JP2003172647A - Transported soil volume measuring method for slag flow - Google Patents

Transported soil volume measuring method for slag flow

Info

Publication number
JP2003172647A
JP2003172647A JP2001374368A JP2001374368A JP2003172647A JP 2003172647 A JP2003172647 A JP 2003172647A JP 2001374368 A JP2001374368 A JP 2001374368A JP 2001374368 A JP2001374368 A JP 2001374368A JP 2003172647 A JP2003172647 A JP 2003172647A
Authority
JP
Japan
Prior art keywords
solid
liquid slag
pressure
pipeline
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001374368A
Other languages
Japanese (ja)
Other versions
JP3970008B2 (en
Inventor
Yuichi Kato
裕一 加藤
Takashi Arai
新井  敬
Shigemi Sato
茂巳 佐藤
Seiichi Takanashi
清一 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2001374368A priority Critical patent/JP3970008B2/en
Publication of JP2003172647A publication Critical patent/JP2003172647A/en
Application granted granted Critical
Publication of JP3970008B2 publication Critical patent/JP3970008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To acurately measure a transported soil volume by accarately measuring the length of the plug unit length, or the length of a solid-liquid slag. <P>SOLUTION: The transported soil volume measuring method measures the transported amount of soil D which is air-pressure fed in a pipe path 3 such as a pipe line. Two pressure gauges 6 and 7 are installed with a prescribed interval L along the pipe path 3, and a speed Fp of a solid/liquid slag M is acquired from a time difference ΔT of pressure waveform which is measured with the pressure gauges 6 and 7. A length Lp of the solid/liquid slag M is acquired based on the speed Fp of the solid/liquid slag M and oscillation time t of acceleration waveform acquired from an accelerometer 11 installed in the pipe path 3. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、パイプラインなど
の管路を利用して浚渫土などの含水比(水分量/乾燥土
砂量)の比較的小さい土砂を高圧空気で圧送する際に、
管内を流れる土砂量を測定する輸送土量測定方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the use of a pipeline such as a pipeline for pressure-feeding sediment having a relatively low water content (moisture content / dry sediment content), such as dredged soil, by high pressure air.
The present invention relates to a transportation soil volume measuring method for measuring an amount of sediment flowing in a pipe.

【0002】[0002]

【従来の技術】従来、浚渫土などの含水比の比較的小さ
い土砂を高圧空気で圧送する場合、管内の土砂がスラグ
流、すなわち、土砂が管内に充満して流動する固液スラ
グ部分と、空気と土砂が上下方向に2層となって流動す
る空気スラグ部分とが交互に存在する流動状態となるこ
とが知られている。
2. Description of the Related Art Conventionally, when sand and sand having a relatively low water content such as dredged soil is pressure-fed by high-pressure air, the sand and sand in the pipe is a slag flow, that is, a solid-liquid slag portion in which the sand and sand flow to fill the pipe, It is known that air and earth and sand are in a fluidized state in which there are two layers in the vertical direction and air slag portions that flow in an alternating manner.

【0003】また、固液スラグ部分の土砂と、空気スラ
グ部分の土砂との流動が大きく異なることに起因する土
砂の攪拌混合効果があることも知られており、この攪拌
混合効果を利用して埋立地における地盤改良、及び養生
期間の短縮などを目的とした管中固化処理工法が行われ
ている。
It is also known that there is an agitating and mixing effect of the earth and sand due to the large difference in the flow of the earth and sand in the solid-liquid slag portion and the air and sand in the air slag portion. A pipe solidification treatment method is used to improve the ground in landfills and shorten the curing period.

【0004】この方法は、管路の途中でスラグ流動中の
土砂に固化材であるセメントスラリーなどを添加する方
法であるが、固化材の添加量を均一にするため、通過土
砂量を正確に把握する必要がある。
[0004] This method is a method of adding cement slurry, which is a solidifying material, to the earth and sand flowing in the slag in the middle of the pipeline. Need to figure out.

【0005】この通過土砂量を測定するため、従来、管
路中の単管の1つを測定管に転用し、該測定管と管路と
をフレキシブル管で接続するとともに、測定管の外底部
にロードセルを、一定間隔を隔てて2個設置して通過土
砂量の荷重を測定する方法が知られていた。
In order to measure the amount of sediment passing therethrough, conventionally, one of the single pipes in the pipe is diverted to a measuring pipe, the measuring pipe and the pipe are connected by a flexible pipe, and the outer bottom portion of the measuring pipe is connected. There was known a method in which two load cells were installed at regular intervals to measure the load of the amount of sediment passing through.

【0006】一方、図6乃至図8に示すように、管路3
の吐出口付近に、所定の間隔L(m)をおいて2つの定
点X,Yに設けた各圧力計6,7により計測される1つ
のプラグ単体Pの圧力波形での時間差(T2 −T0 )か
らプラグ単体の速度Fp(m/s)を求め、このプラグ
単体の速度Fp(m/s)と、2つの定点X,Yのうち
のいずれかをプラグ単体Pが通過する時間(T1
0 )とからプラグ単体長さLp=Fp(T1 −T0
を求め、更に、プラグ単体長さLp(m)と、管路3内
の断面積A(m2 )とから求められた任意の計測時間T
(hr)におけるプラグ体積Vpの合計ΣVpにより、
そのプラグ流量Qp(m3 /hr)を、Qp=ΣVp/T
で求める土砂プラグ流の流量計測方法が知られている
(特開平6−109511号公報)。なお、図中、1は
浚渫船、2は軟泥圧送船、4は渦巻ポンプ、5は空気圧
縮機、8は記録・分析装置、10は埋立地を示してい
る。
On the other hand, as shown in FIG. 6 to FIG.
, A time difference (T 2 − in the pressure waveform of one plug unit P measured by pressure gauges 6 and 7 provided at two fixed points X and Y at a predetermined interval L (m). The velocity Fp (m / s) of the plug alone is calculated from T 0 ), and the velocity Fp (m / s) of the plug alone and the time period during which the plug P passes through one of the two fixed points X and Y ( T 1
From T 0 ), the length of the plug unit Lp = Fp (T 1 −T 0 ).
And the arbitrary measurement time T obtained from the length Lp (m) of the plug alone and the cross-sectional area A (m 2 ) in the conduit 3.
By the total ΣVp of the plug volume Vp at (hr),
The plug flow rate Qp (m 3 / hr) is Qp = ΣVp / T
There is known a method for measuring the flow rate of the earth and sand plug flow obtained in (Japanese Patent Application Laid-Open No. 6-109511). In the figure, 1 is a dredging ship, 2 is a soft mud pressure ship, 4 is a centrifugal pump, 5 is an air compressor, 8 is a recording / analyzing device, and 10 is a landfill.

【0007】[0007]

【発明が解決しようとする課題】しかし、前者の場合
は、測定管の両側に接続させたフレキシブル管が良好に
機能せず、ロードセルを配置した測定管への固液スラグ
の流入時刻の特定が明確でなかった。また、固液スラグ
が上流側のロードセルの部分を通過する時に下流側のロ
ードセルが持ち上がることがあるため、下流側のロード
セルがマイナス信号を発生するなどの問題があった。ま
た、測定管の底部へロードセルを設置する作業が煩雑で
あり、更に、管路とロードセルとの支持方法が難しいな
どの問題があった。
However, in the case of the former, the flexible pipes connected to both sides of the measuring pipe do not function well, and the inflow time of the solid-liquid slag into the measuring pipe in which the load cell is arranged cannot be specified. It wasn't clear. Further, when the solid-liquid slag passes through the portion of the load cell on the upstream side, the load cell on the downstream side may be lifted, so that there is a problem that the load cell on the downstream side generates a negative signal. Further, there is a problem that the work of installing the load cell on the bottom of the measuring tube is complicated, and that the method of supporting the conduit and the load cell is difficult.

【0008】また、後者の場合は、プラグ単体Pの長さ
Lpを求める際に、プラグ単体Pが1つの圧力計を通過
する時間(T1 −T0 )を用いているが、実測上の圧力
波形は、図9のような波形になるから、圧力波形からプ
ラグ単体Pの通過時間を求めるのが非常に困難である。
In the latter case, the time (T 1 -T 0 ) required for the plug P to pass through one pressure gauge is used in obtaining the length Lp of the plug P, but the actual measurement is performed. Since the pressure waveform has a waveform as shown in FIG. 9, it is very difficult to obtain the passage time of the plug P alone from the pressure waveform.

【0009】その理由は、圧力波形が、圧力計を既に通
過して下流側に存在するプラグ単体Pの圧力降下分を含
んだ形で指示されるため、図8に示されているように、
ゼロ点から立ち上がり、一定時間経過後に、再びゼロ点
に戻るという、所謂、矩形波にならないからである。
The reason for this is that the pressure waveform is indicated in a form including the pressure drop of the plug unit P which has already passed through the pressure gauge and is present on the downstream side. Therefore, as shown in FIG.
This is because a so-called rectangular wave that rises from the zero point and returns to the zero point again after a lapse of a certain time does not become a so-called rectangular wave.

【0010】従って、後者の場合は、1つのプラグ単体
Pの長さLp(m)、強いては、任意の計測時間におけ
るプラグ流量Qp(m3 /hr)を正確に求めることが困
難である。
Therefore, in the latter case, it is difficult to accurately obtain the length Lp (m) of one plug P, that is, the plug flow rate Qp (m 3 / hr) at any measurement time.

【0011】本発明は、係る問題を解消するためになさ
れたものであり、その目的とするところは、プラグ単体
長さ、すなわち、固液スラグの長さを正確に測定し、以
って、輸送土砂量を正確に測定することができるスラグ
流における輸送土量測定方法を提供することにある。
The present invention has been made to solve the above problems, and an object thereof is to accurately measure the length of a single plug, that is, the length of a solid-liquid slag, and An object of the present invention is to provide a method for measuring the amount of transported soil in a slag flow that can accurately measure the amount of transported sediment.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決するた
め、本発明は、次のように構成されている。
In order to solve the above problems, the present invention is constructed as follows.

【0013】すなわち、 (1) パイプラインなどの管路内を空気圧送される土
砂の輸送量を測定する際に、前記管路に沿って2つの圧
力計を、所定の間隔Lを隔てて設置すると共に、各圧力
計により計測される圧力波形の時間差ΔTから固液スラ
グの速度Fpを求め、この固液スラグの速度Fpと、前
記管路に設置した加速度計から得られる加速度波形の振
動時間tとから固液スラグの長さLpを求めることを特
徴とするスラグ流における輸送土量測定方法。
That is, (1) When measuring the amount of sediment transported pneumatically in a pipeline such as a pipeline, two pressure gauges are installed along the pipeline at a predetermined interval L. In addition, the velocity Fp of the solid-liquid slag is obtained from the time difference ΔT of the pressure waveform measured by each pressure gauge, and the velocity Fp of the solid-liquid slag and the vibration time of the acceleration waveform obtained from the accelerometer installed in the pipeline. A method for measuring the amount of transported soil in a slag flow, characterized in that the length Lp of the solid-liquid slag is obtained from t and t.

【0014】(2) パイプラインなどの管路内を空気
圧送される土砂の輸送量を測定する際に、前記管路に沿
って4つの圧力計を設置すると共に、上流側の2つの圧
力計の差圧と、下流側の2つの圧力計の差圧との時間差
ΔTから固液スラグの速度Fpを求め、この固液スラグ
の速度Fpと、いずれか1つの差圧波形の立ち上がり時
間tとから固液スラグの長さLpを求めることを特徴と
するスラグ流における輸送土量測定方法。
(2) When measuring the amount of sediment transported pneumatically in a pipeline such as a pipeline, four pressure gauges are installed along the pipeline and two upstream pressure gauges are installed. Of the solid-liquid slag and the rising time t of any one of the differential pressure waveforms. A method for measuring the amount of transported soil in a slag flow, which comprises obtaining the length Lp of the solid-liquid slag from

【0015】(3) パイプラインなどの管路内を空気
圧送される土砂の輸送量を測定する際に、前記管路に沿
って2つの加速度計を、所定の間隔Lを隔てて設置する
と共に、各加速度計により計測される加速度波形の時間
差ΔTから固液スラグの速度Fpを求め、この固液スラ
グの速度Fpと、前記管路に設置した加速度計から得ら
れる加速度波形の振動時間tとから固液スラグの長さL
pを求めることを特徴とするスラグ流における輸送土量
測定方法。
(3) When measuring the amount of sediment transported pneumatically in a pipeline such as a pipeline, two accelerometers are installed along the pipeline at a predetermined interval L, and , The velocity Fp of the solid-liquid slag is calculated from the time difference ΔT of the acceleration waveform measured by each accelerometer, and the velocity Fp of the solid-liquid slug and the vibration time t of the acceleration waveform obtained from the accelerometer installed in the pipeline. To length L of solid-liquid slag
A method for measuring the amount of transported soil in a slag flow, characterized by obtaining p.

【0016】[0016]

【発明の実施の形態】(イ)第1の実施形態 以下、図面を参照して本発明の第1の実施形態を説明す
るが、図1は、本発明のスラグ流における輸送土量測定
方法を適用した圧送管土砂量測定系統の概略図、図2は
土砂圧送管の圧力波形及び加速度波形を示す図である。
BEST MODE FOR CARRYING OUT THE INVENTION (a) First Embodiment Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a method for measuring the amount of transported soil in a slag flow according to the present invention. Fig. 2 is a schematic diagram of a pressure-feeding pipe sediment measuring system to which is applied, and Fig. 2 is a diagram showing a pressure waveform and an acceleration waveform of the sediment feeding pipe.

【0017】図1は、例えば、図示しない浚渫船によっ
て浚渫した土砂をパイプラインによって所定の埋立地
(図示せず)に輸送する例を示しているが、この場合、
管3内には、図示しないコンプレッサから供給される圧
縮空気によって土砂dが管3内に充満して流動する固液
スラグ部分Mと、空気Aと土砂d′が上下方向に2層と
なって流動する空気スラグ部分Nとが交互に存在する所
謂スラグ流が形成されている。
FIG. 1 shows an example of transporting soil dredged by a dredger (not shown) to a predetermined landfill (not shown) by a pipeline. In this case,
Inside the pipe 3, a solid-liquid slag portion M in which the soil d is filled with the compressed air supplied from a compressor (not shown) and flows, and the air A and the soil d ′ form two layers in the vertical direction. A so-called slug flow in which flowing air slug portions N are alternately present is formed.

【0018】そこで、上記管3に、所定の間隔L(m)
を隔てて圧力計6,7を2個設置すると共に、この2つ
の圧力計6,7の間に1つの加速度計11をマグネット
などを用いて設置し、これらの計測結果を制御装置12
に伝送する一方、制御装置12の指令を伝送器13を経
て図示しない固化材添加制御系に入力し、上記スラグ流
内にセメントスラリーなどの固化材を添加するようにな
っている。
Therefore, a predetermined distance L (m) is provided in the pipe 3.
Two pressure gauges 6 and 7 are installed at a distance from each other, and one accelerometer 11 is installed between the two pressure gauges 6 and 7 using a magnet or the like, and the measurement results of these are provided to the control device 12.
On the other hand, the command of the control device 12 is input to a solidifying material addition control system (not shown) via the transmitter 13 to add a solidifying material such as cement slurry into the slag flow.

【0019】ところで、固液スラグMの1つが圧力計6
の箇所を通過すると、実線で示すような圧力波形a(図
2参照)が表れるので、この圧力波形の各圧力計6,7
における時間差ΔTから固液スラグM単体の速度Fp
(m/s)は、制御装置11にて、Fp=L/ΔTで演
算される。図2中、圧力計7における圧力波形a′は、
一点鎖線で示している。
By the way, one of the solid-liquid slags M is a pressure gauge 6.
When passing through the point, the pressure waveform a as shown by the solid line (see FIG. 2) appears.
Of the solid-liquid slag M alone from the time difference ΔT at
(M / s) is calculated by Fp = L / ΔT in the control device 11. In FIG. 2, the pressure waveform a ′ in the pressure gauge 7 is
It is indicated by a chain line.

【0020】更に、固液スラグM単体が加速度計11の
箇所を通過すると、加速波形b(図2参照)が表れ、そ
の振動振幅が大きくなることから、振幅の大きな部分の
時間t(s)と、上記固液スラグM単体の速度Fp(m
/s)とから固液スラグM単体の長さLp(m)は、L
p=Fp×tで求められる。
Further, when the solid-liquid slag M itself passes through the location of the accelerometer 11, an acceleration waveform b (see FIG. 2) appears, and its vibration amplitude becomes large. Therefore, the time t (s) of the large amplitude portion is increased. And the speed Fp (m of the solid-liquid slag M alone
/ S), the length Lp (m) of the solid-liquid slag M simple substance is L
It can be obtained by p = Fp × t.

【0021】更に、パイプ3内の断面積をA(m2 )と
すれば、固液スラグM単体の体積Vp(m3 )は、Vp
=Lp×Aで求められる。
Further, if the cross-sectional area in the pipe 3 is A (m 2 ), the volume Vp (m 3 ) of the solid-liquid slag M alone is Vp
= Lp × A.

【0022】そこで、上記各式の演算を任意の計算時間
T(hr)について行い、固液スラグ体積Vpの合計Σ
Vpを求めることにより、固液スラグの流量Qs(m3
/hr)は、Qs=ΣVp/Tで求められる。
Therefore, the above equations are calculated for an arbitrary calculation time T (hr), and the total Σ of the solid-liquid slag volume Vp is calculated.
By obtaining Vp, the solid-liquid slag flow rate Qs (m 3
/ Hr) is calculated by Qs = ΣVp / T.

【0023】上記のように、この発明によれば、加速度
波形の振動時間t(s)から固液スラグM単体の通過時
間が正確に分かるから、2つの圧力計のみを用いた従来
のものより、固液スラグの流量を正確に求めることがで
きる。
As described above, according to the present invention, the passing time of the solid-liquid slag M alone can be accurately known from the vibration time t (s) of the acceleration waveform, so that it is more than the conventional one using only two pressure gauges. The flow rate of solid-liquid slag can be accurately obtained.

【0024】なお、制御装置11の手前にFFTアナラ
イザー14を設置することにより、圧力波形解析を効率
的に行うことができる。 (ロ)第2の実施形態 図3は、本発明のスラグ流における輸送土量測定方法を
適用した圧送管土砂量測定系統概略図、図4は土砂圧送
管の差圧波形を示す図である。
By installing the FFT analyzer 14 in front of the control device 11, the pressure waveform analysis can be efficiently performed. (B) Second Embodiment FIG. 3 is a schematic diagram of a pressure-feeding pipe sediment measurement system to which the method for measuring the amount of transported soil in the slag flow according to the present invention is applied, and FIG. 4 is a diagram showing a differential pressure waveform of the sediment-feeding pipe. .

【0025】この発明は、パイプラインを形成する管3
に沿って4つの圧力計6,16,7,17を設けること
に特徴がある。なお、第1の実施形態と同じ機器には同
じ符号を付与して詳しい説明を省略する。
The present invention is a pipe 3 forming a pipeline.
It is characterized in that four pressure gauges 6, 16, 7, and 17 are provided along. The same devices as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

【0026】すなわち、上記管3に沿って圧力計6,1
6,7,17を4個設置し、上流側の2個の圧力計6,
16を1対として、その差圧(測定圧力の差)を計測す
る一方、下流側の2個の圧力計7,17を1対として、
その差圧(測定圧力の差)を計測する。ここで、圧力計
16及び7間の間隔をL(m)、圧力計6,16間及び
圧力計7,17間の間隔を各々L′(m)とする。ま
た、L>L′とする。
That is, the pressure gauges 6, 1 are arranged along the pipe 3.
Four pressure gauges 6, 7, and 17 are installed, and two upstream pressure gauges 6,
16 is a pair, and the pressure difference (measured pressure difference) is measured, while two pressure gauges 7 and 17 on the downstream side are a pair,
The pressure difference (difference in measured pressure) is measured. Here, the distance between the pressure gauges 16 and 7 is L (m), and the distance between the pressure gauges 6 and 16 and the distance between the pressure gauges 7 and 17 are L ′ (m). Also, L> L '.

【0027】このように、1対の圧力計の差圧を取るこ
とにより、固液スラグMの圧力降下分がキャンセルされ
るので、実測差圧波形c,c′は、図4(a)及び
(b)に示すような矩形波(又は鋸歯状波)に近い波形
となる。
As described above, since the pressure drop of the solid-liquid slag M is canceled by taking the differential pressure between the pair of pressure gauges, the actually measured differential pressure waveforms c and c'are as shown in FIG. The waveform is close to a rectangular wave (or sawtooth wave) as shown in (b).

【0028】この2つの差圧波形の時間差ΔTから固液
スラグMの速度Fp(m/s)は、制御装置11にて、
Fp=L/ΔTで算出される。
From the time difference ΔT between these two differential pressure waveforms, the speed Fp (m / s) of the solid-liquid slag M is calculated by the control device 11.
It is calculated by Fp = L / ΔT.

【0029】更に、1つの差圧波形の立ち上がり時間t
と、固液スラグMの速度Fpとが分かるので、固液スラ
グM単体の長さLp(m)は、Lp=Fp×tで求めら
れる。
Further, the rising time t of one differential pressure waveform
And the velocity Fp of the solid-liquid slag M are known, the length Lp (m) of the solid-liquid slag M simple substance is obtained by Lp = Fp × t.

【0030】更に、パイプ3内の断面積をA(m2 )と
すれば、固液スラグM単体の体積Vp(m3 )は、Vp
=Lp×Aで求められる。
Further, if the cross-sectional area in the pipe 3 is A (m 2 ), the volume Vp (m 3 ) of the solid-liquid slag M alone is Vp
= Lp × A.

【0031】そこで、上記各式の演算を任意の計算時間
T(hr)について行い、固液スラグ体積Vpの合計Σ
Vpを求めることにより、固液スラグの流量Qs(m3
/hr)は、Qs=ΣVp/Tで求められる。
Therefore, the calculation of each of the above equations is performed for an arbitrary calculation time T (hr), and the total Σ of the solid-liquid slag volume Vp.
By obtaining Vp, the solid-liquid slag flow rate Qs (m 3
/ Hr) is calculated by Qs = ΣVp / T.

【0032】なお、図3中、18及び19は、差圧伝送
器を示している。
In FIG. 3, reference numerals 18 and 19 denote differential pressure transmitters.

【0033】上記のように、本発明によれば、2つの圧
力計を1組にして、その差圧を取ることにより、固液ス
ラグの通過を矩形波、あるいは鋸歯状波として表わせる
ため、2つの圧力計を用いた従来のものより、固液スラ
グの長さ、強いては、固液スラグの流量を正確に求める
ことができる。 (ハ)第3の実施形態 図5は、本発明のスラグ流における輸送土量測定方法を
適用した圧送管土砂量測定系統概略図である。
As described above, according to the present invention, since two pressure gauges are combined into one set and the differential pressure between them is taken, the passage of the solid-liquid slag can be represented as a rectangular wave or a sawtooth wave. It is possible to more accurately determine the length of the solid-liquid slag, that is, the flow rate of the solid-liquid slag, as compared with the conventional one using two pressure gauges. (C) Third Embodiment FIG. 5 is a schematic diagram of a pressure-feed pipe sediment amount measurement system to which the method for measuring transported soil amount in a slag flow according to the present invention is applied.

【0034】この発明は、パイプラインを形成する管3
に2つの加速度計11,21を設けることに特徴があ
る。なお、第1の実施形態と同じ機器には同じ符号を付
与して詳しい説明を省略する。
The present invention is a pipe 3 forming a pipeline.
Is characterized in that the two accelerometers 11 and 21 are provided. The same devices as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

【0035】すなわち、2つの加速度計11,21は、
管3に沿って所定の間隔L(m)隔てて設置されてい
る。固液スラグM単体が各加速度計11,21の箇所を
通過すると、各々加速度波形bが表れるので、この加速
度波形の各加速度計11,21における時間差ΔTから
固液スラグM単体の速度Fp(m/s)は、制御装置1
1にて、Fp=L/ΔTで演算される。
That is, the two accelerometers 11 and 21 are
The pipes 3 are installed at a predetermined distance L (m) along the pipe 3. When the solid-liquid slag M simple substance passes through the locations of the respective accelerometers 11 and 21, the acceleration waveform b appears. Therefore, from the time difference ΔT of the acceleration waveforms of the accelerometers 11 and 21, the solid-liquid slag M single velocity Fp (m / S) is the control device 1
At 1, Fp = L / ΔT is calculated.

【0036】更に、固液スラグM単体が何れか一方の加
速度計11(21)の箇所を通過する時の振動検知時間
t(s)と、上記固液スラグM単体の速度Fp(m/
s)とから固液スラグM単体の長さLp(m)は、Lp
=Fp×tで求められる。
Further, the vibration detection time t (s) when the solid-liquid slag M single body passes through one of the accelerometers 11 (21) and the speed Fp (m / m of the solid-liquid slag M single body.
s) and the length Lp (m) of the solid-liquid slag M simple substance is Lp
= Fp × t.

【0037】更に、パイプ3内の断面積をA(m2 )と
すれば、固液スラグM単体の体積Vp(m3 )は、Vp
=Lp×Aで求められる。
Further, if the cross-sectional area in the pipe 3 is A (m 2 ), the volume Vp (m 3 ) of the solid-liquid slag M alone is Vp
= Lp × A.

【0038】そこで、上記各式の演算を任意の計算時間
T(hr)について行い、固液スラグ体積Vpの合計Σ
Vpを求めることにより、固液スラグの流量Qs(m3
/hr)は、Qs=ΣVp/Tで求められる。
Therefore, the calculation of each of the above equations is performed for an arbitrary calculation time T (hr), and the total Σ of the solid-liquid slag volume Vp.
By obtaining Vp, the solid-liquid slag flow rate Qs (m 3
/ Hr) is calculated by Qs = ΣVp / T.

【0039】上記のように、この発明によれば、2つの
加速度計を用いることにより、2つの圧力計を用いる従
来のものより、固液スラグの長さ、強いては、固液スラ
グの流量を正確に求めることができる。
As described above, according to the present invention, by using the two accelerometers, the length of the solid-liquid slag, that is, the flow rate of the solid-liquid slag, can be made smaller than that of the conventional one using the two pressure gauges. Can be accurately determined.

【0040】[0040]

【発明の効果】上記のように、本発明は、パイプライン
などの管路内を空気圧送される土砂の輸送量を測定する
際に、前記管路に沿って2つの圧力計を、所定の間隔L
を隔てて設置すると共に、各圧力計により計測される圧
力波形の時間差ΔTから固液スラグの速度Fpを求め、
この固液スラグの速度Fpと、前記管路に設置した加速
度計から得られる加速度波形の振動時間tとから固液ス
ラグの長さLpを求めることを特徴としている。すなわ
ち、本発明は、加速度波形の振動時間tから、固液スラ
グ単体の通過時間が正確に分かるから、2つの圧力計の
みを用いた従来のものより、固液スラグの長さ、強いて
は、固液スラグの流量を正確に求めることができる。
As described above, according to the present invention, when measuring the amount of sediment transported pneumatically in a pipeline or the like, two pressure gauges are provided along the pipeline. Interval L
, And the speed Fp of the solid-liquid slag is obtained from the time difference ΔT of the pressure waveform measured by each pressure gauge.
The length Lp of the solid-liquid slag is obtained from the speed Fp of the solid-liquid slag and the vibration time t of the acceleration waveform obtained from the accelerometer installed in the conduit. That is, according to the present invention, from the vibration time t of the acceleration waveform, the passing time of the solid-liquid slag simple substance can be accurately known. Therefore, the length of the solid-liquid slug, that is, It is possible to accurately determine the flow rate of the solid-liquid slag.

【0041】また、本発明は、パイプラインなどの管路
内を空気圧送される土砂の輸送量を測定する際に、前記
管路に沿って4つの圧力計を設置すると共に、上流側の
2つの圧力計の差圧と、下流側の2つの圧力計の差圧と
の時間差ΔTから固液スラグの速度Fpを求め、この固
液スラグの速度Fpと、いずれか1つの差圧波形の立ち
上がり時間tとから固液スラグの長さLpを求めること
を特徴としている。すなわち、本発明は、2つの圧力計
を1組にして、その差圧を取ることにより、固液スラグ
の通過を矩形波、あるいは鋸歯状波として表わせるた
め、2つの圧力計を用いた従来のものより、固液スラグ
の長さ、強いては、固液スラグの流量を正確に求めるこ
とができる。
Further, according to the present invention, when measuring the amount of earth and sand transported pneumatically in a pipeline such as a pipeline, four pressure gauges are installed along the pipeline, and two upstream pressure gauges are installed. The speed Fp of the solid-liquid slag is obtained from the time difference ΔT between the differential pressure of the one pressure gauge and the differential pressure of the two downstream pressure gauges, and the speed Fp of the solid-liquid slag and the rising of any one of the differential pressure waveforms. It is characterized in that the length Lp of the solid-liquid slag is obtained from the time t. That is, according to the present invention, by using two pressure gauges as a set, and taking the pressure difference between them, the passage of the solid-liquid slag can be expressed as a rectangular wave or a sawtooth wave. The length of the solid-liquid slag, in other words, the flow rate of the solid-liquid slag can be obtained more accurately than the above.

【0042】また、本発明は、パイプラインなどの管路
内を空気圧送される土砂の輸送量を測定する際に、前記
管路に沿って2つの加速度計を、所定の間隔Lを隔てて
設置すると共に、各加速度計により計測される加速度波
形の時間差ΔTから固液スラグの速度Fpを求め、この
固液スラグの速度Fpと、前記管路に設置した加速度計
から得られる加速度波形の振動時間tとから固液スラグ
の長さLpを求めることを特徴としている。すなわち、
2つの加速度計を用いることにより、2つの圧力計を用
いる従来のものより、固液スラグの長さ、強いては、固
液スラグの流量を正確に求めることができる。
Further, according to the present invention, when measuring the amount of sediment transported pneumatically in a pipeline such as a pipeline, two accelerometers are arranged along the pipeline at a predetermined interval L. When installed, the velocity Fp of the solid-liquid slag is obtained from the time difference ΔT of the acceleration waveform measured by each accelerometer, and the velocity Fp of the solid-liquid slug and the vibration of the acceleration waveform obtained from the accelerometer installed in the pipeline. It is characterized in that the length Lp of the solid-liquid slag is obtained from the time t. That is,
By using the two accelerometers, the length of the solid-liquid slag, that is, the flow rate of the solid-liquid slag can be more accurately determined than the conventional one using the two pressure gauges.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のスラグ流における輸送土量測定方法を
適用した圧送管土砂量測定系統の概略図である。
FIG. 1 is a schematic diagram of a pumping pipe sediment amount measurement system to which the method for measuring transported soil amount in a slag flow according to the present invention is applied.

【図2】図2は土砂圧送管の圧力波形及び加速度波形を
示す図である。
FIG. 2 is a diagram showing a pressure waveform and an acceleration waveform of a sediment feeding pipe.

【図3】本発明のスラグ流における輸送土量測定方法を
適用した圧送管土砂量測定系統概略図である。
FIG. 3 is a schematic diagram of a pumping pipe sediment amount measuring system to which the method for measuring transported soil amount in a slag flow according to the present invention is applied.

【図4】(a)第1,第2の圧力計の差圧波形を示す
図、(b)第3,第4の圧力計の差圧波形を示す図であ
る。
FIG. 4A is a diagram showing differential pressure waveforms of the first and second pressure gauges, and FIG. 4B is a diagram showing differential pressure waveforms of the third and fourth pressure gauges.

【図5】本発明のスラグ流における輸送土量測定方法を
適用した圧送管土砂量測定系統概略図である。
FIG. 5 is a schematic diagram of a pressure pipe sediment volume measuring system to which the method for measuring transport soil volume in a slag flow according to the present invention is applied.

【図6】従来の圧送管土砂量測定系統の概略図である。FIG. 6 is a schematic view of a conventional pressure pipe sediment measuring system.

【図7】プラグの各時間ごとの移動を示す説明図であ
る。
FIG. 7 is an explanatory diagram showing movement of a plug for each time.

【図8】圧力と時間との関係線図である。FIG. 8 is a relationship diagram of pressure and time.

【図9】圧力と時間との関係線図である。FIG. 9 is a relationship diagram of pressure and time.

【符号の説明】[Explanation of symbols]

3 管路 6,7 圧力計 11 加速度計 d 土砂 M 固液スラグ 3 pipelines 6,7 pressure gauge 11 Accelerometer d earth and sand M Solid-liquid slag

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 茂巳 東京都中央区築地5丁目6番4号 三井造 船株式会社内 (72)発明者 高梨 清一 東京都中央区築地5丁目6番4号 三井造 船株式会社内 Fターム(参考) 2F035 HA02 HB01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shigemi Sato             5-6-4 Tsukiji, Chuo-ku, Tokyo Mitsui             Inside the ship company (72) Inventor Seiichi Takanashi             5-6-4 Tsukiji, Chuo-ku, Tokyo Mitsui             Inside the ship company F term (reference) 2F035 HA02 HB01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 パイプラインなどの管路内を空気圧送さ
れる土砂の輸送量を測定する際に、前記管路に沿って2
つの圧力計を、所定の間隔Lを隔てて設置すると共に、
各圧力計により計測される圧力波形の時間差ΔTから固
液スラグの速度Fpを求め、この固液スラグの速度Fp
と、前記管路に設置した加速度計から得られる加速度波
形の振動時間tとから固液スラグの長さLpを求めるこ
とを特徴とするスラグ流における輸送土量測定方法。
1. When measuring the amount of sediment transported pneumatically in a pipeline such as a pipeline, it is measured along the pipeline.
Two pressure gauges are installed at a predetermined interval L, and
The speed Fp of the solid-liquid slag is obtained from the time difference ΔT of the pressure waveform measured by each pressure gauge, and the speed Fp of the solid-liquid slag is obtained.
And the vibration time t of the acceleration waveform obtained from the accelerometer installed in the pipe, the length Lp of the solid-liquid slag is determined, and the method for measuring the amount of transported soil in a slag flow.
【請求項2】 パイプラインなどの管路内を空気圧送さ
れる土砂の輸送量を測定する際に、前記管路に沿って4
つの圧力計を設置すると共に、上流側の2つの圧力計の
差圧と、下流側の2つの圧力計の差圧との時間差ΔTか
ら固液スラグの速度Fpを求め、この固液スラグの速度
Fpと、いずれか1つの差圧波形の立ち上がり時間tと
から固液スラグの長さLpを求めることを特徴とするス
ラグ流における輸送土量測定方法。
2. When measuring the amount of sediment transported pneumatically in a pipeline such as a pipeline, the amount of soil along the pipeline is measured by 4
Two pressure gauges are installed, and the speed Fp of the solid-liquid slag is calculated from the time difference ΔT between the pressure difference between the two upstream pressure gauges and the pressure difference between the two downstream pressure gauges. A method for measuring the amount of transported soil in a slag flow, characterized in that a length Lp of a solid-liquid slag is obtained from Fp and a rising time t of any one of the differential pressure waveforms.
【請求項3】 パイプラインなどの管路内を空気圧送さ
れる土砂の輸送量を測定する際に、前記管路に沿って2
つの加速度計を、所定の間隔Lを隔てて設置すると共
に、各加速度計により計測される加速度波形の時間差Δ
Tから固液スラグの速度Fpを求め、この固液スラグの
速度Fpと、前記管路に設置した加速度計から得られる
加速度波形の振動時間tとから固液スラグの長さLpを
求めることを特徴とするスラグ流における輸送土量測定
方法。
3. When measuring the amount of sediment transported pneumatically in a pipeline such as a pipeline, 2
Two accelerometers are installed at a predetermined interval L, and the time difference Δ between the acceleration waveforms measured by each accelerometer is set.
The speed Fp of the solid-liquid slag is calculated from T, and the length Lp of the solid-liquid slag is calculated from the speed Fp of the solid-liquid slag and the vibration time t of the acceleration waveform obtained from the accelerometer installed in the pipe. A method for measuring the amount of transported soil in a characteristic slag flow.
JP2001374368A 2001-12-07 2001-12-07 Method for measuring transport volume in slag flow Expired - Fee Related JP3970008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001374368A JP3970008B2 (en) 2001-12-07 2001-12-07 Method for measuring transport volume in slag flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001374368A JP3970008B2 (en) 2001-12-07 2001-12-07 Method for measuring transport volume in slag flow

Publications (2)

Publication Number Publication Date
JP2003172647A true JP2003172647A (en) 2003-06-20
JP3970008B2 JP3970008B2 (en) 2007-09-05

Family

ID=19182936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001374368A Expired - Fee Related JP3970008B2 (en) 2001-12-07 2001-12-07 Method for measuring transport volume in slag flow

Country Status (1)

Country Link
JP (1) JP3970008B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426040B (en) * 2011-11-01 2012-10-03 辽宁省水土保持研究所 Real-time monitoring device for soil erosion of ravine

Also Published As

Publication number Publication date
JP3970008B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
CN102625905B (en) Multi-phase fluid measurement apparatus and method
US9726530B2 (en) Flowmeter design for large diameter pipes
CN104813147B (en) Improvement to the change of the area of section of fluid hose in vibrometer detects
CA2622602A1 (en) Method for measuring a medium flowing in a pipeline and measurement system therefor
CN101438135A (en) Single and multiphase fluid measurements
US7069776B2 (en) Method for measuring particle concentration during injection pumping operations
CN104034800A (en) Assessment method and system for hydraulic detection of conveying pipeline and for state of carrier fluid pipeline
EP3426886B1 (en) Determining flow rates of multiphase fluids
JP2003172647A (en) Transported soil volume measuring method for slag flow
JP3184999B2 (en) Flow measurement method of earth and sand plug flow
CA2539609C (en) Inferential densometer and mass flowmeter
CA1216173A (en) Flow meter and densitometer apparatus and method of operation
KR20200044794A (en) Vortex flowmeter with injection cleaning ports
JP3021848B2 (en) Method and apparatus for measuring flow rate of pumped mud
JPH06201534A (en) Device and method for detecting blocked position inside pipe and method for controlling amount of unloaded oil
RU2010168C1 (en) Method of measurement of flow rate of substance
JP3697680B2 (en) Additive injection method and additive injection equipment
JPH0288886A (en) Measuring device for quantity of soil removed of shield excavator
Kostecki Zieli nski
JP3126626B2 (en) Apparatus and method for measuring characteristics of muddy water
CA2506399A1 (en) An apparatus and method for providing a flow measurement compensated for entrained gas
Mullins et al. Automated Down-Hole Testing System for Drilled Shaft Slurry
JP3081790B2 (en) Pipe physical quantity measuring method and apparatus, excavated soil quantity measuring apparatus and method using the same
CA1131208A (en) Pressure pulse detection apparatus
JP2000230851A (en) Soil and sand detecting system for pneumatic soil and sand transport apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040916

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061013

A131 Notification of reasons for refusal

Effective date: 20061024

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070130

A521 Written amendment

Effective date: 20070402

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20070411

Free format text: JAPANESE INTERMEDIATE CODE: A911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070605

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100615

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110615

LAPS Cancellation because of no payment of annual fees