JP2003170108A - Method and apparatus for preparing coating material in spray coating - Google Patents

Method and apparatus for preparing coating material in spray coating

Info

Publication number
JP2003170108A
JP2003170108A JP2001374098A JP2001374098A JP2003170108A JP 2003170108 A JP2003170108 A JP 2003170108A JP 2001374098 A JP2001374098 A JP 2001374098A JP 2001374098 A JP2001374098 A JP 2001374098A JP 2003170108 A JP2003170108 A JP 2003170108A
Authority
JP
Japan
Prior art keywords
coating
paint
resonance resistance
crystal unit
site
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001374098A
Other languages
Japanese (ja)
Other versions
JP3975081B2 (en
Inventor
Kenichi Shindo
健一 信藤
Jun Suzuno
純 鈴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2001374098A priority Critical patent/JP3975081B2/en
Publication of JP2003170108A publication Critical patent/JP2003170108A/en
Application granted granted Critical
Publication of JP3975081B2 publication Critical patent/JP3975081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing a coating material in which the excellent appearance of a coating film is attained by spray coating responding to the change of coating environment in a coating site, and an apparatus thereof. <P>SOLUTION: The method for preparing the coating material has (1) a process for previously obtaining a corresponding relation between the blending ratio of a fluid adjustment agent and a resonance resistance by changing the blending ratio of the fluid adjustment agent and spray-coating one surface of a crystal resonator to measure the resonance resistance in the coating material applied in the site, (2) a process for measuring the resonance resistance of the crystal resonator spray-coated with the coating material for site coating, (3) a process for obtaining the blending ratio of the fluid adjustment agent in order to control the resonance resistance of the crystal resonator measured in the process (2) to a proper range on the basis of the corresponding relation or the like between the blending ratio of the fluid adjustment agent and the resonance resistance obtained in the process (1) and (4) a process for adjusting the blending ratio of an additive in the coating material for site coating to the blending ratio of the fluid adjustment agent obtained in the process (3). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水晶振動子を用い
てなる、塗装環境などに応じた噴霧塗装における塗料調
整方法、及びこの塗料調整方法に用いられる塗料調整装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a paint adjusting method in a spray coating which uses a crystal oscillator in accordance with a coating environment and the like, and a paint adjusting device used in the paint adjusting method.

【0002】[0002]

【従来の技術】気中でスプレー塗装、回転霧化塗装、静
電霧化塗装を行う際に、季節変動などにより湿度、温度
が変化したり、ブース内風速などが変化すると、塗装機
から微粒化され飛行する塗料粒子が被塗物に到着するま
での間の溶剤の揮発速度、被塗物に塗着した塗料膜の溶
剤揮発速度及び、回転霧化装置の機械的な条件による粒
径の変化が、塗着塗料の粘弾性特性に影響を及ぼし、塗
面平滑性が低下したり、ハジキ、タレなどの被塗物の外
観不良の原因となる。従来はこれらの外観不良を防ぐた
めに、塗料製造者は、例えば、季節、塗装機器の特性に
より揮発速度の異なる溶剤を配合したり、あらかじめ設
定された添加剤を加えるなどして、季節に応じて最適な
塗装特性を有すると考える塗料を供給していた。しかし
ながら、上記のような調整方法では、微細な塗装環境変
化、塗装機器の特性に対応していないため最終的には現
場での経験による調整に頼らざるを得なかった。また、
優れた仕上り外観が必要とされる塗装分野、例えば、自
動車外板塗装においては、地球環境保全に対応した塗
料、特に水性塗料や高固形分塗料の塗装に際しては、塗
装雰囲気、塗装機器の特性の影響による塗着後の塗料粘
弾性特性の変化に応じた制御を塗料調整によって行うこ
とが難しいため、塗装環境、塗装機器の特性の微妙な制
御により対応せざるを得なかった。
2. Description of the Related Art When performing spray coating, rotary atomization coating, or electrostatic atomization coating in the air, if the humidity or temperature changes due to seasonal changes, or the wind speed in the booth changes, the coating machine will produce fine particles. Of the solvent volatilization speed of the sprayed paint particles until they reach the object to be coated, the solvent volatilization rate of the paint film applied to the object to be coated, and the particle size due to the mechanical conditions of the rotary atomizer. The change affects the viscoelastic properties of the coating composition, which leads to a decrease in the smoothness of the coating surface and causes poor appearance of the coating object such as cissing and sagging. Conventionally, in order to prevent these appearance defects, the paint manufacturer, depending on the season, mixes solvents with different volatilization rates depending on the season and characteristics of the coating equipment, or adds preset additives. We have supplied paints that we believe have the best coating properties. However, the adjustment method as described above does not cope with minute changes in the coating environment and the characteristics of the coating equipment, so that it is ultimately necessary to rely on the adjustment based on experience in the field. Also,
In the field of coating where excellent finish appearance is required, for example, in automobile exterior coating, when coating paints that are compatible with global environment conservation, especially water-based paints and high solids paints, Since it is difficult to control by adjusting the paint according to the change of the paint viscoelastic property after application due to the influence, it has been unavoidable to deal with it by finely controlling the paint environment and the properties of the paint equipment.

【0003】[0003]

【発明が解決しようとする課題】被塗装物に塗着した塗
着物の粘弾性特性を測定する方法としては、被塗装物に
塗着した塗料を採取し、コーン&プレートのような機械
的な測定器で測定する、あるいは、プレートに塗装を行
い、そのプレートを速やかに測定器に取り付けて粘弾性
測定を行う方法が知られているが、この方法では、測定
時間が非常に長くかかり、塗着塗料の採取、測定時に構
造が破壊して正確な粘弾性特性が得られ難いこと、測定
雰囲気が現場塗装雰囲気と通常異なるため、リアルタイ
ムにかつ連続的に、塗着塗膜の粘弾性特性を把握するこ
とは困難であった。本発明の目的は、塗装現場におい
て、塗装環境の変化などに対応して、噴霧塗装における
良好な塗装塗膜外観を得るために短時間で行うことがで
きる塗料調製方法を提供することである。また、この塗
料調製方法を行うための塗料調整装置を提供することで
ある。
A method for measuring the viscoelastic properties of a coating material applied to an object to be coated is to collect the coating material applied to the object to be coated, and then use a mechanical device such as a cone and plate. It is known to measure with a measuring instrument, or to paint on a plate and then quickly attach the plate to the measuring instrument to measure viscoelasticity.However, this method requires a very long measuring time and It is difficult to obtain accurate viscoelastic properties because the structure is destroyed during the collection and measurement of the coating composition.Because the measurement atmosphere is usually different from the on-site coating atmosphere, the viscoelastic characteristics of the coated film can be continuously and continuously measured in real time. It was difficult to grasp. It is an object of the present invention to provide a paint preparation method which can be carried out in a short time at a painting site in order to obtain a good paint film appearance in spray painting in response to changes in the painting environment. Another object of the present invention is to provide a paint adjusting device for carrying out this paint preparing method.

【0004】[0004]

【課題を解決するための手段】本発明者らは、実際の現
場塗装環境で高感度のセンサーである水晶振動子に塗装
し、その共振抵抗から塗装環境雰囲気、塗装機器の特性
によって変動する塗着塗料の粘弾性特性に対応するパラ
メータを短時間に計測でき、そのデータをもとにして、
塗料中の添加剤量を現場塗装雰囲気に対して適性範囲内
の量に調整することによって、塗装雰囲気が変化して
も、良好な塗装作業特性を得ることができることを見出
し本発明を完成するに至ったものである。すなわち本発
明は、下記工程(1)〜(4) (1)現場塗装する塗料について、流動調整剤の配合割
合を変化させて、水晶振動子の片面に噴霧塗装し、該塗
装された水晶振動子の共振抵抗を測定し、使用する流動
調整剤の配合割合と共振抵抗との対応関係を予め求める
工程、(2)塗装現場において、水晶振動子の片面に現
場塗装用塗料を噴霧塗装し、該塗装された水晶振動子の
共振抵抗を測定する工程、(3)工程(2)で測定され
た水晶振動子の共振抵抗を適性範囲内とするための流動
調整剤の配合割合を、工程(1)で得た流動調整剤の配
合割合と共振抵抗との対応関係、現場塗装用塗料中の流
動調整剤量、及び工程(2)で測定された水晶振動子の
共振抵抗に基いて求める工程、及び(4)塗料容器中に
充填された現場塗装用塗料における添加剤の配合割合
を、工程(3)で求めた流動調整剤の配合割合とする工
程、を有することを特徴とする噴霧塗装における塗料調
整方法を提供するものである。また、本発明は、塗料容
器、塗料容器に接続された流動性調整剤容器、塗料容器
からの塗料を塗装する噴霧塗装装置、水晶振動子のイン
ピーダンスを測定するインピーダンスアナライザ、及び
インピーダンスアナライザで測定した共振点でのインピ
ーダンスの抵抗成分を共振抵抗として取込み、塗装され
た水晶振動子の共振抵抗を適性範囲内とするための、塗
料中の流動調整剤の配合割合を計算する演算制御システ
ムを具備する装置であって、該噴霧塗装装置によって塗
装され水晶振動子の共振抵抗に基き、塗装された水晶振
動子の共振抵抗を適性範囲内とするための塗料中の流動
調整剤の配合割合を求め、この配合割合に基き添加剤タ
ンクから塗料容器に流動調整剤を配合可能としてなるこ
とを特徴とする塗料調整装置を提供するものである。以
下、本発明について、詳細に説明する。
The inventors of the present invention have applied a coating on a crystal oscillator, which is a highly sensitive sensor in an actual on-site coating environment, and change its resonance resistance depending on the coating environment atmosphere and the characteristics of coating equipment. The parameters corresponding to the viscoelastic properties of the coating material can be measured in a short time, and based on that data,
It was found that by adjusting the amount of additives in the coating within the range suitable for the on-site coating atmosphere, good coating work characteristics can be obtained even when the coating atmosphere changes, and the present invention is completed. It has come. That is, the present invention includes the following steps (1) to (4) (1) The coating composition to be applied on-site is spray-coated on one side of the crystal unit by changing the mixing ratio of the flow control agent, and the coated crystal vibration is applied. The step of measuring the resonance resistance of the child and obtaining the correspondence relationship between the mixing ratio of the flow control agent to be used and the resonance resistance in advance, (2) at the painting site, spray painting the on-site painting paint on one side of the crystal oscillator, The step of measuring the resonance resistance of the coated crystal unit, the step (3), the mixing ratio of the flow control agent for keeping the resonance resistance of the crystal unit measured in the step (2) within an appropriate range, Step based on the correspondence relationship between the blending ratio of the flow control agent obtained in 1) and the resonance resistance, the amount of flow control agent in the paint for on-site coating, and the resonance resistance of the crystal resonator measured in step (2) , And (4) For on-site paint filled in paint containers The present invention provides a coating material adjusting method in spray coating, which comprises the step of adjusting the blending ratio of the additive in the step (3) to the blending ratio of the flow control agent. Further, the present invention was measured with a paint container, a fluidity adjusting agent container connected to the paint container, a spray coating device for painting the paint from the paint container, an impedance analyzer for measuring the impedance of the crystal oscillator, and an impedance analyzer. Equipped with an arithmetic and control system that calculates the mixing ratio of the flow control agent in the paint to take the resistance component of the impedance at the resonance point as the resonance resistance and keep the resonance resistance of the coated crystal unit within the appropriate range. A device, based on the resonance resistance of the crystal resonator coated by the spray coating device, obtain the blending ratio of the flow control agent in the coating material to bring the resonance resistance of the coated crystal resonator within an appropriate range, Based on this blending ratio, a flow control agent can be blended from an additive tank to a paint container to provide a paint regulating device. . Hereinafter, the present invention will be described in detail.

【0005】[0005]

【発明の実施の形態】水晶振動子は、時間、温度、圧
力、膜厚などの測定に用いられており、また、水晶振動
子が溶液中にある場合、溶液の粘弾性や密度によって共
振周波数が変化し、溶液の粘弾性や密度の変化を調べる
ことができることが、「計測技術」vol.17(7)
p35〜40 1989、「超音波TECHNO」vo
l.5(7)p45〜50 1993 などに記載され
ている。
BEST MODE FOR CARRYING OUT THE INVENTION The crystal oscillator is used for measuring time, temperature, pressure, film thickness, etc. When the crystal oscillator is in a solution, the resonance frequency depends on the viscoelasticity and density of the solution. Changes, and it is possible to investigate changes in the viscoelasticity and density of a solution. 17 (7)
p35-401989, "Ultrasonic TECHNO" vo
l. 5 (7) p45-501993.

【0006】本発明方法では、水晶振動子表面に付着し
た、粘弾性物質の特性により、回路の共振周波数、共振
抵抗が変化することに着目し、水晶振動子の表面に塗料
を塗装し、塗装された水晶振動子の共振点でのインピー
ダンスを測定することによって、インピーダンスの実数
成分、すなわち抵抗成分である共振抵抗をリアルタイム
に計測でき、その共振抵抗から塗装現場の塗装雰囲気
中、塗装条件での塗着塗膜の粘弾性特性を非破壊のもと
で把握することができる。本発明方法は、下記の工程
(1)〜(4)を有する噴霧塗装における塗料調整方法
である。 工程(1) 工程(1)は、現場塗装する塗料について、流動調整剤
の配合割合を変化させて、水晶振動子の片面に噴霧塗装
して、該塗装された水晶振動子の共振抵抗を測定し、使
用する流動調整剤の配合割合と共振抵抗との対応関係、
例えば、検量線、関係式、関係図などを予め求める工程
である。上記塗装に際しての塗装条件は、特に制限され
るものではないが、現場塗装において標準とされる条件
であることが好適である。上記流動調整剤は、現場塗装
用塗料に用いられるものであって、塗料の粘弾性特性に
影響を与えるものである。その代表例として、例えば、
モノ1級アミンとジイソシアネートとの反応生成物であ
るジウレアなどのジウレア系流動性調整剤;超微粒子状
硫酸バリウム、シリカ系微粉末、ベントナイト系調整
剤、ポリアミド系調整剤、水系乳化重合で製造した架橋
重合体微粒子、非水系で製造した架橋重合体微粒子等を
挙げることができる。水晶振動子への塗装は、水晶振動
子の片面表面が、均一に膜厚が1μm〜100μm、好
ましくは1〜50μmとなるように行うことが、バラツ
キのない共振抵抗を得るという観点から好適である。ま
た、塗装された水晶振動子の共振抵抗の測定は、塗装約
1分後に行うことが、後記工程(3)との対応の取り易
さの面から好適である。すなわち、塗着膜は、噴霧塗装
によって塗料膜形成後30秒から1分30秒位の間つま
り約1分後に、その粘弾性特性の発現により、塗料膜の
状態が決定されることが経験的に知られており、その時
期の粘弾性特性に起因する流動特性を制御することによ
り最適な塗面状態を得ることができる。
In the method of the present invention, attention is paid to the fact that the resonance frequency and resonance resistance of the circuit change due to the characteristics of the viscoelastic substance attached to the surface of the crystal unit. By measuring the impedance at the resonance point of the crystal unit, the real-time component of impedance, that is, the resonance resistance, which is the resistance component, can be measured in real time. It is possible to grasp the viscoelastic properties of the applied coating film without breaking it. The method of the present invention is a paint preparation method in spray coating having the following steps (1) to (4). Step (1) In the step (1), with respect to the paint to be painted on-site, the mixing ratio of the flow control agent is changed, and spray coating is applied to one side of the crystal unit to measure the resonance resistance of the coated crystal unit. And the correspondence relationship between the mixing ratio of the flow regulator used and the resonance resistance,
For example, it is a step of previously obtaining a calibration curve, a relational expression, a relational diagram, and the like. The coating conditions for the above-mentioned coating are not particularly limited, but it is preferable that they are standard conditions for on-site coating. The above-mentioned flow control agent is used for a paint for on-site coating and affects the viscoelastic properties of the paint. As a typical example, for example,
Diurea-based fluidity regulator such as diurea, which is a reaction product of mono-primary amine and diisocyanate; ultrafine particulate barium sulfate, silica-based fine powder, bentonite-based regulator, polyamide-based regulator, water-based emulsion polymerization Examples thereof include crosslinked polymer fine particles and nonaqueous crosslinked polymer fine particles. It is preferable to coat the crystal unit so that one side surface of the crystal unit has a uniform film thickness of 1 μm to 100 μm, preferably 1 to 50 μm, from the viewpoint of obtaining uniform resonance resistance. is there. Further, it is preferable to measure the resonance resistance of the coated crystal unit about one minute after coating from the viewpoint of easy correspondence with the step (3) described later. That is, it is empirical that the state of the coating film of the coating film is determined by the expression of its viscoelastic property between 30 seconds and about 1 minute 30 seconds after the coating film is formed by spray coating, that is, after about 1 minute. It is well known that the optimum coating surface state can be obtained by controlling the flow characteristics due to the viscoelastic characteristics at that time.

【0007】工程(2) 工程(2)は、塗装現場において、インピーダンスアナ
ライザに接続された水晶振動子の片面に現場塗装用塗料
を噴霧塗装し、該塗装された水晶振動子の共振抵抗を測
定する工程である。水晶振動子への塗装は、水晶振動子
の片面表面が、均一に膜厚が1μm以上となるように行
う。また、塗装された水晶振動子の共振抵抗の測定は、
塗装約1分後に行うことが、後記工程(3)との対応の
取り易さと上記の面から好適である。この工程(2)
は、塗装現場において、本塗装する直前の試験塗装の段
階で行われるのが一般的であるが、これ以外に、現場塗
装環境の変化に応じて本塗装の途中にも適宜行うことが
できる。
Step (2) In the step (2), at the painting site, one side of the crystal unit connected to the impedance analyzer is spray coated with a paint for on-site coating, and the resonance resistance of the coated crystal unit is measured. It is a process to do. The coating on the crystal unit is performed so that the film thickness is uniformly 1 μm or more on one surface of the crystal unit. Also, the measurement of the resonance resistance of the painted crystal unit is
It is preferable to perform the coating after about 1 minute from the viewpoint of the ease of dealing with the step (3) described later and the above-mentioned aspect. This step (2)
Is generally performed at the stage of the test coating just before the main coating at the coating site, but in addition to this, it can be appropriately performed during the main coating depending on the change of the site coating environment.

【0008】工程(3) 工程(3)は、工程(2)で測定された水晶振動子の共
振抵抗を、適性範囲内とするための流動調整剤の配合割
合を、工程(1)で得た流動調整剤の配合割合と共振抵
抗との対応関係、現場塗装用塗料中の流動調整剤量及び
工程(2)で測定された水晶振動子の共振抵抗に基いて
求める工程である。上記共振抵抗の適性範囲とは、噴霧
塗装に塗装され被塗物に塗着した塗料がタレ、ハジキ、
平滑性低下などを起こさず、良好な塗面外観を得ること
ができる塗着塗料の粘弾性特性の範囲に相当する共振抵
抗の範囲を意味する。共振抵抗の適性範囲は、塗料種に
よって大きなバラツキはなく、通常、水晶振動子への塗
料塗装約1分後に7〜13KΩ、好ましくは8〜12K
Ω、特に好ましくは9〜11KΩにある。共振抵抗の適
性範囲の設定は、例えば、前記工程(1)において、水
晶振動子への塗装と同時に他の被塗物にも塗装し、その
被塗物上の塗料膜の状態を判定して、良好な塗料膜を形
成できる範囲に相当する共振抵抗の範囲を設定すること
によって行うことができる。良好な塗料膜を形成するた
めの流動調整剤の配合割合Xは、例えば、次のようにし
て求めることができる。工程(2)で測定された共振抵
抗をAとし、工程(1)で得た対応関係から共振抵抗が
Aのときの流動性調整剤の配合割合aが得られる。共振
抵抗の適性範囲が7〜13KΩであるとき、例えば、そ
の中心値である共振抵抗10KΩのとき、工程(1)で
得た対応関係から共振抵抗10KΩに対応する流動調整
剤の配合割合bが得られる。また、工程(2)で用いた
現場塗装用塗料における流動調整剤の配合割合をcとす
ると、流動調整剤の配合割合Xは下記式で求めることが
できる。 X=(b−a)+c 現場塗装用塗料に流動調整剤を加える場合、cの量は既
に塗料中に存在するので、その添加割合は、(b−a)
となる。
Step (3) In Step (3), the mixing ratio of the flow control agent for adjusting the resonance resistance of the crystal unit measured in Step (2) to be within an appropriate range is obtained in Step (1). This is a step of obtaining based on the correspondence relationship between the blending ratio of the flow control agent and the resonance resistance, the amount of the flow control agent in the paint for on-site coating, and the resonance resistance of the crystal resonator measured in step (2). The suitable range of the resonance resistance, the coating applied to the spray coating is applied to the object to be dripped, cissing,
It means a range of resonance resistance corresponding to a range of viscoelastic properties of the coating composition that can obtain a good coating surface appearance without causing deterioration of smoothness. The suitability range of the resonance resistance does not vary greatly depending on the type of paint, and it is usually 7 to 13 KΩ, preferably 8 to 12 K after coating the crystal unit for about 1 minute.
Ω, particularly preferably 9 to 11 KΩ. To set the appropriate range of the resonance resistance, for example, in the step (1), at the same time as coating the crystal unit, other coated objects are coated, and the state of the coating film on the coated objects is judged. This can be done by setting the range of resonance resistance corresponding to the range in which a good paint film can be formed. The blending ratio X of the flow control agent for forming a good coating film can be obtained as follows, for example. Letting A be the resonance resistance measured in the step (2), the mixing ratio a of the fluidity modifier when the resonance resistance is A is obtained from the correspondence obtained in the step (1). When the suitable range of the resonance resistance is 7 to 13 KΩ, for example, when the resonance resistance is 10 KΩ which is the center value, the blending ratio b of the flow regulator corresponding to the resonance resistance 10 KΩ is obtained from the correspondence relationship obtained in the step (1). can get. Further, when the mixing ratio of the flow control agent in the on-site coating material used in the step (2) is c, the mixing ratio X of the flow control agent can be calculated by the following formula. X = (b−a) + c When a flow control agent is added to the coating composition for in-situ coating, the amount of c is already present in the coating composition, so the addition ratio is (b−a).
Becomes

【0009】工程(4) 工程(4)は、塗料容器中に充填された現場塗装用塗料
における流動調整剤の配合割合を、工程(3)で求めた
流動調整剤の配合割合とする工程であり、良好な塗料膜
を形成することができるように、現場塗装用塗料中の流
動調整剤量を調節するものである。現場塗装用塗料中の
流動調整剤量の調節は、工程(3)で求めた流動調整剤
の配合割合Xに基いて、自動的に行うようにしてもよ
い。本発明方法においては、上記(1)〜(4)の工程
を行うことによって、現場にて塗料を噴霧塗装するにあ
たって、現場塗装用塗料中における流動調整剤量を、塗
膜外観が適性な範囲となる量に調整でき、タレ、ハジ
キ、平滑性低下などを起こさず、良好な塗面外観を得る
ことができる。
Step (4) The step (4) is a step in which the mixing ratio of the flow control agent in the coating composition for on-site coating filled in the coating container is set to the mixing ratio of the flow control agent obtained in the step (3). Therefore, the amount of the flow control agent in the paint for on-site coating is adjusted so that a good paint film can be formed. The amount of the flow control agent in the paint for on-site coating may be automatically adjusted based on the mixing ratio X of the flow control agent obtained in the step (3). In the method of the present invention, by performing the above-mentioned steps (1) to (4), the amount of the flow control agent in the coating composition for on-site coating is adjusted so that the appearance of the coating film is appropriate when spray coating the coating composition on site. The amount can be adjusted so that sagging, cissing and deterioration of smoothness do not occur, and a good coated surface appearance can be obtained.

【0010】[0010]

【実施例】次に、本発明の塗料調整装置について後記図
1を参照して説明する。図1は、本発明塗料調整装置の
基本構成の一例を示すモデル図である。図1を参照し
て、本発明塗料調整装置の一例、本発明塗料調整方法の
一例について説明する。本発明の塗料調整装置は、塗料
容器、塗料容器に接続された流動調整剤用容器、塗料容
器からの塗料を塗装する噴霧塗装装置、水晶振動子、水
晶振動子のインピーダンスを測定するインピーダンスア
ナライザ、及びインピーダンスアナライザで測定した共
振点でのインピーダンスの抵抗成分を共振抵抗として取
込み、塗装された水晶振動子の共振抵抗を適性範囲内と
するための、塗料中の流動調整剤の配合割合を計算する
演算制御システムを具備する。
EXAMPLES Next, the coating material adjusting device of the present invention will be described with reference to FIG. FIG. 1 is a model diagram showing an example of the basic configuration of the paint adjusting device of the present invention. An example of the paint adjusting device of the present invention and an example of the paint adjusting method of the present invention will be described with reference to FIG. The paint adjusting device of the present invention is a paint container, a flow control agent container connected to the paint container, a spray coating device for applying paint from the paint container, a crystal oscillator, an impedance analyzer for measuring the impedance of the crystal oscillator, In addition, the resistance component of the impedance at the resonance point measured by the impedance analyzer is taken in as the resonance resistance, and the mixing ratio of the flow control agent in the paint is calculated so that the resonance resistance of the coated crystal unit falls within the appropriate range. It is equipped with an arithmetic and control system.

【0011】図1において、塗料容器中の塗料は、噴霧
塗装装置に送られ、噴霧塗装装置から塗料が噴霧され、
水晶振動子の片面が塗装される。センサーである水晶振
動子には9MHzの共振周波数を持つATカットされた
水晶片が用いられている。塗装された水晶振動子は、イ
ンピーダンスアナライザで水晶振動子の共振点でのイン
ピーダンスをリアルタイムに測定でき、共振抵抗を求め
ることができる。この共振抵抗は、塗着塗料の粘弾性特
性に対応するものである。現場塗装に際しては、リアル
タイムに共振抵抗を測定することによって、そのときの
環境、塗装条件による塗着塗料の粘弾性特性を検出する
ことができる。水晶振動子の片面に塗料が塗装される
が、この際、水晶振動子の裏面に塗料が回りこむと測定
誤差の原因になるため、水晶振動子はケースの中にリー
ド線を使って中空に固定されており、水晶振動子の片面
であるセンサー面の部分に窓を開けた状態で塗装が行わ
れる。例えば、マスクを使用して塗装すればよい。塗装
された水晶振動子の共振点での共振抵抗が、インピーダ
ンスアナライザで測定される。塗装から計測までの時間
は、ラインの塗装条件によって異なるが、噴霧塗装によ
って塗料膜形成後30秒から1分30秒位の間、おおむ
ね1分間程度が好適であり、ここでは、塗料噴霧終了の
トリガーが発生してから1分後のインピーダンスを測定
し、共振点でのインピーダンスの抵抗成分を共振抵抗と
して演算制御システムに取り込むように設定されてい
る。上記のようにして、本発明方法の、工程(1)にお
ける現場塗装する塗料についての、使用する流動調整剤
の配合割合と共振抵抗との対応関係を予め求めること、
また、工程(2)の塗装現場において、現場塗装用塗料
の塗装された水晶振動子の共振抵抗を求めることができ
る。流動調整剤の配合割合と共振抵抗との対応関係は、
通常、2次から3次の多項式として表現することができ
る。また、工程(1)において、流動調整剤の配合割合
と共振抵抗との対応関係を求めるために水晶振動子の共
振抵抗を測定する時期(塗料膜形成終了からの時間)と
工程(2)において水晶振動子の共振抵抗を測定する時
期(塗料膜形成終了からの時間)とを一致させておくこ
とが好ましい。すなわち、工程(1)において、塗料膜
形成終了から1分後の塗装水晶振動子の共振抵抗を測定
して対応関係を求めるるのであれば、工程(2)におい
て、塗料膜形成終了から1分後の塗装水晶振動子の共振
抵抗を測定することが好適である。
In FIG. 1, the paint in the paint container is sent to a spray coating device, and the paint is sprayed from the spray coating device.
One side of the crystal unit is painted. An AT-cut crystal piece having a resonance frequency of 9 MHz is used for the crystal resonator that is the sensor. The coated crystal unit can measure the impedance at the resonance point of the crystal unit in real time with an impedance analyzer, and can obtain the resonance resistance. This resonance resistance corresponds to the viscoelastic property of the coating composition. During on-site coating, by measuring the resonance resistance in real time, it is possible to detect the viscoelastic characteristics of the coating composition depending on the environment and coating conditions at that time. Paint is applied to one side of the crystal unit.At this time, if the paint wraps around the back side of the crystal unit, it may cause a measurement error. It is fixed, and painting is performed with a window open on the sensor surface, which is one side of the crystal unit. For example, a mask may be used for painting. The resonance resistance at the resonance point of the coated crystal unit is measured by an impedance analyzer. The time from coating to measurement varies depending on the coating conditions of the line, but it is preferable to be about 1 minute from 30 seconds to 1 minute 30 seconds after the coating film is formed by spray coating. The impedance is measured one minute after the trigger is generated, and the resistance component of the impedance at the resonance point is set as the resonance resistance and set in the arithmetic and control system. As described above, in the method of the present invention, the correspondence relationship between the blending ratio of the flow control agent to be used and the resonance resistance of the coating material to be coated in the step (1) is obtained in advance.
Further, at the painting site of step (2), the resonance resistance of the crystal unit coated with the on-site painting paint can be obtained. The correspondence relationship between the mixing ratio of the flow regulator and the resonance resistance is
Usually, it can be expressed as a polynomial of second to third order. Further, in step (1), in order to obtain the correspondence relationship between the blending ratio of the flow control agent and the resonance resistance, the timing (time from the end of the coating film formation) for measuring the resonance resistance of the crystal unit and It is preferable to match the timing of measuring the resonance resistance of the crystal unit (the time from the end of the coating film formation). That is, in step (1), if the corresponding relationship is obtained by measuring the resonance resistance of the coated crystal unit 1 minute after the end of the paint film formation, in step (2), 1 minute after the end of the paint film formation. It is preferable to measure the resonance resistance of the later coated crystal oscillator.

【0012】演算制御システムでは、各種の現場塗装す
る塗料について、流動調整剤の配合割合と共振抵抗との
対応関係が予め入力されており、現場塗装に際して、現
場塗装用塗料を塗装した水晶発振子の共振抵抗、現場塗
装用塗料に配合されている流動調整剤の配合割合を入力
して計算することによって、良好な塗装作業適性を示す
塗着塗料の粘弾性特性に対応する適正な共振抵抗とする
ための前記流動調整剤の配合割合X、流動調整剤の添加
割合(b−a)を求めることができる。この流動調整剤
の添加割合(b−a)に基き、塗料タンクに必要な量の
流動調整剤を自動制御により投入し攪拌して塗料タンク
内の塗料が均一になった状態で、現場での本番の塗装を
行う。現場塗装用塗料を塗装した水晶振動子の共振抵抗
測定を、本塗装する直前の試験塗装の段階に行うことに
よって、本塗装の塗装環境、塗装条件にあった塗料を得
ることができる。
In the arithmetic and control system, the correspondence relationship between the blending ratio of the flow control agent and the resonance resistance is preliminarily entered for various kinds of paint to be painted on-site. At the time of on-site painting, a crystal oscillator coated with the paint for on-site painting By inputting and calculating the resonance resistance of, and the mixing ratio of the flow control agent mixed in the paint for on-site coating, an appropriate resonance resistance corresponding to the viscoelastic properties of the coating paint showing good coating workability can be obtained. The mixing ratio X of the flow control agent and the addition ratio (ba) of the flow control agent can be determined. Based on the addition ratio (ba) of this flow control agent, the required amount of flow control agent is automatically controlled and added to the paint tank, and the mixture is stirred to make the paint in the paint tank uniform. Do the actual painting. By measuring the resonance resistance of the crystal unit coated with the paint for on-site coating at the test coating stage immediately before the main coating, it is possible to obtain a coating that matches the coating environment and coating conditions of the main coating.

【0013】上記流動調整剤量の調整は塗装開始時に行
うことが望ましく、塗料タンク内の塗料量は少なくとも
その日のうちに使用してしまう量にして、翌日にそのま
ま使用することの無いような量の塗料を入れておくこと
が好適である。流動調整剤量の調整は塗装開始時以外
に、塗装環境、塗装条件の変化に応じて塗装途中にも適
宜行うことができる。場合によっては、塗料タンク中の
塗料の流動調整剤量を減らすため、流動調整剤量の少な
い、又は含有しない塗料を添加することもできる。 塗着塗料の粘弾性調整 噴霧塗装において、塗液を微粒化して塗装し被塗装物表
面に塗着した塗料の粘弾性特性は、塗装環境、塗装条
件、微粒化の程度、溶剤の蒸発程度などにより変動する
ため、微粒化を行う前の塗液の粘弾性特性を測定して
も、被塗装物に塗着した塗料の粘弾性特性を推定するこ
とはできない。
It is desirable to adjust the amount of the flow control agent at the start of coating, and the amount of the paint in the paint tank should be at least the amount used within the day and should not be used as it is on the next day. It is preferable to add the above paint. The amount of the flow control agent can be adjusted not only at the start of coating but also during the coating according to changes in the coating environment and coating conditions. In some cases, in order to reduce the amount of the flow regulator in the paint tank, it is possible to add a paint having a small amount or no flow regulator. Viscoelasticity adjustment of coating paint In spray coating, the viscoelasticity of the coating liquid that has been atomized and applied to the surface of the object to be coated is the coating environment, coating conditions, degree of atomization, degree of solvent evaporation, etc. Therefore, even if the viscoelastic property of the coating liquid before atomization is measured, the viscoelastic property of the paint applied to the object to be coated cannot be estimated.

【0014】実際に塗装作業性に影響する粘弾性特性
は、塗着した塗膜の構造粘性を破壊することなく測定す
る必要がある。また、同一の配合の塗料であっても、現
場での雰囲気、塗装器具の特性などにより、塗着時に発
現する粘弾性挙動は微妙に異なってくる。本発明方法に
おいて、水晶振動子表面に塗着した塗料の粘弾性特性に
対応する共振抵抗は、一般的に、塗着1分後に7〜13
kΩ、好ましくは8〜12kΩ、特に好ましくは9〜1
1kΩの範囲内にあることが好適であることが経験的に
確認されており、塗着1分後に10kΩの共振抵抗にな
るように調整された塗料は、良好な作業性と適正な仕上
がり性を得ることができる。現場塗装する塗料について
の、流動性調整剤の配合割合と共振抵抗との対応関係
は、例えば、以下の実験によって決定することができ
る。実際に現場で使用される静電塗装装置あるいは類似
の機器を用い、環境雰囲気は温度25℃±3℃に、湿度
は60〜70%に調整しておく。必要最小限の流動調整
剤が添加されている現場塗装用塗料を用いて、水晶振動
子の片面を塗装し、塗装完了1分後の共振抵抗値を測定
する。その後、塗料中の樹脂分100重量部に対して、
0.5重量部刻みで添加量を変動させて流動調整剤を添
加し、同様の測定を行ってゆく。最終的には流動調整剤
が総量で、樹脂分100重量部に対して、10〜20重
量部の配合割合となるまで順次同様の測定を行い、塗装
完了1分後の水晶振動子の共振抵抗を測定し記録する。
流動調整剤の配合割合に対する共振抵抗の値の一例は下
記表のとおりであった。
It is necessary to measure the viscoelastic properties which actually affect the coating workability without destroying the structural viscosity of the applied coating film. In addition, even with paints of the same composition, the viscoelastic behavior that develops during application will differ subtly depending on the atmosphere at the site, the characteristics of the coating equipment, and the like. In the method of the present invention, the resonance resistance corresponding to the viscoelastic property of the coating material applied to the surface of the crystal oscillator is generally 7 to 13 after 1 minute from the application.
kΩ, preferably 8 to 12 kΩ, particularly preferably 9 to 1
It has been empirically confirmed that it is preferably within the range of 1 kΩ, and a paint adjusted to have a resonance resistance of 10 kΩ one minute after application has good workability and proper finishability. Obtainable. The correspondence relationship between the blending ratio of the fluidity adjusting agent and the resonance resistance of the paint to be painted on site can be determined by the following experiment, for example. Using an electrostatic coating device or a similar device that is actually used in the field, the environmental atmosphere is adjusted to a temperature of 25 ° C. ± 3 ° C. and the humidity is adjusted to 60 to 70%. A single side of the crystal unit is coated with a paint for in-situ coating to which the minimum necessary flow control agent is added, and the resonance resistance value 1 minute after the completion of coating is measured. After that, for 100 parts by weight of resin in the paint,
The flow control agent is added by changing the addition amount in increments of 0.5 part by weight, and the same measurement is performed. Finally, the total amount of the flow control agent is measured in the same manner until the blending ratio becomes 10 to 20 parts by weight with respect to 100 parts by weight of the resin content, and the resonance resistance of the crystal unit 1 minute after the completion of coating Measure and record.
The following table shows an example of the value of the resonance resistance with respect to the blending ratio of the flow control agent.

【0015】[0015]

【表1】 [Table 1]

【0016】この実験から得られた、流動調整剤の配合
割合Yと共振抵抗Zとの対応関係を示す検量線は概ね以
下の1次式で表される。 Y=0.0009Z−1.0399 流動調整剤の配合割合と共振抵抗の変化とは加成性が成
り立ち、上記式より演算した塗着時の共振抵抗を10k
Ωに調整するための流動調整剤の割合、現場塗装用塗料
を試験塗装して測定された共振抵抗、及び現場塗装用塗
料中に既に含有されている流動調整剤の割合から、塗装
現場の環境で必要な流動調整剤の配合量を求め、この配
合量の流動調整剤を塗液タンク中に定量ポンプにより自
動的に添加し、十分に攪拌安定化した後再度試験塗装を
行い、概ね10kΩに共振抵抗が到達していることを確
認した後、本塗装を行う。
The calibration curve obtained from this experiment and showing the correspondence relationship between the blending ratio Y of the flow control agent and the resonance resistance Z is generally expressed by the following linear equation. Y = 0.0009Z-1.0399 Additivity is established between the mixing ratio of the flow control agent and the change in resonance resistance, and the resonance resistance at the time of application calculated from the above equation is 10 k.
From the ratio of the flow control agent for adjusting to Ω, the resonance resistance measured by the test coating of the in-situ coating paint, and the ratio of the flow control agent already contained in the in-situ coating paint, the environment of the coating site The required amount of the flow regulator is calculated in step 1, and the flow regulator of this blend amount is automatically added to the coating liquid tank by a metering pump, and after sufficient stirring and stabilization, the test coating is performed again to approximately 10 kΩ. After confirming that the resonance resistance has been reached, apply the main coating.

【0017】[0017]

【発明の効果】本発明方法によって、実際の現場塗装環
境で高感度のセンサーである水晶振動子に塗装し、その
共振抵抗から塗装環境雰囲気における塗着塗料の粘弾性
特性を短時間に計測でき、そのデータをもとにして、塗
料中の添加剤量を現場塗装雰囲気に対して適性範囲内の
量に調整することができ、塗装雰囲気が変化しても、リ
アルタイムに良好な塗装作業特性を得ることができる
According to the method of the present invention, it is possible to measure the viscoelastic property of the coating composition in the coating environment atmosphere in a short time by coating the crystal unit which is a highly sensitive sensor in the actual field coating environment and the resonance resistance. Based on that data, the amount of additives in the paint can be adjusted to a value within the appropriate range for the on-site painting atmosphere, and even if the painting atmosphere changes, good painting work characteristics can be obtained in real time. Obtainable

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明塗料調整装置の基本構成の一例を示すモ
デル図である。
FIG. 1 is a model diagram showing an example of a basic configuration of a paint adjusting device of the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 下記工程(1)〜(4) (1)現場塗装する塗料について、流動調整剤の配合割
合を変化させて、水晶振動子の片面に噴霧塗装し、該塗
装された水晶振動子の共振抵抗を測定し、使用する流動
調整剤の配合割合と共振抵抗との対応関係を予め求める
工程、 (2)塗装現場において、水晶振動子の片面に現場塗装
用塗料を噴霧塗装し、該塗装された水晶振動子の共振抵
抗を測定する工程、 (3)工程(2)で測定された水晶振動子の共振抵抗を
適性範囲内とするための流動調整剤の配合割合を、工程
(1)で得た流動調整剤の配合割合と共振抵抗との対応
関係、現場塗装用塗料中の流動調整剤量、及び工程
(2)で測定された水晶振動子の共振抵抗に基いて求め
る工程、及び (4)塗料容器中に充填された現場塗装用塗料における
流動調整剤の配合割合を、工程(3)で求めた流動調整
剤の配合割合とする工程、を有することを特徴とする噴
霧塗装における塗料調整方法。
1. The following steps (1) to (4) (1) With respect to the coating material to be painted on-site, spraying is applied to one side of the crystal unit by changing the mixing ratio of the flow control agent, and the coated crystal vibration is applied. The step of measuring the resonance resistance of the child and obtaining the correspondence relationship between the mixing ratio of the flow control agent to be used and the resonance resistance in advance. (2) At the painting site, spray paint the on-site painting on one side of the crystal oscillator, The step of measuring the resonance resistance of the coated crystal unit, (3) the step of adjusting the mixing ratio of the flow control agent to bring the resonance resistance of the crystal unit measured in the step (2) into an appropriate range. Step based on the correspondence relationship between the blending ratio of the flow control agent obtained in 1) and the resonance resistance, the amount of flow control agent in the paint for on-site coating, and the resonance resistance of the crystal resonator measured in step (2) And (4) In the paint for on-site painting filled in the paint container And a step of setting the blending ratio of the fluidity adjusting agent according to step (3) to the blending ratio of the fluidity controlling agent determined in step (3).
【請求項2】 工程(2)において、水晶振動子のイン
ピ−ダンスをインピ−ダンスアナライザで測定し、共振
点でのインピーダンスの抵抗成分を共振抵抗とする、請
求項1に記載された塗料調整方法。
2. The paint preparation according to claim 1, wherein in step (2), the impedance of the crystal unit is measured by an impedance analyzer, and the resistance component of the impedance at the resonance point is the resonance resistance. Method.
【請求項3】 工程(2)において、水晶振動子の片面
表面に現場塗装用塗料を塗装して膜厚1μm〜100μm
の塗膜を形成し塗装後約1分後に水晶振動子の共振抵抗
を測定する、請求項1ないし2に記載された塗料調整方
法。
3. A film thickness of 1 μm to 100 μm obtained by applying a coating material for in-situ coating on one surface of the crystal unit in the step (2).
3. The coating material adjusting method according to claim 1, wherein the coating film is formed, and the resonance resistance of the crystal unit is measured about 1 minute after coating.
【請求項4】 工程(3)において、共振抵抗の適性範
囲を、塗料を水晶振動子へ塗装約1分後の共振抵抗で7
〜13kΩの範囲内としてなる、請求項1ないし3のい
ずれか1項に記載された塗料調整方法。
4. In the step (3), the suitable range of the resonance resistance is 7 after the coating of the coating on the crystal unit with the resonance resistance.
The coating preparation method according to any one of claims 1 to 3, wherein the coating preparation method is in the range of 13 kΩ to 13 kΩ.
【請求項5】 工程(4)において、自動制御により該
流動調整剤が所定割合となるように現場塗装用塗料中の
流動性調整剤の量を調整する、請求項1ないし4のいず
れか1項に記載の塗料調整方法。
5. The method according to claim 1, wherein in step (4), the amount of the fluidity adjusting agent in the coating composition for on-site coating is adjusted by automatic control so that the flow adjusting agent has a predetermined ratio. The paint preparation method according to item.
【請求項6】 水晶振動子の片面に対する塗料の塗装
が、ケース内の中空に固定した水晶振動子の片面である
センサー面の部分に窓を開けた状態で塗装を行う、請求
項1ないし5のいずれか1項に記載された塗料調整方
法。
6. The coating of the paint on one surface of the crystal unit is performed with a window opened in a portion of the sensor surface which is one side of the crystal unit fixed in the hollow of the case. The paint preparation method described in any one of 1.
【請求項7】 工程(1)と工程(2)の水晶振動子の
片面の塗膜形成終了から共振抵抗を測定する時期までの
時間を同一とする、請求項1ないし6のいずれか1項に
記載された塗料調整方法。
7. The step (1) and the step (2), wherein the time from the completion of coating film formation on one surface of the crystal unit to the time of measuring the resonance resistance is the same. The paint preparation method described in.
【請求項8】 塗料容器、塗料容器に接続された流動性
調整剤容器、塗料容器からの塗料を塗装する噴霧塗装装
置、水晶振動子のインピーダンスを測定するインピーダ
ンスアナライザ、及びインピーダンスアナライザで測定
した共振点でのインピーダンスの抵抗成分を共振抵抗と
して取込み、塗装された水晶振動子の共振抵抗を適性範
囲内とするための、塗料中の流動調整剤の配合割合を計
算する演算制御システムを具備する装置であって、該噴
霧塗装装置によって塗装され水晶振動子の共振抵抗に基
き、塗装された水晶振動子の共振抵抗を適性範囲内とす
るための塗料中の流動調整剤の配合割合を求め、この配
合割合に基き添加剤タンクから塗料容器に流動調整剤を
配合することを特徴とする塗料調整装置。
8. A paint container, a fluidity adjusting agent container connected to the paint container, a spray coating device for painting paint from the paint container, an impedance analyzer for measuring the impedance of a crystal oscillator, and a resonance measured by the impedance analyzer. A device equipped with an arithmetic and control system that takes in the resistance component of the impedance at the point as resonance resistance and calculates the mixing ratio of the flow regulator in the paint so that the resonance resistance of the coated crystal unit falls within the appropriate range. Which is based on the resonance resistance of the crystal resonator coated by the spray coating device, and obtains the blending ratio of the flow control agent in the paint for keeping the resonance resistance of the coated crystal resonator within the appropriate range. A paint adjusting device characterized by adding a flow adjusting agent from an additive tank to a paint container based on a mixing ratio.
JP2001374098A 2001-12-07 2001-12-07 Paint adjustment method and equipment in spray painting Expired - Fee Related JP3975081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001374098A JP3975081B2 (en) 2001-12-07 2001-12-07 Paint adjustment method and equipment in spray painting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001374098A JP3975081B2 (en) 2001-12-07 2001-12-07 Paint adjustment method and equipment in spray painting

Publications (2)

Publication Number Publication Date
JP2003170108A true JP2003170108A (en) 2003-06-17
JP3975081B2 JP3975081B2 (en) 2007-09-12

Family

ID=19182709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001374098A Expired - Fee Related JP3975081B2 (en) 2001-12-07 2001-12-07 Paint adjustment method and equipment in spray painting

Country Status (1)

Country Link
JP (1) JP3975081B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005185909A (en) * 2003-12-25 2005-07-14 Snt Co Coating method and coating apparatus
CN107876230A (en) * 2017-11-29 2018-04-06 九牧厨卫股份有限公司 One kind swings water water core and discharging device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005185909A (en) * 2003-12-25 2005-07-14 Snt Co Coating method and coating apparatus
JP4545431B2 (en) * 2003-12-25 2010-09-15 株式会社Snt Coating method and apparatus
CN107876230A (en) * 2017-11-29 2018-04-06 九牧厨卫股份有限公司 One kind swings water water core and discharging device

Also Published As

Publication number Publication date
JP3975081B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
US5993913A (en) Method and apparatus for spraying waterborne coatings under varying conditions
US5330783A (en) Method and apparatus for forming and dispensing single and multiple phase coating material containing fluid diluent
KR940011563B1 (en) Method and apparatus for metering and mixing non-compressible and compressible fluids
EP1839764A4 (en) Method for coating film formation, apparatus for coating film formation, and method for toning coating material preparation
US5407132A (en) Method and apparatus for spraying viscous adhesives
JPH04507370A (en) Method and apparatus for forming a permanent foam coating by spraying onto a substrate
JP2003170108A (en) Method and apparatus for preparing coating material in spray coating
JPS63501579A (en) Bitumen foaming method
CN107105728B (en) Method, spray-drying installation and its nozzle of the spray droplet size of spray nozzle device of the control for being spray-dried application
JPS5936732B2 (en) Manufacturing method of photographic material
JPS6038425B2 (en) Spraying method of water-based slurry of powder paint
JP2558178B2 (en) Paint supply equipment
CN103657963B (en) The fluorocarbon-sprayed automatic paint method and system of a kind of aluminium section bar
EP0789618B1 (en) Method and apparatus for proportioning and mixing non-compressible and compressible fluids
JPH10235235A (en) Coater
KR20220109237A (en) Method of calculating the painting construction standard and automatic control painting device
DE19753660A1 (en) Process for applying powdery release agents in injection molding machines
JP4415208B2 (en) Method for improving repellency of coating film
JP3059263U (en) Gel coat quantitative constant temperature robot spray equipment
JP3478443B2 (en) Control device for automatic coating machine
JP2005185909A (en) Coating method and coating apparatus
CN108160367A (en) A kind of fluorocarbon-sprayed automatic paint method and system of aluminium section bar
JP2007000690A (en) Paint spraying-pressure control method, and paint spraying-pressure control device
JP3216892B2 (en) Flow control device
JPS5884078A (en) Method and device for painting of powder paint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060703

RD02 Notification of acceptance of power of attorney

Effective date: 20060703

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070202

A131 Notification of reasons for refusal

Effective date: 20070220

Free format text: JAPANESE INTERMEDIATE CODE: A131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070605

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100622

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100622

LAPS Cancellation because of no payment of annual fees