JP2003173905A - Power converter equipped with shunt resistance - Google Patents

Power converter equipped with shunt resistance

Info

Publication number
JP2003173905A
JP2003173905A JP2001370817A JP2001370817A JP2003173905A JP 2003173905 A JP2003173905 A JP 2003173905A JP 2001370817 A JP2001370817 A JP 2001370817A JP 2001370817 A JP2001370817 A JP 2001370817A JP 2003173905 A JP2003173905 A JP 2003173905A
Authority
JP
Japan
Prior art keywords
shunt resistor
main electrode
insulating layer
shunt
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001370817A
Other languages
Japanese (ja)
Other versions
JP3843825B2 (en
Inventor
Kinya Nakatsu
欣也 中津
Ryuichi Saito
隆一 斉藤
Toshio Ogawa
敏夫 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001370817A priority Critical patent/JP3843825B2/en
Publication of JP2003173905A publication Critical patent/JP2003173905A/en
Application granted granted Critical
Publication of JP3843825B2 publication Critical patent/JP3843825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Voltage And Current In General (AREA)
  • Power Conversion In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power converter that can apply a load current detecting method using a shunt resistor and a detecting circuit to a large-capacity power converter. <P>SOLUTION: This power converter detects a load current from the shunt resistor and controls its output based on the detected value of the current. In the shunt resistor, main electrode sections becoming detection current input- output terminals are fixed to both side faces of a shunt resistance section which is constituted of a plate-like resistance body and to and from which the detection currents are inputted and outputted. In this power converter, a resin-made insulating layer having an adhering function is provided on the side face of a heat diffusing plate which radiates the heat generated from the shunt resistor and the shunt resistance section and the shunt resistor the main electrode sections of which are fixed to the shunt resistance section are provided in the insulating layer. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シャント抵抗を備
えた電力変換装置に関する。
TECHNICAL FIELD The present invention relates to a power converter having a shunt resistor.

【0002】[0002]

【従来の技術】インバータ装置は、誘導電動機など交流
電動機の運転に広く用いられ、近年では乗物の動力源の
コントローラとしても用いられるようになり、インバー
タ装置による可変速運転の利点が充分に享受できるよう
になっている。インバータ装置の制御には、負荷電流の
検出を要する場合があり、この負荷電流の検出にホール
素子型電流センサや、シャント抵抗器及び検出回路が採
用されている。
2. Description of the Related Art Inverter devices are widely used for driving AC motors such as induction motors, and in recent years, they have also been used as controllers for power sources of vehicles, and the advantages of variable speed operation by inverter devices can be fully enjoyed. It is like this. Control of the inverter device may require detection of a load current, and a Hall element type current sensor, a shunt resistor, and a detection circuit are used for detection of the load current.

【0003】シャント抵抗器に関連する技術として、特
開平8−115802号公報に打ち抜き加工にて所定の
形状を整え両端に主電極を設ける方式,特開平11−97
203号公報に絶縁層に固着した後エッチング加工施し所
定の形状を整える方式が記載されている。
As a technique related to the shunt resistor, Japanese Unexamined Patent Publication No. 8-115802 discloses a method in which a predetermined shape is adjusted by punching and main electrodes are provided at both ends, Japanese Unexamined Patent Publication No. 11-97.
Japanese Patent Laid-Open No. 203-203 describes a method in which after fixing to an insulating layer, etching processing is performed to adjust a predetermined shape.

【0004】[0004]

【発明が解決しようとする課題】今回発明者らは、イン
バータ装置に関する問題点を種々検討した。まず、図8
を用いて説明する。ここで、ホール素子型電流センサ2
8とは、環状の磁性体の一部にホール素子を設け、この
磁性体に負荷電流が流れる電線を巻付けたり貫通させた
りすることにより、負荷電流が作り出す磁束をホール素
子で電圧に変換する電流センサのことであり、この場
合、検出対象となる電路から電気的に隔離された検出信
号が得られるというメリットがある。
DISCLOSURE OF THE INVENTION The present inventors have made various studies on problems associated with an inverter device. First, FIG.
Will be explained. Here, the Hall element type current sensor 2
Reference numeral 8 indicates that a Hall element is provided on a part of an annular magnetic body, and an electric wire through which a load current flows is wound around or penetrated through this magnetic body, so that the magnetic flux generated by the load current is converted into a voltage by the Hall element. This is a current sensor, and in this case, there is an advantage that a detection signal electrically isolated from the electric circuit to be detected can be obtained.

【0005】同じく、ここでシャント抵抗器13及び検
出回路18とは、負荷電流が流れる電路に直列に挿入し
た抵抗器を用い、その両端子間に、負荷電流により現わ
れる電圧降下を取り出し、検出信号とする回路のことで
ある。従って、かなり低コストで済む。
Similarly, here, the shunt resistor 13 and the detection circuit 18 are resistors inserted in series in an electric path through which the load current flows, and the voltage drop appearing due to the load current is taken out between both terminals of the resistor to detect the detection signal. It is a circuit to be. Therefore, the cost is considerably low.

【0006】ここで、図8は、PWM(パルス・ワイド
・モジュレーション:パルス幅変調)制御方式の電力変
換装置を対象として、これにホール素子型電流センサ2
8と、シャント抵抗器13及び検出回路18の双方を適
用した場合について示したものである。ここで、ホール
素子型電流センサ28と、シャント抵抗器13及び検出
回路18の双方が示されているのは説明のためであり、
実際には何れか一方を設ける。
Here, FIG. 8 is intended for a power conversion device of a PWM (pulse wide modulation: pulse width modulation) control system, in which the Hall element type current sensor 2 is used.
8 and the case where both the shunt resistor 13 and the detection circuit 18 are applied. Here, both the Hall element type current sensor 28 and the shunt resistor 13 and the detection circuit 18 are shown for the purpose of explanation,
Actually, either one is provided.

【0007】図8は、ダイオード整流器からなるコンバ
ータ部(順変換部)14と、このコンバータ部14から
出力される直流電力が入力されるPWM制御方式のイン
バータ部(逆変換部)15、それにコンバータ部14と
インバータ部15の間の直流部に接続された平滑用のコ
ンデンサ(キャパシタ)16で構成された主回路を備え
ている。
FIG. 8 shows a converter section (forward conversion section) 14 including a diode rectifier, a PWM control type inverter section (inverse conversion section) 15 to which DC power output from the converter section 14 is input, and a converter. The main circuit includes a smoothing capacitor (capacitor) 16 connected to a direct current section between the section 14 and the inverter section 15.

【0008】そして、コンバータ部14に、電力源とな
る商用電源29から交流電力が入力されると、コンデン
サ16で平滑化された直流電力がインバータ部15に供
給され、ここで、インバータ部15のIGBT(インシ
ュレーテッド・ゲート・バイポーラ・トランジスタ)に
代表される半導体スイッチング素子5がPWM制御され
ることにより、直流電力が所定の電圧と所定の周波数の
交流電力に変換され、この結果、誘導電動機などの負荷
に可変電圧可変周波数の電力が供給される。
When AC power is input to the converter unit 14 from the commercial power source 29 serving as a power source, the DC power smoothed by the capacitor 16 is supplied to the inverter unit 15, where the inverter unit 15 operates. The semiconductor switching element 5 represented by an IGBT (Insulated Gate Bipolar Transistor) is PWM-controlled to convert DC power into AC power having a predetermined voltage and a predetermined frequency, and as a result, an induction motor. A variable voltage variable frequency power is supplied to a load such as.

【0009】当然、図9に示すようにバッテリー等の蓄
電装置30が出力する直流電力をインバータ部15に供
給して成る電力変換装置でも、前記と同様インバータ部
15の半導体スイッチング素子5がPWM制御されるこ
とにより、直流電力が所定の電圧と所定の周波数の交流
電力に変換され、この結果、乗物の動力源,冷却装置の
冷却ファン,冷却水の循環用ポンプ駆動電動機,油圧機
具向け油圧ポンプ駆動電動機,エアコン用コンプレッサ
駆動電動機などの負荷である電動機17に可変電圧可変
周波数の電力が供給される。
Naturally, as shown in FIG. 9, also in the power converter constituted by supplying the DC power output from the power storage device 30 such as a battery to the inverter section 15, the semiconductor switching element 5 of the inverter section 15 is PWM-controlled as in the above. As a result, the DC power is converted into AC power having a predetermined voltage and a predetermined frequency, and as a result, the power source of the vehicle, the cooling fan of the cooling device, the pump drive motor for circulating the cooling water, and the hydraulic pump for hydraulic equipment. Electric power having a variable voltage and a variable frequency is supplied to the electric motor 17, which is a load such as a driving electric motor and an air conditioner compressor driving electric motor.

【0010】このとき、インバータ部15にある半導体
スイッチング素子5のPWM信号によるオン(導通),
オフ(遮断)制御は、図7に示すように、ドライバ回路
を介して、計算機(コンピュータ)19により実行され
るが、このとき、計算機19による制御には、負荷であ
る電動機17に流れる電流の値、つまり負荷電流値が必
要になる。
At this time, the semiconductor switching element 5 in the inverter section 15 is turned on (conducted) by the PWM signal,
As shown in FIG. 7, the off (interruption) control is executed by the computer (computer) 19 via the driver circuit. At this time, the computer 19 controls the current flowing through the electric motor 17 as a load. The value, that is, the load current value is required.

【0011】ここで、この検出には、上記したように、
ホール素子型電流センサ28を用いる方法と、シャント
抵抗器13及び検出回路18を用いる方法が考えられ
る。
Here, this detection is performed as described above.
A method using the Hall element type current sensor 28 and a method using the shunt resistor 13 and the detection circuit 18 can be considered.

【0012】そして、まず、ホール素子型電流センサ2
8を用いたときは、この電流センサをインバータ部15
と負荷である電動機17の間に直列に接続し、これによ
る検出結果をA/D変換して計算機19に入力する。
First, the Hall element type current sensor 2
When 8 is used, this current sensor is connected to the inverter unit 15
Is connected in series between the electric motor 17 and the load, and the detection result by this is A / D converted and input to the computer 19.

【0013】一方、シャント抵抗器13及び検出回路1
8を用いたときは、シャント抵抗器13をコンデンサ1
6とインバータ部15の間に直列に接続する。そして、
このシャント抵抗器13に負荷電流が流れることにより
現われる電圧降下を、フィルタと増幅器等を介してA/
D変換し、計算機19に入力するようになっている。こ
こで、シャント抵抗器13の接続位置だが、インバータ
部15と電動機17の間に直列に接続してもよい。
On the other hand, the shunt resistor 13 and the detection circuit 1
When 8 is used, connect the shunt resistor 13 to the capacitor 1
6 and the inverter unit 15 are connected in series. And
The voltage drop caused by the load current flowing through the shunt resistor 13 is A /
The data is D-converted and input to the computer 19. Here, although it is a connection position of the shunt resistor 13, it may be connected in series between the inverter unit 15 and the electric motor 17.

【0014】ここで、シャント抵抗器13の構造は、一
般に温度特性に優れたマンガニン材(銅とマンガンの合
金)から成る板状抵抗体6であり、特開平8−1158
02号記載の打ち抜き加工にて所定の形状を整え両端に
主電極部7を設ける方式や、特開平11−97203号
記載の絶縁層4に固着した後エッチング加工施し所定の
形状を整える方式が有り、シャント抵抗部8とシャント
抵抗部8に負荷電流を流し込む主電極部7とシャント抵
抗部8で発生した電圧を検出する検出電極部31を同一
抵抗材で構成している場合や、板状抵抗体6の両端に銅
等の低抵抗金属体で構成した主電極部7を固着し、固着
した前記主電極部7を金属箔3にはんだ2等で固着し構
成されており、図10−1及び図10−2に示すように
インバータ部15の半導体スイッチング素子5が実装さ
れる放熱特性に優れたパワーモジュールの放熱ベース板
1上に絶縁層4を介して実装される。
Here, the structure of the shunt resistor 13 is a plate-like resistor 6 which is generally made of a manganin material (alloy of copper and manganese) having excellent temperature characteristics, and is disclosed in JP-A-8-1158.
There is a method in which a predetermined shape is prepared by punching described in No. 02 and a main electrode portion 7 is provided at both ends, and a method in which after fixing to the insulating layer 4 described in JP-A No. 11-97203, etching processing is performed to adjust the predetermined shape. , The shunt resistor portion 8 and the main electrode portion 7 for applying a load current to the shunt resistor portion 8 and the detection electrode portion 31 for detecting the voltage generated in the shunt resistor portion 8 are made of the same resistance material, or a plate-like resistor A main electrode portion 7 made of a low resistance metal body such as copper is fixed to both ends of the body 6, and the fixed main electrode portion 7 is fixed to the metal foil 3 with solder 2 or the like, as shown in FIG. Also, as shown in FIG. 10-2, the semiconductor switching element 5 of the inverter unit 15 is mounted on the heat dissipation base plate 1 of the power module having excellent heat dissipation characteristics via the insulating layer 4.

【0015】シャント抵抗器13の発熱は、シャント抵
抗部8と主電極部7に負荷電流が流れる為、シャント抵
抗部8と主電極部7両方で発生し、発生した発熱は放熱
ベース板1へと流れ温度の上昇が押さえられるようにな
っている。
The heat generated by the shunt resistor 13 is generated in both the shunt resistor section 8 and the main electrode section 7 because a load current flows through the shunt resistor section 8 and the main electrode section 7, and the generated heat is transmitted to the heat dissipation base plate 1. And the rise in the flow temperature can be suppressed.

【0016】上記技術は、ホール素子型電流センサ28
やシャント抵抗器13及び検出回路18を用いて電力変
換装置のPWM制御を行っていたが、ホール素子型電流
センサ28の場合、比較的高価なホール素子や大きな磁
性体を必要とするため、低価格化と小形化に問題があっ
た。
The above-mentioned technique uses the Hall element type current sensor 28.
Although the PWM control of the power conversion device is performed by using the shunt resistor 13 and the detection circuit 18, the Hall element type current sensor 28 requires a relatively expensive Hall element and a large magnetic material, and thus has a low value. There was a problem in price reduction and miniaturization.

【0017】一方、シャント抵抗器13及び検出回路1
8は、小形で安価な電子部品で構成できるが、電力線に
直列に接続され、数アンペアから数千アンペアの負荷電
流を検出する為発熱が生じ、抵抗温度変化率の小さいマ
ンガニン材等を用いて精度の向上を図るが、マンガニン
材固有の電気抵抗率が銅材に比べ数十倍と大きく、検出
電流による発熱が通常配線に用いる銅材に比べ大幅に増
加する。これに対し、発熱を押さえる為に抵抗値を極小
(約0.5〜0.6mΩ程度)とし、発熱量を低減した
り、高熱伝導な絶縁層4に板状抵抗体6を固着し主電極
部7とシャント抵抗部8をエッチング処理等で成形しシ
ャント抵抗器13の全体を放熱できる構成となっている
が、500μmを超える厚い板状抵抗体6を片面よりエ
ッチングすると時間がかかり製造コストが嵩むといった
問題があったり、同一材料でシャント抵抗器13を構成
している為、負荷電流が主電極部7に流れ発熱の増加を
招く等の問題もあり、さらに主電極部7に銅材等を用い
発熱量を低減したシャント抵抗器13では主電極部7と
シャント抵抗部8を検出電流に対して並列に接続する必
要があり、一般にはんだ材2による接続や溶接による接
続が行われ、主電極部7とシャント抵抗部8が一体化さ
れたシャント抵抗器13を高熱伝導の放熱基板12上に
用意された検出電流の金属箔3にはんだ等2により直列
に挿入されるが、シャント抵抗部8が金属箔3やはんだ
層2の厚さにより放熱基板12から離れたり均一に密着
できない為、シャント抵抗部8の温度が上昇すると言っ
た問題があった。
On the other hand, the shunt resistor 13 and the detection circuit 1
8 can be made up of small and inexpensive electronic parts, but it is connected in series to the power line and generates heat because it detects a load current of several amps to several thousand amps, and it uses manganin material etc. with a small resistance temperature change rate. Although the accuracy is improved, the electrical resistivity peculiar to manganin material is several tens of times higher than that of copper material, and the heat generated by the detected current is significantly increased compared to the copper material used for normal wiring. On the other hand, in order to suppress heat generation, the resistance value is minimized (about 0.5 to 0.6 mΩ) to reduce the heat generation amount, or the plate-shaped resistor 6 is fixed to the insulating layer 4 having high heat conductivity to fix the main electrode. Although the portion 7 and the shunt resistor portion 8 are formed by etching or the like so that the entire shunt resistor 13 can be dissipated, it takes time to etch the thick plate-shaped resistor 6 having a thickness of more than 500 μm from one side, and the manufacturing cost is reduced. Since the shunt resistor 13 is made of the same material, there is a problem that the load current flows into the main electrode portion 7 and heat generation is increased, and the main electrode portion 7 is made of a copper material or the like. In the shunt resistor 13 in which the amount of heat generated is reduced by using, it is necessary to connect the main electrode portion 7 and the shunt resistor portion 8 in parallel with the detected current, and in general, connection by the solder material 2 or connection by welding is performed. Electrode section 7 and chassis The shunt resistor 13 integrated with the resistor portion 8 is inserted in series with the metal foil 3 for detecting current prepared on the heat dissipation substrate 12 having high heat conduction by soldering 2 or the like, but the shunt resistor portion 8 is a metal foil. There is a problem in that the temperature of the shunt resistor portion 8 rises because the thickness of the solder layer 3 and the thickness of the solder layer 2 makes it difficult to separate from the heat dissipation substrate 12 or evenly adhere to it.

【0018】本発明の目的は、シャント抵抗器及び検出
回路による負荷電流の検出方式を大容量の電力変換装置
へ適用できる電力変換装置を提供することである。
An object of the present invention is to provide a power conversion device in which the load current detection method using a shunt resistor and a detection circuit can be applied to a large-capacity power conversion device.

【0019】[0019]

【課題を解決するための手段】上記目的は、板状抵抗板
を用いて構成されたシャント抵抗部と銅等の低抵抗な板
材より構成された主電極部を検出電流流路に直列にシャ
ント抵抗部の両端に固着したシャント抵抗器から負荷電
流を検出する電力変換装置において、エポキシ等の樹脂
を含んだ樹脂絶縁層を熱拡散板の片面に固着させ、前記
樹脂絶縁層の表面にシャント抵抗器の片面を固着し、前
記熱拡散板を高熱伝導の放熱基板上に用意した電極等に
はんだで固着するか、前記熱拡散板を放熱ベース板上に
高熱伝導の接着剤もしくははんだで固着したことから、
2つの主電極部での発熱を大幅に低減でき、発熱部であ
るシャント抵抗部の熱抵抗を大幅に低減できることから
大容量の電力変換機を提供できる。
The above-mentioned object is to shunt a shunt resistance portion formed by using a plate-shaped resistance plate and a main electrode portion formed by a low resistance plate material such as copper in series with a detection current flow path. In a power converter that detects a load current from a shunt resistor fixed to both ends of a resistance part, a resin insulating layer containing a resin such as epoxy is fixed to one surface of a heat diffusion plate, and a shunt resistor is attached to the surface of the resin insulating layer. Fix one side of the container and fix the heat diffusion plate to the electrode prepared on the heat dissipation board of high heat conduction with solder, or fix the heat diffusion plate on the heat dissipation base plate with adhesive or solder of high heat conduction From that,
The heat generation in the two main electrode portions can be greatly reduced, and the thermal resistance of the shunt resistance portion, which is the heat generation portion, can be significantly reduced, so that a large-capacity power converter can be provided.

【0020】好ましくは、上記目的は、板状抵抗板を用
いて構成されたシャント抵抗部と銅等の低抵抗な板材よ
り構成された主電極部を検出電流流路に直列になるよう
シャント抵抗部の両端に固着しシャント抵抗器から負荷
電流を検出する電力変換装置において、エポキシ等の樹
脂を含んだ樹脂絶縁層を熱拡散板の片面に固着させ、前
記樹脂絶縁層の表面に少なくとも前記樹脂絶縁層より接
着時に粘度が低くなる樹脂接着層を設け、前記シャント
抵抗部と前記主電極部を前記樹脂接着層に固着し、前記
熱拡散板を高熱伝導の放熱基板上に用意された電極等に
はんだにより固着するか、前記熱拡散板を放熱ベース板
上に高熱伝導の接着剤もしくははんだで固着したことか
ら、2つの主電極部での発熱を大幅に低減でき、発熱部
であるシャント抵抗部の熱抵抗を大幅に低減でき、さら
に樹脂接着層を柔らかくしたことで接着時に発生する空
気の巻き込みによるボイドを低減でき局所的な熱抵抗の
増加を避けられることから高信頼な大容量の電力変換機
を提供できる。
Preferably, for the above-mentioned purpose, the shunt resistance part formed by using a plate resistance plate and the main electrode part formed by a low resistance plate material such as copper are connected in series to the detection current flow path. In a power conversion device that is fixed to both ends of a part and that detects a load current from a shunt resistor, a resin insulating layer containing a resin such as epoxy is fixed to one surface of a heat diffusion plate, and at least the resin is formed on the surface of the resin insulating layer. An electrode provided with a resin adhesive layer whose viscosity becomes lower than that of an insulating layer when it is adhered, the shunt resistor portion and the main electrode portion are fixed to the resin adhesive layer, and the heat diffusion plate is provided on a heat dissipation substrate having high heat conduction. Since it is fixed to the shunt with a solder or the heat diffusion plate is fixed to the heat dissipation base plate with an adhesive or solder having a high thermal conductivity, the heat generation at the two main electrode portions can be greatly reduced, and the shunt resistor, which is the heat generation portion, can be significantly reduced. The thermal resistance of the part can be significantly reduced, and by softening the resin adhesive layer, voids due to air entrapment that occurs during bonding can be reduced, and local increase in thermal resistance can be avoided. A converter can be provided.

【0021】また、板状抵抗板を用いて構成されたシャ
ント抵抗部と銅等の低抵抗な板材より構成された主電極
部を検出電流流路に直列になるようシャント抵抗部の両
端に固着しシャント抵抗器から負荷電流を検出する電力
変換装置において、エポキシ等の樹脂を含んだ樹脂絶縁
層を熱拡散板の片面に固着させ、前記樹脂絶縁層の所定
の表面に少なくとも前記樹脂絶縁層より電気抵抗率が小
さく、前記シャント抵抗部より電気抵抗率が大きく、前
記シャント抵抗部より厚さが薄い電気伝導性接着層を設
け、前記シャント抵抗部と前記主電極部を前記電気伝導
性接着層に固着し、前記熱拡散板を高熱伝導の放熱基板
上に用意された電極等にはんだにより固着するか、前記
熱拡散板を放熱ベース板上に高熱伝導の接着剤もしくは
はんだで固着したことから、2つの主電極部での発熱を
大幅に低減でき、発熱部であるシャント抵抗部の熱抵抗
を大幅に低減でき、さらにシャント抵抗器の接着時に生
じる空気の巻き込みによるボイドが生じても、コロナ放
電現象等の発生を抑制できることから高信頼な大容量の
電力変換機を提供できる。
Further, a shunt resistance portion formed by using a plate resistance plate and a main electrode portion formed by a low resistance plate material such as copper are fixed to both ends of the shunt resistance portion so as to be in series with the detection current flow path. In a power conversion device that detects a load current from a shunt resistor, a resin insulating layer containing a resin such as epoxy is fixed to one surface of a heat diffusion plate, and at least a predetermined surface of the resin insulating layer is separated from the resin insulating layer. An electrically conductive adhesive layer having a low electrical resistivity, a higher electrical resistivity than the shunt resistor portion, and a thinner thickness than the shunt resistor portion is provided, and the shunt resistor portion and the main electrode portion are provided with the electrically conductive adhesive layer. The heat diffusion plate is fixed to the electrode or the like prepared on the heat dissipation board of high heat conduction with solder, or the heat diffusion plate is adhered to the heat dissipation base plate with an adhesive or solder of high heat conduction. Therefore, the heat generation at the two main electrode portions can be significantly reduced, the thermal resistance of the shunt resistor portion, which is the heat generating portion, can be significantly reduced, and even if a void is created due to the entrainment of air that occurs when the shunt resistor is bonded. Since the occurrence of the corona discharge phenomenon can be suppressed, a highly reliable large capacity power converter can be provided.

【0022】[0022]

【発明の実施の形態】以下、電力変換装置について、図
示の実施形態により詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a power converter will be described in detail with reference to the illustrated embodiment.

【0023】図1は、第1の実施形態に係るシャント抵
抗器13の一例であり、図2は実施形態に係るシャント
抵抗器13を用いた電力変換装置の構成の一例である。
一般的な電力変換装置の構成は、図8でも示したように
ダイオード整流器からなるコンバータ部14と、このコ
ンバータ部14から出力される直流電力が入力されるP
WM制御方式のインバータ部15、それにコンバータ部
14とインバータ部15の間の直流部に接続された平滑
用のコンデンサ16で構成された主回路を備えている。
FIG. 1 is an example of the shunt resistor 13 according to the first embodiment, and FIG. 2 is an example of the configuration of a power conversion device using the shunt resistor 13 according to the embodiment.
As shown in FIG. 8, the configuration of a general power converter has a converter unit 14 including a diode rectifier, and P to which DC power output from the converter unit 14 is input.
The main circuit is composed of a WM control type inverter section 15 and a smoothing capacitor 16 connected to a DC section between the converter section 14 and the inverter section 15.

【0024】シャント抵抗器13は、インバータ15か
ら負荷である交流電動機17へ電力を供給する配線に挿
入される場合とコンデンサ16とインバータ15間を電
気的に接続する配線に挿入する場合が一般的であり、負
荷電流とシャント抵抗器13の抵抗値で決まる電圧を検
出回路18を介して計算機19に伝え、計算機19で所
定の計算を行い半導体スイッチング素子5をON,OF
F制御して負荷電流を指定の値に制御する。
The shunt resistor 13 is generally inserted in the wiring for supplying electric power from the inverter 15 to the AC motor 17 which is a load, and in the wiring for electrically connecting the capacitor 16 and the inverter 15. The voltage determined by the load current and the resistance value of the shunt resistor 13 is transmitted to the computer 19 via the detection circuit 18, and the computer 19 performs a predetermined calculation to turn the semiconductor switching element 5 ON and OF.
F control is performed to control the load current to a specified value.

【0025】当然、バッテリー等の蓄電装置30が出力
する直流電力をインバータ部15に供給して成る電力変
換装置でも前記と同様にコンバータ部14の代わりにバ
ッテリー等の蓄電装置30を接続することで構成でき
る。
As a matter of course, in a power conversion device in which the DC power output from the power storage device 30 such as a battery is supplied to the inverter unit 15, the power storage device 30 such as a battery is connected instead of the converter unit 14 as described above. Can be configured.

【0026】ここで、シャント抵抗器13はインバータ
部15の構成部品である半導体スイッチング素子5が実
装されるパワーモジュール内に配置され、図10−1で
示すように絶縁層4の片面に板状抵抗体6が固着され、
板状抵抗体6でシャント抵抗部8とシャント抵抗部8に
負荷電流を流し込む主電極部7、さらにシャント抵抗部
8で発生する電圧を取り出す検出電極31を作りシャン
ト抵抗器13を構成し、絶縁層4の反対側に金属箔3が
さらに固着され、モジュールの放熱ベース1上に前記金
属箔3をはんだ2等により固着し実装され、前記シャン
ト抵抗器13に設けた主電極部7にメッキを掛けアルミ
ワイヤー10などの配線を固着させ電気的にインバータ
の主回路を構成する配線に接続される。また、図10−
2で示すように板状抵抗体6の両端に銅等の電気抵抗率
の小さい金属体で構成した主電極部7を溶接などにより
固着し、固着した前記主電極部7を絶縁層4上の金属箔
3にはんだ2等で固着し、電気的にインバータの主回路
を構成する配線に接続される。シャント抵抗器13に用
いる板状抵抗体6は、抵抗温度係数が小さなマンガニン
材(銅とマンガンの合金)やニクロム材等が用いられて
いるが、図10−1及び図10−2で示した技術と同じ
である。
Here, the shunt resistor 13 is arranged in the power module in which the semiconductor switching element 5 which is a component of the inverter section 15 is mounted, and as shown in FIG. The resistor 6 is fixed,
The shunt resistor section 8 and the main electrode section 7 for applying a load current to the shunt resistor section 8 by the plate-like resistor 6 and the detection electrode 31 for taking out the voltage generated in the shunt resistor section 8 are formed to form the shunt resistor 13 and are insulated. A metal foil 3 is further fixed to the opposite side of the layer 4, and the metal foil 3 is fixed and mounted on the heat dissipation base 1 of the module with solder 2 or the like, and the main electrode portion 7 provided on the shunt resistor 13 is plated. Wiring such as the hanging aluminum wire 10 is fixed and electrically connected to the wiring that constitutes the main circuit of the inverter. In addition, FIG.
As shown by 2, a main electrode portion 7 made of a metal body having a small electric resistivity such as copper is fixed to both ends of the plate resistor 6 by welding or the like, and the fixed main electrode portion 7 is placed on the insulating layer 4. It is fixed to the metal foil 3 with solder 2 or the like, and electrically connected to the wiring that constitutes the main circuit of the inverter. The plate-shaped resistor 6 used for the shunt resistor 13 is made of a manganin material (alloy of copper and manganese) or a nichrome material having a small temperature coefficient of resistance, which is shown in FIGS. 10-1 and 10-2. Same as technology.

【0027】従って、この図1及び図2に示した実施形
態が、図8,図9,図10−1,図10−2の技術と異
なる点は、前記板状抵抗体6で構成したシャント抵抗部
8と銅等の電気抵抗率の小さい金属体で構成した主電極
部7をシャント抵抗部8の両端に溶接などにより固着し
たシャント抵抗器13において、熱伝導率の良い銅等で
構成され表面にニッケル等のメッキを施した熱拡散板1
1の側面にエポキシ等の接着機能を有する厚さ数十μm
から数百μmの樹脂絶縁層9を設け、前記樹脂絶縁層9
に前記シャント抵抗部8と前記主電極部7を接着しシャ
ント抵抗器13を構成し、前記熱拡散板11をパワーモ
ジュール内の放熱ベース板1にはんだ2により固着す
る。
Therefore, the embodiment shown in FIGS. 1 and 2 is different from the technique shown in FIGS. 8, 9, 10-1 and 10-2 in that the shunt formed by the plate-shaped resistor 6 is used. In the shunt resistor 13 in which the resistance portion 8 and the main electrode portion 7 made of a metal body having a low electric resistivity such as copper are fixed to both ends of the shunt resistance portion 8 by welding or the like, the main electrode portion 7 is made of copper or the like having good thermal conductivity. Thermal diffusion plate 1 with nickel plating on the surface
Thickness of several tens of μm with an adhesive function such as epoxy on one side surface
To several hundred μm of the resin insulation layer 9
The shunt resistor portion 8 and the main electrode portion 7 are bonded to each other to form a shunt resistor 13, and the heat diffusion plate 11 is fixed to the heat dissipation base plate 1 in the power module with the solder 2.

【0028】さらに、樹脂絶縁層9に高熱伝導性粒子で
あるシリカやアルミナ等のフィラーを混ぜ合わせ、シャ
ント抵抗器13の放熱抵抗を改善すると共に主電極部7
とシャント抵抗部8の側面で樹脂絶縁層9と接する各接
続面を同一平面になるように主電極部7とシャント抵抗
部8を接続した点である。
Further, the resin insulating layer 9 is mixed with a filler such as silica or alumina, which is a high thermal conductive particle, to improve the heat radiation resistance of the shunt resistor 13 and at the same time to the main electrode portion 7.
The main electrode portion 7 and the shunt resistor portion 8 are connected so that each connection surface in contact with the resin insulating layer 9 on the side surface of the shunt resistor portion 8 is on the same plane.

【0029】このようにすると、シャント抵抗器13全
体が熱伝導に優れた熱拡散板11に密着できシャント抵
抗部8の熱抵抗の低減が可能になり、樹脂絶縁層9に熱
伝導粒子を加えることによりさらにシャント抵抗器13
の熱抵抗が低減でき、主電極部7とシャント抵抗部8の
樹脂絶縁層9との接続面を同一平面になるように構成し
たことでシャント抵抗器13下の樹脂絶縁層9の厚さを
均等化できることから局所的な熱抵抗の違いを無くすこ
とができ、シャント抵抗器13の温度分布を均一化でき
ることから高精度で大電流を流せるシャント抵抗器13
を構成でき高性能な電力変換装置が提供できる。
In this way, the shunt resistor 13 as a whole can be brought into close contact with the heat diffusion plate 11 having excellent heat conduction, and the heat resistance of the shunt resistor portion 8 can be reduced, and heat conducting particles are added to the resin insulating layer 9. Therefore, the shunt resistor 13
The heat resistance of the resin insulation layer 9 under the shunt resistor 13 can be reduced by configuring the connecting surfaces of the main electrode portion 7 and the resin insulation layer 9 of the shunt resistor portion 8 to be on the same plane. Since it can be made uniform, the difference in local thermal resistance can be eliminated, and since the temperature distribution of the shunt resistor 13 can be made uniform, the shunt resistor 13 that can flow a large current with high accuracy can be obtained.
And a high-performance power converter can be provided.

【0030】図3は、第2の実施形態に係るシャント抵
抗器の一例で、この実施形態が、図1で説明した実施形
態と異なる点は、図1のエポキシ等の樹脂を含んだ樹脂
絶縁層9を熱拡散板11の片面に固着させ、前記樹脂絶
縁層9の表面に少なくとも前記樹脂絶縁層9より接着時
に粘度が低く流動性のある樹脂接着層20を設け、前記
シャント抵抗部8と前記主電極部7を樹脂接着層20に
固着した点である。
FIG. 3 is an example of the shunt resistor according to the second embodiment. This embodiment is different from the embodiment described in FIG. 1 in that the resin insulation containing a resin such as epoxy in FIG. The layer 9 is fixed to one surface of the heat diffusion plate 11, and the resin insulating layer 9 is provided with at least a resin adhesive layer 20 having low viscosity and fluidity at the time of bonding, and the shunt resistor portion 8 and the resin insulating layer 9. The main electrode portion 7 is fixed to the resin adhesive layer 20.

【0031】このようにすると、樹脂接着層20を柔ら
かくしたことで接着時に発生する空気の巻き込みによる
ボイド21を低減できることから、シャント抵抗器13
の局所的な熱抵抗の増加を緩和できることから、シャン
ト抵抗部8の局所的な温度上昇を低減し高精度で大電流
を流せるシャント抵抗器13を構成でき高性能な電力変
換装置が提供できる。
In this way, since the resin adhesive layer 20 is softened, the voids 21 caused by the entrainment of air generated at the time of bonding can be reduced, so that the shunt resistor 13 is formed.
Since it is possible to mitigate the local increase in the thermal resistance, it is possible to reduce the local temperature rise in the shunt resistor portion 8 and configure the shunt resistor 13 that can flow a large current with high accuracy, and thus it is possible to provide a high-performance power conversion device.

【0032】図4は、第3の実施形態に係るシャント抵
抗器の一例で、この実施形態が、前記実施例で説明した
実施形態と異なる点は、図1のエポキシ等の樹脂を含ん
だ樹脂絶縁層9を熱拡散板11の片面に固着させ、前記
樹脂絶縁層9の所定の表面にのみ少なくとも前記樹脂絶
縁層9より接着時に粘度が低く流動性があり、前記樹脂
絶縁層9より少なくとも電気抵抗率が小さく、前記シャ
ント抵抗部8より電気抵抗率が大きく、前記シャント抵
抗部8より厚さが薄い電気伝導性接着層22を設け、前
記シャント抵抗部8と前記主電極部7を前記電気伝導性
接着層22に固着した点である。
FIG. 4 shows an example of the shunt resistor according to the third embodiment. This embodiment is different from the embodiment described in the above embodiment in that the resin containing the resin such as epoxy resin shown in FIG. 1 is used. The insulating layer 9 is fixed to one surface of the heat diffusion plate 11, and only at a predetermined surface of the resin insulating layer 9 has a viscosity lower than that of the resin insulating layer 9 at the time of adhesion and has fluidity, and at least an electrical property of the resin insulating layer 9 is higher than that of the resin insulating layer 9. An electrically conductive adhesive layer 22 having a low resistivity, a higher electrical resistivity than the shunt resistor portion 8 and a thinner thickness than the shunt resistor portion 8 is provided, and the shunt resistor portion 8 and the main electrode portion 7 are electrically connected to each other. This is the point of being fixed to the conductive adhesive layer 22.

【0033】このようにすると、シャント抵抗部8より
前記電気伝導性接着層22を薄くし電気抵抗率を大きく
したことで前記電気伝導性接着層22を十分に高抵抗化
でき検出電流の流れ込みを十分に抑制できるのでシャン
ト抵抗器13の精度を悪化させる事無く電気伝導性接着
層22を用い、シャント抵抗器13の接着時にシャント
抵抗器13と前記電気伝導性接着層22の界面に空気の
巻き込みによってボイド21が生じるが、接着層が電気
伝導性の為にボイド21周辺での電界の集中が生じない
のでコロナ放電現象等への悪影響を抑制でき高信頼の大
容量の電力変換機を提供できる。
By doing so, the electrically conductive adhesive layer 22 is made thinner than the shunt resistor portion 8 to increase the electrical resistivity, so that the electrically conductive adhesive layer 22 can have a sufficiently high resistance and the detection current can flow in. Since it can be sufficiently suppressed, the electrically conductive adhesive layer 22 is used without deteriorating the accuracy of the shunt resistor 13, and air is trapped in the interface between the shunt resistor 13 and the electrically conductive adhesive layer 22 when the shunt resistor 13 is bonded. Although the voids 21 are generated, since the adhesive layer is electrically conductive, the concentration of the electric field does not occur around the voids 21, so that adverse effects on the corona discharge phenomenon can be suppressed and a highly reliable large capacity power converter can be provided. .

【0034】図5は、第4の実施形態に係るシャント抵
抗器の一例で、この実施形態が、図1で説明した実施形
態と異なる点は、前記主電極部7及び前記主電極部の一
部に設けた検出端子31の一部と前記熱拡散板11の一
部を除き、前記シャント抵抗器13をシリカ等に代表さ
れる熱伝導性の優れた粒子を含んだコーティング樹脂2
3にて覆った点である。
FIG. 5 shows an example of a shunt resistor according to the fourth embodiment. This embodiment is different from the embodiment described in FIG. 1 in that one of the main electrode portion 7 and the main electrode portion is different. Coating resin 2 containing particles having excellent thermal conductivity represented by silica or the like, except for a part of the detection terminal 31 and a part of the thermal diffusion plate 11 provided in the shunt resistor 13.
It is the point covered by 3.

【0035】このようにすると、前記シャント抵抗器1
3で発生した熱がコーティング樹脂23を伝熱して前記
熱拡散板11に広がり、前記シャント抵抗部8の熱抵抗
を低減で、シャント抵抗部8の局所的な温度上昇を低減
し高精度で大電流を流せるシャント抵抗器13を構成で
き高性能な電力変換装置が提供できる。
In this way, the shunt resistor 1
The heat generated in 3 spreads to the heat diffusion plate 11 by transmitting the heat through the coating resin 23, reducing the thermal resistance of the shunt resistor portion 8 and reducing the local temperature rise of the shunt resistor portion 8 with high precision. A shunt resistor 13 capable of passing a current can be configured, and a high-performance power conversion device can be provided.

【0036】図6に示す様な太陽電池32と電力変換装
置で構成される太陽光発電システムの電源系統連係用電
力変換装置や、図7で示す内燃機関と電動機17もしく
は電動機17のみを動力源とし、バッテリー等の蓄電装
置30から供給される電力をシャント抵抗器13で検出
し電動機17を制御する動力システムを用いミッション
を通して内燃機関と電動機の力をタイヤに伝えて移動す
る乗物及び乗物に搭載されるエアコン,油圧ポンプ,ブ
レーキ駆動用電動機17等の全てのインバータ装置や、
さらに家庭用及び業務用のエアコンに用いるコンプレッ
サやファン用電動機駆動のインバータ装置や洗濯機の洗
濯層を回す電動機や掃除機の吸い込みファンの電動機や
電気調理機の磁界生成用インダクタンス駆動用電力変換
装置等にも前記した実施例の電力変換装置が適用でき
る。
A power conversion device for power supply system linkage of a solar power generation system composed of a solar cell 32 and a power conversion device as shown in FIG. 6, and an internal combustion engine and an electric motor 17 shown in FIG. In addition, the shunt resistor 13 detects electric power supplied from a power storage device 30 such as a battery, and a power system for controlling the electric motor 17 is used to transmit the power of the internal combustion engine and the electric motor to the tires through a mission to be mounted on vehicles and vehicles. All inverter devices such as air conditioners, hydraulic pumps, electric motors 17 for driving brakes,
Further, an inverter device driven by an electric motor for a compressor or a fan used in an air conditioner for homes and businesses, an electric motor for rotating a washing layer of a washing machine, an electric motor for a suction fan of a vacuum cleaner, and an electric power converter for driving a magnetic field of an electric cooking machine. The power conversion device of the above-described embodiment can be applied to the above.

【0037】以上述べた各実施例によれば、熱拡散板1
1の表面に用意した樹脂絶縁層9にシャント抵抗器13
を接着したことで熱抵抗の低減をすると共に、樹脂絶縁
層9の表面に低粘度の樹脂接着層20をさらに設け接着
時のボイド21の発生を抑制したり、樹脂接着層20の
電気抵抗率を樹脂絶縁層9よりも小さく、シャント抵抗
部8より大きくし、ボイド21に起因したコロナ放電現
象を低減でき高信頼で高精度な大容量向けシャント抵抗
器13を構成でき制御特性に優れた電力変換装置を提供
することができる。
According to each of the embodiments described above, the heat diffusion plate 1
The shunt resistor 13 is attached to the resin insulation layer 9 prepared on the surface of 1.
The thermal resistance is reduced by adhering, and a low-viscosity resin adhesive layer 20 is further provided on the surface of the resin insulating layer 9 to suppress generation of voids 21 at the time of adhesion, and the electrical resistivity of the resin adhesive layer 20. Is smaller than the resin insulation layer 9 and larger than the shunt resistance portion 8, and the corona discharge phenomenon caused by the void 21 can be reduced, and a highly reliable and accurate shunt resistor 13 for large capacity can be configured, and power with excellent control characteristics can be configured. A conversion device can be provided.

【0038】[0038]

【発明の効果】本発明によれば、シャント抵抗器及び検
出回路による負荷電流の検出方式を大容量の電力変換装
置へ適用できる電力変換装置を提供することができる。
According to the present invention, it is possible to provide a power conversion device in which a load current detection method using a shunt resistor and a detection circuit can be applied to a large-capacity power conversion device.

【図面の簡単な説明】[Brief description of drawings]

【図1】シャント抵抗器の第1の実施形態を示す構成
図。
FIG. 1 is a configuration diagram showing a first embodiment of a shunt resistor.

【図2】第1の実施形態のシャント抵抗器を用いた電力
変換装置を説明するための構成図。
FIG. 2 is a configuration diagram for explaining a power conversion device using the shunt resistor according to the first embodiment.

【図3】シャント抵抗器の第2の実施形態を示す構成
図。
FIG. 3 is a configuration diagram showing a second embodiment of a shunt resistor.

【図4】シャント抵抗器の第3の実施形態を示す構成
図。
FIG. 4 is a configuration diagram showing a third embodiment of a shunt resistor.

【図5】シャント抵抗器の第4の実施形態を示す構成
図。
FIG. 5 is a configuration diagram showing a fourth embodiment of a shunt resistor.

【図6】シャント抵抗器の第5の実施形態を示す構成
図。
FIG. 6 is a configuration diagram showing a fifth embodiment of a shunt resistor.

【図7】シャント抵抗器の第6の実施形態を示す構成
図。
FIG. 7 is a configuration diagram showing a sixth embodiment of a shunt resistor.

【図8】シャント抵抗器とそれを用いた電力変換装置の
構成図。
FIG. 8 is a configuration diagram of a shunt resistor and a power conversion device using the shunt resistor.

【図9】シャント抵抗器とそれを用いた電力変換装置の
構成図。
FIG. 9 is a configuration diagram of a shunt resistor and a power conversion device using the shunt resistor.

【図10−1】シャント抵抗器の構成図。FIG. 10-1 is a configuration diagram of a shunt resistor.

【図10−2】シャント抵抗器の構成図。FIG. 10-2 is a configuration diagram of a shunt resistor.

【符号の説明】[Explanation of symbols]

1…モジュールの放熱ベース、2…はんだ層、3…金属
箔、4…絶縁層、5…半導体スイッチング素子、6…板
状抵抗体、7…主電極部、8…シャント抵抗部、9…樹
脂絶縁層、10…アルミワイヤー、11…熱拡散板、1
2…放熱基板、13…シャント抵抗器、14…コンバー
タ、15…インバータ、16…コンデンサ、17…電動
機、18…検出回路、19…計算機、20…樹脂接着
層、21…ボイド、22…電気伝導性接着層、23…コ
ーティング樹脂、28…ホール素子型電流センサ、29
…商用電源、30…バッテリー等の蓄電装置、31…検
出電極、32…太陽電池。
DESCRIPTION OF SYMBOLS 1 ... Module heat dissipation base, 2 ... Solder layer, 3 ... Metal foil, 4 ... Insulating layer, 5 ... Semiconductor switching element, 6 ... Plate resistor, 7 ... Main electrode part, 8 ... Shunt resistance part, 9 ... Resin Insulating layer, 10 ... Aluminum wire, 11 ... Heat diffusion plate, 1
2 ... Heat dissipation board, 13 ... Shunt resistor, 14 ... Converter, 15 ... Inverter, 16 ... Capacitor, 17 ... Electric motor, 18 ... Detection circuit, 19 ... Calculator, 20 ... Resin adhesive layer, 21 ... Void, 22 ... Electrical conduction Adhesive layer, 23 ... Coating resin, 28 ... Hall element type current sensor, 29
... commercial power source, 30 ... power storage device such as battery, 31 ... detection electrode, 32 ... solar cell.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 敏夫 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5H410 EA35 FF05 FF24 FF25 5H740 BA11 BB05 MM11    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshio Ogawa             7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture             Inside the Hitachi Research Laboratory, Hitachi Ltd. F term (reference) 5H410 EA35 FF05 FF24 FF25                 5H740 BA11 BB05 MM11

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】抵抗体でシャント抵抗部を構成し、検出電
流が入力及び出力される前記シャント抵抗の両側面に検
出電流の入出力端子となる主電極部を固着したシャント
抵抗器から負荷電流を検出し、この検出値に基づいて出
力を制御する電力変換装置において、 シャント抵抗器を放熱する熱拡散板の側面に接着機能を
有する樹脂絶縁層を設け、前記樹脂絶縁層に前記シャン
ト抵抗部と前記主電極部を固着したシャント抵抗器を有
する電力変換装置。
1. A load current from a shunt resistor in which a shunt resistor portion is constituted by a resistor, and main electrode portions serving as input / output terminals of the detection current are fixed to both side surfaces of the shunt resistor for inputting and outputting the detection current. In the power converter that detects the output and controls the output based on the detected value, a resin insulating layer having an adhesive function is provided on the side surface of the heat diffusion plate that radiates heat to the shunt resistor, and the shunt resistor portion is provided on the resin insulating layer. And a shunt resistor having the main electrode portion fixedly attached thereto.
【請求項2】請求項1において、 前記樹脂絶縁層に固着される前記シャント抵抗部と前記
主電極部の各接着面が、同一平面と成るように、前記シ
ャント抵抗部と前記主電極部を固着したシャント抵抗器
を有する電力変換装置。
2. The shunt resistance portion and the main electrode portion according to claim 1, wherein the bonding surfaces of the shunt resistance portion fixed to the resin insulating layer and the main electrode portion are flush with each other. A power converter having a fixed shunt resistor.
【請求項3】請求項1もしくは2において、 高熱伝導性粒子と接着性樹脂により構成した樹脂絶縁層
を用いて前記熱拡散板に前記シャント抵抗部と前記主電
極部を固着して成るシャント抵抗器を有する電力変換装
置。
3. The shunt resistor according to claim 1, wherein the shunt resistor portion and the main electrode portion are fixed to the heat diffusion plate by using a resin insulating layer made of high thermal conductive particles and an adhesive resin. Converter having a power supply.
【請求項4】板状抵抗体でシャント抵抗部を構成し、検
出電流が入力及び出力される前記シャント抵抗の両側面
に検出電流の入出力端子となる主電極部を固着したシャ
ント抵抗器から負荷電流を検出し、この検出値に基づい
て少なくとも出力を制御する電力変換装置においてシャ
ント抵抗器を放熱する熱拡散板の側面に接着機能を有す
る樹脂絶縁層を設け、前記樹脂絶縁層の表面に少なくと
も前記樹脂絶縁層より粘度が低い樹脂接着層を設け、前
記シャント抵抗部と前記主電極部を前記樹脂接着層に固
着したシャント抵抗器を有する電力変換装置。
4. A shunt resistor in which a shunt resistor portion is constituted by a plate-shaped resistor, and main electrode portions serving as input / output terminals for the detection current are fixed to both side surfaces of the shunt resistor for inputting and outputting the detection current. A load insulation is provided, and a resin insulation layer having an adhesive function is provided on the side surface of the heat diffusion plate that radiates heat from the shunt resistor in the power conversion device that controls at least the output based on the detection value. A power conversion device comprising a shunt resistor in which at least a resin adhesive layer having a viscosity lower than that of the resin insulating layer is provided, and the shunt resistor portion and the main electrode portion are fixed to the resin adhesive layer.
【請求項5】請求項4において、 前記シャント抵抗器を放熱する熱拡散板の側面に接着機
能を有する樹脂絶縁層を設け、前記樹脂絶縁層の所定の
表面に少なくとも前記樹脂絶縁層より電気抵抗率が小さ
く、前記シャント抵抗部より電気抵抗率が大きい電気伝
導性接着層を設け、前記シャント抵抗部と前記主電極部
を前記電気伝導性接着層に固着したシャント抵抗器を有
する電力変換装置。
5. The resin insulating layer having an adhesive function is provided on a side surface of a heat diffusion plate that radiates heat from the shunt resistor, and a predetermined surface of the resin insulating layer has at least an electric resistance higher than that of the resin insulating layer. A power conversion device having an electrically conductive adhesive layer having a low electrical resistance and a greater electrical resistivity than the shunt resistor portion, and having a shunt resistor having the shunt resistor portion and the main electrode portion fixed to the electrically conductive adhesive layer.
【請求項6】請求項1乃至5の何れかにおいて、 少なくとも前記主電極部及び前記主電極部の一部に設け
た検出端子の一部と前記熱拡散板の一部を除き、前記シ
ャント抵抗器をコーティング樹脂にて覆ったシャント抵
抗器を有する電力変換装置。
6. The shunt resistor according to claim 1, except for at least a part of the main electrode part and a part of a detection terminal provided on a part of the main electrode part and a part of the heat diffusion plate. Converter having a shunt resistor, which is covered with coating resin.
JP2001370817A 2001-12-05 2001-12-05 Power converter with shunt resistor Expired - Fee Related JP3843825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001370817A JP3843825B2 (en) 2001-12-05 2001-12-05 Power converter with shunt resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001370817A JP3843825B2 (en) 2001-12-05 2001-12-05 Power converter with shunt resistor

Publications (2)

Publication Number Publication Date
JP2003173905A true JP2003173905A (en) 2003-06-20
JP3843825B2 JP3843825B2 (en) 2006-11-08

Family

ID=19179980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001370817A Expired - Fee Related JP3843825B2 (en) 2001-12-05 2001-12-05 Power converter with shunt resistor

Country Status (1)

Country Link
JP (1) JP3843825B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009010082A (en) * 2007-06-27 2009-01-15 Daikin Ind Ltd Electronic circuit device
JP2009236641A (en) * 2008-03-26 2009-10-15 Furukawa Electric Co Ltd:The Current sensor device
JP2015216211A (en) * 2014-05-09 2015-12-03 Koa株式会社 Resistor for electric current detection
CN107785135A (en) * 2016-08-24 2018-03-09 成都昊天宏达电子有限公司 Six-terminal network type multikilowatt radio frequency power resistor device
WO2020045258A1 (en) * 2018-08-29 2020-03-05 パナソニックIpマネジメント株式会社 Chip resistor and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009010082A (en) * 2007-06-27 2009-01-15 Daikin Ind Ltd Electronic circuit device
JP2009236641A (en) * 2008-03-26 2009-10-15 Furukawa Electric Co Ltd:The Current sensor device
JP2015216211A (en) * 2014-05-09 2015-12-03 Koa株式会社 Resistor for electric current detection
CN107785135A (en) * 2016-08-24 2018-03-09 成都昊天宏达电子有限公司 Six-terminal network type multikilowatt radio frequency power resistor device
WO2020045258A1 (en) * 2018-08-29 2020-03-05 パナソニックIpマネジメント株式会社 Chip resistor and method for producing same

Also Published As

Publication number Publication date
JP3843825B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
JP2003070230A (en) Power converter with shunt resistor
JP5622043B2 (en) Inverter device
US6943445B2 (en) Semiconductor device having bridge-connected wiring structure
US7528485B2 (en) Semiconductor device, power converter device using it, and hybrid vehicle using the power converter device
CN102414816B (en) Power model and power inverter
US7859105B2 (en) Power converter, power system provided with same, and mobile body
EP3439160A1 (en) Power conversion apparatus and electric vehicle
US8139371B2 (en) Power electronics devices with integrated control circuitry
JP2001267479A (en) Bus bar heat sink
US20130088279A1 (en) Power Converter
WO2007080748A1 (en) Drive circuit of motor and outdoor unit of air conditioner
US9891247B2 (en) U-shaped vertical shunt resistor for Power Semiconductor module
JP3780230B2 (en) Semiconductor module and power conversion device
US20200013703A1 (en) Semiconductor device
JPH1189248A (en) Power control equipment
JP2003173905A (en) Power converter equipped with shunt resistance
JP2004527120A (en) Mounting section for electrical circuits, specifically for power switches
JP2004527120A5 (en)
US11889666B2 (en) Power device assemblies having embedded PCBs and methods of fabricating the same
JP2007081155A (en) Semiconductor device
CN115084113A (en) Semiconductor circuit with double-layer structure and electric control board
JP6906583B2 (en) Semiconductor power module
CN111284331B (en) Motor control device with built-in shunt resistor and power transistor
JPH11252885A (en) Motor driving equipment and manufacture thereof
CN112020202A (en) Device with a power electronic substrate and a contact element, power electronic unit and converter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees