JP2003172338A - Bearing having conducting function - Google Patents

Bearing having conducting function

Info

Publication number
JP2003172338A
JP2003172338A JP2001374388A JP2001374388A JP2003172338A JP 2003172338 A JP2003172338 A JP 2003172338A JP 2001374388 A JP2001374388 A JP 2001374388A JP 2001374388 A JP2001374388 A JP 2001374388A JP 2003172338 A JP2003172338 A JP 2003172338A
Authority
JP
Japan
Prior art keywords
conductive fluid
recess
diameter portion
diameter
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001374388A
Other languages
Japanese (ja)
Inventor
Harushige Osawa
晴繁 大澤
Satoru Sodeoka
覚 袖岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP2001374388A priority Critical patent/JP2003172338A/en
Publication of JP2003172338A publication Critical patent/JP2003172338A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing suppressing the generation of diffusion and scattering of conductive fluid, in the bearing conducting between a rotating member and a fixing member through the conductive fluid. <P>SOLUTION: The conductive fluid 103 contacting with a small diameter portion 102a is diffused in an opening portion 106 direction due to getting wet and the like with the small diameter portion 102a surface, a large diameter portion 102b is provided in a position before the conductive fluid 103 reaches the opening portion 106, so that a creepage distance of a conducting pin 102 surface led to the opening portion 106 is decreased, and a recessed portion 101 is actually blocked by the large diameter portion 102b while leaving a minute clearance. Magnetic force generated by a magnet 104 acts on the conductive fluid 103 structured by magnetic material, and the conductive fluid 103 is pulled close to the magnet 104, so that the conductive fluid 103 is securely held in a recessed portion 101. Force diffusing the conductive fluid 103 is prevented, so that the conductive fluid 103 is prevented from diffusing or scattering from an opening portion of the recessed portion 101 to the outside. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、導通機能を有する
軸受構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing structure having a conduction function.

【0002】[0002]

【従来の技術】ハードディスク装置の駆動に供されるス
ピンドルモータ等では、高回転が要求されるため、モー
タを構成する回転側部材と空気との摩擦等の影響により
静電気が発生する。モータの内部で発生し蓄積された静
電気は、電荷量が大きくなると、やがて放電し、当該モ
ータやそのモータを備えるハードディスク装置等が静電
気放電によって損傷を受ける。特に、モータを構成する
回転側部材と固定側部材が非接触で組み合わされてなる
空気動圧軸受を備えたスピンドルモータでは、回転側部
材と固定側部材が接触しないため、静電気を除電するた
めのアース経路を設けることができず、そのため静電気
の蓄積及び放電による機器損傷の発生が、より顕著であ
る。
2. Description of the Related Art Since a spindle motor or the like used for driving a hard disk drive is required to rotate at a high speed, static electricity is generated due to the effect of friction between a rotating member forming the motor and air. The static electricity generated and accumulated inside the motor is discharged when the amount of electric charge becomes large, and the motor or a hard disk device equipped with the motor is damaged by the electrostatic discharge. In particular, in a spindle motor having an air dynamic pressure bearing in which a rotating side member and a fixed side member that constitute a motor are combined in a non-contact manner, the rotating side member and the fixed side member do not come into contact with each other. Since the ground path cannot be provided, the occurrence of equipment damage due to the accumulation and discharge of static electricity is more remarkable.

【0003】そこで、静電気を除電するためのアース経
路を設けた軸受構造として、例えば実開平7−3274
6号公報には、固定軸端面に設けた凹部に導電性流体を
磁力によって保持し、対向部分に設けられたピン部材を
その導電性流体に接触させることにより、その導電性流
体を介して静電気を逃がす構造が開示されている。
Therefore, as a bearing structure provided with an earth path for removing static electricity, for example, an actual flat plate 7-3274 is used.
No. 6 discloses that a conductive fluid is magnetically held in a recess provided in the end face of a fixed shaft, and a pin member provided in an opposed portion is brought into contact with the conductive fluid, so that static electricity is generated through the conductive fluid. A structure for escaping is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の構
成では、導電性流体と、導電性流体を保持する凹部の内
壁表面又は導電性流体と接触するピン部材表面との間の
濡れ性によって、磁力で保持された導電性流体が、その
導電性流体中で相対的に回転するピン部材表面又は凹部
の内壁表面を濡らしながら拡散し、さらに遠心力等によ
って飛散するという問題があった。
However, in the above-mentioned conventional structure, due to the wettability between the conductive fluid and the inner wall surface of the concave portion holding the conductive fluid or the pin member surface in contact with the conductive fluid, There is a problem that the conductive fluid held by the magnetic force diffuses while wetting the surface of the pin member or the inner wall surface of the concave portion which relatively rotates in the conductive fluid, and further scatters due to centrifugal force or the like.

【0005】本発明は、上記に鑑みてなされたもので、
回転側部材と固定側部材との間を導電性流体を介して電
気的に接続する導通機能を有する軸受であって、導電性
流体が軸受外部に拡散または飛散しない軸受を提供する
ことを目的とする。
The present invention has been made in view of the above,
An object of the present invention is to provide a bearing having a conduction function for electrically connecting a rotating side member and a fixed side member via a conductive fluid, in which the conductive fluid does not diffuse or scatter outside the bearing. To do.

【0006】[0006]

【課題を解決するための手段】請求項1に記載の発明
は、回転側部材と固定側部材とを有する軸受であって、
前記回転側部材又は前記固定側部材のいずれか一方の部
材に上方に開口し少なくとも底部に導電性流体を保持し
た凹部を設け、他方の部材に円柱状部分を設け、前記凹
部と前記円柱状部分は回転中心軸上又はその近傍に設け
られ、前記円柱状部分は前記凹部の上方よりその内側に
非接触で回転自在に挿入され、前記円柱状部分は前記凹
部内に保持された導電性流体に接触し、前記円柱状部分
および前記凹部の少なくとも1つに前記導電性流体の拡
散防止構造を備えたことを特徴とするものである。
The invention according to claim 1 is a bearing having a rotating side member and a stationary side member,
One of the rotating-side member and the stationary-side member is provided with a concave portion that opens upward and holds a conductive fluid at least on the bottom, and the other member is provided with a cylindrical portion, and the concave portion and the cylindrical portion. Is provided on or near the center axis of rotation, the cylindrical portion is rotatably inserted into the inside of the concave portion from above the concave portion, and the cylindrical portion is a conductive fluid held in the concave portion. It is characterized in that a diffusion preventing structure for the conductive fluid is provided in at least one of the columnar portion and the recess.

【0007】請求項2に記載の発明は、請求項1記載の
軸受において、前記円柱状部分は、前記凹部の内径より
も直径が小さい大径部分と前記大径部分よりも直径が小
さく、かつ中心軸を大径部分と同じくする小径部分とを
有し、前記凹部に挿入される順序が前記小径部分が挿入
された後に前記大径部分が挿入され、前記小径部分が前
記導電性流体と接触することを特徴としている。
According to a second aspect of the present invention, in the bearing according to the first aspect, the cylindrical portion has a large diameter portion having a diameter smaller than the inner diameter of the recess and a diameter smaller than the large diameter portion, and A small diameter portion having the same central axis as a large diameter portion, and the order of inserting into the recess is such that the large diameter portion is inserted after the small diameter portion is inserted, and the small diameter portion contacts the conductive fluid. It is characterized by doing.

【0008】請求項3に記載の発明は、請求項1又は2
記載の軸受において、前記円柱状部分は、前記凹部の内
径よりも直径が小さい大径部分と前記大径部分よりも直
径が小さく、かつ中心軸を大径部分と同じくする小径部
分とを有し、前記大径部分と前記小径部分とはそれぞれ
の周面がテーパ面もしくはこれに近似する曲面にて連続
的に繋がれており、前記凹部に挿入される順序が前記大
径部分が挿入された後に前記小径部分が挿入され、前記
大径部分が前記導電性流体と接触することを特徴として
いる。
The invention described in claim 3 is the invention according to claim 1 or 2.
In the bearing described above, the cylindrical portion has a large-diameter portion having a diameter smaller than the inner diameter of the recess and a small-diameter portion having a diameter smaller than that of the large-diameter portion and having the same central axis as the large-diameter portion. The peripheral surfaces of the large diameter portion and the small diameter portion are continuously connected by a tapered surface or a curved surface similar thereto, and the insertion order of the large diameter portion is such that the large diameter portion is inserted. The small-diameter portion is inserted later, and the large-diameter portion comes into contact with the conductive fluid.

【0009】請求項4に記載の発明は、請求項1〜3の
いずれかに記載の軸受において、前記円柱状部分が挿入
された前記凹部の開口部付近の所定位置に、前記凹部の
内径が、前記所定位置よりも開口部から遠ざかる位置の
凹部の内径より小さく、前記円柱状部分の直径よりも大
きい部位を備えたことを特徴としている。
According to a fourth aspect of the invention, in the bearing according to any one of the first to third aspects, the inner diameter of the recess is at a predetermined position near the opening of the recess into which the columnar portion is inserted. It is characterized in that a portion that is smaller than the inner diameter of the concave portion at a position farther from the opening than the predetermined position and larger than the diameter of the cylindrical portion is provided.

【0010】請求項5に記載の発明は、請求項1〜4の
いずれかに記載の軸受において、前記導電性流体は磁性
材料によって構成され、前記凹部の内部に磁石を備え、
前記凹部の内部で導電性流体は磁気的に保持されること
を特徴としている。
According to a fifth aspect of the present invention, in the bearing according to any one of the first to fourth aspects, the conductive fluid is made of a magnetic material, and a magnet is provided inside the recess.
The conductive fluid is magnetically retained inside the recess.

【0011】[0011]

【発明の実施の形態】(第1実施形態)図1は本発明の
一実施形態に係る軸受を磁気ディスク駆動用スピンドル
モータの空気動圧軸受に適用した例の縦断面図である。
図1に示すように、動圧軸受スピンドルモータは、固定
側部材であるブラケット1、シャフト2、ラジアル軸受
部材3、スラスト板4及び5、回転側部材であるハブ
7、ラジアルスリーブ6、ハブ7を回転駆動する磁気駆
動手段としてのロータマグネット8及びステータ9等を
具備する。ラジアル軸受部材3とラジアルスリーブ6と
の間に空気が介在することによりラジアル動圧軸受HB
1を構成し、スラスト板4及び5とラジアルスリーブ6
との間に空気が介在することによりスラスト動圧軸受H
B2を構成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIG. 1 is a vertical sectional view of an example in which a bearing according to an embodiment of the present invention is applied to an air dynamic pressure bearing of a spindle motor for driving a magnetic disk.
As shown in FIG. 1, a dynamic pressure bearing spindle motor includes a bracket 1 which is a fixed member, a shaft 2, a radial bearing member 3, thrust plates 4 and 5, a hub 7 which is a rotating member, a radial sleeve 6 and a hub 7. It is provided with a rotor magnet 8 and a stator 9 as magnetic drive means for rotationally driving. Since air is present between the radial bearing member 3 and the radial sleeve 6, the radial dynamic pressure bearing HB
1 and comprises thrust plates 4 and 5 and a radial sleeve 6.
Thrust dynamic pressure bearing H
Configure B2.

【0012】ブラケット1は、動圧軸受モータのベース
を構成する円環状の部材であり、中央部分には貫通孔1
1が形成されている。ブラケット1は、そのフランジ部
裏面がハードディスクのハウジング(図示せず)に固着
されており、接地されている。シャフト2は、例えばス
テンレス鋼等の金属製の円柱状部材であり、上端がブラ
ケット1から突出した状態でブラケット1の貫通孔11
に内嵌支持されている。シャフト2の上側外周面には円
筒状のラジアル軸受部材3が固着されており、ラジアル
軸受部材3の上下両端面には、円盤状の2枚のスラスト
板4及び5が取り付けられている。スラスト板4と5の
間であって、かつラジアル軸受部材3の外周面には、円
筒状のラジアルスリーブ6が回転可能に取付けられてい
る。
The bracket 1 is an annular member that constitutes the base of the dynamic pressure bearing motor, and the through hole 1 is formed in the central portion.
1 is formed. The back surface of the flange portion of the bracket 1 is fixed to a housing (not shown) of the hard disk and is grounded. The shaft 2 is, for example, a cylindrical member made of metal such as stainless steel, and the through hole 11 of the bracket 1 with the upper end protruding from the bracket 1.
It is supported by internal fitting. A cylindrical radial bearing member 3 is fixed to the upper outer peripheral surface of the shaft 2, and two disk-shaped thrust plates 4 and 5 are attached to both upper and lower end surfaces of the radial bearing member 3. A cylindrical radial sleeve 6 is rotatably mounted on the outer peripheral surface of the radial bearing member 3 between the thrust plates 4 and 5.

【0013】スラスト板4と5の対向面4a及び5aに
は、ラジアルスリーブ6との間で動圧を発生するための
「く」の字状で深さが数μmのヘリングボーン溝41及び
51が形成されている。スラスト板4と5の対向面4a
及び5aとラジアルスリーブ6の上下両端面との間に
は、スラスト動圧軸受HB2が構成されている。ラジア
ル軸受部材3の外周面3aには、ラジアル軸受部材3と
ラジアルスリーブ6との間で動圧を発生するための「く」
の字状で深さが数μmのへリングボーン溝31が形成さ
れている。ラジアル軸受部材3の外周面とラジアルスリ
ーブ6の内周面との間には、ラジアル動圧軸受HB1が
構成されている。ラジアルスリーブ6は、ラジアル動圧
軸受HB1及びスラスト動圧軸受HB2を介して、シャ
フト2、スラスト板4および5に対して相対回転可能に
支持されている。
Herringbone grooves 41 and 51 having a depth of several μm and having a V shape for generating a dynamic pressure between the radial sleeve 6 and the opposing surfaces 4a and 5a of the thrust plates 4 and 5. Are formed. Opposed surface 4a of thrust plates 4 and 5
A thrust dynamic pressure bearing HB2 is formed between the upper and lower end surfaces of the radial sleeve 6 and 5a. The outer peripheral surface 3a of the radial bearing member 3 has a "dimple" for generating dynamic pressure between the radial bearing member 3 and the radial sleeve 6.
A herringbone groove 31 having a square shape and a depth of several μm is formed. A radial dynamic pressure bearing HB1 is formed between the outer peripheral surface of the radial bearing member 3 and the inner peripheral surface of the radial sleeve 6. The radial sleeve 6 is rotatably supported with respect to the shaft 2 and the thrust plates 4 and 5 via a radial dynamic pressure bearing HB1 and a thrust dynamic pressure bearing HB2.

【0014】ハブ7は、有蓋円筒状であり、上円筒部7
1と上円筒部71より直径の大きな下円筒部72とを含
む。上円筒部71と下円筒部72とは、段差部73によ
り一体化されている。上円筒部71の内周面にはラジア
ルスリーブ6が取付けられている。上円筒部71の外周
面には、磁気ディスクDが上下方向に複数枚、例えば3
枚取付けられている。下円筒部72の内周面には、N極
とS極とが交互に配設された環状のロータマグネット8
がブラケット1に固定されたステータ9に対向して取付
けられている。
The hub 7 has a cylindrical shape with a lid and an upper cylindrical portion 7
1 and a lower cylindrical portion 72 having a diameter larger than that of the upper cylindrical portion 71. The upper cylindrical portion 71 and the lower cylindrical portion 72 are integrated by a step portion 73. The radial sleeve 6 is attached to the inner peripheral surface of the upper cylindrical portion 71. On the outer peripheral surface of the upper cylindrical portion 71, a plurality of magnetic disks D, for example, three magnetic disks D are arranged in the vertical direction.
One is installed. An annular rotor magnet 8 in which N poles and S poles are alternately arranged on the inner peripheral surface of the lower cylindrical portion 72.
Are attached so as to face the stator 9 fixed to the bracket 1.

【0015】以上のように構成された動圧軸受スピンド
ルモータの動作について説明する。ステータ9のコイル
に励磁電流が通電されると、ロータマグネット8とステ
ータ9との間で磁力が発生し、この磁力によりハブ7が
回転する。ハブ7と共にラジアルスリーブ6が回転する
と、ラジアル動圧軸受HB1に動圧が発生し、同時にス
ラスト動圧軸受HB2に動圧が発生し、回転側部材が固
定側部材に対し非接触で回転する。
The operation of the dynamic pressure bearing spindle motor configured as described above will be described. When an exciting current is applied to the coil of the stator 9, a magnetic force is generated between the rotor magnet 8 and the stator 9, and the magnetic force causes the hub 7 to rotate. When the radial sleeve 6 rotates together with the hub 7, dynamic pressure is generated in the radial dynamic pressure bearing HB1 and at the same time dynamic pressure is generated in the thrust dynamic pressure bearing HB2, and the rotary side member rotates in a non-contact manner with the fixed side member.

【0016】回転側部材が回転すると、空気との摩擦に
より静電気が発生し、回転側部材及び回転側部材に取り
付けられた磁気ディスクDに帯電する。回転側部材が回
転を続けると静電気の帯電量が増大し、磁気ディスクD
と磁気ヘッドDHとの間で放電される。この放電により、
磁気ヘッドDHが損傷するおそれがある。
When the rotating member rotates, static electricity is generated due to friction with air, and the rotating member and the magnetic disk D attached to the rotating member are charged. When the rotating member continues to rotate, the amount of electrostatic charge increases and the magnetic disk D
And the magnetic head DH are discharged. By this discharge,
The magnetic head DH may be damaged.

【0017】第1実施形態に係る軸受では、シャフト2
の上端に円筒状の凹部101が設けられ、凹部101の
内側下部には軸線方向に着磁された磁石104が備えら
れ、磁性材料により構成された導電性流体(磁性流体)
103が、凹部101の内部で磁石104の上部に保持
されている。また、ハブ7の中央部の回転中心軸上に
は、凹部101と回転自在に嵌め込まれるように導通ピ
ン102が設けられている。導通ピン102は、凹部1
01内に保持された導電性流体103と接触している。
この場合、回転側部材及び回転側部材に取り付けられた
磁気ディスクDで発生した静電気は、ハブ7、導通ピン
102、導電性流体103、凹部101、シャフト2、
ブラケット1を経由するアース経路を通って除電され
る。
In the bearing according to the first embodiment, the shaft 2
A cylindrical recess 101 is provided at the upper end of the, and an axially magnetized magnet 104 is provided in the lower inside of the recess 101, and a conductive fluid (magnetic fluid) made of a magnetic material is provided.
103 is held inside the recess 101 above the magnet 104. Further, a conduction pin 102 is provided on the center axis of rotation of the hub 7 so as to be rotatably fitted in the recess 101. The conduction pin 102 has the recess 1
01 in contact with the conductive fluid 103 held therein.
In this case, static electricity generated in the rotation side member and the magnetic disk D attached to the rotation side member causes the hub 7, the conduction pin 102, the conductive fluid 103, the recess 101, the shaft 2,
The electricity is removed through the ground path that passes through the bracket 1.

【0018】図2は、凹部101、導通ピン102、導
電性流体103、磁石104等で構成された導通機構部
100の拡大図である。導通ピン102は、凹部101
の内径よりも直径が小さい大径部分102bと大径部分
102bよりも直径が小さく、かつ中心軸を大径部分1
02bと同じくする小径部分102aが設けられてい
る。
FIG. 2 is an enlarged view of a conduction mechanism portion 100 composed of a recess 101, a conduction pin 102, a conductive fluid 103, a magnet 104 and the like. The conduction pin 102 has a concave portion 101.
Of the large diameter portion 102b having a smaller diameter than the inner diameter of the
A small diameter portion 102a similar to 02b is provided.

【0019】導電性流体103は、凹部101内で小径
部分102aと接触する位置に保持されている。小径部
分102aと接触している導電性流体103は、小径部
分102a表面との濡れ等によって、開口部106方向
に拡散するが、導電性流体103が開口部106に達す
るより手前に大径部分102bが設けられているため、
開口部106に到るまでの導通ピン102表面の沿面距
離が大きくなると共に、凹部101は大径部分102b
によって微小隙間を残して事実上閉鎖される。さらに、
磁性材料で構成された導電性流体103には磁石104
の発生する磁力が作用して、導電性流体103は磁石1
04の方向に引き寄せられるため、凹部101内に強く
保持される。また、導電性流体103が拡散しようとす
る力が妨げられるため、導電性流体103が凹部101
の開口部から外部に拡散又は飛散することの防止が図れ
る。さらに、導通ピン102を磁性材料で構成し、導通
ピン102、導電性流体(磁性流体)103、磁石10
4を経由する磁気回路を構成すれば、導電性流体(磁性
流体)103は、さらに強く保持される。
The conductive fluid 103 is held in the recess 101 at a position in contact with the small diameter portion 102a. The conductive fluid 103 in contact with the small diameter portion 102a diffuses toward the opening 106 due to wetting with the surface of the small diameter portion 102a, but the large diameter portion 102b is located before the conductive fluid 103 reaches the opening 106. Is provided,
The creepage distance of the surface of the conduction pin 102 up to the opening 106 increases, and the recess 101 has a large diameter portion 102b.
It is effectively closed by leaving a small gap. further,
A magnet 104 is attached to the conductive fluid 103 composed of a magnetic material.
The magnetic force generated by the
Since it is pulled in the direction of 04, it is strongly held in the recess 101. Further, the force of the conductive fluid 103 attempting to diffuse is hindered, so that the conductive fluid 103 may not reach the recess 101.
It can be prevented from diffusing or scattering from the opening portion to the outside. Further, the conduction pin 102 is made of a magnetic material, and the conduction pin 102, the conductive fluid (magnetic fluid) 103, and the magnet 10 are used.
If a magnetic circuit passing through 4 is configured, the conductive fluid (magnetic fluid) 103 is further strongly retained.

【0020】なお、図3に示すように大径部分102b
を、そのままハブ7に達するまで延長する構成であって
も良い。
Incidentally, as shown in FIG. 3, the large diameter portion 102b is formed.
May be extended to reach the hub 7 as it is.

【0021】(第2実施形態)第2実施形態は、基本的
に第1実施形態と同様の構成を有し、導通機構部100
の構成が異なる。図4は、第2実施形態に係る導通機構
部100の構成例を示した図である。導通ピン102に
は、凹部101の内径よりも直径が小さい大径部分10
2cと大径部分102cよりも直径が小さく、かつ中心
軸を大径部分102cと同じくする小径部分102dが
設けられ、前記大径部分102cと小径部分102dの
周面は、テーパ面102eにより繋がっており、凹部1
01内壁との間で形成される隙間は開口部分106に向
かって連続的に拡大されている。
(Second Embodiment) The second embodiment basically has the same configuration as that of the first embodiment, and has a conduction mechanism section 100.
The configuration of is different. FIG. 4 is a diagram showing a configuration example of the conduction mechanism unit 100 according to the second embodiment. The conductive pin 102 has a large-diameter portion 10 having a diameter smaller than the inner diameter of the recess 101.
2c and a small diameter portion 102d having a diameter smaller than that of the large diameter portion 102c and having the same central axis as that of the large diameter portion 102c. The peripheral surfaces of the large diameter portion 102c and the small diameter portion 102d are connected by a tapered surface 102e. Cage, recess 1
The gap formed with the inner wall of the inner wall 01 is continuously enlarged toward the opening 106.

【0022】導電性流体103は、凹部101内で大径
部分102cと接触する位置に保持され、導電性流体1
03の界面は、テーパ面102eに位置している。大径
部分102cと接触している導電性流体103は、大径
部分102c表面との濡れ等によって、開口部106方
向に拡散しようとする。しかし、導電性流体103は表
面張力により保持され、大径部分102cを越えて開口
部106方向に拡散することがない。したがって、導電
性流体103が凹部101の開口部106から外部に拡
散又は飛散することの防止が図れる。
The conductive fluid 103 is held in the recess 101 at a position in contact with the large-diameter portion 102c.
The interface 03 is located on the tapered surface 102e. The conductive fluid 103 in contact with the large diameter portion 102c tends to diffuse toward the opening 106 due to wetting with the surface of the large diameter portion 102c. However, the conductive fluid 103 is held by the surface tension, and does not diffuse beyond the large diameter portion 102c toward the opening 106. Therefore, the conductive fluid 103 can be prevented from diffusing or scattering from the opening 106 of the recess 101 to the outside.

【0023】なお、図4では大径部分102cと小径部
分102dをテーパ−で繋ぐ構造を示したが、他の形
状、具体的にはテーパ面に近似する曲面であっても良
い。
Although the large-diameter portion 102c and the small-diameter portion 102d are connected by a taper in FIG. 4, another shape, specifically, a curved surface approximate to a tapered surface may be used.

【0024】(第3実施形態)第3実施形態は、基本的
に第1実施形態と同様の構成を有し、導通機構部100
の構成が異なる。図8は、第3実施形態に係る導通機構
部100の構成例を示した図である。凹部101の開口
部106付近の所定位置には蓋状部分105が設けら
れ、蓋状部分105の中心部には導通ピン102の直径
よりも内径が大きい蓋開口部107が設けられている。
導通ピン102は蓋開口部107を貫通して凹部101
に挿入され、凹部101に保持されている導電性流体1
03に接触している。
(Third Embodiment) The third embodiment basically has the same configuration as that of the first embodiment, and has a conduction mechanism section 100.
The configuration of is different. FIG. 8 is a diagram showing a configuration example of the conduction mechanism unit 100 according to the third embodiment. A lid-shaped portion 105 is provided at a predetermined position near the opening 106 of the recess 101, and a lid opening 107 having an inner diameter larger than the diameter of the conduction pin 102 is provided at the center of the lid-shaped portion 105.
The conduction pin 102 penetrates through the lid opening 107 to form the recess 101.
Conductive fluid 1 inserted into the cavity and held in the recess 101
We are in contact with 03.

【0025】この場合、導電性流体103は凹部101
の内壁表面の濡れ等によって凹部101の上方向に拡散
しようとするが、導電性流体103が開口部106に到
達する前に蓋状部分105が備えられているため、開口
部106に到達するまでの沿面距離が長くなると共に、
蓋開口部107は導通ピン102との間に微小隙間を残
して閉鎖されるため、導電性流体103が蓋開口部10
7を越えて拡散することが防止され、したがって開口部
106に到達することはなく、凹部101の外部に漏出
することが防止される。
In this case, the conductive fluid 103 is filled with the concave portion 101.
Although it tends to diffuse upward in the concave portion 101 due to the wetting of the inner wall surface of the inside of the concave portion 101 and the like, the lid-shaped portion 105 is provided before the conductive fluid 103 reaches the opening portion 106. As the creepage distance of becomes longer,
Since the lid opening portion 107 is closed with a minute gap left between the lid opening portion 107 and the conduction pin 102, the conductive fluid 103 is not covered by the lid opening portion 10.
7 is prevented, so that it does not reach the opening 106 and leaks to the outside of the recess 101.

【0026】なお、図9に示すように蓋状部分105
は、開口部106と一体となっていても良い。
As shown in FIG. 9, the lid portion 105
May be integrated with the opening 106.

【0027】(その他の変形例)なお、図6に示される
ように、導通ピン102の構造は、第2実施形態に係る
大径部分102c(図4)および第2実施形態に係る大
径部分102b(図2)を組み合わせた構成としてもよ
い。
(Other Modifications) As shown in FIG. 6, the structure of the conduction pin 102 has a large diameter portion 102c (FIG. 4) according to the second embodiment and a large diameter portion according to the second embodiment. A configuration in which 102b (FIG. 2) is combined may be used.

【0028】また、第1〜3実施形態では、凹部内部に
磁石を設けて磁性導電性流体を磁力で保持する構成を示
したが、磁石を設けず、導電性流体の表面張力、重力等
によって保持する構成であっても良い。例えば、前記図
4の実施形態のものは図5の構成に、前記図6の実施形
態のものは図7の構成にそれぞれ対応しており、導電性
流体の表面張力等によって保持可能である。この場合に
は、導電性流体が磁性材料である必要は無い。
In the first to third embodiments, the magnet is provided inside the recess to hold the magnetic conductive fluid by magnetic force. However, the magnet is not provided and the magnet is not provided. It may be configured to hold. For example, the embodiment of FIG. 4 corresponds to the configuration of FIG. 5 and the embodiment of FIG. 6 corresponds to the configuration of FIG. 7, and can be held by the surface tension of the conductive fluid or the like. In this case, the conductive fluid need not be a magnetic material.

【0029】さらに、磁性導電性流体を磁力で保持する
構成の場合、導通ピン102の端面つまり凹部101の
底部に配設された磁石104に対向する面をフラットも
しくは中央部が凹状に僅かに窪んだ形状とするのが望ま
しい。例えば導通ピン102の端面を中央部が凹状に窪
む形状にした場合、図10に示すような導電性流体の保
持メカニズムを構築できる。磁性導電性流体は磁界に沿
った配列と同時に導電性流体同士の反発力で先端が尖っ
た針状の形状となり、この先端部を導通ピン102の凹
状部に接触させることにより遠心力による飛散を小さく
抑え、しかも接触面圧を自動的に調整することができ
る。
Further, in the case of holding the magnetic conductive fluid by magnetic force, the end face of the conduction pin 102, that is, the face facing the magnet 104 arranged at the bottom of the recess 101 is flat or slightly concave in the center. It is desirable to make it a dull shape. For example, when the end face of the conduction pin 102 is formed in a concave shape at the center, a conductive fluid holding mechanism as shown in FIG. 10 can be constructed. The magnetic conductive fluid is arranged along the magnetic field and, at the same time, has a needle-like shape with a sharp tip due to the repulsive force of the conductive fluids. By contacting this tip with the concave portion of the conductive pin 102, scattering due to centrifugal force is caused. It can be kept small and the contact surface pressure can be adjusted automatically.

【0030】また、第1〜3実施形態では、本発明に係
る軸受を磁気ディスク駆動用スピンドルモータの空気動
圧軸受に適用した例を示したが、発電機、風車、タービ
ン等、回転体を支持する軸受で有れば良く、モータの軸
受に限定されない。また、動圧軸受に適用したが、ベア
リング等で構成される他の種類の軸受であっても良い。
また、凹部101が回転側部材に、導通ピン102が固
定側部材に設けられる構成であっても良い。
Further, in the first to third embodiments, an example in which the bearing according to the present invention is applied to an air dynamic pressure bearing of a spindle motor for driving a magnetic disk is shown. However, a rotating body such as a generator, a wind turbine, a turbine, etc. The bearing is not limited to the bearing of the motor as long as it is a bearing to support. Further, although the present invention is applied to the dynamic pressure bearing, other types of bearings such as bearings may be used.
Further, the concave portion 101 may be provided on the rotating side member, and the conduction pin 102 may be provided on the fixed side member.

【0031】[0031]

【発明の効果】以上のように、本発明によれば、回転側
部材と固定側部材との間を導電性流体を介して電気的に
接続する導通機能を有する軸受であって、導電性流体が
軸受外部に拡散または飛散しない軸受が提供できる。
As described above, according to the present invention, a bearing having a conduction function for electrically connecting a rotating side member and a fixed side member via a conductive fluid is provided. It is possible to provide a bearing that does not diffuse or scatter outside the bearing.

【0032】また、この発明によれば、前記回転側部材
は前記固定側部材との間で接触抵抗を生じることなく回
転可能である。また、前記回転側部材が回転させられる
ことにより空気との摩擦等で発生する静電気は、前記回
転側部材から円柱状部分、導電性流体、凹部を介して固
定側部材に到るアース経路を通って除電される。また、
前記円柱状部分と前記凹部が設けられる回転中心軸上も
しくはその近傍は、回転する前記回転側部材と前記固定
側部材との間の相対速度が最小となる位置であるため、
前記円柱状部分と導電性流体とが接触していることによ
り発生する粘性抵抗は最小になる。さらに、前記円柱状
部分および凹部の少なくとも1つに導電性流体の拡散防
止構造を備えたことにより、前記凹部内に保持された導
電性流体が凹部の外部に拡散、および飛散することが防
止される。
Further, according to the present invention, the rotating side member can rotate without generating contact resistance with the fixed side member. In addition, static electricity generated by friction with air due to the rotation of the rotating side member passes through the earth path from the rotating side member to the fixed side member through the cylindrical portion, the conductive fluid, and the recess. The electricity is removed. Also,
Since the relative speed between the rotating side member and the fixed side member that rotates is the position on or near the center axis of rotation where the cylindrical portion and the recess are provided,
The viscous resistance generated by the contact between the cylindrical portion and the conductive fluid is minimized. Further, since the conductive fluid diffusion preventing structure is provided in at least one of the columnar portion and the concave portion, the conductive fluid held in the concave portion is prevented from diffusing and scattering outside the concave portion. It

【0033】また、この発明によれば、前記小径部分と
接触している導電性流体が前記円柱状部分の表面の濡れ
等によって円柱状部分表面に沿って凹部の開口部方向に
拡散した場合であっても、導電性流体が凹部の開口部に
到るより手前に前記小径部分よりも直径の大きい前記大
径部分が備えられているため、導電性流体が保持されて
いる位置から開口部に到る円柱状部分表面の沿面距離が
大きくなると共に、凹部は前記大径部分により微小隙間
を残して閉鎖されるため、導電性流体が凹部の開口部か
ら外部に拡散又は飛散することの防止が図れる。
Further, according to the present invention, in the case where the conductive fluid in contact with the small diameter portion diffuses toward the opening of the recess along the surface of the cylindrical portion due to the wetting of the surface of the cylindrical portion or the like. Even if there is, the large diameter portion having a diameter larger than the small diameter portion is provided before the conductive fluid reaches the opening portion of the recess, so that the opening from the position where the conductive fluid is held is changed to the opening portion. As the creeping distance of the surface of the columnar portion reaching becomes large and the concave portion is closed by the large diameter portion leaving a minute gap, it is possible to prevent the conductive fluid from diffusing or scattering outside from the opening portion of the concave portion. Can be achieved.

【0034】また、この発明によれば、前記大径部分と
接触している導電性流体が前記大径部分と小径部分を有
する円柱状部分の表面の濡れ等によって前記円柱状部分
表面に沿って前記凹部の開口部方向に拡散しようとした
場合であっても、前記大径部分は前記小径部分とテーパ
面もしくはこれに近似する曲面にて連続的に繋がれてい
るため、導電性流体は表面張力によって保持され、開口
部方向に拡散することがない。したがって、導電性流体
が凹部の開口部から外部に拡散又は飛散することの防止
が図れる。
Further, according to the present invention, the conductive fluid in contact with the large-diameter portion is wetted on the surface of the cylindrical portion having the large-diameter portion and the small-diameter portion, so that the conductive fluid flows along the surface of the cylindrical portion. Even when attempting to diffuse toward the opening of the recess, the large-diameter portion is continuously connected to the small-diameter portion by a tapered surface or a curved surface similar thereto, so that the conductive fluid is It is held by tension and does not diffuse toward the opening. Therefore, it is possible to prevent the conductive fluid from diffusing or scattering from the opening of the recess to the outside.

【0035】また、この発明によれば、前記凹部内に保
持された導電性流体が、前記凹部の内壁表面の濡れ等に
よって凹部の開口部方向に拡散した場合であっても、開
口部付近には凹部の内径が、前記特定位置よりも開口部
から遠ざかる位置の凹部の内径より小さく、前記円柱状
部分の直径よりも大きい部位が備えられているため、導
電性流体が保持されている位置から開口部に到る凹部の
内壁表面の沿面距離が大きくなる。さらに、前記凹部の
開口部は前記円柱状部分との間に微小隙間を残して閉鎖
されるため、導電性流体が凹部の開口部から外部に拡散
又は飛散することの防止が図れる。
Further, according to the present invention, even when the conductive fluid held in the recess is diffused toward the opening of the recess due to the wetting of the inner wall surface of the recess or the like, the conductive fluid is not formed near the opening. Since the inner diameter of the concave portion is smaller than the inner diameter of the concave portion at a position farther from the opening than the specific position and larger than the diameter of the cylindrical portion, a portion where the conductive fluid is held is The creepage distance on the inner wall surface of the recess reaching the opening becomes large. Further, since the opening of the recess is closed with a minute gap left between the opening and the cylindrical portion, it is possible to prevent the conductive fluid from diffusing or scattering outside from the opening of the recess.

【0036】また、この発明によれば、前記導電性流体
は磁性材料によって構成される導電性磁性流体であっ
て、前記凹部内で導電性磁性流体は磁気的な力によって
保持されるため、前記円柱状部分の表面の濡れ又は、前
記凹部の内壁表面の濡れ等によって凹部の開口部方向に
拡散しようとする導電性磁性流体に対して、拡散しよう
とする力を妨げる方向に磁気力が作用し、導電性磁性流
体が凹部の開口部から外部に拡散又は飛散することの防
止が図れる。
Further, according to the present invention, the conductive fluid is a conductive magnetic fluid composed of a magnetic material, and the conductive magnetic fluid is retained in the recess by a magnetic force. The magnetic force acts on the conductive magnetic fluid that tends to diffuse toward the opening of the recess due to the wetting of the surface of the cylindrical portion or the wetting of the inner wall surface of the recess, etc. It is possible to prevent the conductive magnetic fluid from diffusing or scattering from the opening of the recess to the outside.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施形態に係る動圧軸受スピン
ドルモータの縦断面図である。
FIG. 1 is a longitudinal sectional view of a dynamic pressure bearing spindle motor according to a first embodiment of the present invention.

【図2】 本発明の第1実施形態に係る導通機構部の縦
断面図である。
FIG. 2 is a vertical sectional view of a conduction mechanism section according to the first embodiment of the present invention.

【図3】 本発明の第1実施形態に係る導通機構部の縦
断面図である。
FIG. 3 is a vertical cross-sectional view of a conduction mechanism section according to the first embodiment of the present invention.

【図4】 本発明の第2実施形態に係る導通機構部の縦
断面図である。
FIG. 4 is a vertical sectional view of a conduction mechanism section according to a second embodiment of the present invention.

【図5】 本発明の第2実施形態に係る導通機構部の縦
断面図である。
FIG. 5 is a vertical cross-sectional view of a conduction mechanism section according to a second embodiment of the present invention.

【図6】 本発明の第3実施形態に係る導通機構部の縦
断面図である。
FIG. 6 is a vertical sectional view of a conduction mechanism section according to a third embodiment of the present invention.

【図7】 本発明の第3実施形態に係る導通機構部の縦
断面図である。
FIG. 7 is a vertical cross-sectional view of a conduction mechanism section according to a third embodiment of the present invention.

【図8】 本発明の第4実施形態に係る導通機構部の縦
断面図である。
FIG. 8 is a vertical cross-sectional view of a conduction mechanism section according to a fourth embodiment of the present invention.

【図9】 本発明の第4実施形態に係る導通機構部の縦
断面図である。
FIG. 9 is a vertical sectional view of a conduction mechanism section according to a fourth embodiment of the present invention.

【図10】 本発明のその他の変形例に係る導通機構部
の縦断面図である。
FIG. 10 is a vertical cross-sectional view of a conduction mechanism portion according to another modification of the present invention.

【符号の説明】[Explanation of symbols]

1 ブラケット 11 ブラケットの貫通穴 2 シャフト 3 ラジアル軸受部材 31 へリングボーン溝 3a 外周面 4 スラスト板 41 へリングボーン溝 4a スラスト板対向面 5 スラスト板 51 へリングボーン溝 5a スラスト板対向面 6 ラジアルスリーブ 7 ハブ 8 ロータマグネット 9 ステータ 71 上円筒部 72 下円筒部 73 段差部 100 導通機構部 101 凹部 102 導通ピン (円柱状部分) 102a 小径部分 102b 大径部分 102c 大径部分 102e テーパ面 103 導電性流体 104 磁石 105 蓋状部分 106 開口部 107 蓋開口部 D 磁気ディスク DH 磁気ヘッド HB1 ラジアル動圧軸受 HB2 スラスト動圧軸受 1 bracket 11 Bracket through hole 2 shafts 3 Radial bearing members 31 herringbone groove 3a outer peripheral surface 4 Thrust plate 41 Herringbone groove 4a Thrust plate facing surface 5 Thrust plate 51 herringbone groove 5a Thrust plate facing surface 6 radial sleeve 7 hub 8 rotor magnet 9 stator 71 Upper cylindrical part 72 Lower cylindrical part 73 Step 100 conduction mechanism 101 recess 102 Conduction pin (cylindrical part) 102a small diameter part 102b Large diameter part 102c Large diameter part 102e Tapered surface 103 conductive fluid 104 magnet 105 Lid 106 opening 107 lid opening D magnetic disk DH magnetic head HB1 radial dynamic pressure bearing HB2 thrust dynamic pressure bearing

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J011 AA20 BA02 BA08 CA02 EA10 KA02 KA03 5H605 BB05 BB14 BB19 CC04 DD09 EB02 EB06 EB15 EB28 5H607 BB01 BB07 BB09 BB14 BB17 BB25 CC01 DD03 DD16 GG01 GG02 GG09 GG12 GG15    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3J011 AA20 BA02 BA08 CA02 EA10                       KA02 KA03                 5H605 BB05 BB14 BB19 CC04 DD09                       EB02 EB06 EB15 EB28                 5H607 BB01 BB07 BB09 BB14 BB17                       BB25 CC01 DD03 DD16 GG01                       GG02 GG09 GG12 GG15

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 回転側部材と固定側部材とを有する軸受
であって、前記回転側部材又は前記固定側部材のいずれ
か一方の部材に上方に開口し少なくとも底部に導電性流
体を保持した凹部を設け、他方の部材に円柱状部分を設
け、前記凹部と前記円柱状部分は回転中心軸上又はその
近傍に設けられ、前記円柱状部分は前記凹部の上方より
その内側に非接触で回転自在に挿入され、前記円柱状部
分は前記凹部内に保持された導電性流体に接触し、前記
円柱状部分および前記凹部の少なくとも1つに前記導電
性流体の拡散防止構造を備えたことを特徴とする軸受。
1. A bearing having a rotating side member and a fixed side member, the recess having an opening upward in at least one of the rotating side member and the fixed side member and holding a conductive fluid in at least a bottom portion. And a columnar portion is provided on the other member, and the recess and the columnar portion are provided on or near the rotation center axis, and the columnar portion is rotatable from above the recess to the inside thereof without contact. The columnar portion is in contact with the conductive fluid held in the recess, and at least one of the columnar portion and the recess is provided with a diffusion preventing structure for the conductive fluid. Bearing.
【請求項2】 前記円柱状部分は、前記凹部の内径より
も直径が小さい大径部分と前記大径部分よりも直径が小
さく、かつ中心軸を大径部分と同じくする小径部分とを
有し、前記凹部に挿入される順序が前記小径部分が挿入
された後に前記大径部分が挿入され、前記小径部分が前
記導電性流体と接触することを特徴とする請求項1記載
の軸受。
2. The cylindrical portion has a large-diameter portion having a diameter smaller than the inner diameter of the recess and a small-diameter portion having a diameter smaller than that of the large-diameter portion and having the same central axis as the large-diameter portion. The bearing according to claim 1, wherein the large diameter portion is inserted after the small diameter portion is inserted, and the small diameter portion comes into contact with the conductive fluid.
【請求項3】 前記円柱状部分は、前記凹部の内径より
も直径が小さい大径部分と前記大径部分よりも直径が小
さく、かつ中心軸を大径部分と同じくする小径部分とを
有し、前記大径部分と前記小径部分とはそれぞれの周面
がテーパ面もしくはこれに近似する曲面にて連続的に繋
がれており、前記凹部に挿入される順序が前記大径部分
が挿入された後に前記小径部分が挿入され、前記大径部
分が前記導電性流体と接触することを特徴とする請求項
1又は2記載の軸受。
3. The cylindrical portion has a large-diameter portion having a diameter smaller than the inner diameter of the recess and a small-diameter portion having a diameter smaller than that of the large-diameter portion and having a central axis similar to that of the large-diameter portion. The peripheral surfaces of the large diameter portion and the small diameter portion are continuously connected by a tapered surface or a curved surface similar thereto, and the insertion order of the large diameter portion is such that the large diameter portion is inserted. 3. The bearing according to claim 1, wherein the small diameter portion is inserted later, and the large diameter portion comes into contact with the conductive fluid.
【請求項4】 前記円柱状部分が挿入された前記凹部の
開口部付近の所定位置に、前記凹部の内径が、前記所定
位置よりも開口部から遠ざかる位置の凹部の内径より小
さく、前記円柱状部分の直径よりも大きい部位を備えた
ことを特徴とする請求項1〜3のいずれかに記載の軸
受。
4. At the predetermined position near the opening of the recess where the cylindrical portion is inserted, the inner diameter of the recess is smaller than the inner diameter of the recess at a position farther from the opening than the predetermined position, The bearing according to any one of claims 1 to 3, further comprising a portion having a diameter larger than a diameter of the portion.
【請求項5】 前記導電性流体は磁性材料によって構成
され、前記凹部の内部に磁石を備え、前記凹部の内部で
導電性流体は磁気的に保持されることを特徴とする請求
項1〜4のいずれかに記載の軸受。
5. The conductive fluid is made of a magnetic material, a magnet is provided inside the recess, and the conductive fluid is magnetically retained inside the recess. The bearing according to any one of 1.
JP2001374388A 2001-12-07 2001-12-07 Bearing having conducting function Withdrawn JP2003172338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001374388A JP2003172338A (en) 2001-12-07 2001-12-07 Bearing having conducting function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001374388A JP2003172338A (en) 2001-12-07 2001-12-07 Bearing having conducting function

Publications (1)

Publication Number Publication Date
JP2003172338A true JP2003172338A (en) 2003-06-20

Family

ID=19182955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001374388A Withdrawn JP2003172338A (en) 2001-12-07 2001-12-07 Bearing having conducting function

Country Status (1)

Country Link
JP (1) JP2003172338A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211978A (en) * 2006-02-09 2007-08-23 Seagate Technology Llc Electrostatic discharge device for hub/spindle assembly
JP2007292731A (en) * 2006-03-28 2007-11-08 Victor Co Of Japan Ltd Bearing inspection method and motor manufacturing method
JP2019529970A (en) * 2016-09-09 2019-10-17 エーエスエムエル ホールディング エヌ.ブイ. Lithographic apparatus and support structure background
CN114761695A (en) * 2019-12-06 2022-07-15 美国圣戈班性能塑料公司 Flanged bearings, assemblies, and methods of making and using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211978A (en) * 2006-02-09 2007-08-23 Seagate Technology Llc Electrostatic discharge device for hub/spindle assembly
JP2007292731A (en) * 2006-03-28 2007-11-08 Victor Co Of Japan Ltd Bearing inspection method and motor manufacturing method
JP2019529970A (en) * 2016-09-09 2019-10-17 エーエスエムエル ホールディング エヌ.ブイ. Lithographic apparatus and support structure background
CN114761695A (en) * 2019-12-06 2022-07-15 美国圣戈班性能塑料公司 Flanged bearings, assemblies, and methods of making and using the same
CN114761695B (en) * 2019-12-06 2024-04-09 美国圣戈班性能塑料公司 Flanged bearing, assembly, and methods of making and using the same

Similar Documents

Publication Publication Date Title
JP4084843B2 (en) Hydrodynamic bearing device and manufacturing method thereof
US20030201683A1 (en) Electric spindle motor and method having magnetic starting/stopping device
KR20130088355A (en) Spindle motor
JP4360482B2 (en) Hydrodynamic bearing device
JP2003172338A (en) Bearing having conducting function
JP4078983B2 (en) Bearing unit and rotary drive device having bearing unit
CN100564911C (en) Bearing unit and the drive motor that uses this bearing unit
JPH10148212A (en) Dynamic pressure fluid bearing device
JP3424797B2 (en) Spindle motor and rotating device using the spindle motor as a driving source of the rotating body
JP2003172337A (en) Bearing having conducting function
JP4056349B2 (en) Motor equipped with a hydrodynamic bearing device
KR100480633B1 (en) A spindle motor of the hard disk drive
JP3601081B2 (en) Spindle motor
JP4751749B2 (en) motor
JP2006187135A (en) Motor and method for injecting conductive fluid to earthing means
JP2004132455A (en) Dynamic pressure bearing device and disk recorder
JP2004176817A (en) Dynamic pressure bearing device and method of manufacturing the same
JP2003032945A (en) Information recording and reproducing device
KR20000002777U (en) Leakage prevention structure in motor
JPH0837755A (en) Spindle motor
JP2002130256A (en) Air dynamic bearing unit
JP2000192946A (en) Spindle motor
JP4357051B2 (en) Thrust dynamic pressure bearing
JPH09217738A (en) Bearing device
JP2002027701A (en) Spindle motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301