JP2003181602A - Method for manufacturing ultralow carbon steel - Google Patents

Method for manufacturing ultralow carbon steel

Info

Publication number
JP2003181602A
JP2003181602A JP2001381856A JP2001381856A JP2003181602A JP 2003181602 A JP2003181602 A JP 2003181602A JP 2001381856 A JP2001381856 A JP 2001381856A JP 2001381856 A JP2001381856 A JP 2001381856A JP 2003181602 A JP2003181602 A JP 2003181602A
Authority
JP
Japan
Prior art keywords
molten steel
tundish
continuous casting
inclusions
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001381856A
Other languages
Japanese (ja)
Other versions
JP3630136B2 (en
Inventor
Tatsuo Kanai
達生 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001381856A priority Critical patent/JP3630136B2/en
Publication of JP2003181602A publication Critical patent/JP2003181602A/en
Application granted granted Critical
Publication of JP3630136B2 publication Critical patent/JP3630136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a sound ultralow carbon steel, which is free from defects derived from inclusions and can meet a very high quality requirement, in a highly efficient and stable manner. <P>SOLUTION: In this method for manufacturing an ultralow carbon steel which includes the steps of subjecting a molten steel to RH vacuum degassing and then continuously casting the molten steel, molten steel treatment conditions and/or casting conditions are regulated so as to satisfy the following equation (1) [wherein NSL is a total oxygen concentration of slab, (ppm); VL is the length of vertical part of a continuous casting machine from a meniscus, (m); NFM is the concentration of (FeO)+(MnO) in ladle slag after the completion of RH, (%); W is the capacity of tundish, (ton); TP is a throughput, (ton/min); h is the depth of tundish bath, (m); and VP and α are each a constant]. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、転炉とRH真空脱
ガス装置、および連続鋳造設備を用いて極低炭素鋼を製
造する方法に関する。 【0002】 【従来の技術】真空脱ガス処理を併用する連続鋳造法で
は、転炉で精錬した溶鋼を取鍋に出鋼し、これをRH真
空脱ガス装置にて脱炭した後、脱酸などの成分調整を
し、次いで、溶鋼を取鍋からタンディシュ(以下、「T
/D」とも記す)に移し、タンディシュから連続鋳造機
のモールドに連続的に注湯してスラブに鋳造される。 【0003】自動車用などに主に使用される極低炭素鋼
では、品質要求レベルが年々向上してきている。このた
め、介在物の低減対策が上記のような製鋼工程における
重要な課題となっている。 【0004】介在物の低減対策としては、転炉で精錬し
た溶鋼の取鍋などで行うスラグ改質処理、真空脱ガス装
置における分離促進、タンディシュ内での浮上促進、連
続鋳造機のモールド内での浮上促進など、種々の方法が
検討されている。 【0005】例えば精錬後の介在物減少対策としては、
特開平10−298629号公報、特開平11−158537号公報、特
開2000−119732号公報、特開平06−256837号公報などに
示されるように、取鍋スラグ中の低級酸化物濃度を種々
の手段で低減させることで、溶鋼の再酸化量を減少させ
る方法が多数公開されている。 【0006】特開平08−141708号公報、特開平09−3875
3 号公報では、精錬段階で残存した溶鋼中介在物をスラ
ブ中すなわち製品段階に持ち込まないために、タンディ
ッシュ内での溶鋼の滞留時間を延長させて、介在物のタ
ンディッシュ内での浮上分離効率を向上させる手段が提
案されている。 【0007】特開平11−33687 号公報には、連続鋳造設
備において溶鋼のメニスカスから下方に垂直部を設け、
電磁攪拌装置を介することで、スラブ内に持ち込まれる
介在物量を低減させる方法が提案されている。 【0008】 【発明が解決しようとする課題】しかしながら、前述の
種々の方法は、スラブの介在物を減少させ、清浄度を向
上させる効果はあるものの、製造コストの上昇を伴うだ
けでなく、タンディッシュの改造や連続鋳造設備の改造
など多額の投資を要するものばかりである。 【0009】例えば取鍋スラグ中の低級酸化物濃度を低
減させる方法としてスラグ改質を行う場合には、通常、
金属Al を含有する脱酸剤を使用するため、コストが上
昇する。また、タンディッシュ内での滞留時間を延長す
る方法は、タンディッシュの形状変更やスループット
(タンディッシュからモールドへの給湯速度)の減少な
どで実現可能であるが、タンディッシュの形状変更には
多額の投資が必要であり、スループットを小さくすると
生産能率の低下や鋳込み時間延長に伴う温度ロスによる
コスト増加が発生する。連続鋳造機に垂直部を設けるに
は、設備改造のための巨大な設備投資が必要であり、既
存の設備で操業している限り容易におこなえる方法では
ない。 【0010】既に連続鋳造機に垂直部を有し、大型タン
ディッシュを使用しているような連続鋳造設備において
は、介在物の除去能力が高いため、溶鋼段階での介在物
量減少対策が軽度のものであっても、品質要求レベルを
満たすことができる。しかしながら、上述したように、
極低炭素鋼を連続鋳造したスラブに残存する介在物量に
は、使用する設備の仕様や能力、および種々の操業条件
が影響する。また、これらの介在物浮上除去手段は、ス
ラブの製造コストや生産性にも様々な影響を及ぼす。こ
のため、安定して介在物の少ないスラブを最小の製造コ
ストで得るのは容易ではなかった。 【0011】本発明の目的は、介在物に起因した欠陥の
ない、厳しい品質要求レベルを満たしうる健全な極低炭
素鋼を、効率良く、かつ安定して製造する方法を提供す
ることにある。 【0012】 【課題を解決するための手段】極低炭素鋼スラブを連続
鋳造する際に、スラブに残存する介在物量には、種々の
操業条件が影響する。また、介在物の浮上除去手段につ
いても種々のものが考えられているが、それぞれの方法
の効果や製造コスト、あるいは生産性に及ぼす影響も様
々である。しかも、これらは使用する設備の仕様や能力
によっても異なる。 【0013】そこで本発明者は、鋼の精錬段階から鋳造
に至るまでの間の種々の操業要因がスラブに残存する介
在物に及ぼす影響を明確に把握できれば、それに基づい
て最適な操業条件を常に選択することにより、所望の品
質を備えた極低炭素鋼を、使用する設備の仕様や能力に
応じて、安定して得ることができるとの着想を得た。 【0014】特に、種々の操業条件下における鋼の精錬
から連続鋳造までの間の操業コスト、特に介在物の浮上
除去に要するコストを把握できれば、これと上記介在物
低減方法とを組み合わせることにより、所望の品質を有
する製品を低コストで効率よく安定して製造することが
できることを知った。 【0015】本発明は、これらの考えを基にした種々研
究の結果、得られた知見を基にして完成したものであ
り、その要旨は、転炉で精錬した溶鋼を取鍋に出鋼し、
これをRH真空脱ガス装置にて脱炭処理を行い、引き続
いて脱酸処理を行った後、連続鋳造設備を用いて鋳造す
る極低炭素鋼の製造方法において、下記式(1) を満足す
るように、溶鋼の処理条件および/または鋳造条件を調
整することを特徴とする極低炭素鋼の製造方法である。 【0016】 【数2】 【0017】ただし、 NFM:RH処理終了後の取鍋スラグ中の (FeO) +
(MnO) 濃度 (質量%)、 VL :メニスカスからの連続鋳造機の垂直部長さ(m) 、 W :タンディッシュ容量(トン)、 h :タンディッシュ浴深さ(m) 、 TP :スループット(トン/min)、 VP :介在物浮上速度 (m/min)=0.4 、 α :介在物除去速度定数(m-1) =1.0 【0018】 【発明の実施の形態】次に、本発明の基となるスラブの
介在物濃度と種々の操業条件との関係を表す式(1) の内
容を説明する。 【0019】a.極低炭素鋼の製造においては、転炉で
精錬した溶鋼を取鍋に出鋼し、これをRH真空脱ガス装
置にて脱炭し、脱酸などの成分調整をした後、溶鋼を取
鍋からタンディシュに移し、連続的にモールド内に注湯
してスラブに鋳造する。 【0020】上記製鋼工程において、真空脱ガス処理
(以下、RH処理とも記す)後の取鍋内スラグ中の低級
酸化物濃度は、溶鋼をタンディシュに移した際のタンデ
ィッシュ内溶鋼の全酸素濃度に大きく影響する。 【0021】図1は、本発明者の研究結果による、上記
低級酸化物濃度と、溶鋼の全酸素濃度(図1では、「T
−[O]」と記す)との関係を示すグラフである。図1
からわかるように、両者の間には強い正の相関関係があ
る。 【0022】図1に示す取鍋内スラグ中の低級酸化物濃
度とタンディシュ内溶鋼の全酸素濃度との関係は、下記
式(2) で示すことができる。 NTD=3NFM +10 (2) ただし、NTD:タンディッシュ内溶鋼の全酸素濃度( 単
位はppm)、 NFM:RH処理終了後の取鍋内スラグ中の (FeO) +
(MnO) 濃度(単位は質量%)。 【0023】このように鋼に含有される介在物の量は鋼
の全酸素濃度と良好な相関関係を有する。従って鋼の全
酸素濃度は、鋼の清浄度を表す指標として用いることが
できるので、本発明では、溶鋼中およびスラブ中ともに
全酸素濃度を介在物量を表す指標とした。 【0024】b.溶鋼はタンディシュから連続的にモー
ルドに注湯される。注湯の際に、タンディッシュ内から
モールド内に持ち込まれる介在物の量は、タンディッシ
ュの形状やスループットなどの操業条件で規定される。 【0025】すなわち、タンディッシュ内で介在物を浮
上させることで、モールド内の介在物量を減少させるこ
とができるが、介在物の浮上除去効率はタンディッシュ
内での溶鋼の滞留時間が長いほど向上する。また、タン
ディシュ浴の深さが浅いほど介在物は容易に浮上する。 【0026】図2は、本発明者の研究結果による、タン
ディッシュ内での介在物の浮上に対する操業条件の影響
を示すグラフである。モールド内溶鋼の全酸素濃度をN
MD(単位はppm)、タンディッシュ内溶鋼の全酸素濃度を
TD(単位はppm)とすると、タンディシュ内で介在物が
浮上するにつれて、NMD/NTDは減少する。この意味
で、図2の縦軸の、NMD/NTDはタンディシュ内溶鋼に
おける介在物の浮上度合いを表すものである。 【0027】図2の横軸は、介在物の浮上の容易さを表
す介在物浮上指数である。これは、介在物浮上速度をV
P (単位はm/min)、タンディッシュ、つまりタンディッ
シュ内溶鋼量をW(単位はトン)、スループットをTP
(単位はトン/min)、タンディッシュ、つまりタンディ
ッシュ内溶鋼の深さをh(単位はm)としたとき、(V P
・W/TP ・h)で表される。 【0028】介在物浮上指数においてW/TP はタンデ
ィッシュ内での介在物の滞留時間である。図2に示すよ
うに、滞留時間が長く、タンディッシュ深さが浅いほど
モールド内溶鋼の全酸素濃度の低下が大きく、介在物の
浮上が促進されることがわかる。 【0029】図2から、モールド内溶鋼の全酸素濃度
は、下記式(3) で示すことができる。 【0030】 【数3】【0031】ここで、VP は介在物浮上速度 (単位はm/
min)を意味し、その値は0.4m/minで一定と考えてよい。 c.スラブ内に介在物を残存させないために、連続鋳造
機のモールド内に介在物の浮上分離に有効な垂直部を設
けるのが有効である。 【0032】図3は、本発明者の研究結果による、モー
ルド内での介在物の浮上分離に対する上記垂直部の影響
を示すグラフである。図3の縦軸は、モールド内溶鋼の
全酸素濃度(NMD)に対するスラブ中の全酸素濃度(N
SL、単位はppm )の比(NSL/NMD)であり、NSL/N
MDが小さくなることは、モールド内での介在物の浮上除
去が促進されていることを意味する。 【0033】図3に示すように、メニスカスからの連続
鋳造機の垂直部の (ほぼモールド+連続鋳造機の垂直部
に等しい) 長さが大きくなるにつれてモールド内での介
在物の浮上分離が促進される。この関係は、図3から、
下記式(4) で表すことができる。 【0034】 NSL=NMD×α( −0.031 ×VL +0.91) (4) ただし、VL はメニスカスからの連続鋳造機の垂直部長
さ(単位はm )、αは介在物除去速度定数 (単位は
m-1)を意味し、その値は1.0m-1で一定と考えてよい。 【0035】d.上記式 (2)〜(4) を連立させて解くこ
とにより、下記式(5) を得ることができ。 【0036】 【数4】 【0037】式(5) によれば、操業条件からスラブの全
酸素濃度を予測し、スラブの介在物量を推定することが
できる。なお、連続鋳造機の垂直部長さはすでに当業者
には明らかなところ、要するに鋳込まれた溶鋼内を介在
物が上昇する領域の垂直方向長さである。 【0038】e.スラブ中の介在物が増すにつれて、得
られる製品の不良率が高くなる。ここでの製品不良率
は、上記スラブを熱延鋼板、冷延鋼板あるいは、これら
を母材とする各種のめっき鋼板などの最終製品に加工し
た場合に、材料原因の庇があるために、切下げ不良が発
生するが、その不良率を指数化したものである。製品不
良率が高いと、歩留悪化によるコスト損失が大きくな
る。 【0039】図4は、本発明者の調査結果による、スラ
ブの全酸素濃度(NSL)が製品不良率に及ぼす影響を示
すグラフである。図4では製品不良率は指標化して、製
品不良指数として示した。図4に示すように、スラブの
全酸素濃度が増すにつれて製品不良指数が大きくなり、
特に27ppm を超えるとその増加が著しい。 【0040】本発明者はさらに、種々の操業条件につい
て鋼の精錬から連続鋳造までの製造段階で介在物減少対
策に要する種々の費用(製鋼ロスコスト)と、その結果
生じる製品検査段階での切下げ発生による費用損失(切
り下げコスト)を求め、スラブの全酸素濃度とトータル
のコスト損失(製鋼ロスコスト+切り下げコスト)との
関係を調査した。 【0041】図5は、上記の研究結果から得られた、ス
ラブの全酸素濃度がトータルのコスト損失に及ぼす影響
を示すグラフである。図5において、縦軸のトータルロ
スコスト指数は、製鋼ロスコスト、切下ロスコストとも
に一般的な操業条件の場合を基準にしてトータルロスコ
ストを指標化したものである。 【0042】図5に示すように、スラブの全酸素濃度が
27ppm の場合にロスコストが最小となる。トータルロス
コスト指数は、スラブの全酸素濃度が27ppm よりも小さ
くなるにつれて製鋼ロスコストが増すために大きくな
り、27ppm を超えて大きくなるにつれて切下コストが増
すために大きくなる。 【0043】製品不良指数を低く抑制し、介在物が少な
く健全な製品を安定して得るには、スラブの全酸素濃度
が27ppm 以下になる条件で製造するのがよく、そのため
には、式(1) の左辺で計算される値が27以下、好ましく
は25以下になるように、製鋼工程における操業条件、特
に溶鋼の製造条件および/または鋳造条件を調整するの
が好適である。 【0044】操業条件の調整方法は、現実的には、連続
鋳造設備レイアウトおよびタンディッシュ形状は、決ま
っている場合がほとんどであるため、鋳造中のスループ
ットとスラグ中低級酸化物濃度を、式(1) を満たす範囲
で連続鋳造設備毎に設定し、操業するのが望ましい。 【0045】 【実施例】転炉で精錬した溶鋼を取鍋に出鋼し、これを
RH真空脱ガス装置にて脱炭処理し、引き続いて脱酸処
理して製造された溶鋼を、3種類の連続鋳造設備を使用
して、極低炭素鋼スラブを製造し、コイルの形状の最終
製品に加工し、出荷検査において生じた製品格落ち率を
調査した。合わせて、それぞれの場合の鋼の精錬から連
続鋳造までの間の操業コストを調査し、連続鋳造機の仕
様毎に、従来の操業条件の場合の操業コストを基準とす
るコスト指数を計算した。 【0046】表1に連続鋳造機の設備仕様を示し、表2
に操業条件と式(1) で計算されるスラブ中の介在物濃度
およびそれぞれのコスト指数を示す。 【0047】 【表1】【0048】 【表2】 【0049】ケース1は、連続鋳造設備Aにより、通常
の条件で製造した場合である。この場合、式(1) の左辺
の計算値は目標の27以下を達成しておらず、製品不良指
数が高く、製品採取が安定しなかった。ケース1の場合
の精錬から連続鋳造までの間の操業コストを連続鋳造機
Aの場合の操業コストの基準とした。 【0050】ケース2として、ケース1に比較してスル
ープットを小さくして鋳込み速度(スラブ引抜き速度)
を低下させた場合を、ケース3として、スラグ改質材を
多量に使用してスラグ中の低級酸化物濃度を低下させた
場合を評価した。いずれの場合とも式(1) の左辺の計算
値は目標の27以下となり、製品不良指数が低く、製品採
取が安定して良好であった。両ケースとも操業コストは
ケース1に比較して高くなったが、スラグ中の低級酸化
物濃度を低下させたケース3の場合は、前述したように
スラグ改質材のコストが高いので、ケース2よりもコス
ト指数が高くなった。このことは、生産能率に問題のな
い場合はケース2のように、スループットを低下させ、
タンディッシュ内の滞留時間を延長させたほうが効果的
である。 【0051】ケース4はスラグ改質をさらに強力に行な
ってスラグ中低級酸化物濃度をケース3以上に低下さ
せ、鋳込み速度をケース2同様に低下させた場合であ
る。この場合は式(1) の左辺の計算値はさらに小さくな
るが、製品不良指数の改善効果は飽和に近いためにさほ
どは向上しなかった。他方、操業コストの上昇が大き
く、コスト面での不利が大きくなった。このことは、必
要以上に清浄度を向上させる必要はないことを意味す
る。 【0052】ケース5は、ケース1と同一条件で精錬
し、真空脱ガス処理を施した溶鋼を連続鋳造設備Bで鋳
造した場合の例である。連続鋳造設備Bはタンディッシ
ュ容量が少なく、タンディッシュ内滞留時間が短いた
め、介在物の除去には不利な連続鋳造設備である。この
ため、式(1) の左辺の計算値は、連続鋳造設備Aの場合
に比較して高く、製品不良指数が大きかった。ケース6
またはケース7に示すように、スループットを小さくし
て鋳込み速度を低下させた場合、あるいは、スラグ改質
材を多量に使用してスラグ中の低級酸化物濃度を低下さ
せた場合には、目標とするスラブが得られ、最終製品の
製品不良指数も小さく良好であった。操業コストはケー
ス7よりもケース6の方が有利であることは、連続鋳造
機Aの場合と同様であった。 【0053】ケース8およびケース9に示した連続鋳造
設備Cは、垂直部を有さない連続鋳造設備であるため、
連続鋳造設備B以上に介在物減少対策が必要であった。 【0054】 【発明の効果】本発明の規定する式(1) を満足するよう
に操業条件を調整することで、所望の品質要求レベルを
満たす極低炭素鋼を安定して、かつ、効率よく製造する
ことができる。
DETAILED DESCRIPTION OF THE INVENTION [0001] The present invention relates to a converter and RH vacuum desorption.
Production of ultra-low carbon steel using gas equipment and continuous casting equipment
Relates to the method of manufacturing. [0002] 2. Description of the Related Art Continuous casting with vacuum degassing
Takes out the molten steel refined in the converter into a ladle,
After decarburization with an empty degasser, adjust components such as deoxidation
Next, the molten steel is taken from the ladle to the tundish (hereinafter “T
/ D ”), and the continuous casting machine from Tundish
The mold is continuously poured into a slab. Ultra-low carbon steel mainly used for automobiles
Then, the quality requirement level is improving year by year. others
Therefore, inclusion reduction measures are used in the steelmaking process as described above.
It is an important issue. [0004] As a measure for reducing inclusions, refining in a converter.
Slag reforming process and vacuum degassing
Promoting separation in the room, promoting levitation in the tundish,
There are various methods such as promotion of floating in the mold of the continuous casting machine.
It is being considered. For example, as a countermeasure for reducing inclusions after refining,
JP-A-10-298629, JP-A-11-158537,
Japanese Laid-Open Patent Publication No. 2000-119732 and Japanese Laid-Open Patent Publication No. 06-256837
As shown, various lower oxide concentrations in ladle slag
This reduces the amount of reoxidation of molten steel.
Many methods have been published. Japanese Patent Laid-Open Nos. 08-141708 and 09-3875
In No. 3 publication, inclusions in the molten steel remaining at the refining stage are slurried.
In order to avoid bringing them into the product stage.
Increase the residence time of the molten steel in the
A means to improve the flotation separation efficiency in the dish
It has been proposed. Japanese Patent Application Laid-Open No. 11-33687 discloses a continuous casting installation.
In the preparation, a vertical part is provided below the meniscus of the molten steel,
It is brought into the slab through an electromagnetic stirring device.
A method for reducing the amount of inclusions has been proposed. [0008] However, the above-mentioned problem is not solved.
Various methods reduce slab inclusions and improve cleanliness.
Although there is an effect to increase, it is accompanied by an increase in manufacturing cost
Not only tundish and continuous casting equipment
Such as those that require a large amount of investment. For example, lower oxide concentration in ladle slag
When performing slag reforming as a method of reducing,
High cost due to use of deoxidizer containing metal Al
Ascend. It also extends the residence time in the tundish.
Methods such as tundish shape change and throughput
(The hot water supply speed from the tundish to the mold)
However, it is possible to change the shape of the tundish.
A large investment is required, and if throughput is reduced
Due to temperature loss due to lower production efficiency or longer casting time
Cost increase occurs. To provide a vertical part in a continuous casting machine
Requires huge capital investment for equipment modification,
As long as you are operating with existing equipment,
Absent. A continuous casting machine already has a vertical section and a large tank.
In continuous casting equipment that uses dishes
Has a high ability to remove inclusions, so inclusions in the molten steel stage
Even if the quantity reduction measures are mild, the quality requirement level
Can be satisfied. However, as mentioned above,
The amount of inclusions remaining in the slab continuously cast from ultra-low carbon steel
The specifications and capabilities of the equipment used, and various operating conditions
Affects. In addition, these inclusion floating removal means
It also has various effects on the manufacturing cost and productivity of the lab. This
Therefore, slabs with minimal inclusions are stably
It was not easy to get by strike. The object of the present invention is to eliminate defects caused by inclusions.
Healthy, very low coal that can meet strict quality requirements
To provide a method for producing raw steel efficiently and stably
There is to be. [0012] [Means for Solving the Problems] Continuously Low Carbon Steel Slab
There are various amounts of inclusions remaining in the slab during casting.
Operating conditions will affect. In addition, there is a means for removing the floating of inclusions.
Various methods are considered, but each method
Effects on production, manufacturing costs, or productivity
It is. Moreover, these are the specifications and capabilities of the equipment used.
It depends on the situation. Therefore, the present inventor has cast from the steel refining stage.
The various operating factors up to
If you can clearly understand the impact on the real thing,
By always selecting the optimum operating conditions, the desired product
High quality ultra-low carbon steel to meet the specifications and capabilities of the equipment used
In response, the idea that it can be obtained stably. In particular, the refining of steel under various operating conditions.
Operation costs from the time of continuous casting to continuous casting, especially the rise of inclusions
If the cost required for removal can be grasped, this and the above inclusions
Combined with reduction methods, the desired quality is achieved.
To manufacture products that are efficient and stable at low cost
I knew I could do it. The present invention is based on these ideas.
As a result of research, it was completed based on the obtained knowledge.
The summary is that the molten steel refined in the converter is put into a ladle,
This is decarburized by RH vacuum degassing equipment and continues
After deoxidizing, cast using continuous casting equipment.
Satisfying the following formula (1)
Adjust the treatment and / or casting conditions of the molten steel
It is the manufacturing method of the ultra-low carbon steel characterized by adjusting. [0016] [Expression 2] However, NFM: (FeO) + in ladle slag after completion of RH treatment
(MnO) concentration (mass%), VL: Vertical length of continuous casting machine from meniscus (m), W: Tundish capacity (tons), h: tundish bath depth (m), TP: Throughput (ton / min), VP: Inclusion ascent rate (m / min) = 0.4 α: Inclusion removal rate constant (m-1) = 1.0 [0018] BEST MODE FOR CARRYING OUT THE INVENTION Next, the slab as the basis of the present invention will be described.
Of the formula (1) that expresses the relationship between inclusion concentration and various operating conditions
Explain the contents. A. In the production of ultra-low carbon steel,
The refined molten steel is taken out into a ladle, and this is RH vacuum degassing equipment
After decarburization in the furnace and adjusting components such as deoxidation, remove the molten steel.
Move from pan to tundish and continuously pour into mold
And cast into a slab. In the steel making process, vacuum degassing treatment
(Hereinafter referred to as RH treatment) Lower level in slag in ladle after
The oxide concentration is determined by the tandem when the molten steel is transferred to tundish.
This greatly affects the total oxygen concentration of the molten steel in the dish. FIG. 1 shows the above result according to the research result of the present inventor.
The lower oxide concentration and the total oxygen concentration of the molten steel (in FIG. 1, “T
-[O] "). FIG.
As you can see, there is a strong positive correlation between the two.
The Lower oxide concentration in the ladle slag shown in FIG.
The relationship between the temperature and the total oxygen concentration of molten steel in tundish
It can be expressed by equation (2). NTD= 3NFM  +10 (2) However, NTD: Total oxygen concentration in molten steel in tundish (single
The order is ppm), NFM: (FeO) + in slag in the ladle after RH treatment
 (MnO) concentration (unit: mass%). Thus, the amount of inclusions contained in the steel is steel.
It has a good correlation with the total oxygen concentration. So the whole of steel
Oxygen concentration should be used as an indicator of steel cleanliness
Therefore, in the present invention, both in the molten steel and in the slab
The total oxygen concentration was used as an index representing the amount of inclusions. B. Molten steel is continuously activated from tundish.
Poured into the lud. When pouring hot water from inside the tundish
The amount of inclusions brought into the mold
Stipulated by operating conditions such as the shape and throughput. That is, the inclusions float in the tundish.
To increase the amount of inclusions in the mold.
However, the inclusion removal efficiency is tundish.
The longer the residence time of the molten steel, the better. Also tan
Inclusions rise more easily as the depth of the dish bath is shallower. FIG. 2 shows the result of the inventor's research.
Influence of operating conditions on the levitation of inclusions in a dish.
It is a graph which shows. N is the total oxygen concentration of molten steel in the mold.
MD(Unit: ppm), the total oxygen concentration of molten steel in tundish
NTDIf the unit is ppm, the inclusions in the tundish
As you surface, NMD/ NTDDecrease. This meaning
N of the vertical axis in FIG.MD/ NTDFor molten steel in tundish
This represents the floating degree of inclusions. The horizontal axis in FIG. 2 represents the ease of inclusion floating.
The inclusion levitation index. This means that the inclusion flotation speed is V
P (Unit: m / min), tundish
The amount of molten steel in the shell is W (unit is tons), and the throughput is TP
(Unit: ton / min), tundish
When the depth of molten steel in the h is h (unit is m), P
・ W / TP-It is represented by h). In the inclusion levitation index, W / TPIs a tande
It is the residence time of inclusions in the dish. Shown in Figure 2
As the residence time is longer and the tundish depth is shallower,
The decrease in the total oxygen concentration of the molten steel in the mold is large,
It can be seen that ascent is promoted. FIG. 2 shows that the total oxygen concentration in the molten steel in the mold.
Can be represented by the following formula (3). [0030] [Equation 3]Where VPIs the inclusion ascending speed (unit: m / m
min), and its value may be considered constant at 0.4 m / min. c. Continuous casting to prevent inclusions from remaining in the slab
A vertical part effective for floating separation of inclusions is installed in the machine mold.
It is effective to cut. FIG. 3 shows the mode according to the results of the inventor's research.
Influence of the vertical part on the floating separation of inclusions in the mold
It is a graph which shows. The vertical axis in FIG. 3 indicates the molten steel in the mold.
Total oxygen concentration (NMD) Total oxygen concentration in the slab (N
SL, Unit is ppm) ratio (NSL/ NMD) And NSL/ N
MDThe smaller the is, the higher the inclusion floating in the mold.
It means that the past is being promoted. As shown in FIG. 3, continuous from the meniscus
The vertical part of the casting machine (almost mold + vertical part of the continuous casting machine
In the mold as the length increases.
Floating separation of existing objects is promoted. This relationship is shown in FIG.
It can be represented by the following formula (4). [0034] NSL= NMD× α (−0.031 × VL+0.91) (4) However, VLIs the vertical length of the continuous casting machine from Meniscus
(Unit is m), α is inclusion removal rate constant (unit is
m-1) And its value is 1.0m-1It may be considered constant. D. Solving the above equations (2) to (4) simultaneously
The following formula (5) can be obtained. [0036] [Expression 4] According to the equation (5), all the slabs are
Predict oxygen concentration and estimate slab inclusions
it can. Note that the length of the vertical part of the continuous casting machine is already known to those skilled in the art.
Obviously, inside the cast molten steel
This is the vertical length of the region where the object rises. E. As the inclusions in the slab increase,
The defective rate of the products that are produced increases. Product defect rate here
The above slab is hot-rolled steel sheet, cold-rolled steel sheet, or these
Processed into final products such as various plated steel sheets
If there is a failure due to material failure,
The defect rate is indexed. Product
If the good rate is high, the cost loss due to the worsening of the yield will increase.
The FIG. 4 shows the result of the investigation by the present inventor.
The total oxygen concentration (NSL) Shows the effect on product defect rate
It is a graph. In Fig. 4, the product defect rate is indexed and manufactured.
It was shown as a product defect index. As shown in Figure 4, the slab
As the total oxygen concentration increases, the product defect index increases,
The increase is especially remarkable when it exceeds 27ppm. The present inventor further describes various operating conditions.
Inclusion reduction at the manufacturing stage from steel refining to continuous casting
Various expenses (steel-making loss costs) required for measures and the results
Cost loss due to devaluation at the product inspection stage
Slab total oxygen concentration and total
Cost loss (steel making loss cost + devaluation cost)
The relationship was investigated. FIG. 5 shows a scan obtained from the above research results.
Effect of total oxygen concentration of lab on total cost loss
It is a graph which shows. In FIG. 5, the total axis on the vertical axis
The Scost index is the steelmaking loss cost and the cutting loss cost.
Total rosco based on general operating conditions
This is an index of strikes. As shown in FIG. 5, the total oxygen concentration of the slab is
Loss cost is minimized at 27ppm. Total loss
The cost index shows that the total oxygen concentration in the slab is less than 27ppm
As the cost of steelmaking increases,
The cut-off cost increases as it exceeds 27 ppm.
To become bigger. The product defect index is kept low, and there are few inclusions.
To obtain a stable and healthy product, the total oxygen concentration of the slab
It is better to manufacture under the condition that is 27ppm or less.
The value calculated on the left side of Equation (1) is 27 or less, preferably
Operating conditions and special characteristics in the steelmaking process
To adjust the manufacturing conditions and / or casting conditions of molten steel
Is preferred. The method for adjusting the operating conditions is practically continuous.
Casting equipment layout and tundish shape are determined
Because it is almost the case, it is sloop during casting
The lower oxide concentration in the slag and slag is within the range that satisfies equation (1)
It is desirable to set and operate for each continuous casting facility. [0045] [Example] The molten steel refined in the converter is put into a ladle, which is
Decarburized with RH vacuum degasser, followed by deoxidation
Three types of continuous casting equipment is used for molten steel
Produce ultra-low carbon steel slabs and final coil shape
The rate of product disqualification that occurred during product inspection and shipment inspection
investigated. Combined with the refining of the steel in each case
Investigate the operating costs up to continuous casting and
Based on the operating cost under conventional operating conditions
The cost index was calculated. Table 1 shows the equipment specifications of the continuous casting machine, and Table 2
And the inclusion concentration in the slab calculated by equation (1)
And the cost index for each. [0047] [Table 1][0048] [Table 2] Case 1 is usually provided by continuous casting equipment A.
This is the case of manufacturing under the conditions. In this case, the left side of equation (1)
The calculated value of
The number was high and product collection was not stable. Case 1
Continuous casting machine with operating cost from refining to continuous casting
It was set as the standard of the operation cost in the case of A. Case 2 is more efficient than Case 1
-Putting speed is reduced and casting speed (slab drawing speed)
As the case 3, the slag modifier is
Reduced lower oxide concentration in slag by using a large amount
The case was evaluated. In either case, calculate the left side of equation (1)
The value is below the target of 27, the product defect index is low,
The removal was stable and good. In both cases, the operating cost is
Higher compared to case 1, but lower oxidation in slag
In case 3 with reduced material concentration, as described above
Cost of slag modifier is higher than case 2
The index increased. This is a problem for production efficiency.
If not, reduce the throughput as in Case 2,
It is more effective to extend the residence time in the tundish
It is. Case 4 performs slag reforming more powerfully.
As a result, the lower oxide concentration in the slag is reduced to more than Case 3.
The casting speed is reduced in the same manner as in Case 2.
The In this case, the calculated value on the left side of Equation (1) is even smaller.
However, the improvement effect of the product defect index is close to saturation.
It did not improve. On the other hand, the increase in operating costs is significant
In addition, the cost disadvantage has increased. This is a must
It means that it is not necessary to improve the cleanliness more than necessary.
The Case 5 is refined under the same conditions as Case 1.
Cast the molten steel that has been vacuum degassed in continuous casting equipment B.
It is an example when it is made. Continuous casting equipment B is tundish
The volume is small and the residence time in the tundish is short.
Therefore, it is a continuous casting facility that is disadvantageous for the removal of inclusions. this
Therefore, the calculated value on the left side of equation (1) is for continuous casting equipment A
The product defect index was high. Case 6
Or as shown in Case 7, reduce the throughput.
If the casting speed is reduced, or slag reforming
A large amount of material is used to lower the lower oxide concentration in the slag.
The target slab is obtained and the final product
The product defect index was small and good. The operating cost is
Case 6 is more advantageous than S7
It was the same as in the case of machine A. Continuous casting shown in case 8 and case 9
Since the facility C is a continuous casting facility having no vertical portion,
Inclusion reduction measures were required more than continuous casting equipment B. [0054] The present invention satisfies the formula (1) defined by the present invention.
By adjusting the operating conditions to the desired quality requirement level
Produce stable and efficient ultra-low carbon steel
be able to.

【図面の簡単な説明】 【図1】RH処理後のスラグ中の低級酸化物濃度と、溶
鋼の全酸素濃度との関係を示すグラフである。 【図2】タンディッシュ内での介在物の浮上に対する操
業条件の影響を示すグラフである。 【図3】モールド内での介在物の浮上分離に対するモー
ルド垂直部の影響を示すグラフである。 【図4】スラブの全酸素濃度(NSL)が製品不良率に及
ぼす影響を示すグラフである。 【図5】スラブの全酸素濃度がトータルのコスト損失に
及ぼす影響を示すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the relationship between the lower oxide concentration in slag after RH treatment and the total oxygen concentration of molten steel. FIG. 2 is a graph showing the influence of operating conditions on the floating of inclusions in a tundish. FIG. 3 is a graph showing the influence of the mold vertical part on the floating separation of inclusions in the mold. FIG. 4 is a graph showing the effect of the total oxygen concentration (N SL ) of a slab on the product defect rate. FIG. 5 is a graph showing the influence of the total oxygen concentration of the slab on the total cost loss.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C21C 7/06 C21C 7/06 7/068 7/068 7/10 7/10 A ──────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme code (reference) C21C 7/06 C21C 7/06 7/068 7/068 7/10 7/10 A

Claims (1)

【特許請求の範囲】 【請求項1】 転炉で精錬した溶鋼を取鍋に出鋼し、こ
れをRH真空脱ガス装置にて脱炭処理を行い、引き続い
て脱酸処理を行った後、連続鋳造設備を用いて鋳造する
極低炭素鋼の製造方法において、下記式(1) を満足する
ように、溶鋼の処理条件および/または鋳造条件を調整
することを特徴とする極低炭素鋼の製造方法。 【数1】 ただし、 NFM:RH処理終了後の取鍋スラグ中の (FeO) +(
MnO) 濃度 (質量%)、 VL :メニスカスからの連続鋳造機の垂直部長さ(m) 、 W :タンディッシュ容量(トン)、 h :タンディッシュ浴深さ(m) 、 TP :スループット(トン/min)、 VP :介在物浮上速度 (m/min)=0.4 、 α :介在物除去速度定数(m-1) =1.0
[Claim 1] After removing molten steel refined in a converter into a ladle, this is decarburized by an RH vacuum degasser, and subsequently deoxidized, In a method for producing an ultra-low carbon steel cast using a continuous casting facility, the processing conditions and / or casting conditions of the molten steel are adjusted so as to satisfy the following formula (1). Production method. [Expression 1] However, N FM: RH treatment after the end of the ladle in the slag of (FeO) + (
MnO) concentration (% by mass), V L : vertical length of continuous casting machine from meniscus (m), W: tundish capacity (ton), h: tundish bath depth (m), T P : throughput ( Ton / min), V P : Inclusion ascent rate (m / min) = 0.4, α: Inclusion removal rate constant (m -1 ) = 1.0
JP2001381856A 2001-12-14 2001-12-14 Method for producing ultra-low carbon steel for automobiles Expired - Fee Related JP3630136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001381856A JP3630136B2 (en) 2001-12-14 2001-12-14 Method for producing ultra-low carbon steel for automobiles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001381856A JP3630136B2 (en) 2001-12-14 2001-12-14 Method for producing ultra-low carbon steel for automobiles

Publications (2)

Publication Number Publication Date
JP2003181602A true JP2003181602A (en) 2003-07-02
JP3630136B2 JP3630136B2 (en) 2005-03-16

Family

ID=27592403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001381856A Expired - Fee Related JP3630136B2 (en) 2001-12-14 2001-12-14 Method for producing ultra-low carbon steel for automobiles

Country Status (1)

Country Link
JP (1) JP3630136B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160010172A1 (en) * 2013-03-07 2016-01-14 Thyssenkrupp Steel Europe Ag Method for Producing A Cold-Rolled Flat Steel Product for Deep-Drawing and Ironing Applications, Flat Steel Product, and Use of a Flat Steel Product of Said Type
CN115094190A (en) * 2022-06-01 2022-09-23 包头钢铁(集团)有限责任公司 Ultra-low carbon steel smelting continuous casting production process of 100-ton dry VD furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160010172A1 (en) * 2013-03-07 2016-01-14 Thyssenkrupp Steel Europe Ag Method for Producing A Cold-Rolled Flat Steel Product for Deep-Drawing and Ironing Applications, Flat Steel Product, and Use of a Flat Steel Product of Said Type
US10184159B2 (en) * 2013-03-07 2019-01-22 Thyssenkrupp Steel Europe Ag Method for producing a cold-rolled flat steel product for deep-drawing and ironing applications, flat steel product, and use of a flat steel product of said type
CN115094190A (en) * 2022-06-01 2022-09-23 包头钢铁(集团)有限责任公司 Ultra-low carbon steel smelting continuous casting production process of 100-ton dry VD furnace
CN115094190B (en) * 2022-06-01 2023-08-08 包头钢铁(集团)有限责任公司 Ultralow-carbon steel smelting continuous casting production process of 100-ton dry type VD furnace

Also Published As

Publication number Publication date
JP3630136B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
JP6428307B2 (en) Manufacturing method of high clean steel
JP4023289B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP5381243B2 (en) Method for refining molten steel
JP6443200B2 (en) Manufacturing method of high clean steel
JP6910523B1 (en) Manufacturing method of ultra-soft rolled steel that does not easily rust
JP5343305B2 (en) Method for producing Ti-containing ultra-low carbon steel slab
JP2009242912A (en) Method for melting and manufacturing titanium-added ultra-low carbon steel and method for producing titanium-added ultra-low carbon steel cast slab
JP2006257542A (en) Extremely low carbon steel sheet and extremely low carbon cast slab excellent in surface characteristic, workability and formability, and producing method therefor
JP2003181602A (en) Method for manufacturing ultralow carbon steel
KR101258785B1 (en) Manufacturing method of duplex stainless steel
JP2009191290A (en) Method for producing ingot of extra-low carbon steel
JP4582826B2 (en) Manufacturing method of clean steel with RH degassing equipment
JP4811018B2 (en) Deoxidation method for molten steel
JP2017128751A (en) Manufacturing method of high cleanliness steel
JP6337681B2 (en) Vacuum refining method for molten steel
JP4392364B2 (en) Method for producing ultra-low carbon steel
JP4392365B2 (en) Method for producing ultra-low carbon steel
JP2006097110A (en) Steel sheet and slab superior in surface quality and inner quality, and manufacturing method therefor
JP3736159B2 (en) Steel manufacturing method with excellent cleanliness
JP3679511B2 (en) Manufacturing method of high clean steel
JP3740084B2 (en) Manufacturing method of high cleanliness steel
JP2002180122A (en) Method for producing high cleanliness steel
JP2002105578A (en) METHOD FOR REDUCING Ti CONTENT IN STEEL FOR MACHINE STRUCTURE
JP2000178636A (en) Production of clean steel in rh vacuum-degassing apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Ref document number: 3630136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees