JP2003176167A - Thermal shock resistant alumina-zirconia burning tool and method of producing the same - Google Patents
Thermal shock resistant alumina-zirconia burning tool and method of producing the sameInfo
- Publication number
- JP2003176167A JP2003176167A JP2001376629A JP2001376629A JP2003176167A JP 2003176167 A JP2003176167 A JP 2003176167A JP 2001376629 A JP2001376629 A JP 2001376629A JP 2001376629 A JP2001376629 A JP 2001376629A JP 2003176167 A JP2003176167 A JP 2003176167A
- Authority
- JP
- Japan
- Prior art keywords
- zirconia
- alumina
- particles
- firing
- coarse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、耐熱衝撃性を必要
とするアルミナ・ジルコニア焼成用治具に関するもので
あり、セッター、棚板、匣鉢等の焼成用治具に関する。
本発明は誘電体、積層コンデンサ、セラミックスコンデ
ンサ、バリスタ、チップインダクター等の電子部品やフ
ァインセラミックス等を焼成する際に使用する焼成用治
具に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a jig for alumina / zirconia firing which requires thermal shock resistance, and more particularly to a jig for firing setters, shelves, caskets and the like.
The present invention relates to a firing jig used for firing electronic parts such as dielectrics, multilayer capacitors, ceramic capacitors, varistors, and chip inductors, and fine ceramics.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】誘電
体、積層コンデンサ、サーミスタ、バリスタ、チップイ
ンダクター等の電子部品を焼成する際に用いる電子部品
焼成用治具として、セッター、棚板、シート材料等があ
る。BACKGROUND OF THE INVENTION Setters, shelves, sheets as jigs for firing electronic components used in firing electronic components such as dielectrics, multilayer capacitors, thermistors, varistors, and chip inductors. There are materials etc.
【0003】従来、アルミナ質、アルミナ・ムライト質
等の焼成用治具が使用されてきた。しかしアルミナ質は
耐熱衝撃性が悪く、焼成炉で昇温、降温を繰り返す熱衝
撃が加わる環境下ではクラックが入りやすく、治具が破
損する問題があった。近年、耐熱衝撃性を改善する目的
でアルミナにムライトを添加したアルミナ・ムライト質
焼成用治具が多く使用されている。最近の電子部品の小
型化、高性能化はめざましく、このような小型で高性能
の電子部品をアルミナ・ムライト基材で焼成する際には
ムライト質から分解したSiO2が焼成する電子部品を
汚染し、特性を劣化させたり、歩留を低下させる問題が
あった。Conventionally, a jig for firing such as alumina or alumina / mullite has been used. However, alumina has a poor thermal shock resistance, and there is a problem that cracks easily occur in an environment in which thermal shock is repeatedly raised and lowered in the firing furnace and the jig is broken. In recent years, a jig for alumina-mullite firing in which mullite is added to alumina is often used for the purpose of improving thermal shock resistance. Recently, electronic parts have been remarkably miniaturized and have high performance. When such small and high-performance electronic parts are fired on an alumina / mullite base material, SiO2 decomposed from mullite material contaminates the electronic parts to be fired. However, there are problems that the characteristics are deteriorated and the yield is reduced.
【0004】特開平10−194824号には、ジルコ
ニアをアルミナ基体中に分散させるとの開示がある。し
かし、この課題を解決するためにジルコニア粒子の平均
結晶粒子径を0.2〜2μmのものを使用している。こ
れに対して、本発明では、ジルコニア粒子の平均結晶粒子
径を限定することなく、通常手に入る0.1〜100μ
mのジルコニア粒子を使用できることに特徴がある。JP-A-10-194824 discloses that zirconia is dispersed in an alumina substrate. However, in order to solve this problem, zirconia particles having an average crystal particle diameter of 0.2 to 2 μm are used. On the other hand, in the present invention, the average crystal grain size of the zirconia particles is not limited, and is usually available from 0.1 to 100 μm.
The feature is that zirconia particles of m can be used.
【0005】また、特開平6−323752号には、1
0μm以下のアルミナ粒子と、5〜50μmのジルコニ
ア粒子を混合、焼成するとの記載がある。しかし、この
場合は、気孔形成材料を用いるため、製造が複雑となる。
また、耐熱衝撃性も十分ではない。Further, in Japanese Patent Laid-Open No. 6-323752, 1
It is described that alumina particles of 0 μm or less and zirconia particles of 5 to 50 μm are mixed and fired. However, in this case, since the pore forming material is used, the manufacturing becomes complicated.
Moreover, the thermal shock resistance is not sufficient.
【0006】本発明はこのような問題点を解決するため
になされたものであり、耐熱衝撃性に優れたアルミナ・
ジルコニア質焼成用治具により、繰り返し熱サイクルに
耐久性があり、特に電子部品の焼成においてシリカ成分
のない焼成用治具を提供することができる。また本発明
の耐熱衝撃性に優れたアルミナ・ジルコニア質焼成用治
具表面にジルコニア層を形成することにより、アルミナ
との反応を防止でき、かつシリカフリー基材から成る、
MLCC(積層セラミックコンデンサ)等の焼成に最適
な電子部品焼成用治具を提供することができる。The present invention has been made to solve the above problems, and is made of alumina, which is excellent in thermal shock resistance.
The zirconia-based firing jig can provide a firing jig that is durable against repeated thermal cycles and has no silica component particularly in the firing of electronic components. Further, by forming a zirconia layer on the alumina-zirconia firing jig surface excellent in thermal shock resistance of the present invention, it is possible to prevent the reaction with alumina, and consisting of a silica-free base material,
It is possible to provide a jig for firing electronic components, which is optimal for firing MLCCs (multilayer ceramic capacitors) and the like.
【0007】[0007]
【課題を解決するための手段】本発明は、粗粒及び微粒
から成るアルミナ・ジルコニア質焼成用治具であって、
粗粒アルミナを結合するアルミナ質中にジルコニア粒子
を微細分散させ、耐熱衝撃性を著しく高めたことを特徴
とする電子部品焼成用材料を提供できる。DISCLOSURE OF THE INVENTION The present invention is a jig for burning alumina / zirconia composed of coarse particles and fine particles,
It is possible to provide a material for firing electronic parts, which is characterized in that zirconia particles are finely dispersed in alumina that binds coarse-grained alumina, and thermal shock resistance is remarkably enhanced.
【0008】以下本発明を詳細に説明する。原料構成は
平均粒径30〜500μmの粗粒アルミナが20〜70
wt%、平均粒径0.1〜20μmの微粒アルミナが2
0〜70wt%及び平均粒径0.1〜100μmのジル
コニア粒子が5〜30wt%から成る。このような成形
体を焼成し、主としてジルコニア粒子を、粗粒同士を結
合するアルミナ質中へ微細分散したことにより、耐熱衝
撃性を著しく向上させた電子部品焼成用治具を提供でき
る。粗粒及び微粒の粒度は1種類、又は1種類以上を組
み合わせても良い。例えば、粗粒アルミナの平均粒径が
70μm及び250μmのものを20〜70wt%の範
囲で組み合わせることができる。微粒アルミナについて
も同様である。その結果、急熱、急冷によるクラックの
発生を抑制でき、また実際の電子部品焼成時に加えられ
る加熱、冷却の繰り返しに対して寿命の長い電子部品焼
成用治具を提供できる。The present invention will be described in detail below. The raw material composition is 20-70 for coarse-grained alumina having an average particle size of 30-500 μm.
2% by weight of fine-grained alumina having an average particle size of 0.1 to 20 μm
0 to 70 wt% and 5 to 30 wt% of zirconia particles having an average particle diameter of 0.1 to 100 μm. By firing such a molded body and finely dispersing mainly the zirconia particles in the alumina that binds the coarse particles together, it is possible to provide a jig for firing electronic parts with significantly improved thermal shock resistance. The particle sizes of the coarse particles and the fine particles may be one kind or a combination of one or more kinds. For example, coarse-grained alumina having an average particle size of 70 μm and 250 μm can be combined in the range of 20 to 70 wt%. The same applies to fine-grained alumina. As a result, it is possible to suppress the occurrence of cracks due to rapid heating and quenching, and it is possible to provide a jig for firing electronic components, which has a long life against repeated heating and cooling that is applied during actual firing of electronic components.
【0009】本発明では、粗粒と微粒を組み合わせるこ
とにより、適度な気孔を含有し熱応力が緩和され、耐熱
衝撃性が向上する。さらに粗粒アルミナ同士を結合する
アルミナ質中にジルコニア粒子が分散されることによ
り、ジルコニアの加熱、冷却に伴う熱膨張差による応力
歪みのために耐熱衝撃性や靱性が向上する。本発明の原
料構成は好ましくは粗粒アルミナが20〜70wt%、
微粒アルミナが20〜70wt%であり、ジルコニアは
5〜30wt%である。ジルコニア粒子の平均粒径は
0.1〜100μm、より好ましくは0.1〜30μm
である。一般に粗粒を増やせば耐熱衝撃性は向上するが
強度が低下し、実用的でない。ここで微粒アルミナを加
えることにより燒結、緻密化が促進され、強度が向上す
る。さらにジルコニアを添加することにより、耐熱衝撃
性が向上すると考えられる。In the present invention, by combining coarse particles and fine particles, appropriate pores are contained, thermal stress is relieved, and thermal shock resistance is improved. Further, by dispersing the zirconia particles in the alumina that bonds the coarse-grained alumina particles together, the thermal shock resistance and the toughness are improved due to the stress strain due to the difference in thermal expansion due to heating and cooling of the zirconia. The raw material composition of the present invention is preferably 20 to 70 wt% of coarse-grained alumina,
Fine alumina is 20 to 70 wt% and zirconia is 5 to 30 wt%. The average particle size of the zirconia particles is 0.1 to 100 μm, more preferably 0.1 to 30 μm.
Is. Generally, if the number of coarse particles is increased, the thermal shock resistance is improved, but the strength is lowered, which is not practical. Here, by adding fine-grained alumina, sintering and densification are promoted, and the strength is improved. It is considered that the thermal shock resistance is improved by further adding zirconia.
【0010】本発明では粗粒アルミナと微粒アルミナの
比率を適度に制御することにより、又ジルコニアの添加
量を制御することにより耐熱衝撃性と強度を兼ね備えた
特性を得ることができる。In the present invention, a property having both thermal shock resistance and strength can be obtained by controlling the ratio of coarse-grained alumina to fine-grained alumina appropriately and by controlling the addition amount of zirconia.
【0011】本発明は鋭意検討の結果、粗粒及び微粒の
アルミナの焼結が促進され、また、冷却過程でジルコニ
アが微細に分散した組織が得られる。ジルコニア粒子が
微細分散することにより、応力歪みが分散されクラック
の進展が抑制される。このように本発明によれば、粗粒
と微粒アルミナの組み合わせにより、適度に導入された
気孔が応力を緩和する。さらに焼結が進行した領域では
ジルコニアが微細に分散し応力が緩和され、強度及び耐
熱衝撃性の両特性を兼ね備えた電子部品焼成用材料が提
供できる。As a result of extensive studies, the present invention promotes sintering of coarse-grained and fine-grained alumina, and a structure in which zirconia is finely dispersed is obtained in the cooling process. By finely dispersing the zirconia particles, the stress strain is dispersed and the development of cracks is suppressed. As described above, according to the present invention, the pores appropriately introduced by the combination of coarse-grained and fine-grained alumina relax the stress. Furthermore, in the region where sintering has progressed, zirconia is finely dispersed and stress is relieved, and a material for firing electronic parts having both properties of strength and thermal shock resistance can be provided.
【0012】ジルコニア粒子としては、未安定化、Ca
O、MgO及びY2O3等で部分安定化及び安定化され
たジルコニアを用いることができる。またアルミナ・ジ
ルコニア質に0.1〜5wt%のCaO、BaO、Sr
O、MgO、CeO2又はY2O3を1種類以上添加す
ることができる。このような添加剤は焼結を促進し、か
つジルコニアの安定化剤としても作用する。このような
本発明は、プレス品、押し出し成型シート品、鋳込み品
等の各種製造法を用いて作製でき、強度及び耐熱衝撃性
に優れ、耐久性のある電子部品焼成用治具を提供でき
る。As zirconia particles, unstabilized Ca
Zirconia partially stabilized and stabilized with O, MgO, Y2O3 or the like can be used. Moreover, 0.1 to 5 wt% of CaO, BaO, and Sr are added to alumina / zirconia.
One or more kinds of O, MgO, CeO2 or Y2O3 can be added. Such additives promote sintering and also act as stabilizers for zirconia. The present invention as described above can provide a jig for firing electronic parts, which can be manufactured by various manufacturing methods such as a pressed product, an extruded sheet product, and a cast product, has excellent strength and thermal shock resistance, and is durable.
【0013】また本発明のアルミナ・ジルコニア質焼成
体上にジルコニアのコーティング層を設けてシリカフリ
ー基材から構成される電子部品焼成用治具とすることが
できる。ジルコニアのコーティング方法は、スプレーコ
ート、溶射、ディップコート、流し込み等各種の方法を
適宜採用できる。Further, a jig for firing electronic parts can be provided by forming a coating layer of zirconia on the alumina / zirconia fired body of the present invention and comprising a silica-free base material. As a coating method of zirconia, various methods such as spray coating, thermal spraying, dip coating, and casting can be appropriately adopted.
【0014】即ち、[請求項1]の発明は、粗粒及び微粒
から成るアルミナ・ジルコニア質焼成用治具であって、
粗粒アルミナを結合するアルミナ質中にジルコニア粒子
を微細分散させたことを特徴とする耐熱衝撃性アルミナ
・ジルコニア質焼成用治具である。That is, the invention of claim 1 is a jig for firing alumina-zirconia composed of coarse particles and fine particles,
It is a jig for thermal shock resistance alumina / zirconia firing characterized in that zirconia particles are finely dispersed in alumina which binds coarse-grained alumina.
【0015】また、[請求項2]の発明は、粗粒及び微粒
から成るアルミナ粒子と、ジルコニア粒子とを混合して
成形体を形成し、該成形体を焼成して、粗粒アルミナを
結合するアルミナ質中にジルコニア粒子を微細分散させ
たことを特徴とする耐熱衝撃性アルミナ・ジルコニア質
焼成用治具の製造方法である。Further, the invention of claim 2 is to form a molded body by mixing alumina particles composed of coarse particles and fine particles and zirconia particles, and calcining the molded body to bond the coarse-grained alumina. Zirconia particles are finely dispersed in the alumina.
【0016】また、[請求項3]の発明は、原料構成が平
均粒径30〜500μmの粗粒アルミナが20〜70w
t%、0.1〜20μmの微粒アルミナが20〜70w
t%及び0.1〜100μmのジルコニア粒子が5〜3
0wt%から成ることを特徴とする請求項1記載の耐熱
衝撃性アルミナ・ジルコニア質焼成用治具である。Further, in the invention of [Claim 3], the raw material composition is 20 to 70 w of coarse-grained alumina having an average particle size of 30 to 500 μm.
t%, 20 to 70w of 0.1 to 20 μm fine-grained alumina
t% and zirconia particles of 0.1 to 100 μm are 5 to 3
The heat-shockable alumina / zirconia firing jig according to claim 1, characterized in that the jig comprises 0 wt%.
【0017】また、[請求項4]の発明は、原料構成が平
均粒径30〜500μmの粗粒アルミナが20〜70w
t%、0.1〜20μmの微粒アルミナが20〜70w
t%及び0.1〜100μmのジルコニア粒子が5〜3
0wt%から成ることを特徴とする請求項1記載の耐熱
衝撃性アルミナ・ジルコニア質焼成用治具の製造方法で
ある。Further, in the invention of [claim 4], the raw material composition is 20 to 70 w of coarse-grained alumina having an average particle size of 30 to 500 μm.
t%, 20 to 70w of 0.1 to 20 μm fine-grained alumina
t% and zirconia particles of 0.1 to 100 μm are 5 to 3
The method for manufacturing a heat-shockable alumina / zirconia firing jig according to claim 1, wherein the jig comprises 0 wt%.
【0018】また、[請求項5]の発明は、ジルコニアと
して、未安定化、CaO、MgO及びY2O3等で部分
安定化及び安定化されたジルコニアを用いることを特徴
とする請求項1記載の耐熱衝撃性アルミナ・ジルコニア
質焼成用治具である。The invention according to claim 5 uses zirconia which is unstabilized, partially stabilized and stabilized with CaO, MgO, Y2O3 or the like as the zirconia. This is a jig for impact alumina / zirconia firing.
【0019】また、[請求項6]の発明は、ジルコニアと
して、未安定化、CaO、MgO及びY2O3等で部分
安定化及び安定化されたジルコニアを用いることを特徴
とする請求項1記載の耐熱衝撃性アルミナ・ジルコニア
質焼成用治具の製造方法である。The invention according to claim 6 uses zirconia which is unstabilized, partially stabilized and stabilized with CaO, MgO, Y2O3 or the like as the zirconia. It is a method for manufacturing an impact alumina / zirconia firing jig.
【0020】また、[請求項7]の発明は、アルミナ・ジ
ルコニア質に0.5〜5wt%のCaO,BaO、Sr
O、MgO又はY2O3の1種類以上を添加することを
特徴とする請求項1記載の耐熱衝撃性アルミナ・ジルコ
ニア質焼成用治具である。Further, the invention according to [claim 7] is such that 0.5 to 5 wt% of CaO, BaO and Sr are added to the alumina / zirconia material.
The heat-shockable alumina / zirconia firing jig according to claim 1, wherein one or more kinds of O, MgO, and Y 2 O 3 are added.
【0021】また、[請求項8]の発明は、アルミナ・ジ
ルコニア質に0.5〜5wt%のCaO,BaO、Sr
O、MgO又はY2O3の1種類以上を添加することを
特徴とする請求項1記載の耐熱衝撃性アルミナ・ジルコ
ニア質焼成用治具の製造方法である。Further, the invention of [claim 8] is such that 0.5 to 5 wt% of CaO, BaO and Sr are added to the alumina / zirconia material.
2. The method for manufacturing a thermal shock resistant alumina / zirconia firing jig according to claim 1, wherein one or more kinds of O, MgO and Y2O3 are added.
【0022】また、[請求項9]の発明は、アルミナ・ジ
ルコニア質焼成用治具表面にジルコニア質のコーティン
グ層を形成することを特徴とする請求項1記載の耐熱衝
撃性アルミナ・ジルコニア質焼成用治具である。The invention according to claim 9 is characterized in that a zirconia-based coating layer is formed on the surface of the jig for alumina-zirconia-based firing, and the thermal shock-resistant alumina-zirconia-based firing according to claim 1 is characterized. It is a jig.
【0023】また、[請求項10]の発明は、アルミナ・
ジルコニア質焼成用治具表面にジルコニア質のコーティ
ング層を形成することを特徴とする請求項1記載の耐熱
衝撃性アルミナ・ジルコニア質焼成用治具の製造方法で
ある。Further, the invention of [Claim 10] is alumina.
The method for producing a heat shock-resistant alumina / zirconia-based jig according to claim 1, wherein a zirconia-based coating layer is formed on the surface of the zirconia-based jig.
【0024】[0024]
【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
【0025】[0025]
【発明の実施の形態】本発明の電子部品焼成用治具の製
造に関する実施例を記載するが、該実施例は本発明を限
定するものではない。BEST MODE FOR CARRYING OUT THE INVENTION An example of manufacturing a jig for firing an electronic component of the present invention will be described, but the example does not limit the present invention.
【0026】実施例1
アルミナ原料として、#220(平均粒径約70μm)
の粗粒アルミナ50wt%及び平均粒径約10μmの微
粒アルミナ粉末45wt%を用い、ジルコニアとして#
350(平均粒径約30μm)のCaO安定化ジルコニ
ア粉末5wt%を用いた。高速ミキサーを用いてこれら
の原料をメトローズ、デキストリン等の粉末バインダー
数wt%と撹拌混合し、さらにメチルセルロース、グリ
セリン等のバインダー数wt%と水を加えて撹拌混合し
た。次いで3本ロールを用いて原料粉末を均一に分散・
混合した。これらの配合物を、押し出し成形機を用いて
厚さ2〜3mmのシート状に成形、乾燥した。これらの
シートを10〜20cm角に切断し、1500℃で20
時間焼成した。このようにして作製したアルミナ・ジル
コニア質シートから曲げ試験片を切り出し、室温強度と
して3点曲げ試験、及び耐熱衝撃性評価として急冷後の
3点曲げ試験を行った。耐熱衝撃性の評価は、所定温度
に設定した電気炉中で試験片を20分間保持し、水中に
急冷する方法を採用し、急冷後の3点曲げ試験により強
度の急激に低下する点を温度差ΔT(保持温度―水の温
度)として評価した。ΔTの測定例を図1に示す。ま
た、これらの結果を表1に示す。Example 1 As an alumina raw material, # 220 (average particle size: about 70 μm)
50% by weight of coarse-grained alumina and 45% by weight of fine-grained alumina powder having an average particle size of about 10 μm are used as zirconia #
5 wt% of CaO-stabilized zirconia powder having an average particle size of 350 (about 30 μm) was used. Using a high-speed mixer, these raw materials were stirred and mixed with several wt% of powder binders such as Metroze and dextrin, and further, several wt% of binders such as methylcellulose and glycerin and water were added and mixed with stirring. Then, using three rolls, the raw material powder is uniformly dispersed.
Mixed. These blends were molded into a sheet having a thickness of 2 to 3 mm using an extrusion molding machine and dried. These sheets are cut into squares of 10 to 20 cm, and are cut at 1500 ° C for 20
Burned for hours. Bending test pieces were cut out from the alumina-zirconia sheet thus produced, and subjected to a three-point bending test as room temperature strength and a three-point bending test after quenching as thermal shock resistance evaluation. To evaluate the thermal shock resistance, a method of holding a test piece for 20 minutes in an electric furnace set to a predetermined temperature and quenching it in water is adopted, and the point at which the strength sharply decreases by a three-point bending test after quenching The difference was evaluated as ΔT (holding temperature-water temperature). An example of measurement of ΔT is shown in FIG. The results are shown in Table 1.
【0027】[0027]
【表1】 [Table 1]
【0028】実施例2〜8
実施例1と同様にして、粗粒アルミナ、微粒アルミナの
平均粒径と配合wt%、ジルコニア原料の種類、平均粒
径、配合wt%を表1に示すように選択し、1500〜
1650℃で焼成し強度と耐熱衝撃性を評価した。その
結果を表1に示す。Examples 2 to 8 In the same manner as in Example 1, Table 1 shows the average particle size and blending wt% of coarse-grained alumina and fine-grained alumina, the type of zirconia raw material, the average grain size, and the blending wt%. Select and 1500
It was fired at 1650 ° C. and evaluated for strength and thermal shock resistance. The results are shown in Table 1.
【0029】比較例1〜5
実施例1と同様にして、粗粒アルミナ、微粒アルミナの
平均粒径と配合wt%、ジルコニア原料の種類、平均粒
径、配合wt%を表1に示すように選択し、各種温度で
焼成し強度と耐熱衝撃性を評価した。その結果を表2に
示す。Comparative Examples 1 to 5 In the same manner as in Example 1, Table 1 shows the average particle size and blending wt% of coarse-grained alumina and fine-grained alumina, the type of zirconia raw material, the average grain size, and the blending wt%. It was selected and fired at various temperatures to evaluate strength and thermal shock resistance. The results are shown in Table 2.
【0030】[0030]
【表2】 [Table 2]
【0031】[0031]
【発明の効果】以上の説明より、耐熱衝撃性に優れたア
ルミナ・ジルコニア質焼成用治具により、繰り返し熱サ
イクルに耐久性があり、特に電子部品の焼成においてシ
リカ成分のない焼成用治具を提供することができる。ま
た本発明の耐熱衝撃性に優れたアルミナ・ジルコニア質
焼成用治具表面にジルコニア層を形成することにより、
アルミナとの反応を防止でき、かつシリカフリー基材か
ら成る、MLCC(積層セラミックコンデンサ)等の焼
成に最適な電子部品焼成用治具を提供することができ
る。From the above description, an alumina / zirconia firing jig having excellent thermal shock resistance can be used to obtain a firing jig which is durable against repeated thermal cycles and has no silica component particularly in the firing of electronic parts. Can be provided. Further, by forming a zirconia layer on the alumina-zirconia firing jig surface excellent in thermal shock resistance of the present invention,
It is possible to provide a jig for firing an electronic component, which is capable of preventing a reaction with alumina and is made of a silica-free base material, and which is optimal for firing an MLCC (multilayer ceramic capacitor) or the like.
【図1】本発明に関する耐熱衝撃性評価の例。FIG. 1 is an example of thermal shock resistance evaluation according to the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 井筒 靖久 福岡県大牟田市浅牟田町3−1 三井金属 鉱業株式会社セラミックス事業部技術開発 部内 (72)発明者 堀内 幸士 福岡県大牟田市浅牟田町3−1 三井金属 鉱業株式会社セラミックス事業部技術開発 部内 Fターム(参考) 4G030 AA07 AA08 AA09 AA10 AA12 AA17 AA36 BA23 BA25 GA11 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Yasuhisa Izutsu Mitsui Kinzoku, 3-1 Asamu-cho, Omuta-shi, Fukuoka Mining Co., Ltd. Ceramics Division Technology Development Department (72) Inventor Satoshi Horiuchi Mitsui Kinzoku, 3-1 Asamu-cho, Omuta-shi, Fukuoka Mining Co., Ltd. Ceramics Division Technology Development Department F-term (reference) 4G030 AA07 AA08 AA09 AA10 AA12 AA17 AA36 BA23 BA25 GA11
Claims (10)
ア質焼成用治具であって、粗粒アルミナを結合するアル
ミナ質中にジルコニア粒子を微細分散させたことを特徴
とする耐熱衝撃性アルミナ・ジルコニア質焼成用治具。1. A jig for firing alumina-zirconia composed of coarse particles and fine particles, characterized in that zirconia particles are finely dispersed in alumina which binds coarse-grained alumina. Zirconia firing jig.
ルコニア粒子とを混合して成形体を形成し、該成形体を
焼成して、粗粒アルミナを結合するアルミナ質中にジル
コニア粒子を微細分散させたことを特徴とする耐熱衝撃
性アルミナ・ジルコニア質焼成用治具の製造方法。2. Alumina particles composed of coarse particles and fine particles and zirconia particles are mixed to form a molded body, and the molded body is fired to form fine particles of zirconia particles in the alumina material which binds the coarse-grained alumina. A method of manufacturing a heat shock resistant alumina / zirconia firing jig characterized by being dispersed.
粒アルミナが20〜70wt%、0.1〜20μmの微
粒アルミナが20〜70wt%及び0.1〜100μm
のジルコニア粒子が5〜30wt%から成ることを特徴
とする請求項1記載の耐熱衝撃性アルミナ・ジルコニア
質焼成用治具。3. A raw material composition is 20 to 70 wt% of coarse alumina having an average particle diameter of 30 to 500 μm, 20 to 70 wt% of fine alumina of 0.1 to 20 μm, and 0.1 to 100 μm.
The heat-shockable alumina / zirconia firing jig according to claim 1, characterized in that the zirconia particles in (5) are composed of 5 to 30 wt%.
粒アルミナが20〜70wt%、0.1〜20μmの微
粒アルミナが20〜70wt%及び0.1〜100μm
のジルコニア粒子が5〜30wt%から成ることを特徴
とする請求項1記載の耐熱衝撃性アルミナ・ジルコニア
質焼成用治具の製造方法。4. A raw material composition is 20 to 70 wt% of coarse alumina having an average particle size of 30 to 500 μm, 20 to 70 wt% of fine alumina of 0.1 to 20 μm, and 0.1 to 100 μm.
2. The method for manufacturing a heat shock-resistant alumina / zirconia firing jig according to claim 1, wherein the zirconia particles in 5 are composed of 5 to 30 wt%.
gO及びY2O3等で部分安定化及び安定化されたジル
コニアを用いることを特徴とする請求項1記載の耐熱衝
撃性アルミナ・ジルコニア質焼成用治具。5. As zirconia, unstabilized, CaO, M
The jig for thermal shock resistance alumina-zirconia firing according to claim 1, wherein zirconia partially stabilized and stabilized with gO, Y2O3 or the like is used.
gO及びY2O3等で部分安定化及び安定化されたジル
コニアを用いることを特徴とする請求項1記載の耐熱衝
撃性アルミナ・ジルコニア質焼成用治具の製造方法。6. As zirconia, unstabilized, CaO, M
The method for producing a heat-shockable alumina / zirconia firing jig according to claim 1, wherein zirconia partially stabilized and stabilized with gO, Y2O3 or the like is used.
%のCaO,BaO、SrO、MgO又はY2O3の1
種類以上を添加することを特徴とする請求項1記載の耐
熱衝撃性アルミナ・ジルコニア質焼成用治具。7. Alumina / zirconia material with 0.5 to 5 wt.
% CaO, BaO, SrO, MgO or Y2O3 1
The heat-shockable alumina / zirconia firing jig according to claim 1, wherein more than one kind is added.
%のCaO,BaO、SrO、MgO又はY2O3の1
種類以上を添加することを特徴とする請求項1記載の耐
熱衝撃性アルミナ・ジルコニア質焼成用治具の製造方
法。8. Alumina / zirconia material 0.5 to 5 wt.
% CaO, BaO, SrO, MgO or Y2O3 1
2. The method for manufacturing a heat shock resistant alumina-zirconia firing jig according to claim 1, wherein more than one kind is added.
ジルコニア質のコーティング層を形成することを特徴と
する請求項1記載の耐熱衝撃性アルミナ・ジルコニア質
焼成用治具。9. The thermal shock resistant alumina / zirconia firing jig according to claim 1, wherein a zirconia coating layer is formed on the surface of the alumina / zirconia firing jig.
にジルコニア質のコーティング層を形成することを特徴
とする請求項1記載の耐熱衝撃性アルミナ・ジルコニア
質焼成用治具の製造方法。10. The method for manufacturing a heat shock resistant alumina / zirconia firing jig according to claim 1, wherein a zirconia coating layer is formed on the surface of the alumina / zirconia firing jig.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001376629A JP3949950B2 (en) | 2001-12-11 | 2001-12-11 | Thermal shock resistant alumina / zirconia firing jig and manufacturing method thereof (normal firing) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001376629A JP3949950B2 (en) | 2001-12-11 | 2001-12-11 | Thermal shock resistant alumina / zirconia firing jig and manufacturing method thereof (normal firing) |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003176167A true JP2003176167A (en) | 2003-06-24 |
JP3949950B2 JP3949950B2 (en) | 2007-07-25 |
Family
ID=19184781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001376629A Expired - Fee Related JP3949950B2 (en) | 2001-12-11 | 2001-12-11 | Thermal shock resistant alumina / zirconia firing jig and manufacturing method thereof (normal firing) |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3949950B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015527959A (en) * | 2012-06-22 | 2015-09-24 | イメリス セラミックス フランス | Ceramic composition comprising alumina |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8207077B2 (en) | 2007-10-29 | 2012-06-26 | Kyocera Corporation | Abrasion-resistant sintered body, sliding member, and pump |
-
2001
- 2001-12-11 JP JP2001376629A patent/JP3949950B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015527959A (en) * | 2012-06-22 | 2015-09-24 | イメリス セラミックス フランス | Ceramic composition comprising alumina |
EP2864731B1 (en) * | 2012-06-22 | 2019-06-12 | Imertech Sas | Ceramic compositions comprising alumina |
Also Published As
Publication number | Publication date |
---|---|
JP3949950B2 (en) | 2007-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4376579B2 (en) | Silicon nitride bonded SiC refractory and method for producing the same | |
JPWO2005105704A1 (en) | Aluminum magnesium titanate crystal structure and manufacturing method thereof | |
JP2006335594A (en) | Oxide bonded silicon carbide-based material | |
EP2121538B1 (en) | Basic refractories composition containing magnesium orthotitanate and calcium titanate, process for its production and uses thereof | |
JPH08253381A (en) | Tool material for burning and its production | |
JP2003176167A (en) | Thermal shock resistant alumina-zirconia burning tool and method of producing the same | |
JP4298236B2 (en) | Manufacturing method for ceramic electronic component firing setter | |
JP2003176168A (en) | Thermal shock resistant alumina-zirconia burning tool and method of producing the same (high temperature burning) | |
JP2003137671A (en) | Mullite-based porous body and method of producing the same | |
JP2001220259A (en) | Alumina-mullite porous refractory sheet and method for producing the same | |
JP2002316877A (en) | Burning tool for electronic parts | |
KR20050073455A (en) | Jig for calcining electronic component | |
JP2017024916A (en) | Jig for electronic component firing | |
JP2001220260A (en) | Alumina-based porous refractory sheet and method for producing the same | |
JP3644015B2 (en) | Electronic component firing jig | |
KR101090275B1 (en) | Ceramic compositions for mullite-bonded silicon carbide body, sintered body and its preparing method | |
JPH02311361A (en) | Production of aluminum titanate sintered compact stable at high temperature | |
JP4053784B2 (en) | Zirconia firing jig and manufacturing method thereof | |
JP2003252677A (en) | Ceramic-burning tool and method for producing the same | |
JP2004161585A (en) | Electronic component-firing tool | |
JP2001253765A (en) | Magnesia-alumina-titania-based brick | |
JP2001213666A (en) | Material for making electronic part by sintering | |
JP2002128583A (en) | Tool for calcinating electronic part | |
JPH08198664A (en) | Alumina-base sintered body and its production | |
JP2818113B2 (en) | Firing jig |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040305 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060814 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060912 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20061013 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20061013 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070109 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070301 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070417 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070419 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3949950 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110427 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120427 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130427 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130427 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140427 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |