を添加して、該溶液
のpHを2〜6.5に調整するpH調整工程と、 前記pH調整工程でpHが2〜6.5に調整された前記
溶液から、Fe3 4粒子を分離する分離工程と、 前記分離工程で分離された前記Fe3 4 粒子を加熱酸
化してFe2 3 を製造するFe2 3 製造工程とを有
するFe2 3 の製造方法であって、 前記中和工程における、前記アルカリ水溶液と前記鉄塩
を含む水溶液との間に、下記(1)式および(2)式で
表される関係が成り立つことを特徴とするFe 2 3
製造方法。 【数1】 ((1)式中、[OH- ]は前記アルカリ水溶液中の水
酸基のmol数、[Fe 2+]は前記鉄塩を含む水溶液中
のFe2+のmol数、[Fe3+]は前記鉄塩を含む水溶
液中のFe3+のmol数を示す。)
2. An aqueous solution containing an iron salt and an alkaline aqueous solution are mixed.
Neutralization process to produce a solution containing iron hydroxide
When, By oxidizing the iron hydroxide in the solution, Fe3OFourMake particles
Fe formed3OFourManufacturing process, Fe3OFourAn acid is added to a solution containing particles, and the solution is added.
PH adjusting step of adjusting the pH of the solution to 2 to 6.5, The pH is adjusted to 2 to 6.5 in the pH adjusting step.
From solution, Fe3OFourA separation step for separating the particles, The Fe separated in the separation step3OFourAcid heating particles
Turn Fe2O3Fe manufacturing2O3With manufacturing process
Fe2O3The manufacturing method of In the neutralization step, the alkaline aqueous solution and the iron salt
In the following formulas (1) and (2),
Fe characterized in that the relationship expressed by the above holds 2O3of
Production method. [Equation 1] (In the formula (1), [OH-] Is water in the alkaline aqueous solution
Acid group mol number, [Fe 2+] Is in an aqueous solution containing the iron salt
Fe2+Mol number of [Fe3+] Is a water solution containing the iron salt
Fe in liquid3+Shows the mol number of. )
JP2001384209A 2001-12-18 2001-12-18 Fe (2) O (3) and production method thereof Expired - Fee Related JP3931960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001384209A JP3931960B2 (en) 2001-12-18 2001-12-18 Fe (2) O (3) and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001384209A JP3931960B2 (en) 2001-12-18 2001-12-18 Fe (2) O (3) and production method thereof

Publications (2)

Publication Number Publication Date
JP2003183025A true JP2003183025A (en) 2003-07-03
JP3931960B2 JP3931960B2 (en) 2007-06-20

Family

ID=27593991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001384209A Expired - Fee Related JP3931960B2 (en) 2001-12-18 2001-12-18 Fe (2) O (3) and production method thereof

Country Status (1)

Country Link
JP (1) JP3931960B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300732A (en) * 2002-03-18 2003-10-21 Sud Chem Mt Srl Method for producing high purity iron oxide and its use
JP2020510209A (en) * 2017-08-18 2020-04-02 エルジー・ケム・リミテッド Quantitative analysis method for residual CL in zinc ferrite

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300732A (en) * 2002-03-18 2003-10-21 Sud Chem Mt Srl Method for producing high purity iron oxide and its use
JP2011037710A (en) * 2002-03-18 2011-02-24 Sued Chemie Mt Srl Application of highly pure iron oxide
JP4658456B2 (en) * 2002-03-18 2011-03-23 サッド チェミ エムティー エス.アール.エル. Manufacturing method of high purity iron oxide
JP2020510209A (en) * 2017-08-18 2020-04-02 エルジー・ケム・リミテッド Quantitative analysis method for residual CL in zinc ferrite
US11249060B2 (en) 2017-08-18 2022-02-15 Lg Chem, Ltd. Method for quantitatively analyzing residual Cl in zinc ferrite

Also Published As

Publication number Publication date
JP3931960B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP6480715B2 (en) Precursor of iron-based oxide magnetic particle powder and method for producing iron-based oxide magnetic particle powder using the same
CN103159469A (en) Preparation method of Mn-Zn ferrite powder with high permeability
JP4087555B2 (en) Iron oxide and method for producing the same
JP3931960B2 (en) Fe (2) O (3) and production method thereof
JP3289358B2 (en) Method for producing magnetic oxide powder
TWI768299B (en) SUBSTITUTION TYPE ε IRON OXIDE MAGNETIC PARTICLE POWDER, METHOD FOR MANUFACTURING SUBSTITUTION TYPE ε IRON OXIDE MAGNETIC PARTICLE POWDER, GREEN COMPACT, METHOD FOR MANUFACTURING GREEN COMPACT AND ELECTROMAGNETIC WAVE ABSORBER
JP3580145B2 (en) Method for producing Ni-Cu-Zn ferrite material
JP4053230B2 (en) Iron oxide and method for producing the same
JP3406382B2 (en) Method for producing ferrite magnetic powder
JP3406381B2 (en) Ferrite-based magnetic powder raw material oxide and method for producing ferrite-based magnetic powder
JP3894298B2 (en) Fe (2) O (3) and production method thereof
JP2010270379A (en) Method for producing rare-earth-iron-nitrogen-based magnet powder
JP3908045B2 (en) Manufacturing method of iron oxide powder and ferrite powder for chip inductor
JP3406380B2 (en) Ferrite-based magnetic powder raw material oxide and method for producing ferrite-based magnetic powder
CN116692951B (en) Preparation method of spinel metal oxide magnetic material
JPH07315844A (en) Production of ferrite powder
US5626788A (en) Production of magnetic oxide powder
Goldman et al. A new process for coprecipitation of ferrites
JP3466504B2 (en) High purity iron oxide powder for ferrite and method for producing the same
JPH0733442A (en) Production of mn-zn ferrite
JP2844932B2 (en) Composite spinel ferrite fine particles and method for producing the same
JP3638654B2 (en) Method for producing ferrite powder
JP3580144B2 (en) Method for producing Ni-Cu-Zn ferrite material
JPH082922A (en) Ferrite magnetic powder, oxide raw material for ferrite magnetic powder and its production
JP2003212547A (en) Iron oxide powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070306

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3931960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees