JP2003173788A - Gas diffusion layer for polymer electrolyte fuel cell and electrolyte membrane/electrode joint body as well as polymer electrolyte fuel cell - Google Patents

Gas diffusion layer for polymer electrolyte fuel cell and electrolyte membrane/electrode joint body as well as polymer electrolyte fuel cell

Info

Publication number
JP2003173788A
JP2003173788A JP2002281128A JP2002281128A JP2003173788A JP 2003173788 A JP2003173788 A JP 2003173788A JP 2002281128 A JP2002281128 A JP 2002281128A JP 2002281128 A JP2002281128 A JP 2002281128A JP 2003173788 A JP2003173788 A JP 2003173788A
Authority
JP
Japan
Prior art keywords
gas diffusion
diffusion layer
polymer electrolyte
polymer
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002281128A
Other languages
Japanese (ja)
Other versions
JP3562809B2 (en
Inventor
Masao Yamamoto
雅夫 山本
Junji Niikura
順二 新倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002281128A priority Critical patent/JP3562809B2/en
Publication of JP2003173788A publication Critical patent/JP2003173788A/en
Application granted granted Critical
Publication of JP3562809B2 publication Critical patent/JP3562809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To realize a polymer electrolyte fuel cell capable of a stable operation for long period of time through supply of a gas diffusion layer or a gas diffusion electrode with improved basic functions as a cell, enabling a uniform moisture control over the whole surface of an electrolyte membrane/electrode joint body (MEA). <P>SOLUTION: A gas diffusion layer 213a having a polymer-containing conductive layer 22a consisting of conductive carbon particles 210a, 211a with different volume of acid functional group and a polymer material 212a is formed on a porous support body 21a. On the surface of the gas diffusion layer 213a, a catalyst layer 23a containing conductive carbon particles holding platinum is arranged to structure a gas diffusion electrode 24a. Mixing volume of the conductive carbon particles 211a with a plenty of acid functional group volume is increased from one end (R2) of the gas diffusion electrode 24a toward the other end (L2). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、民生用コジェネレ
ーションや自動車用等の移動体用発電器として有用な高
分子電解質型燃料電池、それに用いる電解質膜−電極接
合体およびガス拡散層に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell useful as a power generator for mobile bodies such as consumer cogeneration and automobiles, and an electrolyte membrane-electrode assembly and a gas diffusion layer used therein. is there.

【0002】[0002]

【従来の技術】高分子電解質型燃料電池は、水素などの
燃料ガスと空気などの酸化剤ガスを供給し(一般的に燃
料ガス供給側をアノード電極と呼び、また酸化剤ガス供
給側はカソード電極と呼ばれる)、白金などの触媒上で
電気化学的に反応させるもので、電気と熱とを同時に発
生させるものである。このような高分子電解質型燃料電
池の一般的な構成の概略を図1に示す。
2. Description of the Related Art A polymer electrolyte fuel cell supplies a fuel gas such as hydrogen and an oxidant gas such as air (generally, the fuel gas supply side is called an anode electrode, and the oxidant gas supply side is a cathode). It is called an electrode), which reacts electrochemically on a catalyst such as platinum, which simultaneously generates electricity and heat. An outline of a general configuration of such a polymer electrolyte fuel cell is shown in FIG.

【0003】図1において水素イオンを選択的に輸送す
る高分子電解質膜11の両面には白金系の金属触媒を担
持したカーボン粉末を主成分とする触媒層12を密着し
て配置する。さらに触媒層12の外面には、気孔を有す
る多孔性支持体で構成される一対のガス拡散層13を触
媒層12に密着して配置する。通常、多孔性支持体はカ
ーボンペーパーなどのカーボン不織布あるいはカーボン
クロス製である。ガス拡散層13と触媒層12によりガ
ス拡散電極14を構成する。なお、このガス拡散電極は
単に電極と称される場合もある。
In FIG. 1, on both sides of a polymer electrolyte membrane 11 for selectively transporting hydrogen ions, a catalyst layer 12 containing carbon powder carrying a platinum-based metal catalyst as a main component is closely arranged. Further, on the outer surface of the catalyst layer 12, a pair of gas diffusion layers 13 composed of a porous support having pores are arranged in close contact with the catalyst layer 12. Usually, the porous support is made of carbon nonwoven fabric such as carbon paper or carbon cloth. The gas diffusion layer 14 and the catalyst layer 12 form a gas diffusion electrode 14. The gas diffusion electrode may be simply referred to as an electrode.

【0004】ガス拡散電極14の外側には、ガス拡散電
極14と高分子電解質膜11とで形成した電解質膜−電
極接合体(以下、MEA)15を機械的に固定するとと
もに、隣接するMEA同士を互いに電気的に直列に接続
し、さらにガス拡散電極に反応ガスを供給し、かつ反応
により発生した水や余剰のガスを運び去るためのガス流
路16を一方の面に形成したセパレータ板17を配置す
る。ガス流路はセパレータ板17と別に設けることもで
きるが、セパレータ板の表面に溝を設けてガス流路とす
る方式が一般的である。また、高分子電解質膜11とセ
パレータ板17間には反応ガスの漏れを防止するためガ
スケット18を挟持する。
On the outside of the gas diffusion electrode 14, an electrolyte membrane-electrode assembly (hereinafter referred to as MEA) 15 formed of the gas diffusion electrode 14 and the polymer electrolyte membrane 11 is mechanically fixed, and adjacent MEAs are connected to each other. Are electrically connected in series to each other, a reaction gas is further supplied to the gas diffusion electrode, and a gas passage 16 for carrying away water and surplus gas generated by the reaction is formed on one surface of the separator plate 17 To place. The gas flow path may be provided separately from the separator plate 17, but it is common to provide a groove on the surface of the separator plate to form the gas flow path. Further, a gasket 18 is sandwiched between the polymer electrolyte membrane 11 and the separator plate 17 in order to prevent the reaction gas from leaking.

【0005】電池運転時、カソード電極においては反応
活物質である酸素または空気がガス拡散層を介してガス
流路から触媒層へと拡散するとともに、反応によって生
成され浸透効果により触媒層からガス拡散層へと浸透し
てきた過剰な水分をガス拡散層の気孔部から余剰ガスと
ともに電池外部へと除去する。
During operation of the battery, oxygen or air, which is a reaction active material, diffuses from the gas channel to the catalyst layer through the gas diffusion layer at the cathode electrode, and at the same time, gas is diffused from the catalyst layer due to the permeation effect generated by the reaction. Excess water that has permeated into the layer is removed from the pores of the gas diffusion layer together with the surplus gas to the outside of the battery.

【0006】[0006]

【発明が解決しようとする課題】高分子電解質型燃料電
池では、高分子電解質膜が含水率の増加に伴ってイオン
伝導度が高くなる物性を有しているため、前記高分子電
解質膜を湿潤状態に保つことが必要である。このため
に、一般的には予め反応ガスを所定の湿度に加湿してお
き、反応ガスの供給と同時に高分子電解質膜の保湿性の
確保が図られている。
In the polymer electrolyte fuel cell, since the polymer electrolyte membrane has the property that its ionic conductivity becomes higher as the water content increases, the polymer electrolyte membrane is wetted. It is necessary to keep the condition. For this reason, in general, the reaction gas is preliminarily humidified to a predetermined humidity so that the moisture retention property of the polymer electrolyte membrane is secured at the same time as the supply of the reaction gas.

【0007】電極反応の結果、生成された水分の一部は
セパレータ板のガス流路を流れる反応ガスとともにガス
流路の入口側から出口側へと流され、最終的には燃料電
池の外部に排水される。従って、燃料電池内において反
応ガスに含まれる水分量は反応ガスの流れ方向で差異を
生じ、反応ガスの入口側に比べると、出口側では反応生
成水に相当する量だけ多量に水分が含まれることになる
ため、ガス流路の入口側に比べると出口側では所定以上
の高い湿度状態になっている。このために、出口側付近
では、ガス拡散層からの水分の排水機能が低下し、極端
な場合にはガス拡散層の気孔部が余剰の水分で閉塞され
るというフラッディング現象が発生するため、反応ガス
の拡散性が阻害されることになり電池電圧が極端に低下
するという問題が発生していた。
As a result of the electrode reaction, a part of the water generated is caused to flow from the inlet side to the outlet side of the gas flow channel together with the reaction gas flowing in the gas flow channel of the separator plate, and finally to the outside of the fuel cell. Be drained. Therefore, the amount of water contained in the reaction gas in the fuel cell differs in the flow direction of the reaction gas, and the amount of water contained in the reaction gas is larger at the outlet side than at the inlet side of the reaction gas. Therefore, compared to the inlet side of the gas flow path, the outlet side is in a high humidity state above a predetermined level. For this reason, in the vicinity of the outlet side, the function of draining water from the gas diffusion layer deteriorates, and in extreme cases, a flooding phenomenon occurs in which the pores of the gas diffusion layer are clogged with excess water. There has been a problem that the diffusibility of gas is hindered and the battery voltage drops extremely.

【0008】また、反対に出口側でのフラッディング現
象の発生を抑制するために、予め湿度を低下させた反応
ガスを入口側から供給すると、入口側付近では高分子電
解質膜の含水率が低下し、プロトン導電性が低下、すな
わちプロトン導電抵抗が増大することによる電池電圧の
低下が起こるという問題が発生していた。これらの傾向
は電極面積が大きく、またセパレータ板のガス流路が長
いほど顕著であった。
On the contrary, in order to suppress the occurrence of the flooding phenomenon on the outlet side, when the reaction gas whose humidity is lowered in advance is supplied from the inlet side, the water content of the polymer electrolyte membrane lowers near the inlet side. However, there has been a problem in that the proton conductivity is lowered, that is, the proton conductivity is increased, so that the battery voltage is lowered. These tendencies were more remarkable as the electrode area was larger and the gas passage of the separator plate was longer.

【0009】このような課題に対する解決策の一案とし
て、特開平6−267562号公報に記載された技術が
ある。この先行文献に記載されているのは、ガス流路の
入口側から出口側に向かってガス拡散層の空隙率を増大
させるという構成である。このような構成では、ガスの
拡散量が電池面内で不均一化しやすい、あるいはガス拡
散電極の出口側でガス拡散電極の導電率が低下しやす
い、あるいは電池面内でガス拡散電極の導電率が不均一
化する等の問題を引き起こすなどの電池の基本性能を低
下させる恐れがある。
As a solution to such a problem, there is a technique described in Japanese Patent Laid-Open No. 6-267562. What is described in this prior document is a structure in which the porosity of the gas diffusion layer is increased from the inlet side of the gas flow path toward the outlet side. In such a configuration, the diffusion amount of gas is likely to be non-uniform within the cell surface, or the conductivity of the gas diffusion electrode is likely to decrease at the outlet side of the gas diffusion electrode, or the conductivity of the gas diffusion electrode within the cell surface. May deteriorate the basic performance of the battery, such as causing problems such as non-uniformity.

【0010】[0010]

【特許文献1】特開平6−267562号公報[Patent Document 1] JP-A-6-267562

【0011】本発明は上記した従来技術の問題点を考慮
してなされたものであり、本発明の目的は、MEAの全
面にわたって特性を均一な水分管理ができ、電池の基本
性能を高めたガス拡散層あるいはガス拡散電極を提供し
長期にわたり安定動作が可能な高分子電解質型燃料電池
を実現することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to achieve a uniform moisture control over the entire surface of the MEA and to improve the basic performance of the gas. It is to provide a diffusion layer or a gas diffusion electrode to realize a polymer electrolyte fuel cell capable of stable operation for a long period of time.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決するた
めの本発明のガス拡散層は、多孔性支持体と、前記多孔
性支持体上に配置された高分子材料および導電性炭素粒
子を含有する高分子含有導電層を有するガス拡散層であ
って、前記導電性粒子は、酸性官能基量の異なる少なく
とも2種の導電性炭素粒子であり、かつ前記酸性官能基
量が多い方の導電性炭素粒子の量が、ガス拡散層の一端
(R2)から他端(L2)に向かって多くなっているこ
とを特徴とする。
The gas diffusion layer of the present invention for solving the above-mentioned problems comprises a porous support, a polymer material and conductive carbon particles arranged on the porous support. A gas diffusion layer having a polymer-containing conductive layer contained therein, wherein the conductive particles are at least two kinds of conductive carbon particles having different amounts of acidic functional groups, and the conductive particles having a larger amount of the acidic functional groups. The amount of the functional carbon particles increases from one end (R2) to the other end (L2) of the gas diffusion layer.

【0013】また、本発明のガス拡散層は、多孔性支持
体と、前記多孔性支持体上に配置された導電性炭素粒子
および高分子材料を含有する高分子含有導電層とを有す
るガス拡散層であって、前記高分子材料は、結晶化度の
異なる少なくとも2種の高分子材料であり、かつ前記高
分子材料のうち結晶化度の低い方の高分子材料の量が、
ガス拡散層の一端(R3)から他端(L3)に向かって
多くなっていることを特徴とする。
Further, the gas diffusion layer of the present invention comprises a porous support and a polymer-containing conductive layer containing conductive carbon particles and a polymer material, which is disposed on the porous support. The polymer material is a layer, and the polymer material is at least two kinds of polymer materials having different crystallinity, and the amount of the polymer material having a lower crystallinity of the polymer materials is
It is characterized in that it increases from one end (R3) to the other end (L3) of the gas diffusion layer.

【0014】また、本発明のガス拡散層は、多孔性支持
体と、前記多孔性支持体上に導電性炭素粒子および高分
子材料を含有する高分子含有導電層とを有するガス拡散
層であって、前記高分子材料は、透湿係数の異なる少な
くとも2種の高分子材料であり、かつ前記高分子材料の
うち透湿係数が大きい方の高分子材料の量が、ガス拡散
層の一端(R4)から他端(L4)に向かって多くなっ
ていることを特徴とする。
The gas diffusion layer of the present invention is a gas diffusion layer having a porous support and a polymer-containing conductive layer containing conductive carbon particles and a polymer material on the porous support. The polymer material is at least two kinds of polymer materials having different moisture permeability coefficients, and the amount of the polymer material having the larger moisture permeability coefficient among the polymer materials is equal to one end of the gas diffusion layer ( It is characterized by increasing from R4) to the other end (L4).

【0015】また、本発明の電解質膜−電極接合体は、
高分子電解質膜と、前記高分子電解質膜の両面に配置さ
れた導電性炭素粒子および金属触媒を含有する触媒層
と、前記触媒層の少なくともいずれか一方に対して配置
された、前記したいずれかのガス拡散層とを有すること
特徴とする。
Further, the electrolyte membrane-electrode assembly of the present invention comprises
A polymer electrolyte membrane, a catalyst layer containing conductive carbon particles and a metal catalyst arranged on both sides of the polymer electrolyte membrane, and arranged at least one of the catalyst layer, any one of the above And a gas diffusion layer of.

【0016】また、本発明の高分子電解質型燃料電池
は、前記電解質膜−電極接合体と、その電解質膜−電極
接合体の両側に配置されたガス流路を持つ導電性セパレ
ータ板とを有する単電池の積層体を備える高分子電解質
型燃料電池であって、前記ガス拡散層に対して配置され
た前記導電性セパレータ板のガス流路に酸化剤ガスが通
流され、かつ前記ガス拡散層の一端(R2、R3、R
4)が前記酸化剤ガスの入口側に位置し、あるいは対応
し、他端(L2、L3、L4)が前記酸化剤ガスの前記
出口側に位置している、あるいは対応していることを特
徴とする。
Further, the polymer electrolyte fuel cell of the present invention has the above-mentioned electrolyte membrane-electrode assembly, and conductive separator plates having gas flow paths arranged on both sides of the electrolyte membrane-electrode assembly. A polymer electrolyte fuel cell comprising a stack of unit cells, wherein an oxidant gas is allowed to flow through a gas flow path of the conductive separator plate arranged with respect to the gas diffusion layer, and the gas diffusion layer. One end (R2, R3, R
4) is located at or corresponds to the inlet side of the oxidant gas, and the other ends (L2, L3, L4) are located at or correspond to the outlet side of the oxidant gas. And

【0017】[0017]

【発明の実施の形態】《第1の実施形態》図2は本発明
の第1の実施の形態におけるガス拡散層及びこれを用い
たガス拡散電極(電極2a)の構成をガス拡散層側から
見た模式図である。
BEST MODE FOR CARRYING OUT THE INVENTION << First Embodiment >> FIG. 2 shows the structure of a gas diffusion layer and a gas diffusion electrode (electrode 2a) using the same according to the first embodiment of the present invention from the gas diffusion layer side. It is the seen schematic diagram.

【0018】図示するようにガス拡散層213aは、炭
素繊維で構成される多孔性支持体21aと、その上に形
成された少なくとも2種の導電性炭素粒子210a、2
11aと高分子材料212aで構成される高分子含有導
電層22aで構成される。ガス拡散層213aにおいて
高分子含有導電層22aの表面に白金を担持した導電性
炭素粒子で構成される触媒層23aが配置されガス拡散
電極24aが構成される。高分子含有導電層22aは、
酸性官能基量がそれぞれ異なる導電性炭素粒子210
a、211aが混合されてなり、酸性官能基量の多い方
の導電性炭素粒子211aの混合量が高分子含有導電層
22aにおいて、その一端(R2)から他端(L2)に
向かって多くなっている。
As shown in the figure, the gas diffusion layer 213a includes a porous support 21a made of carbon fibers and at least two kinds of conductive carbon particles 210a, 2a formed thereon.
It is composed of a polymer-containing conductive layer 22a composed of 11a and a polymer material 212a. In the gas diffusion layer 213a, the catalyst layer 23a made of conductive carbon particles carrying platinum is arranged on the surface of the polymer-containing conductive layer 22a to form the gas diffusion electrode 24a. The polymer-containing conductive layer 22a is
Conductive carbon particles 210 having different amounts of acidic functional groups
a, 211a are mixed, and the mixed amount of the conductive carbon particles 211a having a larger amount of acidic functional groups increases in the polymer-containing conductive layer 22a from one end (R2) to the other end (L2). ing.

【0019】ここで、酸性官能基とは具体的にはカルボ
ニル基、水酸基、キノン基、ラクトン基であり、また、
酸性官能基量とはカーボンの単位重量当たりの上記した
官能基のモル数をいう。図3は従来例におけるガス拡散
層およびこれを用いたガス拡散電極(電極2b)の概略
を示す構成図である。基本的な構成は電極2aと同一で
あるが、ガス拡散層213bの面内で導電性炭素粒子2
10bが酸性官能基量が同一の一つの材料で構成されて
いる点で電極2aと異なる(図3において、図2と同じ
ものは符号を省略した)。
Here, the acidic functional group is specifically a carbonyl group, a hydroxyl group, a quinone group or a lactone group, and
The amount of acidic functional group means the number of moles of the above-mentioned functional group per unit weight of carbon. FIG. 3 is a schematic diagram showing a gas diffusion layer and a gas diffusion electrode (electrode 2b) using the same in a conventional example. The basic structure is the same as that of the electrode 2a, but the conductive carbon particles 2 are formed in the plane of the gas diffusion layer 213b.
10b is different from the electrode 2a in that it is made of one material having the same amount of acidic functional groups (in FIG. 3, the same symbols as those in FIG. 2 are omitted).

【0020】図4は前記ガス拡散電極を用いて作製した
高分子電解質型燃料電池の概略を示す構成図である。こ
の構成の燃料電池において、高分子電解質膜25の両面
に一方の面には電極2aを、他面には電極2bを、各電
極の触媒層側を高分子電解質膜側に向けて、高分子電解
質膜25に密着して配置し、電解質膜−電極接合体(以
下、MEA)を形成する。さらに、MEAの外部にガス
流路26を一方の面に形成したセパレータ板27を配置
し、セパレータ板27のガス流路26から、電極2a側
には符号28で示したガス流路に酸化剤ガスとして空気
を、また電極2b側には符号29で示したガス流路に燃
料ガスとして水素を通流する。酸化剤ガス用流路28の
入口側には図2におけるR2が位置しており、酸化剤ガ
ス用流路28の出口側には図2におけるL2が位置して
いる。
FIG. 4 is a schematic view of a polymer electrolyte fuel cell produced using the gas diffusion electrode. In the fuel cell of this configuration, the polymer electrolyte membrane 25 has electrodes 2a on one surface and electrodes 2b on the other surface on both sides, and the catalyst layer side of each electrode is directed to the polymer electrolyte membrane side, The electrolyte membrane 25 is placed in close contact with the electrolyte membrane 25 to form an electrolyte membrane-electrode assembly (hereinafter, MEA). Further, a separator plate 27 having a gas flow path 26 formed on one surface is arranged outside the MEA, and an oxidizer is added from the gas flow path 26 of the separator plate 27 to the gas flow path indicated by the reference numeral 28 on the electrode 2a side. Air is passed as a gas, and hydrogen is passed as a fuel gas through a gas passage indicated by reference numeral 29 on the electrode 2b side. 2 is located on the inlet side of the oxidizing gas passage 28, and L2 in FIG. 2 is located on the outlet side of the oxidizing gas passage 28.

【0021】前記構成にすることによってMEA全面に
わたって均一な水分管理ができる。つまり、電池反応に
よる生成水が発生するために均一な水分管理が困難であ
った酸化極側のガス拡散層において、酸化剤ガスの出口
側では、ガス拡散層中の導電性粒子の酸性官能基量が多
いため、導電性粒子は水に濡れ易くなり、ガス拡散層の
表面を伝わってセパレータ板のガス流路付近まで運ば
れ、酸化剤ガスを介して電池外部に排水されやすくな
る。一方、酸化剤ガスの入り口側では、ガス拡散層中の
導電性粒子の酸性官能基量が少ないため導電性粒子は水
に濡れ難くなる。そのため、セパレータ板のガス流路ま
で運ばれ難く、電池内部に保持されやすくなるのであ
る。
With the above-mentioned structure, uniform water content can be controlled over the entire surface of the MEA. In other words, in the gas diffusion layer on the oxidation electrode side where uniform water management was difficult due to the generation of water generated by the battery reaction, at the outlet side of the oxidant gas, the acidic functional group of the conductive particles in the gas diffusion layer was used. Since the amount of the conductive particles is large, the conductive particles are easily wetted with water, are transported along the surface of the gas diffusion layer to the vicinity of the gas channel of the separator plate, and are easily discharged to the outside of the battery via the oxidant gas. On the other hand, on the oxidant gas inlet side, the amount of acidic functional groups in the conductive particles in the gas diffusion layer is small, so that the conductive particles are less likely to be wet with water. Therefore, it is difficult for the gas to flow to the gas passage of the separator plate, and it is easy to hold the gas inside the battery.

【0022】なお、本実施の形態における酸性官能基量
の異なる導電性炭素粒子としては、アセチレンブラック
と、これを空気酸化して酸性官能基量の増加せしめたア
セチレンブラックとの組み合わせがあげられるが、これ
以外にも(酸性官能基量の多い導電性炭素材料、酸性官
能基量の少ない導電性炭素材料)=(ファーネスブラッ
ク、アセチレンブラック)、(ファーネスブラック、黒
鉛化ブラック)などがあげられる。
The conductive carbon particles having different amounts of acidic functional groups in the present embodiment include a combination of acetylene black and acetylene black obtained by air-oxidizing the particles to increase the amount of acidic functional groups. Other than this, (conductive carbon material having a large amount of acidic functional group, conductive carbon material having a small amount of acidic functional group) = (furnace black, acetylene black), (furnace black, graphitized black) and the like can be mentioned.

【0023】《第2の実施形態》図5は本発明の第2の
実施の形態におけるガス拡散層及びガス拡散電極(電極
3a)の概略をガス拡散層側から見た構成図である。図
示するようにガス拡散層313は、炭素繊維で構成され
る多孔性支持体31と、その上に形成された導電性炭素
粒子310と少なくとも2種の高分子材料311、31
2で構成される高分子含有導電層32が形成され構成さ
れる。ガス拡散層313の表面に白金を担持した導電性
炭素粒子で構成される触媒層33が配置され、ガス拡散
電極34が構成される。
<Second Embodiment> FIG. 5 is a schematic view of a gas diffusion layer and a gas diffusion electrode (electrode 3a) according to a second embodiment of the present invention as viewed from the gas diffusion layer side. As shown, the gas diffusion layer 313 includes a porous support 31 composed of carbon fibers, conductive carbon particles 310 formed thereon, and at least two kinds of polymer materials 311 and 31.
The polymer-containing conductive layer 32 composed of 2 is formed and configured. A catalyst layer 33 made of conductive carbon particles carrying platinum is arranged on the surface of the gas diffusion layer 313 to form a gas diffusion electrode 34.

【0024】高分子含有導電層32は結晶化度が異なる
高分子材料311、312が混合されてなり、結晶化度
の低い方の高分子材料311の混合量が高分子含有導電
層32において、その一端(R3)から他端(L3)に
向かって多くなっている。このガス拡散電極を用いて作
製した高分子電解質型燃料電池の構成は図4と同様であ
るので、その詳述は省略するが、酸化剤ガスの入口側に
は図5におけるR3が位置しており、酸化剤ガスの出口
側には図5におけるL3が位置している。
The polymer-containing conductive layer 32 is made by mixing polymer materials 311 and 312 having different crystallinities, and the polymer material 311 having the lower crystallinity is mixed in the polymer-containing conductive layer 32 in a mixed amount. It increases from one end (R3) to the other end (L3). Since the structure of the polymer electrolyte fuel cell produced using this gas diffusion electrode is the same as that of FIG. 4, its detailed description is omitted, but R3 in FIG. 5 is located at the oxidant gas inlet side. Therefore, L3 in FIG. 5 is located on the outlet side of the oxidant gas.

【0025】前記構成にすることによってMEA全面に
わたって均一な水分管理ができる。つまり、水の浸透は
高分子材料の非晶質部を介して水分が吸収及び拡散し透
過することよって起こるため、酸化剤ガスの出口側では
ガス拡散層中の高分子材料は結晶化度の低い高分子材料
(つまりは非晶質部の多い高分子材料)の存在割合が多
くなるため、全体としての高分子材料の非晶質部分が多
くなるため透水量は多くなり、ガス拡散層の表面を伝わ
ってセパレータ板のガス流路付近まで運ばれ、酸化剤ガ
スを介して電池外部に排水されやすくなるのである。一
方、酸化剤ガスの入口側では、ガス拡散層中の高分子材
料は結晶化度の低い材料の存在割合が少なくなることに
より高分子材料の非晶質部が少なくなるため、透水量は
少なくなり水が電池内部に保持されやすくなるのであ
る。
With the above-mentioned structure, uniform water content can be controlled over the entire surface of the MEA. In other words, water permeation occurs because water is absorbed, diffused and permeated through the amorphous part of the polymer material, so that the polymer material in the gas diffusion layer on the outlet side of the oxidant gas has a degree of crystallinity. Since the existence ratio of the low polymer material (that is, the polymer material having many amorphous parts) increases, the amount of water permeation increases because the amorphous part of the polymer material as a whole increases, and the gas diffusion layer It is conveyed along the surface to the vicinity of the gas flow path of the separator plate, and is easily discharged to the outside of the battery via the oxidant gas. On the other hand, on the inlet side of the oxidant gas, the polymer material in the gas diffusion layer has less amorphous portion of the polymer material due to a decrease in the proportion of the material having low crystallinity. This makes it easier for the water to be retained inside the battery.

【0026】なお、本実施の形態における高分子材料と
しては、ポリフッ化ビニル、ポリエチレン、ポリプロピ
レン、ポリスチレン、ポリエチレンテレフタレート、ポ
リ塩化ビニル、ポリアクリロニトリル、エチルセルロー
スなどがあげられる。それらは、同じ名称の材料でも結
晶化度の異なる材料が種々ある。それらの高分子材料の
中から、結晶化度の大きいものと小さいものとの組合せ
を適宜選択して本実施形態で用いることができる。
Examples of the polymer material in this embodiment include polyvinyl fluoride, polyethylene, polypropylene, polystyrene, polyethylene terephthalate, polyvinyl chloride, polyacrylonitrile, ethyl cellulose and the like. There are various materials having the same name but different crystallinity. A combination of a material having a high degree of crystallinity and a material having a low degree of crystallinity can be appropriately selected from those polymer materials and used in the present embodiment.

【0027】《第3の実施形態》図6は本発明の第3の
実施の形態におけるガス拡散層及びガス拡散電極(電極
4a)の概略をガス拡散層側から見た構成図である。
<< Third Embodiment >> FIG. 6 is a schematic view of a gas diffusion layer and a gas diffusion electrode (electrode 4a) according to a third embodiment of the present invention as viewed from the gas diffusion layer side.

【0028】図示するようにガス拡散層413は、炭素
繊維で構成される多孔性支持体41と、その上に形成さ
れた導電性炭素粒子410と少なくとも2種の高分子材
料411、412で構成される高分子含有導電層42で
構成される。ガス拡散層413の表面に、白金を担持し
た導電性炭素粒子で構成される触媒層43が配置されガ
ス拡散電極44が構成されている。高分子含有導電層4
2は透湿係数の異なる高分子材料411、412が混合
されてなり、透湿係数の大きい方の高分子材料411の
混合量が高分子含有導電層42において、その一端(R
4)から他端(L4)に向かって多くなっている。
As shown in the figure, the gas diffusion layer 413 comprises a porous support 41 composed of carbon fibers, conductive carbon particles 410 formed thereon, and at least two kinds of polymer materials 411 and 412. The polymer-containing conductive layer 42 is formed. On the surface of the gas diffusion layer 413, the catalyst layer 43 made of conductive carbon particles carrying platinum is arranged to form the gas diffusion electrode 44. Polymer-containing conductive layer 4
2 is a mixture of polymer materials 411 and 412 having different moisture permeability coefficients, and the polymer material conductive layer 42 has a mixed amount of one end (R
4) increasing from the other end (L4).

【0029】このガス拡散電極を用いて作製した高分子
電解質型燃料電池の構成は図4と同様であるので、その
詳述は省略するが、酸化剤ガスの入口側には図4におけ
るR4が位置しており、酸化剤ガスの出口側には図4に
おけるL4が位置している。
Since the structure of the polymer electrolyte fuel cell produced by using this gas diffusion electrode is the same as that of FIG. 4, its detailed description is omitted, but R4 in FIG. 4 is provided on the inlet side of the oxidant gas. L4 in FIG. 4 is located on the outlet side of the oxidizing gas.

【0030】前記構成にすることによってMEA全面に
わたって均一な水分管理ができる。つまり、電池反応に
よる生成水が発生するために均一な水分管理が困難であ
った酸化極側のガス拡散層において、酸化剤ガスの出口
側では、ガス拡散層中に透湿係数の大きい高分子材料が
多く存在することになるため、透水量が多く、ガス拡散
層の表面を伝わってセパレータ板のガス流路付近まで運
ばれ、酸化剤ガスを介して電池外部に排水されやすくな
る。一方、酸化剤ガスの入り口側では、ガス拡散層中に
透湿係数の小さい高分子材料が多く存在することになる
ため、透水量が少なく、セパレータ板のガス流路まで運
ばれ難く、電池内部に保持されやすくなるのである。
With the above structure, uniform water content can be controlled over the entire surface of the MEA. In other words, in the gas diffusion layer on the oxidation electrode side where uniform water management was difficult because the water produced by the battery reaction was generated, on the outlet side of the oxidant gas, the polymer with a large moisture permeability coefficient was present in the gas diffusion layer. Since a large amount of the material is present, the amount of water permeation is large, the water is transmitted along the surface of the gas diffusion layer to the vicinity of the gas channel of the separator plate, and is easily discharged to the outside of the battery via the oxidant gas. On the other hand, on the inlet side of the oxidant gas, there are many polymer materials with a small moisture permeability coefficient in the gas diffusion layer, so the water permeability is small and it is difficult to carry to the gas passage of the separator plate, It becomes easy to be held in.

【0031】なお、本実施の形態における透湿係数の異
なる高分子材料の具体的な組み合わせとしては、(透湿
係数の小さい高分子材料、透湿係数の大きい高分子材
料)=(PTFE、ポリイミド)、(PTFE、ポリ塩
化ビニル)、(PTFE、酢酸セルロース)、(ポリエ
チレン、ポリイミド)、(ポリエチレン、ポリ塩化ビニ
ル)、(ポリエチレン、酢酸セルロース)、(ポリプロ
ピレン、ポリイミド )、(ポリプロピレン、ポリ塩化
ビニル)、(ポリプロピレン、酢酸セルロース)などが
挙げられる。
As a specific combination of polymer materials having different moisture permeability coefficients in the present embodiment, (polymer material having low moisture permeability coefficient, polymer material having high moisture permeability coefficient) = (PTFE, polyimide ), (PTFE, polyvinyl chloride), (PTFE, cellulose acetate), (polyethylene, polyimide), (polyethylene, polyvinyl chloride), (polyethylene, cellulose acetate), (polypropylene, polyimide), (polypropylene, polyvinyl chloride) ), (Polypropylene, cellulose acetate) and the like.

【0032】上記のすべての実施形態に共通して、用い
るべき多孔性支持体としては、カーボン材料が好ましい
が、以下の実施例でも用いるカーボンペーパーに限ら
ず、他のカーボン不織布を用いても、また、カーボンク
ロスを用いても、カーボンペーパーを用いた場合と同様
に、本発明の目的とする効果が得られる。すなわち、多
孔性支持体として必要な特性は、多孔性および導電性を
有し、ガス拡散層の構成要素としてある程度の機械的強
度があることである。
In all of the above embodiments, a carbon material is preferable as the porous support to be used, but not limited to the carbon paper used in the following examples, other carbon nonwoven fabrics may be used. Further, even if the carbon cloth is used, the effect intended by the present invention can be obtained as in the case of using the carbon paper. That is, the properties required for the porous support are that it has porosity and conductivity, and that it has a certain degree of mechanical strength as a constituent element of the gas diffusion layer.

【0033】以上の本発明の実施形態においては、上述
のようにMEA全面にわたって均一な水分管理が可能と
なり、電圧が長期にわたり安定した高分子電解質型燃料
電池を実現することができる。これは、上述の様にカソ
ード電極において出口側で水の排水が促進され、反対に
入口側では透水量が抑制されるため、高分子電解質膜の
乾燥やフラッディングによる電池電圧の低下が抑えられ
るためである。
In the embodiments of the present invention described above, it is possible to realize uniform water management over the entire MEA as described above, and to realize a polymer electrolyte fuel cell in which the voltage is stable for a long period of time. This is because the drainage of water is promoted on the outlet side of the cathode electrode as described above, and the amount of water permeation is suppressed on the contrary on the inlet side, so that the decrease in battery voltage due to drying or flooding of the polymer electrolyte membrane is suppressed. Is.

【0034】[0034]

【実施例】以下、本発明の実施例を具体的に説明する。 《実施例1−1》 A.ガス拡散電極の製造 平均粒径3μmのアセチレンブラック(以下、ABとい
う)を空気の存在下、400℃で10時間加熱しABを
空気酸化した(以下、この空気酸化処理を施したABを
ABO1という)。AB及びABO1の酸性官能基の存
在量を揮発成分組成分析により測定した。
EXAMPLES Examples of the present invention will be specifically described below. << Example 1-1 >> A. Production of Gas Diffusion Electrode Acetylene black having an average particle size of 3 μm (hereinafter referred to as AB) was heated at 400 ° C. for 10 hours in the presence of air to air-oxidize AB (hereinafter, AB subjected to the air-oxidation treatment is referred to as ABO1). ). The amount of acidic functional groups present in AB and ABO1 was measured by volatile component composition analysis.

【0035】揮発成分組成分析はカーボンを真空中で約
1000℃で加熱すると、カーボンの表面に存在する酸
性官能基が二酸化炭素、一酸化炭素、水素及びメタンの
形で脱離することを利用し、そのガス組成を定量するこ
とからカーボンの表面に存在する酸性官能基の量を化学
的に定量する方法である(カーボンブラック便覧(第3
版)、カーボンブラック協会編)。本実施例で用いたA
B及びABO1の酸性官能基量は、ABで4.1×10
-4mol/g、ABO1で9.8×10-4mol/gであり、空気
酸化処理を施したものでは酸性官能基量が増加している
ことが解った。
The volatile component composition analysis utilizes the fact that when carbon is heated at about 1000 ° C. in vacuum, the acidic functional groups existing on the surface of carbon are eliminated in the form of carbon dioxide, carbon monoxide, hydrogen and methane. , A method of chemically quantifying the amount of acidic functional groups present on the surface of carbon by quantifying the gas composition (Carbon Black Handbook (3rd
Edition), edited by Carbon Black Association). A used in this example
The amount of acidic functional groups of B and ABO1 is 4.1 × 10 in AB.
-4 mol / g, ABO1 was 9.8 × 10 -4 mol / g, and it was found that the amount of acidic functional groups increased in the product subjected to air oxidation treatment.

【0036】続いて、AB10gとポリテトラフルオロ
エチレン(以下、PTFEという)を主成分とするフッ
素樹脂分散液(D−1:ダイキン化学工業(株))2gを
混合撹拌し、フッ素樹脂分散液中にABが分散した分散
液(以下、分散液e1という)と、ABO1を10gと
フッ素樹脂分散液(D−1:ダイキン化学工業(株))2
gを混合撹拌し、フッ素樹脂分散液中にABO1が分散
した分散液(以下、分散液f1という)とを調製した。
分散液e1と分散液f1とを、それぞれ重量混合比で、
分散液e1:分散液f1=9:1、8:2、7:3、
6:4、5:5、4:6、3:7、2:8、1:9、
0:10で混合し、分率が異なる10種の混合分散液d
1、d2、・・・d10を調製した。
Subsequently, 10 g of AB and 2 g of a fluororesin dispersion liquid containing polytetrafluoroethylene (hereinafter referred to as PTFE) as a main component (D-1: Daikin Chemical Industry Co., Ltd.) were mixed and stirred to obtain a mixture in the fluororesin dispersion liquid. Dispersion liquid in which AB is dispersed (hereinafter referred to as dispersion liquid e1), 10 g of ABO1 and a fluororesin dispersion liquid (D-1: Daikin Chemical Industries, Ltd.) 2
g was mixed and stirred to prepare a dispersion liquid (hereinafter, referred to as dispersion liquid f1) in which ABO1 was dispersed in the fluororesin dispersion liquid.
The dispersion liquid e1 and the dispersion liquid f1 are mixed at a weight mixing ratio of
Dispersion e1: Dispersion f1 = 9: 1, 8: 2, 7: 3,
6: 4, 5: 5, 4: 6, 3: 7, 2: 8, 1: 9,
Mixed dispersions of 10 kinds d mixed at 0:10 and different in fraction
1, d2, ..., d10 were prepared.

【0037】次に、多孔性支持体として用意した長さ3
0cm、幅15cm、厚さ180μmのカーボンペーパ
ー(東レ(株)製:品番TGP−H−060)の上に図
7にその構成の概略を模式的に示す印刷装置によりスク
リーン印刷した。つまり、カーボンペーパー51の上部
に、開口部52を有するマスク53を支持台54を介し
て配置し、前記マスク53の上部に図示するように、前
記した10種の混合分散液を分散液f1の混合割合が少
ない順に、カーボンペーパの一端(R2)から他端(L
2)に向かって分散液d1、d2、・・・d10を配置
し、スクリーン印刷を行った。その後、350℃で焼成
することにより、その片面に高分子含有導電層を有する
ガス拡散層(以下、ガス拡散層g1という)を得た。
Next, the length 3 prepared as the porous support was used.
Screen printing was performed on a carbon paper having a width of 0 cm, a width of 15 cm, and a thickness of 180 μm (manufactured by Toray Industries, Inc .: product number TGP-H-060) by a printing device whose configuration is schematically shown in FIG. 7. That is, a mask 53 having an opening 52 is arranged on the upper part of the carbon paper 51 via a support 54, and as shown in the upper part of the mask 53, the ten kinds of mixed dispersion liquids described above are dispersed in a dispersion liquid f1. From the one end (R2) to the other end (L
The dispersions d1, d2, ..., D10 were arranged toward 2) and screen printing was performed. Then, by firing at 350 ° C., a gas diffusion layer having a polymer-containing conductive layer on one surface thereof (hereinafter referred to as gas diffusion layer g1) was obtained.

【0038】完成した拡散層g1の透水量をJISZ0
208の例による重量法により、R2部分(カーボンペ
ーパーの一端面から15cmの部分)とL2部分(残り
の15cmの部分、すなわちカーボンペーパーの他端面
から15cmの部分)に分割し評価した。JISZ02
08は湿度90%の空気と、乾燥空気を試料を介して隔
離し、24時間以内に湿度90%の空気/試料/乾燥空
気の境界面1m2を通過する水蒸気の質量を測定する方
法である。本実施例では湿度90%の空気と乾燥空気を
15cm2のガス拡散層を介して隔離し、湿度90%の
空気/ガス拡散層/乾燥空気の境界面(境界面の面積は
15cm2になる)を、40℃で24時間の期間に透過
する水の量を計測し、境界面の面積1m2に換算した値
で比較評価した。
The water permeability of the completed diffusion layer g1 is determined by JISZ0.
By the gravimetric method according to the example 208, it was divided into R2 portion (15 cm from one end surface of the carbon paper) and L2 portion (the remaining 15 cm portion, that is, 15 cm portion from the other end surface of the carbon paper) for evaluation. JISZ02
08 is a method of separating air having a humidity of 90% from dry air via a sample, and measuring the mass of water vapor passing through an air / sample / dry air interface 1 m 2 having a humidity of 90% within 24 hours. . In this embodiment, air having a humidity of 90% is separated from dry air through a gas diffusion layer of 15 cm 2 , and an air / gas diffusion layer / dry air interface having a humidity of 90% (the area of the boundary surface is 15 cm 2) . Was measured for the amount of water permeating for 24 hours at 40 ° C., and was compared and evaluated with a value converted into an area of 1 m 2 of the boundary surface.

【0039】このガス拡散層g1の透水量はR2部分で
0.8×104g/m2・24h、L2部分で1.8×10
4g/m2・24hで、R2部分で透水量が少なく、L2部
分で透水量が多くなっていることがわかった。続いて、
前記拡散層g1の前記高分子含有導電層の片面に、予め
粒径が3ミクロン以下のカーボン粉末を、塩化白金酸水
溶液に浸漬し、還元処理によりカーボン粉末の表面に白
金触媒を担持させ(このときのカーボンと担持した白金
の重量比は1:1とした)カーボン粉末を高分子電解質
のアルコール溶液中に分散させ、スラリー化しておいた
スラリーを均一に塗布して触媒層を形成し、ガス拡散電
極(以下、電極h1という)とした。
The water permeation rate of the gas diffusion layer g1 is 0.8 × 10 4 g / m 2 · 24h at the R2 portion and 1.8 × 10 at the L2 portion.
At 4 g / m 2 · 24 h, it was found that the amount of water permeation in the R2 part was small and that in the L2 part was large. continue,
On one surface of the polymer-containing conductive layer of the diffusion layer g1, carbon powder having a particle size of 3 μm or less was previously immersed in a chloroplatinic acid aqueous solution, and a platinum catalyst was supported on the surface of the carbon powder by a reduction treatment. (The weight ratio of carbon to supported platinum at this time was 1: 1) Carbon powder was dispersed in an alcohol solution of a polymer electrolyte, and the slurry that had been slurried was uniformly applied to form a catalyst layer. It was used as a diffusion electrode (hereinafter referred to as electrode h1).

【0040】また、カーボンペーパー上全面に印刷する
分散液を分散液e1のみにした以外はガス拡散層g1を
得たのと全く同一の手段でガス拡散層(以下、ガス拡散
層iという)を得た。拡散層iの透水量は均一に0.8
×104g/m2・24hであった。続いて、このガス拡散
層iを用いて前記したガス拡散電極h1の作製の操作と
同様の操作でガス拡散電極(以下、ガス拡散電極jとい
う)を得た。
A gas diffusion layer (hereinafter referred to as gas diffusion layer i) is formed by the same means as that used to obtain the gas diffusion layer g1 except that only the dispersion liquid e1 is used as the dispersion liquid to be printed on the entire surface of the carbon paper. Obtained. The water permeability of the diffusion layer i is 0.8
It was × 10 4 g / m 2 · 24 h. Subsequently, a gas diffusion electrode (hereinafter, referred to as gas diffusion electrode j) was obtained by the same operation as the above-described operation for producing the gas diffusion electrode h1 using the gas diffusion layer i.

【0041】B.高分子電解質型燃料電池の製造 同一の大きさのガス拡散電極h1及びガス拡散電極jを
用意し、ガス拡散電極h1及びガス拡散電極jより一回
り外寸の大きい高分子電解質膜(デュポン(株)製:N
AFION117)の両面に、ガス拡散電極h1および
ガス拡散電極jを、それぞれ触媒層を備えた面が高分子
電解質と向き合うようにして重ね合わせ、さらに厚み2
50μmのシリコンゴム製ガスケットを両面に位置合わ
せした後、130℃、5分間ホットプレスし、高分子電
解質膜−電極接合体(以下、MEAという)を得た。
B. Manufacture of Polymer Electrolyte Fuel Cell A gas diffusion electrode h1 and a gas diffusion electrode j of the same size are prepared, and a polymer electrolyte membrane having a size slightly larger than those of the gas diffusion electrode h1 and the gas diffusion electrode j (Dupont ) Made: N
The gas diffusion electrode h1 and the gas diffusion electrode j are superposed on both surfaces of the AFION 117) so that the surface provided with the catalyst layer faces the polymer electrolyte, and the thickness 2
After aligning a silicone rubber gasket of 50 μm on both surfaces, hot pressing was performed at 130 ° C. for 5 minutes to obtain a polymer electrolyte membrane-electrode assembly (hereinafter referred to as MEA).

【0042】このMEAの両側にセパレータ板を配置し
作製した単セルを4セル積層させて高分子電解質型燃料
電池とした。セパレータ板は厚さ4mmのカーボン製で気
密性を有するものを用いた。またガス拡散層と接する表
面には、幅2mm、深さ1mmのガス流路を切削加工により
形成した。電池スタックの上部及び下部にはSUS30
4製の金属端板を配し、高分子電解質型燃料電池を固定
した。
Four unit cells were prepared by arranging separator plates on both sides of this MEA to form a polymer electrolyte fuel cell. A separator plate made of carbon having a thickness of 4 mm and having airtightness was used. Further, a gas channel having a width of 2 mm and a depth of 1 mm was formed by cutting on the surface in contact with the gas diffusion layer. SUS30 on the top and bottom of the battery stack
The metal end plate made of No. 4 was arranged and the polymer electrolyte fuel cell was fixed.

【0043】ガス拡散電極h1はそのR2部分がセパレ
ータ板のガス流路の入口側に、またL2部分がガス流路
の出口側になるように配置した。ガス拡散電極h1側の
セパレータ板のガス流路に入口側から出口側に向かって
空気を、またガス拡散電極j側のセパレータ板のガス流
路に入口側から出口側に向かって水素を、酸素利用率4
0%、水素利用率70%で、それぞれ供給し、水素加湿
バブラー温度85℃、空気加湿バブラー温度65℃、電
池温度75℃で運転したところ、高分子電解質型燃料電
池は2.8ボルトの電圧を発生し、3000時間経過後
も初期電圧を維持し、安定な運転動作を示すものであっ
た。この要因は、本実施例の高分子電解質型燃料電池で
は、高分子電解質を湿潤状態に保ちつつ、生成水による
過剰な水分を安全かつ速やかに排出することができたこ
とによる。
The gas diffusion electrode h1 was arranged so that the R2 portion thereof was on the inlet side of the gas passage of the separator plate and the L2 portion thereof was on the outlet side of the gas passage. Air is introduced from the inlet side to the outlet side of the gas passage of the separator plate on the gas diffusion electrode h1 side, and hydrogen is introduced from the inlet side to the outlet side of the gas passage of the separator plate on the gas diffusion electrode j side. Utilization rate 4
When supplied at 0% and 70% hydrogen utilization rate and operated at a hydrogen humidification bubbler temperature of 85 ° C, an air humidification bubbler temperature of 65 ° C, and a battery temperature of 75 ° C, the polymer electrolyte fuel cell has a voltage of 2.8 volts. Was generated, the initial voltage was maintained even after 3000 hours, and stable operation was exhibited. This factor is because the polymer electrolyte fuel cell of the present example was able to safely and promptly discharge excess water due to generated water while keeping the polymer electrolyte in a wet state.

【0044】《実施例1−2》実施例1−1で作製した
空気酸化処理をしたABO1を次のように替えた以外
は、実施例1−1で作製したガス拡散層g1と全く同一
の作製方法で、本実施例のガス拡散層(以下、ガス拡散
層g2という)を作製した。すなわち、実施例1−1で
は、平均粒径3μmのアセチレンブラック(AB)を空
気の存在下において、400℃で加熱する時間を10時
間としたが、それを5時間として空気酸化処理を施した
AB(以下、この空気酸化処理を施したABをABO2
という)を得た。このABO2の酸性官能基量を実施例
1−1に記載した揮発成分組成分析により測定した結
果、7.2×10-4mol/gであった。
Example 1-2 Except that the air-oxidized ABO1 produced in Example 1-1 was replaced as follows, the gas diffusion layer g1 produced in Example 1-1 was exactly the same. The gas diffusion layer of this example (hereinafter referred to as the gas diffusion layer g2) was produced by the production method. That is, in Example 1-1, the time for heating acetylene black (AB) having an average particle diameter of 3 μm at 400 ° C. in the presence of air was 10 hours, but the air oxidation treatment was performed for 5 hours. AB (hereinafter, this air-oxidized AB is referred to as ABO2
I got). The acidic functional group content of this ABO2 was measured by the volatile component composition analysis described in Example 1-1, and it was found to be 7.2 × 10 −4 mol / g.

【0045】その後の処理は実施例1−1と同様に、こ
のABO2の10gがフッ素樹脂分散液2g中に分散し
た分散液(以下、分散液f2という)を調製し、さらに
実施例1−1で作製した分散液e1と分散液f2とを実
施例1−1と同じように分率が異なる10種の混合を
し、10種の混合分散液を調製した。その後、実施例1
−1と同様に、カーボンペーパーへのスクリーン印刷、
さらに350℃での焼成によりガス拡散層g2を作製し
た。
The subsequent treatment was carried out in the same manner as in Example 1-1 to prepare a dispersion liquid (hereinafter referred to as dispersion liquid f2) in which 10 g of this ABO2 was dispersed in 2 g of a fluororesin dispersion liquid, and further, Example 1-1. The dispersion liquid e1 and the dispersion liquid f2 produced in Step 10 were mixed in the same manner as in Example 1-1 with different fractions to prepare a mixed dispersion liquid of 10 types. Then, Example 1
-1, screen printing on carbon paper,
Further, the gas diffusion layer g2 was produced by firing at 350 ° C.

【0046】このガス拡散層g2の透水量を実施例1−
1と同様にJISZ0208の重量法によりR2部分と
L2部分に分割して評価したところ、透水量はR2部分
では0.8×104g/m2・24hで実施例1−1の場合
と変化はなかったが、L2部分では1.4×104g/
2・24hであった。すなわち、R2部分で透水量が少
なく、L2部分で透水量が多いという状態は実施例1−
1と同様であったが、L2部分での透水量が、実施例1
−1の場合よりは少なくなっていることがわかった。こ
れは、酸化官能基量について、L2部分の方がR2部分
よりも多いものの、実施例1−1のL2部分よりも少な
くなっていたためである。
The water permeation rate of this gas diffusion layer g2 was determined as in Example 1-
When it was divided into R2 part and L2 part by the weight method of JISZ0208 and evaluated in the same manner as 1, the water permeability in the R2 part was 0.8 × 10 4 g / m 2 · 24 h, which was different from the case of Example 1-1. There was not, but 1.4 × 10 4 g / in the L2 part
It was m 2 · 24h. That is, the state in which the amount of water permeation in the portion R2 is small and the amount of water permeation in the portion L2 is large is in Example 1-
1 was the same as Example 1, but the water permeability in the L2 part was
It turned out that it is less than the case of -1. This is because the amount of the oxidized functional group in the L2 portion was larger than that in the R2 portion, but was smaller than that in the L2 portion in Example 1-1.

【0047】このガス拡散層g2を用いて、実施例1−
1のガス拡散電極h1の作製と同じ作製方法で、本実施
例のガス拡散電極h2を作製した。このガス拡散電極h
2とガス拡散電極jとを用いて、実施例1−1の高分子
電解質型燃料電池の作製と同じ作製方法で、本実施例の
高分子電解質型燃料電池を作製した。
Using this gas diffusion layer g2, Example 1-
The gas diffusion electrode h2 of this example was produced by the same production method as the production of the gas diffusion electrode h1 of No. 1. This gas diffusion electrode h
Using 2 and the gas diffusion electrode j, the polymer electrolyte fuel cell of this example was produced by the same production method as that of the polymer electrolyte fuel cell of Example 1-1.

【0048】この本実施例の高分子電解質型燃料電池の
特性を実施例1−1と同じ条件で測定した。すなわち、
R2部分とL2部分がそれぞれガス流路の入口側と出口
側になるように配置し、ガス拡散電極h2側に空気を、
さらにガス拡散電極j側に水素を供給して、実施例1−
1と同じ運転条件で運転した。その結果、本実施例の高
分子電解質型燃料電池は2.8ボルトの電圧を発生し、
3000時間経過後も初期電圧を維持し、安定な運転動
作を示すものであった。この要因は、本実施例の高分子
電解質型燃料電池では、高分子電解質を湿潤状態に保ち
つつ、生成水による過剰な水分を安全かつ速やかに排出
することができたことによる。
The characteristics of the polymer electrolyte fuel cell of this example were measured under the same conditions as in example 1-1. That is,
The R2 portion and the L2 portion are arranged so as to be on the inlet side and the outlet side of the gas flow path, respectively, and air is supplied to the gas diffusion electrode h2 side.
Further, hydrogen is supplied to the gas diffusion electrode j side, and the example 1-
It was operated under the same operating conditions as 1. As a result, the polymer electrolyte fuel cell of this example generates a voltage of 2.8 V,
The initial voltage was maintained even after 3000 hours, and stable operation was exhibited. This factor is because the polymer electrolyte fuel cell of the present example was able to safely and promptly discharge excess water due to generated water while keeping the polymer electrolyte in a wet state.

【0049】《実施例1−3》実施例1−1で作製した
空気酸化処理をしたABO1を次のように替えた以外
は、実施例1−1で作製したガス拡散層g1と全く同一
の作製方法で、本実施例のガス拡散層(以下、g3とい
う)を作製した。すなわち、実施例1−1では、平均粒
径3μmのアセチレンブラック(AB)を空気の存在下
において、400℃で10時間加熱したが、それを20
0℃で5時間として空気酸化処理を施したAB(以下、
この空気酸化処理を施したABをABO3という)を得
た。このABO3の酸性官能基量を実施例1−1に記載
した揮発成分組成分析により測定した結果、6.3×1
-4mol/gであった。
<Example 1-3> The gas diffusion layer g1 produced in Example 1-1 is exactly the same as the example 1 except that the air-oxidized ABO1 produced in Example 1-1 is replaced as follows. The gas diffusion layer (hereinafter, referred to as g3) of this example was manufactured by the manufacturing method. That is, in Example 1-1, acetylene black (AB) having an average particle size of 3 μm was heated at 400 ° C. for 10 hours in the presence of air.
AB subjected to air oxidation treatment at 0 ° C. for 5 hours (hereinafter,
AB subjected to this air oxidation treatment was obtained as ABO3). As a result of measuring the amount of acidic functional groups of this ABO3 by the volatile component composition analysis described in Example 1-1, it was 6.3 × 1.
It was 0 -4 mol / g.

【0050】その後は、このABO3を用いて実施例1
−1あるいは実施例1−2と同様に処理をした。同様な
処理であるので以下詳述は省略するが、分散液f1ある
いはf2の替わりに分散液f3を調製し、その分散液f
3を用いてガス拡散層g1あるいはg2の替わりにガス
拡散層g3を作製した。
After that, this ABO3 was used in Example 1.
-1 or the same process as in Example 1-2. Although the details are omitted below, since the same processing is performed, the dispersion liquid f3 is prepared in place of the dispersion liquid f1 or f2, and the dispersion liquid f is prepared.
3 was used to produce a gas diffusion layer g3 instead of the gas diffusion layer g1 or g2.

【0051】このガス拡散層g3の透水量を実施例1−
1と同様にJISZ0208の重量法によりR2部分と
L2部分に分割して評価したところ、透水量はR2部分
では0.8×104g/m2・24hで実施例1−1の場合
と変化はなかったが、L2部分では1.1×104g/
2・24hであった。すなわち、R2部分で透水量が少
なく、L2部分で透水量が多いという状態は実施例1−
1あるいは実施例1−2と同様であったが、L2部分で
の透水量が、実施例1−2の場合よりさらに少なくなっ
ていることがわかった。これは、酸化官能基量につい
て、L2部分の方がR2部分よりも多いものの、実施例
1−2のL2部分よりもさらに少なくなっていたためで
ある。
The water permeation rate of this gas diffusion layer g3 was determined as in Example 1-
When it was divided into R2 part and L2 part by the weight method of JISZ0208 and evaluated in the same manner as 1, the water permeability in the R2 part was 0.8 × 10 4 g / m 2 · 24 h, which was different from the case of Example 1-1. There was not, but 1.1 × 10 4 g /
It was m 2 · 24h. That is, the state in which the amount of water permeation in the portion R2 is small and the amount of water permeation in the portion L2 is large is in Example 1-
Although it was the same as that of Example 1 or Example 1-2, it was found that the amount of water permeation in the L2 portion was smaller than that of Example 1-2. This is because the amount of the oxidized functional group in the L2 portion was larger than that in the R2 portion, but was smaller than that in the L2 portion in Example 1-2.

【0052】このガス拡散層g3を用いて、実施例1−
1のガス拡散電極h1の作製と同じ作製方法で、本実施
例のガス拡散電極h3を作製した。このガス拡散電極h
3とガス拡散電極jとを用いて、実施例1−1の高分子
電解質型燃料電池の作製と同じ作製方法で、本実施例の
高分子電解質型燃料電池を作製した。
Example 1-using this gas diffusion layer g3
The gas diffusion electrode h3 of this example was produced by the same production method as the production of the gas diffusion electrode h1 of No. 1. This gas diffusion electrode h
Using 3 and the gas diffusion electrode j, the polymer electrolyte fuel cell of this example was produced by the same production method as that of the polymer electrolyte fuel cell of Example 1-1.

【0053】この本実施例の高分子電解質型燃料電池の
特性を実施例1−1と同じ条件で測定した。すなわち、
R2部分とL2部分がそれぞれガス流路の入口側と出口
側になるように配置し、ガス拡散電極h3側に空気を、
さらにガス拡散電極j側に水素を供給して、実施例1−
1と同じ運転条件で運転した。その結果、本実施例の高
分子電解質型燃料電池は2.8ボルトの電圧を発生し、
3000時間経過後も初期電圧を維持し、安定な運転動
作を示すものであった。この要因は、本実施例の高分子
電解質型燃料電池では、高分子電解質を湿潤状態に保ち
つつ、生成水による過剰な水分を安全かつ速やかに排出
することができたことによる。
The characteristics of the polymer electrolyte fuel cell of this example were measured under the same conditions as in example 1-1. That is,
The R2 portion and the L2 portion are arranged so as to be on the inlet side and the outlet side of the gas flow path, respectively, and air is supplied to the gas diffusion electrode h3 side.
Further, hydrogen is supplied to the gas diffusion electrode j side, and the example 1-
It was operated under the same operating conditions as 1. As a result, the polymer electrolyte fuel cell of this example generates a voltage of 2.8 V,
The initial voltage was maintained even after 3000 hours, and stable operation was exhibited. This factor is because the polymer electrolyte fuel cell of the present example was able to safely and promptly discharge excess water due to generated water while keeping the polymer electrolyte in a wet state.

【0054】《実施例1−4》実施例1−1で用いたA
Bと、空気酸化処理をしたABO1とを次のように替え
た以外は、実施例1−1で作製したガス拡散層g1と全
く同一の作製方法で、本実施例のガス拡散層(以下、g
4という)を作製した。すなわち、まず実施例1−1で
は、平均粒径3μmのアセチレンブラック(AB)とA
BO1を用いたが、本実施例では、その替わりに平均粒
径3μmの黒鉛化ブラック(以下、GBという)と、平
均粒径3μmのファーネスブラック(以下、FBとい
う)をそれぞれ用いた。これらのGBとFBの酸性官能
基量を実施例1−1に記載した揮発成分組成分析により
測定した結果、それぞれ0.2×10-4mol/gと5.7
×10-4mol/gであった。
<< Example 1-4 >> A used in Example 1-1
B and the air-oxidized ABO1 were replaced as follows, except that the gas diffusion layer g1 produced in Example 1-1 was manufactured by exactly the same production method as the gas diffusion layer (hereinafter, g
4) was produced. That is, first, in Example 1-1, acetylene black (AB) having an average particle size of 3 μm and A
Although BO1 was used, in this example, instead of this, graphitized black (hereinafter referred to as GB) having an average particle size of 3 μm and furnace black (hereinafter referred to as FB) having an average particle size of 3 μm were used. The amounts of these acidic functional groups of GB and FB were measured by the volatile component composition analysis described in Example 1-1, and as a result, they were 0.2 × 10 -4 mol / g and 5.7, respectively.
It was × 10 -4 mol / g.

【0055】その後は、これらのGBとFBの組合せ
を、それぞれ実施例1−1のABとABO1、実施例1
−2のABとABO2、実施例1−3のABとABO3
の各組合せの替わりに用いて、各実施例と同様に処理を
した。同様な処理であるので以下詳述は省略するが、分
散液e1の替わりに分散液e2を調製し、さらに分散液
f1、f2あるいはf3の替わりに分散液f4を調製
し、その分散液e2と分散液f4を用いてガス拡散層g
1、g2あるいはg3の替わりにガス拡散層g4を作製
した。
After that, the combination of GB and FB was changed to AB and ABO1 of Example 1-1 and Example 1 respectively.
-2 AB and ABO2, Example 1-3 AB and ABO3
Was used in place of each combination of and the same processing as in each example was performed. Although the details are omitted below because they are similar treatments, the dispersion e2 is prepared in place of the dispersion e1, the dispersion f4 is prepared in place of the dispersions f1, f2, or f3. Gas diffusion layer g using dispersion f4
A gas diffusion layer g4 was prepared in place of 1, g2 or g3.

【0056】このガス拡散層g4の透水量を実施例1−
1と同様にJISZ0208の重量法によりR2部分と
L2部分に分割して評価したところ、透水量はR2部分
では0.1×104g/m2・24hで実施例1−1の場合
と比べて1桁近く少なくなったが、L2部分では0.9
×104g/m2・24hであった。すなわち、R2部分で
透水量が少なく、L2部分で透水量が多いという状態は
前3者の実施例と同様であったが、R2部分とL2部分
での透水量は前3者よりも小さくなり、その一方で、R
2部分での透水量とL2部分での透水量との差が、前3
者の場合より大きくなっていることがわかった。これ
は、R2部分およびL2部分での酸化官能基量が、それ
ぞれ前3者よりも少なくなっていた一方、R2部分とL
2部分の酸化官能基量の差が、前3者の場合よりも大き
くなっていたためである。
The amount of water permeation of this gas diffusion layer g4 was determined as in Example 1-
In the same way as in No. 1, the weight method of JIS Z0208 was divided into R2 part and L2 part for evaluation, and the water permeation rate in the R2 part was 0.1 × 10 4 g / m 2 · 24 h, which was compared with the case of Example 1-1. It has decreased by almost one digit, but it is 0.9 in the L2 part.
It was × 10 4 g / m 2 · 24 h. That is, the state in which the amount of water permeation in the R2 portion was small and the amount of water permeation in the L2 portion was large was similar to the examples of the former three, but the amount of water permeation in the R2 portion and the L2 portion was smaller than that of the former three. , On the other hand, R
The difference between the amount of water permeation in part 2 and the amount of water permeation in part L2 is 3
It turns out that it is larger than the case of the person. This means that the amount of oxidized functional groups in the R2 portion and the L2 portion was smaller than those in the former three, respectively, while the R2 portion and the L2 portion were
This is because the difference in the amount of oxidized functional groups in the two parts was larger than that in the former three cases.

【0057】このガス拡散層g4を用いて、実施例1−
1のガス拡散電極h1の作製と同じ作製方法で、本実施
例のガス拡散電極h4を作製した。このガス拡散電極h
4とガス拡散電極jとを用いて、実施例1−1の高分子
電解質型燃料電池の作製と同じ作製方法で、本実施例の
高分子電解質型燃料電池を作製した。
Using this gas diffusion layer g4, Example 1-
The gas diffusion electrode h4 of this example was produced by the same production method as the production of the gas diffusion electrode h1 of No. 1. This gas diffusion electrode h
Using 4 and the gas diffusion electrode j, the polymer electrolyte fuel cell of this example was produced by the same production method as that of the polymer electrolyte fuel cell of Example 1-1.

【0058】この本実施例の高分子電解質型燃料電池の
特性を実施例1−1と同じ条件で測定した。すなわち、
R2部分とL2部分がそれぞれガス流路の入口側と出口
側になるように配置し、ガス拡散電極h4側に空気を、
さらにガス拡散電極j側に水素を供給して、実施例1−
1と同じ運転条件で運転した。その結果、本実施例の高
分子電解質型燃料電池は2.8ボルトの電圧を発生し、
3000時間経過後も初期電圧を維持し、安定な運転動
作を示すものであった。この要因は、本実施例の高分子
電解質型燃料電池では、高分子電解質を湿潤状態に保ち
つつ、生成水による過剰な水分を安全かつ速やかに排出
することができたことによる。
The characteristics of the polymer electrolyte fuel cell of this example were measured under the same conditions as in example 1-1. That is,
The R2 portion and the L2 portion are arranged so that they are on the inlet side and the outlet side of the gas flow path, respectively, and air is supplied to the gas diffusion electrode h4 side.
Further, hydrogen is supplied to the gas diffusion electrode j side, and the example 1-
It was operated under the same operating conditions as 1. As a result, the polymer electrolyte fuel cell of this example generates a voltage of 2.8 V,
The initial voltage was maintained even after 3000 hours, and stable operation was exhibited. This factor is because the polymer electrolyte fuel cell of the present example was able to safely and promptly discharge excess water due to generated water while keeping the polymer electrolyte in a wet state.

【0059】なお、上記実施例1−1〜1−4において
は、酸性官能基量の異なる2種の材料の混合割合を10
分割して用いたが、混合割合はこれに限定されるもので
はなく、酸性官能基量が少ないものと多いもの、実施例
中で例示したもので言えば、0.2×10-4mol/g〜
9.8×10-4mol/gのものの中から適宜選択して混合
し、その結果、R2部分からL2部分に向かって酸性官
能基量が増加する構成、より好ましくは徐々に増加する
構成であれば、上記の実施例群で得られるのと同様な効
果が得られることも確認した。また、上記実施例群で
は、酸性官能基量の異なる2種の炭素粒子の組合せを例
示したが、3種以上の組合せでもR2部分からL2部分
に向かって酸性官能基量が増加する構成にすれば、同様
な好結果が得られることも別途確認した。
In the above Examples 1-1 to 1-4, the mixing ratio of two kinds of materials having different acidic functional groups was set to 10%.
Although the mixture was divided and used, the mixing ratio is not limited to this, and one having a small amount of acidic functional groups and one having a large amount of acidic functional groups, 0.2 × 10 −4 mol / mol, as exemplified in the examples. g ~
9.8 × 10 −4 mol / g is appropriately selected and mixed, and as a result, the amount of the acidic functional group increases from the R2 portion to the L2 portion, and more preferably, gradually increases. If so, it was also confirmed that the same effect as that obtained in the above-mentioned example group could be obtained. Further, in the above-mentioned group of examples, a combination of two kinds of carbon particles having different amounts of acidic functional groups was exemplified, but even in a combination of three or more kinds, the amount of acidic functional groups increases from the R2 portion toward the L2 portion. It was also confirmed separately that similar good results could be obtained.

【0060】《実施例2−1》 A.ガス拡散電極の製造 実施例1−1で用いたABを10gと、実施例1−1に
記載したD−1の主成分であるPTFEと比べて分子量
が異なり結晶化度が低いPTFEを主成分とするフッ素
樹脂分散液(ダイキン化学工業(株)製: ルブロン)2g
を混合撹拌し、フッ素樹脂分散液ルブロン中にABが分
散した分散液(以下、分散液k1という)を調製した
後、実施例1−1記載の分散液e1と分散液k1をそれ
ぞれ重量混合比で分散液e1:分散液k1=9:1、
8:2、7:3、6:4、5:5、4:6、3:7、
2:8、1:9、0:10で混合し、分率が異なる10
種の混合分散液を調製した。
<< Example 2-1 >> A. Production of Gas Diffusion Electrode 10 g of AB used in Example 1-1 was used as a main component, and PTFE having a lower crystallinity and a different molecular weight than PTFE, which is the main component of D-1 described in Example 1-1. Fluorine resin dispersion liquid (manufactured by Daikin Chemical Industries, Ltd .: Lubron) 2 g
Was mixed and stirred to prepare a dispersion liquid (hereinafter, referred to as dispersion liquid k1) in which AB was dispersed in the fluororesin dispersion liquid Lubron, and then the dispersion liquid e1 and the dispersion liquid k1 described in Example 1-1 were mixed by weight. And dispersion e1: dispersion k1 = 9: 1,
8: 2, 7: 3, 6: 4, 5: 5, 4: 6, 3: 7,
Mixing at 2: 8, 1: 9, 0:10 with different fractions 10
A mixed dispersion of seeds was prepared.

【0061】なお、ここで結晶化度とは、結晶化部分と
非晶質部分からなる全体量の中に占める結晶化部分の体
積%であり、X線測定法で測定することができる。X線
測定法による測定の結果、D−1分散液中のPTFEの
結晶化度は80%で、ルブロン分散液中のPTFEの結
晶化度は40%であった。
Here, the crystallinity is the volume% of the crystallized portion in the total amount of the crystallized portion and the amorphous portion, and can be measured by the X-ray measuring method. As a result of the measurement by the X-ray measurement method, the crystallinity of PTFE in the D-1 dispersion was 80%, and the crystallinity of PTFE in the Lubron dispersion was 40%.

【0062】次に、多孔性支持体として用意した長さ3
0cm、幅15cm、厚さ180μmのカーボンペーパ
ー(東レ(株)製:品番TGP−H−060)の表面
に、一端(R3)から他端(L3)に向かって、分散液
k1の混合割合が多くなるように、前記した10種の混
合分散液を実施例1−1に記載したものと同じ手段で、
スクリーン印刷を行った。その後、350℃で焼成しガ
ス拡散層(以下、ガス拡散層m1)を得た。
Next, the length 3 prepared as the porous support was used.
The mixing ratio of the dispersion liquid k1 was from the one end (R3) to the other end (L3) on the surface of 0 cm, width 15 cm, and thickness 180 μm carbon paper (manufactured by Toray Industries, Inc .: product number TGP-H-060). In order to increase the amount, the above 10 kinds of mixed dispersion liquids are added by the same means as described in Example 1-1,
Screen printing was performed. Then, it baked at 350 degreeC and the gas diffusion layer (henceforth gas diffusion layer m1) was obtained.

【0063】こうして完成したガス拡散層m1の透水量
を、R3部分(カーボンペーパーの一端面から15cm
の部分)とL3部分(カーボンペーパーの他端面から1
5cmの部分)に分割し、JISZ0208の重量法に
より評価したところ、透水量はR3部部分で0.8×1
4g/m2・24h、L3部分で1.8×104g/m2
24hで、R3部分で透水量が低く、L3部分で透水量が
多くなっていることがわかった。
The amount of water permeation of the gas diffusion layer m1 completed in this way is determined by the R3 portion (15 cm from one end surface of the carbon paper).
Part) and L3 part (1 from the other end surface of carbon paper)
It was divided into 5 cm portions) and evaluated by the weight method of JIS Z0208. Water permeability was 0.8 × 1 at the R3 portion.
0 4 g / m 2 · 24h, L3 part 1.8 × 10 4 g / m 2 ·
At 24 hours, it was found that the water permeability was low in the R3 part and increased in the L3 part.

【0064】続いて、前記ガス拡散層m1の片面に、予
め粒径が3ミクロン以下のカーボン粉末を、塩化白金酸
水溶液に浸漬し、還元処理によりカーボン粉末の表面に
白金触媒を担持させ(このときのカーボンと担持した白
金の重量比は1:1とした)カーボン粉末を高分子電解
質のアルコール溶液中に分散させ、スラリー化しておい
たスラリーを均一に塗布して触媒層を形成し、ガス拡散
電極とした(以下、ガス拡散電極n1という)。
Subsequently, on one surface of the gas diffusion layer m1, carbon powder having a particle size of 3 μm or less was previously immersed in an aqueous solution of chloroplatinic acid, and a platinum catalyst was carried on the surface of the carbon powder by reduction treatment (this (The weight ratio of carbon to supported platinum at this time was 1: 1) Carbon powder was dispersed in an alcohol solution of a polymer electrolyte, and the slurry that had been slurried was uniformly applied to form a catalyst layer. It was used as a diffusion electrode (hereinafter referred to as gas diffusion electrode n1).

【0065】B.高分子電解質型燃料電池の製造 同一の大きさのガス拡散電極n1及び実施例1−1で作
製したガス拡散電極jを用意し、ガス拡散電極n1及び
ガス拡散電極jより一回り外寸の大きい高分子電解質膜
(デュポン(株)製: NAFION117)の両面
に、ガス拡散電極n1およびガス拡散電極jを、それぞ
れ触媒層を備えた面がそれぞれ高分子電解質と向き合う
様にして重ね合わせ、さらに厚み250μmのシリコン
ゴム製ガスケットを両面に位置合わせした後、130
℃、5分間ホットプレスし、MEAを得た。
B. Manufacture of polymer electrolyte fuel cell: A gas diffusion electrode n1 having the same size and the gas diffusion electrode j prepared in Example 1-1 are prepared, and the outer dimensions are slightly larger than those of the gas diffusion electrode n1 and the gas diffusion electrode j. A gas diffusion electrode n1 and a gas diffusion electrode j were superposed on both surfaces of a polymer electrolyte membrane (NAFION 117 manufactured by DuPont Co., Ltd.) such that the surfaces each provided with a catalyst layer face the polymer electrolyte, and the thickness was further increased. After aligning 250μm silicone rubber gaskets on both sides,
It hot-pressed at 5 degreeC for 5 minutes, and obtained MEA.

【0066】このMEAの両側にセパレータ板を配置し
作製した単セルを4セル積層させて高分子電解質型燃料
電池とした。セパレータ板は厚さ4mmのカーボン製で気
密性を有するものを用いた。またガス拡散層と接する表
面には、幅2mm、深さ1mmのガス流路を切削加工により
形成した。電池スタックの上部及び下部にはSUS30
4製の金属端板を配し、高分子電解質型燃料電池を固定
した。
Four unit cells were prepared by arranging separator plates on both sides of this MEA to obtain a polymer electrolyte fuel cell. A separator plate made of carbon having a thickness of 4 mm and having airtightness was used. Further, a gas channel having a width of 2 mm and a depth of 1 mm was formed by cutting on the surface in contact with the gas diffusion layer. SUS30 on the top and bottom of the battery stack
The metal end plate made of No. 4 was arranged and the polymer electrolyte fuel cell was fixed.

【0067】ガス拡散電極n1はそのR3部分がセパレ
ータ板のガス流路の入口側にまた、L3部分がガス流路
の出口側になるうように配置した。電極n1側のセパレ
ータ板のガス流路に入口側から出口側に向かって空気
を、また電極j側のセパレータ板のガス流路に入口側か
ら出口側に向かって水素を、酸素利用率40%、水素利
用率70%で、それぞれ供給し、水素加湿バブラー温度
85℃、空気加湿バブラー温度65℃、電池温度75℃
で運転したところ、高分子電解質型燃料電池は2.8ボ
ルトの電圧を発生し、また、3000時間経過後も初期
電圧を維持し、安定な運転動作を示すものであった。こ
の原因は、本実施例の高分子電解質型燃料電池では、高
分子電解質を湿潤状態に保ちつつ、生成水による過剰な
水分を安全かつ速やかに排出することが出来たことによ
る。
The gas diffusion electrode n1 was arranged such that the R3 portion thereof was on the inlet side of the gas passage of the separator plate and the L3 portion thereof was on the outlet side of the gas passage. Air from the inlet side to the outlet side of the gas passage of the separator plate on the electrode n1 side, hydrogen from the inlet side to the outlet side of the gas passage of the separator plate on the electrode j side, and an oxygen utilization rate of 40% , With hydrogen utilization rate of 70%, supply respectively, hydrogen humidification bubbler temperature 85 ℃, air humidification bubbler temperature 65 ℃, battery temperature 75 ℃
As a result, the polymer electrolyte fuel cell generated a voltage of 2.8 V, maintained the initial voltage even after 3000 hours had elapsed, and showed stable operation. This is because the polymer electrolyte fuel cell of this example was able to safely and promptly discharge excess water due to generated water while keeping the polymer electrolyte in a wet state.

【0068】《実施例2−2》実施例2−1で分散液e
1に用いたPTFEを主成分とするフッ素樹脂分散液D
−1の替わりに結晶化度80%のポリプロピレンをエタ
ノール中に分散した分散液(この分散液におけるポリプ
ロピレンとエタノールの重量比は20:80)を用いて
分散液e1の替わりに分散液e3を作製したこと、およ
び、分散液k1に用いたPTFEを主成分とするフッ素
樹脂分散液ルブロンの替わりに結晶化度40%のポリプ
ロピレンをエタノール中に分散した分散液(この分散液
におけるポリプロピレンとエタノールの重量比は同じく
20:80)を用いて分散液k1の替わりに分散液k2
を作製したこと以外は、実施例2−1で作製したガス拡
散層m1と全く同一の作製方法で、本実施例のガス拡散
層(以下、ガス拡散層m2という)を作製した。
Example 2-2 Dispersion e in Example 2-1
Fluororesin dispersion D containing PTFE as a main component used in No. 1
A dispersion liquid e3 was prepared in place of the dispersion liquid e1 by using a dispersion liquid (polypropylene / ethanol weight ratio in this dispersion liquid was 20:80) in which polypropylene having a crystallinity of 80% was dispersed in place of -1. In addition to the fluororesin dispersion containing PTFE as a main component used in the dispersion k1, a dispersion liquid in which polypropylene having a crystallinity of 40% was dispersed in ethanol (the weight of polypropylene and ethanol in this dispersion liquid) was used. The ratio is also 20:80) and dispersion k2 is used instead of dispersion k1.
A gas diffusion layer (hereinafter, referred to as gas diffusion layer m2) of this example was produced by the same production method as that of the gas diffusion layer m1 produced in Example 2-1 except that the above was produced.

【0069】すなわち、分散液e3と分散液k2とを実
施例2−1と同じように分率が異なる10種の混合を
し、10種の混合分散液を調製した。その後、実施例2
−1と同様に、カーボンペーパーへのスクリーン印刷、
さらに350℃での焼成により、本実施例のガス拡散層
m2を作製したのである。
That is, the dispersion liquid e3 and the dispersion liquid k2 were mixed with 10 kinds having different fractions in the same manner as in Example 2-1 to prepare a mixed dispersion liquid of 10 kinds. Then, Example 2
-1, screen printing on carbon paper,
Further, by firing at 350 ° C., the gas diffusion layer m2 of this example was produced.

【0070】このガス拡散層m2の透水量を実施例2−
1と同様にJISZ0208の重量法によりR3部分と
L3部分に分割して評価したところ、透水量はR3部分
で、0.8×104g/m2・24h、L3部分で1.8×
104g/m2・24hで、実施例2−1の場合と変化はな
かった。これは、結晶化度について、R2部分およびL
2部分の両方について、実施例2−1の場合と同様であ
ったためである。
The amount of water permeation of this gas diffusion layer m2 was measured in Example 2-
The water permeability was 0.8 × 10 4 g / m 2 · 24h at the R3 portion and 1.8 × at the L3 portion when evaluated by dividing it into the R3 portion and the L3 portion by the weight method of JISZ0208 as in 1.
At 10 4 g / m 2 · 24 h, there was no change from the case of Example 2-1. This is due to the crystallinity of the R2 part and L
This is because both of the two parts were the same as in Example 2-1.

【0071】このガス拡散層m2を用いて、実施例2−
1のガス拡散電極n1の作製と同じ作製方法で、本実施
例のガス拡散電極n2を作製した。このガス拡散電極n
2とガス拡散電極jとを用いて、実施例2−1の高分子
電解質型燃料電池の作製と同じ作製方法で、本実施例の
高分子電解質型燃料電池を作製した。
Example 2-using this gas diffusion layer m2
The gas diffusion electrode n2 of this example was produced by the same production method as that of the gas diffusion electrode n1 of No. 1. This gas diffusion electrode n
Using 2 and the gas diffusion electrode j, the polymer electrolyte fuel cell of this example was produced by the same production method as that of the polymer electrolyte fuel cell of Example 2-1.

【0072】この本実施例の高分子電解質型燃料電池の
特性を実施例2−1と同じ条件で測定した。すなわち、
R3部分とL3部分がそれぞれガス流路の入口側と出口
側になるように配置し、ガス拡散電極n2側に空気を、
さらにガス拡散電極j側に水素を供給して、実施例2−
1と同じ運転条件で運転した。その結果、本実施例の高
分子電解質型燃料電池は2.8ボルトの電圧を発生し、
3000時間経過後も初期電圧を維持し、安定な運転動
作を示すものであった。この要因は、本実施例の高分子
電解質型燃料電池では、高分子電解質を湿潤状態に保ち
つつ、生成水による過剰な水分を安全かつ速やかに排出
することができたことによる。
The characteristics of the polymer electrolyte fuel cell of this example were measured under the same conditions as in example 2-1. That is,
The R3 portion and the L3 portion are arranged so as to be on the inlet side and the outlet side of the gas flow path, respectively, and air is supplied to the gas diffusion electrode n2 side.
Further, hydrogen is supplied to the gas diffusion electrode j side, and Example 2-
It was operated under the same operating conditions as 1. As a result, the polymer electrolyte fuel cell of this example generates a voltage of 2.8 V,
The initial voltage was maintained even after 3000 hours, and stable operation was exhibited. This factor is because the polymer electrolyte fuel cell of the present example was able to safely and promptly discharge excess water due to generated water while keeping the polymer electrolyte in a wet state.

【0073】《実施例2−3》実施例2−1で分散液e
1に用いたPTFEを主成分とするフッ素樹脂分散液D
−1の替わりに結晶化度80%のポリエチレンをエタノ
ール中に分散した分散液(この分散液におけるポリエチ
レンとエタノールの重量比は20:80)を用いて分散
液e1の替わりに分散液e4を作製したこと、および、
分散液k1に用いたPTFEを主成分とするフッ素樹脂
分散液ルブロンの替わりに、結晶化度30%のアクリロ
ニトリルのエタノール溶液(この溶液におけるアクリロ
ニトリルとエタノールの重量比も20:80)を用いて
分散液k1の替わりに分散液k3を作製したこと以外
は、実施例2−1で作製したガス拡散層m1と全く同一
の作製方法で、本実施例のガス拡散層(以下、ガス拡散
層m3という)を作製した。なお、ガス拡散層の作製工
程における350℃での焼成により、高分子含有導電層
が形成された。
Example 2-3 Dispersion e in Example 2-1
Fluororesin dispersion D containing PTFE as a main component used in No. 1
A dispersion liquid e4 was prepared in place of the dispersion liquid e1 by using a dispersion liquid in which polyethylene having a crystallinity of 80% was dispersed in ethanol instead of -1 (the weight ratio of polyethylene to ethanol in this dispersion liquid was 20:80). What you did, and
Dispersion was performed using an ethanol solution of acrylonitrile with a crystallinity of 30% (the weight ratio of acrylonitrile and ethanol in this solution is also 20:80) instead of the fluororesin dispersion liquid Lubron containing PTFE as the main component used in the dispersion liquid k1. The gas diffusion layer (hereinafter referred to as gas diffusion layer m3) of this example was manufactured by the same production method as that of the gas diffusion layer m1 produced in Example 2-1 except that the dispersion liquid k3 was produced instead of the liquid k1. ) Was produced. Note that the polymer-containing conductive layer was formed by baking at 350 ° C. in the process of manufacturing the gas diffusion layer.

【0074】このガス拡散層m3の透水量を実施例2−
1と同様にJISZ0208の重量法によりR3部分と
L3部分に分割して評価したところ、透水量はR3部分
では0.8×104g/m2・24hで実施例2−1の場合
と変化はなかったが、L3部分では2.0×104g/
2・24hであった。すなわち、R3部分で透水量が少
なく、L3部分で透水量が多いという状態は実施例2−
1あるいは実施例2−2と同様であったが、L3部分で
の透水量が、前2者の実施例の場合よりさらに多くなっ
ていることがわかった。これは、結晶化度について、前
2者の実施例のL3部分よりもさらに高くなっていたた
めである。
The amount of water permeation of this gas diffusion layer m3 was determined in Example 2-
As in the case of 1, the evaluation was made by dividing into R3 part and L3 part by the weight method of JIS Z0208, and the water permeability in the R3 part was 0.8 × 10 4 g / m 2 · 24 h, which was different from that in Example 2-1. There was not, but in the L3 part 2.0 × 10 4 g /
It was m 2 · 24h. That is, the state in which the amount of water permeation in the portion R3 is small and the amount of water permeation in the portion L3 is large is in Example 2-
Although it was the same as that of Example 1 or Example 2-2, it was found that the amount of water permeation at the L3 portion was larger than that of the former two examples. This is because the crystallinity was higher than the L3 portion of the former two examples.

【0075】このガス拡散層m3を用いて、実施例2−
1のガス拡散電極n1の作製と同じ作製方法で、本実施
例のガス拡散電極n3を作製した。このガス拡散電極n
3とガス拡散電極jとを用いて、実施例2−1の高分子
電解質型燃料電池の作製と同じ作製方法で、本実施例の
高分子電解質型燃料電池を作製した。
Example 2-using this gas diffusion layer m3
The gas diffusion electrode n3 of this example was produced by the same production method as that of the gas diffusion electrode n1 of No. 1. This gas diffusion electrode n
Using 3 and the gas diffusion electrode j, the polymer electrolyte fuel cell of this example was produced by the same production method as that of the polymer electrolyte fuel cell of Example 2-1.

【0076】この本実施例の高分子電解質型燃料電池の
特性を実施例2−1と同じ条件で測定した。すなわち、
R3部分とL3部分がそれぞれガス流路の入口側と出口
側になるように配置し、ガス拡散電極n3側に空気を、
さらにガス拡散電極j側に水素を供給して、実施例2−
1と同じ運転条件で運転した。その結果、本実施例の高
分子電解質型燃料電池は2.8ボルトの電圧を発生し、
3000時間経過後も初期電圧を維持し、安定な運転動
作を示すものであった。この要因は、本実施例の高分子
電解質型燃料電池では、高分子電解質を湿潤状態に保ち
つつ、生成水による過剰な水分を安全かつ速やかに排出
することができたことによる。
The characteristics of the polymer electrolyte fuel cell of this example were measured under the same conditions as in example 2-1. That is,
The R3 part and the L3 part are arranged so as to be on the inlet side and the outlet side of the gas flow path, respectively, and air is supplied to the gas diffusion electrode n3 side.
Further, hydrogen is supplied to the gas diffusion electrode j side, and Example 2-
It was operated under the same operating conditions as 1. As a result, the polymer electrolyte fuel cell of this example generates a voltage of 2.8 V,
The initial voltage was maintained even after 3000 hours, and stable operation was exhibited. This factor is because the polymer electrolyte fuel cell of the present example was able to safely and promptly discharge excess water due to generated water while keeping the polymer electrolyte in a wet state.

【0077】《実施例2−4》実施例2−1で分散液e
1に用いたPTFEを主成分とするフッ素樹脂分散液の
替わりに結晶化度60%のポリエチレンテレフタレート
のm-クレゾール溶液(この溶液におけるポリエチレン
テレフタレートとm−クレゾールとの重量比は20:8
0)を用いて分散液e1の替わりに分散液e5を作製し
たこと、および、分散液k1に用いたフッ素樹脂分散液
ルブロンの替わりに結晶化度10%の塩化ビニルのエタ
ノール溶液(この溶液における塩化ビニルとエタノール
との重量比は20:80)を用いて分散液k1の替わり
に分散液k4を作製したこと以外は、前3者の実施例で
作製したガス拡散層m1、m2あるいはm3と全く同一
の作製方法で、本実施例のガス拡散層(以下、ガス拡散
層m4という)を作製した。なお、ガス拡散層の作製工
程における350℃での焼成により、高分子含有導電層
が形成された。
Example 2-4 Dispersion e in Example 2-1
Instead of the fluororesin dispersion containing PTFE as the main component used in Example 1, a m-cresol solution of polyethylene terephthalate having a crystallinity of 60% (the weight ratio of polyethylene terephthalate and m-cresol in this solution was 20: 8).
0) was used to prepare a dispersion e5 instead of the dispersion e1, and the fluororesin dispersion Lubron used in the dispersion k1 was replaced with an ethanol solution of vinyl chloride having a crystallinity of 10% (in this solution). A gas diffusion layer m1, m2 or m3 prepared in the former three examples except that a dispersion k4 was prepared in place of the dispersion k1 by using a vinyl chloride / ethanol weight ratio of 20:80). The gas diffusion layer of the present example (hereinafter referred to as the gas diffusion layer m4) was produced by exactly the same production method. Note that the polymer-containing conductive layer was formed by baking at 350 ° C. in the process of manufacturing the gas diffusion layer.

【0078】このガス拡散層m4の透水量を実施例2−
1と同様にJISZ0208の重量法によりR3部分と
L3部分に分割して評価したところ、透水量はR3部分
では1.2×104g/m2・24hで前3者の実施例の場
合よりも多くなっていたが、L3部分でも2.8×10
4g/m2・24hで、同じく前3者の実施例の場合よりも
多くなっていた。これは、結晶化度について、前3者の
実施例と比べて、R3部分およびL3部分ともさらに高
くなっていたためである。
The amount of water permeation of this gas diffusion layer m4 was measured in Example 2-
The water permeability of the R3 portion was 1.2 × 10 4 g / m 2 · 24h, which was evaluated by dividing it into the R3 portion and the L3 portion by the weight method of JIS Z0208 in the same manner as in 1. Was also increased, but 2.8 × 10 in the L3 part
It was 4 g / m 2 · 24 h, which was higher than in the cases of the former three cases. This is because the crystallinity was higher in the R3 portion and the L3 portion than in the former three examples.

【0079】このガス拡散層m4を用いて、実施例2−
1のガス拡散電極n1の作製と同じ作製方法で、本実施
例のガス拡散電極n4を作製した。このガス拡散電極n
4とガス拡散電極jとを用いて、実施例2−1の高分子
電解質型燃料電池の作製と同じ作製方法で、本実施例の
高分子電解質型燃料電池を作製した。
Example 2-using this gas diffusion layer m4
The gas diffusion electrode n4 of this example was produced by the same production method as that of the gas diffusion electrode n1 of No. 1. This gas diffusion electrode n
Using 4 and the gas diffusion electrode j, a polymer electrolyte fuel cell of this example was produced by the same production method as that of the polymer electrolyte fuel cell of Example 2-1.

【0080】この本実施例の高分子電解質型燃料電池の
特性を実施例2−1と同じ条件で測定した。すなわち、
R3部分とL3部分がそれぞれガス流路の入口側と出口
側になるように配置し、ガス拡散電極n4側に空気を、
さらにガス拡散電極j側に水素を供給して、実施例2−
1と同じ運転条件で運転した。その結果、本実施例の高
分子電解質型燃料電池は2.8ボルトの電圧を発生し、
3000時間経過後も初期電圧を維持し、安定な運転動
作を示すものであった。この要因は、本実施例の高分子
電解質型燃料電池では、高分子電解質を湿潤状態に保ち
つつ、生成水による過剰な水分を安全かつ速やかに排出
することができたことによる。
The characteristics of the polymer electrolyte fuel cell of this example were measured under the same conditions as in example 2-1. That is,
The R3 portion and the L3 portion are arranged so as to be on the inlet side and the outlet side of the gas flow path, respectively, and air is supplied to the gas diffusion electrode n4 side.
Further, hydrogen is supplied to the gas diffusion electrode j side, and Example 2-
It was operated under the same operating conditions as 1. As a result, the polymer electrolyte fuel cell of this example generates a voltage of 2.8 V,
The initial voltage was maintained even after 3000 hours, and stable operation was exhibited. This factor is because the polymer electrolyte fuel cell of the present example was able to safely and promptly discharge excess water due to generated water while keeping the polymer electrolyte in a wet state.

【0081】なお、上記実施例2−1〜2−4において
は、結晶化度の異なる2種の材料の混合割合を10分割
して用いたが、混合割合はこれに限定される物ではな
く、結晶化度の高いものと低いもの、実施例中で例示し
たもので言えば、80%〜10%のものの中から適宜選
択して混合し、その結果、R3部分からL3部分に向か
って結晶化度が低下する構成、より好ましくは徐々に低
下する構成であれば、上記の実施例群で得られるのと同
様な効果が得られることも確認した。また、上記実施例
群では、結晶化度の異なる2種の高分子材料の組合せを
例示したが、3種以上の組合せでも、R3部分からL3
部分に向かって結晶化度が低下する構成であれば、好結
果が得られることも別途確認した。
In Examples 2-1 to 2-4, the mixing ratio of two kinds of materials having different crystallinity was divided into 10 parts, but the mixing ratio is not limited to this. , Those having high and low crystallinity, and those exemplified in the examples, 80% to 10% are appropriately selected and mixed, and as a result, crystals are crystallized from the R3 portion toward the L3 portion. It was also confirmed that the same effect as that obtained in the above-mentioned group of examples can be obtained if the constitution is such that the degree of chemical conversion decreases, more preferably the constitution gradually decreases. Further, in the above-mentioned group of examples, a combination of two kinds of polymer materials having different crystallinities was exemplified, but even in a combination of three or more kinds, from the R3 part to the L3 part.
It was also separately confirmed that good results could be obtained if the crystallinity decreased toward the portion.

【0082】《実施例3−1》 A.ガス拡散電極の製造 実施例1−1で用いたABを10gと、実施例1−1に
記載したPTFEよりも透湿係数の大きい樹脂としてポ
リイミド樹脂を主成分とするN−メチル−2−ピロリド
ン溶液(日本合成ゴム(株)製:JALS214)2gを
混合撹拌し、ポリイミド樹脂を主成分とするN−メチル
−2−ピロリドン溶液中にABが分散した分散液(以
下、分散液p1という)を調製した。その後、実施例1
−1記載の分散液e1と分散液p1を、それぞれ重量混
合比で分散液e1:分散液p1=9:1、8:2、7:
3、6:4、5:5、4:6、3:7、2:8、1:
9、0:10で混合し、分率が異なる10種の混合分散
液を調製した。
Example 3-1 A. Production of Gas Diffusion Electrode 10 g of AB used in Example 1-1 and N-methyl-2-pyrrolidone containing polyimide resin as a main component as a resin having a larger moisture permeability coefficient than PTFE described in Example 1-1. 2 g of a solution (JALS214, manufactured by Japan Synthetic Rubber Co., Ltd.) was mixed and stirred to obtain a dispersion liquid (hereinafter, referred to as dispersion liquid p1) in which AB was dispersed in an N-methyl-2-pyrrolidone solution containing a polyimide resin as a main component. Prepared. Then, Example 1
The dispersion liquid e1 and the dispersion liquid p1 described in -1 are mixed at a weight mixing ratio of dispersion liquid e1: dispersion liquid p1 = 9: 1, 8: 2, 7:
3, 6: 4, 5: 5, 4: 6, 3: 7, 2: 8, 1:
Mixing was carried out at 9, 0:10 to prepare 10 kinds of mixed dispersion liquids having different fractions.

【0083】なお、ここで透湿係数とは、単位面積・単
位時間・一定気圧における湿度の透過率であり、ここで
は日本工業規格JIS−A9511に基づく定義を用い
る。測定の結果、分散液e1中のPTFEの透湿係数は
0.01g/m・hr・mmHgで、分散液p1中のポ
リイミド樹脂の透湿係数は0.04g/m・hr・mm
Hgであった。
Here, the moisture permeability coefficient is the moisture permeability in a unit area, a unit time, and a constant atmospheric pressure, and here, the definition based on Japanese Industrial Standard JIS-A9511 is used. As a result of the measurement, the moisture permeability coefficient of PTFE in the dispersion liquid e1 is 0.01 g / m · hr · mmHg, and the moisture permeability coefficient of the polyimide resin in the dispersion liquid p1 is 0.04 g / m · hr · mm.
It was Hg.

【0084】次に、多孔性支持体として用意した長さ3
0cm、幅15cm、厚さ180μmのカーボンペーパ
ー(東レ(株)製: 品番TGP−H−060)の表面
に、一端(R4)から他端(L4)に向かって、分散液
p1の混合割合が多くなるように配置し、前記した10
種の混合分散液を実施例1−1に記載したものと同じ手
段で、スクリーン印刷を行った。その後、350℃で焼
成しガス拡散層(以下、ガス拡散層q1という)を得
た。
Next, the length 3 prepared as the porous support was used.
The mixing ratio of the dispersion liquid p1 was from the one end (R4) to the other end (L4) on the surface of 0 cm, width 15 cm, and thickness 180 μm carbon paper (manufactured by Toray Industries, Inc .: product number TGP-H-060). Arrange so that there are many, 10 above
The mixed dispersion of the seeds was screen printed by the same means as described in Example 1-1. Then, it baked at 350 degreeC and the gas diffusion layer (henceforth gas diffusion layer q1) was obtained.

【0085】こうして完成したガス拡散層q1の透水量
をR4部分(カーボンペーパーの一端面から15cmの
部分)とL4部分(カーボンペーパーの他端面から15
cmの部分)に分割し、JISZ0208の重量法によ
り評価したところ、透水量はR4部分で0.8×104
g/m2・24h、L4部分で1.8×104g/m2・24
hで、R4部分で透水量が少なく、L4部分で透水量が
多くなっていることがわかった。
The amount of water permeation of the gas diffusion layer q1 completed in this way was adjusted to R4 (15 cm from one end of carbon paper) and L4 (15 cm from the other end of carbon paper).
cm part) and evaluated by the weight method of JIS Z0208, the water permeability is 0.8 × 10 4 in the R4 part.
g / m 2 · 24h, L4 part 1.8 × 10 4 g / m 2 · 24
At h, it was found that the amount of water permeation was small in the portion R4 and was large in the portion L4.

【0086】続いて、前記ガス拡散層q1の片面に、予
め粒径が3ミクロン以下のカーボン粉末を、塩化白金酸
水溶液に浸漬し、還元処理によりカーボン粉末の表面に
白金触媒を担持させ(このときのカーボンと担持した白
金の重量比は1:1とした)カーボン粉末を高分子電解
質のアルコール溶液中に分散させ、スラリー化しておい
たスラリーを均一に塗布して触媒層を形成し、ガス拡散
電極とした(以下、ガス拡散電極r1という)。
Subsequently, on one surface of the gas diffusion layer q1, carbon powder having a particle size of 3 μm or less was previously immersed in a chloroplatinic acid aqueous solution, and a platinum catalyst was carried on the surface of the carbon powder by reduction treatment (this (The weight ratio of carbon to supported platinum at this time was 1: 1) Carbon powder was dispersed in an alcohol solution of a polymer electrolyte, and the slurry that had been slurried was uniformly applied to form a catalyst layer. It was used as a diffusion electrode (hereinafter referred to as gas diffusion electrode r1).

【0087】B.高分子電解質型燃料電池の製造 同一の大きさのガス拡散電極r1及び実施例1−1で作
製したガス拡散電極jを用意し、ガス拡散電極r1及び
ガス拡散電極jより一回り外寸の大きい高分子電解質膜
(デュポン(株)製;NAFION117)の両面に、
ガス拡散電極r1およびガス拡散電極jを、それぞれ触
媒層を備えた面がそれぞれ高分子電解質と向き合う様に
して重ね合わせ、さらに厚み250μmのシリコンゴム
製ガスケットを両面に位置合わせした後、130℃、5
分間ホットプレスし、MEAを得た。
B. Manufacture of polymer electrolyte fuel cell: A gas diffusion electrode r1 of the same size and the gas diffusion electrode j prepared in Example 1-1 are prepared, and the outer dimensions are slightly larger than those of the gas diffusion electrode r1 and the gas diffusion electrode j. On both sides of the polymer electrolyte membrane (DuPont KK; NAFION 117),
The gas diffusion electrode r1 and the gas diffusion electrode j were superposed such that the surfaces provided with the catalyst layers face the polymer electrolyte, respectively, and further, a silicone rubber gasket having a thickness of 250 μm was aligned on both surfaces, and then at 130 ° C. 5
After hot pressing for a minute, MEA was obtained.

【0088】このMEAの両側にセパレータ板を配置し
作製した単セルを4セル積層させて高分子電解質型燃料
電池とした。セパレータ板は厚さ4mmのカーボン製で気
密性を有するものを用いた。またガス拡散層と接する表
面には、幅2mm、深さ1mmのガス流路を切削加工により
形成した。電池スタックの上部及び下部にはSUS30
4製の金属端板を配し、高分子電解質型燃料電池を固定
した。
Four unit cells were prepared by arranging separator plates on both sides of this MEA to obtain a polymer electrolyte fuel cell. A separator plate made of carbon having a thickness of 4 mm and having airtightness was used. Further, a gas channel having a width of 2 mm and a depth of 1 mm was formed by cutting on the surface in contact with the gas diffusion layer. SUS30 on the top and bottom of the battery stack
The metal end plate made of No. 4 was arranged and the polymer electrolyte fuel cell was fixed.

【0089】ガス拡散電極r1はそのR4部分がセパレ
ータ板のガス流路の入口側にまた、L4部分がガス流路
の出口側になるうように配置した。ガス拡散電極r1側
のセパレータ板のガス流路に入口側から出口側に向かっ
て空気を、また電極j側のセパレータ板のガス流路に入
口側から出口側に向かって水素を、酸素利用率40%、
水素利用率70%で、それぞれ供給し、水素加湿バブラ
ー温度85℃、空気加湿バブラー温度65℃、電池温度
75℃で運転したところ、高分子電解質型燃料電池は
2.8ボルトの電圧を発生し、また3000時間経過後
も初期電圧を維持し、安定な運転動作を示すものであっ
た。この原因は、本実施例の高分子電解質型燃料電池で
は、高分子電解質を湿潤状態に保ちつつ、生成水による
過剰な水分を安全かつ速やかに排出することが出来たこ
とによる。
The gas diffusion electrode r1 was arranged such that the R4 portion thereof was on the inlet side of the gas passage of the separator plate and the L4 portion thereof was on the outlet side of the gas passage. The gas utilization of the separator plate on the gas diffusion electrode r1 side is air from the inlet side to the outlet side, and the gas passage of the separator plate on the electrode j side is hydrogen from the inlet side to the outlet side. 40%,
When hydrogen was supplied at a hydrogen utilization rate of 70% and operated at a hydrogen humidification bubbler temperature of 85 ° C, an air humidification bubbler temperature of 65 ° C, and a cell temperature of 75 ° C, the polymer electrolyte fuel cell generated a voltage of 2.8 volts. The initial voltage was maintained even after 3000 hours, and stable operation was exhibited. This is because the polymer electrolyte fuel cell of this example was able to safely and promptly discharge excess water due to generated water while keeping the polymer electrolyte in a wet state.

【0090】《実施例3−2》実施例3−1において分
散液p1に用いたポリイミド樹脂を主成分とするN−メ
チル−2−ピロリドン溶液の替わりに、透湿係数0.1
g/m・hr・mmHg%のポリ塩化ビニルのエタノー
ル分散液(この分散液におけるポリ塩化ビニルとエタノ
ールとの重量比は20:80)を用いて分散液p1の替
わりに分散液p2を作製したこと以外は、実施例3−1
で作製したガス拡散層q1と全く同一の作製方法で、本
実施例のガス拡散層(以下、ガス拡散層q2という)を
作製した。
Example 3-2 Instead of the N-methyl-2-pyrrolidone solution containing polyimide resin as the main component used in the dispersion p1 in Example 3-1, the moisture permeability coefficient was 0.1.
A dispersion p2 was prepared in place of the dispersion p1 using an ethanol dispersion of polyvinyl chloride of g / m · hr · mmHg% (the weight ratio of polyvinyl chloride and ethanol in this dispersion was 20:80). Except for the above, Example 3-1
The gas diffusion layer of the present example (hereinafter referred to as the gas diffusion layer q2) was produced by the same production method as that of the gas diffusion layer q1 produced in the above.

【0091】このガス拡散層q2の透水量を実施例3−
1と同様にJISZ0208の重量法によりR4部分と
L4部分に分割して評価したところ、透水量はR4部分
では0.8×104g/m2・24hで実施例3−1の場合
と同様であったが、L4部分では2.3×104g/m2
・24hで、実施例3−1の場合よりも多くなっていた。
これは、透湿係数について、実施例3−1と比べて、L
4部分において大きくなっていたためである。
The water permeation rate of this gas diffusion layer q2 was determined as in Example 3-
When the water resistance was 0.8 × 10 4 g / m 2 · 24h in the R4 part, the water permeation rate was 0.8 × 10 4 g / m 2 · 24h, which was evaluated by dividing it into the R4 part and the L4 part by the weight method of JIS Z0208 as in the case of Example 3-1. However, in the L4 part, 2.3 × 10 4 g / m 2
-At 24 hours, the number was higher than that in Example 3-1.
Regarding the moisture permeability coefficient, this is L compared to Example 3-1.
This is because it was larger in the 4th part.

【0092】このガス拡散層q2を用いて、実施例3−
1のガス拡散電極r1の作製と同じ作製方法で、本実施
例のガス拡散電極r2を作製した。このガス拡散電極r
2とガス拡散電極jとを用いて、実施例3−1の高分子
電解質型燃料電池の作製と同じ作製方法で、本実施例の
高分子電解質型燃料電池を作製した。
Example 3-using this gas diffusion layer q2
The gas diffusion electrode r2 of this example was produced by the same production method as the production of the gas diffusion electrode r1 of No. 1. This gas diffusion electrode r
Using 2 and the gas diffusion electrode j, the polymer electrolyte fuel cell of this example was produced by the same production method as that of the polymer electrolyte fuel cell of Example 3-1.

【0093】この本実施例の高分子電解質型燃料電池の
特性を実施例3−1と同じ条件で測定した。すなわち、
R4部分とL4部分がそれぞれガス流路の入口側と出口
側になるように配置し、ガス拡散電極r2側に空気を、
さらにガス拡散電極j側に水素を供給して、実施例3−
1と同じ運転条件で運転した。その結果、本実施例の高
分子電解質型燃料電池は2.8ボルトの電圧を発生し、
3000時間経過後も初期電圧を維持し、安定な運転動
作を示すものであった。この要因は、本実施例の高分子
電解質型燃料電池では、高分子電解質を湿潤状態に保ち
つつ、生成水による過剰な水分を安全かつ速やかに排出
することができたことによる。
The characteristics of the polymer electrolyte fuel cell of this example were measured under the same conditions as in example 3-1. That is,
The R4 portion and the L4 portion are arranged so as to be on the inlet side and the outlet side of the gas flow path, respectively, and air is supplied to the gas diffusion electrode r2 side.
Furthermore, hydrogen is supplied to the gas diffusion electrode j side, and Example 3-
It was operated under the same operating conditions as 1. As a result, the polymer electrolyte fuel cell of this example generates a voltage of 2.8 V,
The initial voltage was maintained even after 3000 hours, and stable operation was exhibited. This factor is because the polymer electrolyte fuel cell of the present example was able to safely and promptly discharge excess water due to generated water while keeping the polymer electrolyte in a wet state.

【0094】《実施例3−3》実施例3−1で分散液e
1に用いたPTFEを主成分とするフッ素樹脂分散液D
−1の替わりに、透湿係数0.01g/m・hr・mm
Hg%のポリプロピレンをエタノール中に分散した分散
液(この分散液におけるポリプロピレンとエタノールの
重量比は20:80)を用いて分散液e1の替わりに分
散液e3を作製したこと以外は、実施例3−1で作製し
たガス拡散層q1と全く同一の作製方法で、本実施例の
ガス拡散層(以下、ガス拡散層q3という)を作製し
た。
<< Example 3-3 >> Dispersion e in Example 3-1.
Fluororesin dispersion D containing PTFE as a main component used in No. 1
-1 instead of -1 moisture permeability coefficient 0.01g / m ・ hr ・ mm
Example 3 except that a dispersion liquid e3 was prepared instead of the dispersion liquid e1 using a dispersion liquid in which Hg% polypropylene was dispersed in ethanol (the weight ratio of polypropylene to ethanol in this dispersion liquid was 20:80). A gas diffusion layer of this example (hereinafter referred to as gas diffusion layer q3) was produced by the same production method as that of the gas diffusion layer q1 produced in -1.

【0095】このガス拡散層q3の透水量を実施例3−
1と同様にJISZ0208の重量法によりR4部分と
L4部分に分割して評価したところ、透水量はR4部分
では0.8×104g/m2・24h、L4部分では1.8
×104g/m2・24hで、実施例3−1の場合と同じで
あった。これは、用いた材料は異なっていたが、透湿係
数についてはR4部分もL4部分も実施例3−1の場合
と同じであったためである。
The amount of water permeation of this gas diffusion layer q3 was determined as in Example 3-
The water permeability was 0.8 × 10 4 g / m 2 · 24h for the R4 part and 1.8 for the L4 part when evaluated by dividing into R4 part and L4 part by the weight method of JISZ0208 as in 1.
It was × 10 4 g / m 2 · 24 h, which was the same as in the case of Example 3-1. This is because, although the materials used were different, the R4 portion and the L4 portion had the same moisture permeability coefficient as in Example 3-1.

【0096】このガス拡散層q3を用いて、実施例3−
1のガス拡散電極r1の作製と同じ作製方法で、本実施
例のガス拡散電極r3を作製した。このガス拡散電極r
3とガス拡散電極jとを用いて、実施例3−1の高分子
電解質型燃料電池の作製と同じ作製方法で、本実施例の
高分子電解質型燃料電池を作製した。
Example 3-using this gas diffusion layer q3
The gas diffusion electrode r3 of this example was produced by the same production method as that of the gas diffusion electrode r1 of No. 1. This gas diffusion electrode r
Using 3 and the gas diffusion electrode j, the polymer electrolyte fuel cell of this example was produced by the same production method as that of the polymer electrolyte fuel cell of Example 3-1.

【0097】この本実施例の高分子電解質型燃料電池の
特性を実施例3−1と同じ条件で測定した。すなわち、
R4部分とL4部分がそれぞれガス流路の入口側と出口
側になるように配置し、ガス拡散電極r3側に空気を、
さらにガス拡散電極j側に水素を供給して、実施例3−
1と同じ運転条件で運転した。その結果、本実施例の高
分子電解質型燃料電池は2.8ボルトの電圧を発生し、
3000時間経過後も初期電圧を維持し、安定な運転動
作を示すものであった。この要因は、本実施例の高分子
電解質型燃料電池では、高分子電解質を湿潤状態に保ち
つつ、生成水による過剰な水分を安全かつ速やかに排出
することができたことによる。
The characteristics of the polymer electrolyte fuel cell of this example were measured under the same conditions as in example 3-1. That is,
The R4 part and the L4 part are arranged so as to be on the inlet side and the outlet side of the gas flow path, respectively, and air is supplied to the gas diffusion electrode r3 side.
Furthermore, hydrogen is supplied to the gas diffusion electrode j side, and Example 3-
It was operated under the same operating conditions as 1. As a result, the polymer electrolyte fuel cell of this example generates a voltage of 2.8 V,
The initial voltage was maintained even after 3000 hours, and stable operation was exhibited. This factor is because the polymer electrolyte fuel cell of the present example was able to safely and promptly discharge excess water due to generated water while keeping the polymer electrolyte in a wet state.

【0098】《実施例3−4》実施例3−1で分散液e
1に用いたPTFEを主成分とするフッ素樹脂分散液D
−1の替わりに、透湿係数0.01g/m・hr・mm
Hg%のポリエチレンをエタノール中に分散した分散液
(この分散液におけるポリエチレンとエタノールの重量
比は20:80)を用いて分散液e1の替わりに分散液
e4を作製したこと、および、分散液p1に用いたポリ
イミド樹脂を主成分とするN−メチル−2−ピロリドン
溶液の替わりに、透湿係数0.1g/m・hr・mmH
g%の酢酸セルロースのエタノール溶液(この溶液にお
ける酢酸セルロースとエタノールの重量比は20:8
0)を用いて分散液p1の替わりに分散液p3を作製し
たこと以外は、実施例3−1で作製したガス拡散層q1
と全く同一の作製方法で、本実施例のガス拡散層(以
下、ガス拡散層q4という)を作製した。
Example 3-4 Dispersion e in Example 3-1
Fluororesin dispersion D containing PTFE as a main component used in No. 1
-1 instead of -1 moisture permeability coefficient 0.01g / m ・ hr ・ mm
Dispersion e4 was prepared in place of Dispersion e1 using a dispersion in which Hg% polyethylene was dispersed in ethanol (the weight ratio of polyethylene to ethanol in this dispersion was 20:80), and Dispersion p1 Instead of the N-methyl-2-pyrrolidone solution containing polyimide resin as the main component used in the above, a moisture permeability coefficient of 0.1 g / m · hr · mmH
g% cellulose acetate in ethanol (the weight ratio of cellulose acetate to ethanol in this solution is 20: 8)
0) was used to prepare the dispersion p3 instead of the dispersion p1, and the gas diffusion layer q1 prepared in Example 3-1.
A gas diffusion layer of the present example (hereinafter referred to as gas diffusion layer q4) was produced by the same production method as described above.

【0099】このガス拡散層q4の透水量を実施例3−
1と同様にJISZ0208の重量法によりR4部分と
L4部分に分割して評価したところ、透水量はR4部分
では0.8×104g/m2・24hで前3者の実施例の場
合と同じであったが、L4部分では2.3×104g/
2・24hで、実施例3−2の場合と同じであった。こ
れは、用いた材料は異なっていたが、透湿係数について
はR4部分は前3者と同じで、L4部分は実施例3−2
の場合と同じであったためである。
The amount of water permeation of this gas diffusion layer q4 was determined as in Example 3-
As in the case of 1, the evaluation was made by dividing into R4 part and L4 part by the weight method of JIS Z0208, and the water permeability in the R4 part was 0.8 × 10 4 g / m 2 · 24h, which was the same as the case of the former three cases. Same, but 2.3 × 10 4 g / L4
m 2 · 24h, the same as in Example 3-2. Although the materials used were different, the R4 part was the same as the former three with respect to the moisture permeability coefficient, and the L4 part was the same as Example 3-2.
It was because it was the same as the case.

【0100】このガス拡散層q4を用いて、実施例3−
1のガス拡散電極r1の作製と同じ作製方法で、本実施
例のガス拡散電極r4を作製した。このガス拡散電極r
4とガス拡散電極jとを用いて、実施例3−1の高分子
電解質型燃料電池の作製と同じ作製方法で、本実施例の
高分子電解質型燃料電池を作製した。
Example 3-using this gas diffusion layer q4
The gas diffusion electrode r4 of this example was produced by the same production method as that of the gas diffusion electrode r1 of No. 1. This gas diffusion electrode r
Using 4 and the gas diffusion electrode j, the polymer electrolyte fuel cell of this example was produced by the same production method as that of the polymer electrolyte fuel cell of Example 3-1.

【0101】この本実施例の高分子電解質型燃料電池の
特性を実施例3−1と同じ条件で測定した。すなわち、
R4部分とL4部分がそれぞれガス流路の入口側と出口
側になるように配置し、ガス拡散電極r4側に空気を、
さらにガス拡散電極j側に水素を供給して、実施例3−
1と同じ運転条件で運転した。その結果、本実施例の高
分子電解質型燃料電池は2.8ボルトの電圧を発生し、
3000時間経過後も初期電圧を維持し、安定な運転動
作を示すものであった。この要因は、本実施例の高分子
電解質型燃料電池では、高分子電解質を湿潤状態に保ち
つつ、生成水による過剰な水分を安全かつ速やかに排出
することができたことによる。
The characteristics of the polymer electrolyte fuel cell of this example were measured under the same conditions as in example 3-1. That is,
The R4 portion and the L4 portion are arranged so as to be on the inlet side and the outlet side of the gas flow path, respectively, and air is supplied to the gas diffusion electrode r4 side.
Furthermore, hydrogen is supplied to the gas diffusion electrode j side, and Example 3-
It was operated under the same operating conditions as 1. As a result, the polymer electrolyte fuel cell of this example generates a voltage of 2.8 V,
The initial voltage was maintained even after 3000 hours, and stable operation was exhibited. This factor is because the polymer electrolyte fuel cell of the present example was able to safely and promptly discharge excess water due to generated water while keeping the polymer electrolyte in a wet state.

【0102】なお、上記実施例3−1〜3−4において
は、透湿係数の異なる2種の材料の混合割合を10分割
して用いたが、混合割合はこれに限定される物ではな
く、透湿係数の小さいものと大きいもの、実施例中で例
示したもので言えば、0.8×104g/m2・24h〜
2.3×104g/m2・24hものの中から適宜選択して
混合し、その結果、R4部分からL4部分に向かって透
湿係数が大きくなる構成、より好ましくは徐々に大きく
なる構成であれば、上記の実施例群で得られるのと同様
な効果が得られることも確認した。また、上記実施例群
では、透湿係数の異なる2種の高分子材料の組合せを例
示したが、3種以上の組合せでも、R4部分からL4部
分に向かって透湿係数が大きくなる構成であれば、同様
な好結果が得られることも別途確認した。
In the above Examples 3-1 to 3-4, the mixing ratio of two kinds of materials having different water vapor transmission coefficients was divided into 10 and used, but the mixing ratio is not limited to this. The one having a small moisture permeability and the one having a large moisture permeability are 0.8 × 10 4 g / m 2 · 24h or more.
2.3 × 10 4 g / m 2 · 24 h, which is appropriately selected and mixed, and as a result, the moisture permeability coefficient increases from the R4 portion to the L4 portion, and more preferably, gradually increases. If so, it was also confirmed that the same effect as that obtained in the above-mentioned example group could be obtained. Further, in the above-mentioned group of examples, a combination of two kinds of polymer materials having different water vapor transmission coefficients was exemplified, but even in a combination of three or more kinds, the water vapor transmission coefficient increases from the R4 portion to the L4 portion. It was also confirmed separately that similar good results could be obtained.

【0103】《比較例》MEAを挟むべき2枚のガス拡
散電極の両方にガス拡散電極jを用いた以外は上記実施
例群記載の同様の操作で高分子電解質型燃料電池を作製
した。こうして完成した高分子電解質型燃料電池を上記
実施例群記載と同一の条件で運転したところ、初期電圧
として、上記実施例群の場合と同じ2.8ボルトを示し
たが、電圧は徐々に低下し、3000時間経過後の電圧
は1.8ボルトまで低下し、運転動作は非常に不安定な
ものであった。この原因は、本比較例の高分子電解質型
燃料電池では、MEA内部の水分管理が不十分で、入口
側での高分子電解質膜の乾燥、または出口側でのフラッ
ディングによるガス拡散阻害がおこっていたためであ
る。
Comparative Example A polymer electrolyte fuel cell was prepared in the same manner as described in the above-mentioned group of examples except that the gas diffusion electrode j was used for both of the two gas diffusion electrodes that sandwich the MEA. When the polymer electrolyte fuel cell thus completed was operated under the same conditions as those described in the above example group, the initial voltage was 2.8 V, which was the same as in the case of the above example group, but the voltage gradually decreased. However, the voltage after 3000 hours had dropped to 1.8 V, and the operation was very unstable. The reason for this is that in the polymer electrolyte fuel cell of this comparative example, the water management inside the MEA is insufficient, and the polymer electrolyte membrane is dried at the inlet side or gas diffusion is hindered by flooding at the outlet side. It is due to the fact.

【0104】[0104]

【発明の効果】以上のように、ガス拡散層において多孔
性支持体と酸性官能基量の異なる少なくとも2種の導電
性炭素粒子と高分子材料で構成される高分子含有導電層
でガス拡散層を構成し、前記2種の導電性炭素粒子のう
ち、酸性官能基の多い方の導電性炭素粒子の全導電性粒
子量に占める割合をガス拡散電極の一端から他端に向か
って大きくすることでガス拡散層の面内での透水機能を
調整でき、MEA内において高分子電解質を湿潤状態に
保ちつつ、また生成水による過剰な水分を速やかに排水
することがでる。また、ガス拡散層を利用してガス拡散
電極を構成し、高分子電解質型燃料電池を製造すること
で長期にわたり安定な運転動作を示す高分子電解質型燃
料電池が実現できる。
INDUSTRIAL APPLICABILITY As described above, in the gas diffusion layer, the porous support and at least two types of conductive carbon particles having different acidic functional groups and the polymer-containing conductive layer composed of the polymer material are used as the gas diffusion layer. Of the two types of conductive carbon particles, the ratio of the conductive carbon particles having the larger number of acidic functional groups to the total amount of conductive particles is increased from one end of the gas diffusion electrode to the other end. The water permeation function in the plane of the gas diffusion layer can be adjusted by the method, the polymer electrolyte can be kept in a wet state in the MEA, and excess water due to the produced water can be quickly drained. Further, by forming a gas diffusion electrode using the gas diffusion layer and manufacturing a polymer electrolyte fuel cell, a polymer electrolyte fuel cell that exhibits stable operation over a long period of time can be realized.

【0105】また、ガス拡散層において多孔性支持体と
導電性炭素粒子と結晶化度の異なる少なくとも2種の高
分子材料で構成される高分子含有導電層で構成し、前記
高分子材料のうち、結晶化度の低い方の高分子材料の全
高分子材料量に占める割合をガス拡散電極の一端から他
端に向かって大きくすることでガス拡散層の面内での透
水機能を調整でき、MEA内において高分子電解質を湿
潤状態に保ちつつ、また生成水による過剰な水分を速や
かに排水することができる。また、前記したガス拡散層
を利用してガス拡散電極を構成し、高分子電解質型燃料
電池を製造することで長期にわたり安定な運転動作を示
す高分子電解質型燃料電池が実現できる。
In the gas diffusion layer, a porous support, a conductive carbon particle, and a polymer-containing conductive layer composed of at least two polymer materials having different crystallinities are used. By increasing the ratio of the polymer material having the lower crystallinity to the total polymer material amount from one end of the gas diffusion electrode to the other end, the water permeation function in the plane of the gas diffusion layer can be adjusted. While keeping the polymer electrolyte in a wet state, excess water due to generated water can be quickly drained. Further, by using the above-mentioned gas diffusion layer to form a gas diffusion electrode and manufacturing a polymer electrolyte fuel cell, it is possible to realize a polymer electrolyte fuel cell that exhibits stable operation over a long period of time.

【0106】また、ガス拡散層において多孔性支持体と
導電性炭素粒子と透湿係数の異なる少なくとも2種の高
分子材料で構成される高分子含有導電層で構成し、前記
高分子材料のうち、透湿係数の大きい方の高分子材料の
全高分子材料量に占める割合をガス拡散電極の一端から
他端に向かって大きくすることでガス拡散層の面内での
透水機能を調整でき、MEA内において高分子電解質を
湿潤状態に保ちつつ、また生成水による過剰な水分を速
やかに排水することができる。また、前記ガス拡散層を
利用してガス拡散電極を構成し、高分子電解質型燃料電
池を製造することで長期にわたり安定な運転動作を示す
高分子電解質型燃料電池が実現できる。
In the gas diffusion layer, a porous support, a conductive carbon particle, and a polymer-containing conductive layer composed of at least two kinds of polymer materials having different moisture permeability coefficients are used. By increasing the ratio of the polymer material having the higher moisture permeability to the total amount of the polymer material from one end of the gas diffusion electrode to the other end, the water permeability function in the plane of the gas diffusion layer can be adjusted. While keeping the polymer electrolyte in a wet state, excess water due to generated water can be quickly drained. Further, by using the gas diffusion layer to form a gas diffusion electrode and manufacturing a polymer electrolyte fuel cell, a polymer electrolyte fuel cell that exhibits stable operation over a long period of time can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の高分子電解質型燃料電池の構成の概略を
模式的に示した断面図である。
FIG. 1 is a cross-sectional view schematically showing the configuration of a conventional polymer electrolyte fuel cell.

【図2】第1の実施形態におけるガス拡散層及びガス拡
散電極の概略を模式的に示す一部断面斜視図である。
FIG. 2 is a partial cross-sectional perspective view schematically showing an outline of a gas diffusion layer and a gas diffusion electrode in the first embodiment.

【図3】従来のガス拡散層及びガス拡散電極の概略を模
式的に示す一部断面斜視図である。
FIG. 3 is a partial cross-sectional perspective view schematically showing an outline of a conventional gas diffusion layer and a gas diffusion electrode.

【図4】第1の実施形態における高分子電解質型燃料電
池の概略を模式的に示す断面図であり、第2および第3
の実施形態の高分子電解質型燃料電池の概略にも共通す
る図である。
FIG. 4 is a cross-sectional view schematically showing the outline of the polymer electrolyte fuel cell according to the first embodiment.
FIG. 3 is a diagram common to the outline of the polymer electrolyte fuel cell of the embodiment.

【図5】第2の実施形態におけるガス拡散層及びガス拡
散電極の概略を模式的に示す一部断面斜視図である。
FIG. 5 is a partial cross-sectional perspective view schematically showing an outline of a gas diffusion layer and a gas diffusion electrode in the second embodiment.

【図6】第3の実施形態におけるガス拡散層及びガス拡
散電極の概略を模式的に示す一部断面斜視図である。
FIG. 6 is a partial cross-sectional perspective view schematically showing an outline of a gas diffusion layer and a gas diffusion electrode according to a third embodiment.

【図7】多孔性支持体の表面にガス拡散層の構成分散液
をスクリーン印刷にて塗布するための印刷装置の構成の
概略を模式的に示す斜視図である。
FIG. 7 is a perspective view schematically showing the outline of the configuration of a printing apparatus for applying the constituent dispersion liquid of the gas diffusion layer to the surface of the porous support by screen printing.

【符号の説明】[Explanation of symbols]

11 高分子電解質膜 12 触媒層 13 ガス拡散層 14 ガス拡散電極 15 電解質膜−電極接合体 16 ガス流路 17 セパレータ板 18 ガスケット 21a 多孔性支持体 22a 高分子含有導電層 23a 触媒層 24a ガス拡散電極 25 高分子電解質膜 26 ガス流路 27 セパレータ板 28 酸化剤ガス用流路 29 燃料ガス用流路 210a、210b 導電性炭素粒子 211a 導電性炭素粒子 212a 高分子材料 213a、213b ガス拡散層 31 多孔性支持体 32 高分子含有導電層 33 触媒層 34 ガス拡散電極 310 導電性炭素粒子 311 高分子材料 312 高分子材料 313 ガス拡散層 41 多孔性支持体 42 高分子含有導電層 43 触媒層 44 ガス拡散電極 410 導電性炭素粒子 411 高分子材料 412 高分子材料 413 ガス拡散層 51 カーボンペーパー 52 開口部 53 マスク 54 支持台 11 Polymer electrolyte membrane 12 Catalyst layer 13 Gas diffusion layer 14 Gas diffusion electrode 15 Electrolyte Membrane-Electrode Assembly 16 gas flow paths 17 Separator plate 18 gasket 21a Porous support 22a Polymer-containing conductive layer 23a catalyst layer 24a gas diffusion electrode 25 Polymer electrolyte membrane 26 gas flow paths 27 Separator plate 28 Oxidant gas flow path 29 Fuel gas flow path 210a, 210b conductive carbon particles 211a conductive carbon particles 212a Polymer material 213a, 213b Gas diffusion layer 31 porous support 32 Polymer-containing conductive layer 33 catalyst layer 34 Gas diffusion electrode 310 conductive carbon particles 311 polymeric materials 312 Polymer material 313 Gas diffusion layer 41 porous support 42 polymer-containing conductive layer 43 catalyst layer 44 Gas diffusion electrode 410 conductive carbon particles 411 Polymer material 412 Polymer material 413 gas diffusion layer 51 carbon paper 52 opening 53 masks 54 Support

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H018 AA06 AS03 DD01 DD10 EE05 EE17 5H026 AA06 CX01 EE05 EE18    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H018 AA06 AS03 DD01 DD10 EE05                       EE17                 5H026 AA06 CX01 EE05 EE18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 多孔性支持体と、前記多孔性支持体上に
配置された高分子材料およ導電性炭素粒子を含有する高
分子含有導電層を有するガス拡散層であって、前記導電
性炭素粒子は、酸性官能基量の異なる少なくとも2種の
導電性炭素粒子であり、かつ前記酸性官能基量が多い方
の導電性炭素粒子の量が、ガス拡散層の一端(R2)か
ら他端(L2)に向かって多くなっていることを特徴と
する高分子電解質型燃料電池用ガス拡散層。
1. A gas diffusion layer having a porous support and a polymer-containing conductive layer containing a polymer material and conductive carbon particles disposed on the porous support, the conductive layer comprising: The carbon particles are at least two kinds of conductive carbon particles having different amounts of acidic functional groups, and the amount of the conductive carbon particles having the larger amount of acidic functional groups varies from one end (R2) to the other end of the gas diffusion layer. A gas diffusion layer for a polymer electrolyte fuel cell, wherein the gas diffusion layer is increasing toward (L2).
【請求項2】 多孔性支持体と、前記多孔性支持体上に
配置された導電性炭素粒子および高分子材料を含有する
高分子含有導電層とを有するガス拡散層であって、前記
高分子材料は、結晶化度の異なる少なくとも2種の高分
子材料であり、かつ前記高分子材料のうち結晶化度の低
い方の高分子材料の量が、ガス拡散層の一端(R3)か
ら他端(L3)に向かって多くなっていることを特徴と
する高分子電解質型燃料電池用ガス拡散層。
2. A gas diffusion layer having a porous support and a polymer-containing conductive layer containing conductive carbon particles and a polymer material disposed on the porous support, the polymer comprising The material is at least two kinds of polymer materials having different crystallinity, and the amount of the polymer material having the lower crystallinity is higher than that of the gas diffusion layer from one end (R3) to the other end. A gas diffusion layer for a polymer electrolyte fuel cell, characterized by increasing toward (L3).
【請求項3】 多孔性支持体と、前記多孔性支持体上に
導電性炭素粒子および高分子材料を含有する高分子含有
導電層とを有するガス拡散層であって、前記高分子材料
は、透湿係数の異なる少なくとも2種の高分子材料であ
り、かつ前記高分子材料のうち透湿係数が大きい方の高
分子材料の量が、ガス拡散層の一端(R4)から他端
(L4)に向かって多くなっていることを特徴とする高
分子電解質型燃料電池用ガス拡散層。
3. A gas diffusion layer having a porous support and a polymer-containing conductive layer containing conductive carbon particles and a polymer material on the porous support, wherein the polymer material comprises: The amount of the polymeric material having at least two types of polymeric materials having different moisture permeability coefficients and having a higher moisture permeability coefficient among the polymeric materials is such that one end (R4) to the other end (L4) of the gas diffusion layer. The gas diffusion layer for polymer electrolyte fuel cells, which is characterized by increasing in number.
【請求項4】 高分子電解質膜と、前記高分子電解質膜
の両面に配置された導電性炭素粒子および金属触媒を含
有する触媒層と、前記触媒層の少なくともいずれか一方
に対して配置された請求項1〜3のいずれかに記載のガ
ス拡散層とを有することを特徴とする高分子電解質型燃
料電池用電解質膜−電極接合体。
4. A polymer electrolyte membrane, a catalyst layer containing conductive carbon particles and a metal catalyst arranged on both sides of the polymer electrolyte membrane, and at least one of the catalyst layers. An electrolyte membrane-electrode assembly for a polymer electrolyte fuel cell, comprising the gas diffusion layer according to claim 1.
【請求項5】 請求項4に記載の電解質膜−電極接合体
と、前記電解質膜−電極接合体の両側に配置されたガス
流路を持つ導電性セパレータ板とを有する単電池の積層
体を備える高分子電解質型燃料電池であって、請求項1
〜3のいずれかに記載のガス拡散層に対して配置された
前記導電性セパレータ板のガス流路に酸化剤ガスが通流
され、かつ前記ガス拡散層の前記一端(R2、R3、R
4)が前記酸化剤ガスの入口側に位置し、前記他端(L
2、L3、L4)が前記酸化剤ガスの前記出口側に位置
していることを特徴とする高分子電解質型燃料電池。
5. A laminate of single cells, comprising an electrolyte membrane-electrode assembly according to claim 4, and a conductive separator plate having gas passages arranged on both sides of the electrolyte membrane-electrode assembly. A polymer electrolyte fuel cell comprising:
An oxidant gas is caused to flow through a gas flow path of the conductive separator plate arranged with respect to the gas diffusion layer according to any one of claims 1 to 3, and the one end (R2, R3, R
4) is located on the inlet side of the oxidant gas, and the other end (L
2, L3, L4) are located on the outlet side of the oxidant gas.
JP2002281128A 2001-09-28 2002-09-26 Gas diffusion layer for polymer electrolyte fuel cell, electrolyte membrane-electrode assembly using the same, and polymer electrolyte fuel cell Expired - Fee Related JP3562809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002281128A JP3562809B2 (en) 2001-09-28 2002-09-26 Gas diffusion layer for polymer electrolyte fuel cell, electrolyte membrane-electrode assembly using the same, and polymer electrolyte fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001301730 2001-09-28
JP2001-301730 2001-09-28
JP2002281128A JP3562809B2 (en) 2001-09-28 2002-09-26 Gas diffusion layer for polymer electrolyte fuel cell, electrolyte membrane-electrode assembly using the same, and polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2003173788A true JP2003173788A (en) 2003-06-20
JP3562809B2 JP3562809B2 (en) 2004-09-08

Family

ID=26623320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002281128A Expired - Fee Related JP3562809B2 (en) 2001-09-28 2002-09-26 Gas diffusion layer for polymer electrolyte fuel cell, electrolyte membrane-electrode assembly using the same, and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3562809B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150002A (en) * 2003-11-19 2005-06-09 Konica Minolta Holdings Inc Fuel cell
JP2006172949A (en) * 2004-12-16 2006-06-29 Daido Gakuen Solid polymer fuel cell, solid polymer fuel cell system and operation method for solid polymer fuel cell
JP2006278038A (en) * 2005-03-28 2006-10-12 Sanyo Electric Co Ltd Fuel cell
JP2006278037A (en) * 2005-03-28 2006-10-12 Sanyo Electric Co Ltd Fuel cell
JP2009238388A (en) * 2008-03-25 2009-10-15 Sanyo Electric Co Ltd Paste for micropore layer, membrane electrode assembly, and fuel cell
WO2011013711A1 (en) * 2009-07-28 2011-02-03 ジャパンゴアテックス株式会社 Gas diffusion layer member for solid polymer fuel cells, and solid polymer fuel cell
JP2012174456A (en) * 2011-02-21 2012-09-10 Nippon Soken Inc Fuel cell
JP2013534857A (en) * 2010-05-24 2013-09-09 ザイレコ,インコーポレイテッド Chemical processing
WO2014167612A1 (en) * 2013-04-10 2014-10-16 トヨタ自動車株式会社 Porous layer and method for manufacturing same
US9728793B2 (en) 2013-02-08 2017-08-08 Toyota Jidosha Kabushiki Kaisha Joining device and joining method involving acquistion of a parameter relating to expansion or contraction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017047A1 (en) * 1999-08-27 2001-03-08 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell
JP2001236976A (en) * 2000-02-22 2001-08-31 Sanyo Electric Co Ltd Fuel cell
JP2002042823A (en) * 2000-07-25 2002-02-08 Toyota Motor Corp Fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017047A1 (en) * 1999-08-27 2001-03-08 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell
JP2001236976A (en) * 2000-02-22 2001-08-31 Sanyo Electric Co Ltd Fuel cell
JP2002042823A (en) * 2000-07-25 2002-02-08 Toyota Motor Corp Fuel cell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150002A (en) * 2003-11-19 2005-06-09 Konica Minolta Holdings Inc Fuel cell
JP2006172949A (en) * 2004-12-16 2006-06-29 Daido Gakuen Solid polymer fuel cell, solid polymer fuel cell system and operation method for solid polymer fuel cell
JP4530893B2 (en) * 2005-03-28 2010-08-25 三洋電機株式会社 Polymer electrolyte fuel cell
JP2006278037A (en) * 2005-03-28 2006-10-12 Sanyo Electric Co Ltd Fuel cell
JP4530892B2 (en) * 2005-03-28 2010-08-25 三洋電機株式会社 Polymer electrolyte fuel cell
JP2006278038A (en) * 2005-03-28 2006-10-12 Sanyo Electric Co Ltd Fuel cell
JP2009238388A (en) * 2008-03-25 2009-10-15 Sanyo Electric Co Ltd Paste for micropore layer, membrane electrode assembly, and fuel cell
WO2011013711A1 (en) * 2009-07-28 2011-02-03 ジャパンゴアテックス株式会社 Gas diffusion layer member for solid polymer fuel cells, and solid polymer fuel cell
JP2011029064A (en) * 2009-07-28 2011-02-10 Japan Gore Tex Inc Gas diffusion layer member for polymer electrolyte fuel cell, and solid polymer fuel cell
JP2013534857A (en) * 2010-05-24 2013-09-09 ザイレコ,インコーポレイテッド Chemical processing
JP2012174456A (en) * 2011-02-21 2012-09-10 Nippon Soken Inc Fuel cell
US9728793B2 (en) 2013-02-08 2017-08-08 Toyota Jidosha Kabushiki Kaisha Joining device and joining method involving acquistion of a parameter relating to expansion or contraction
WO2014167612A1 (en) * 2013-04-10 2014-10-16 トヨタ自動車株式会社 Porous layer and method for manufacturing same
JP2014203798A (en) * 2013-04-10 2014-10-27 トヨタ自動車株式会社 Porous layer and manufacturing method therefor
US10355287B2 (en) 2013-04-10 2019-07-16 Toyota Jidosha Kabushiki Kaisha Porous layer and manufacturing method of the same

Also Published As

Publication number Publication date
JP3562809B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
KR100474940B1 (en) Polymer electrolyte fuel cell
JP5154256B2 (en) Gas diffusion layer with controlled diffusivity in working area
EP1357617A1 (en) Gas diffusion electrode and fuel cell using this
WO2001017047A9 (en) Polymer electrolyte type fuel cell
EP2461401B1 (en) Use of a gas diffusion layer member in a solid polymer fuel cell
KR100877273B1 (en) Fuel cell
KR102084568B1 (en) Component for fuel cell including graphene foam and functioning as flow field and gas diffusion layer
US20070141448A1 (en) Direct-type fuel cell and direct-type fuel cell system
JP7304524B2 (en) Fuel cell cathode catalyst layer and fuel cell
JP2004342489A (en) Fuel cell
JP3562809B2 (en) Gas diffusion layer for polymer electrolyte fuel cell, electrolyte membrane-electrode assembly using the same, and polymer electrolyte fuel cell
JP2001006708A (en) Solid high polymer fuel cell
JP3813406B2 (en) Fuel cell
JP2005174607A (en) Solid polymer electrolyte fuel cell, and gas diffusion electrode for solid polymer electrolyte fuel cell
JP2002164057A (en) Solid high molecular fuel cell and method of manufacturing the same
JP4880131B2 (en) Gas diffusion electrode and fuel cell using the same
JP2013225398A (en) Fuel cell stack
US20230052473A1 (en) Membrane electrode assembly and polymer electrolyte fuel
JP2001135326A (en) Solid high molecular electrolyte fuel cell and stack of the same
US7060383B2 (en) Fuel cell
JP4686992B2 (en) Solid polymer fuel cell and power generation method thereof
JP3738831B2 (en) Fuel cell electrode and fuel cell
JP3423241B2 (en) Cell unit for fuel cell and fuel cell
US20130260277A1 (en) Diffusion layer structure of fuel cell
JP2004349013A (en) Fuel cell stack

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees