JP2003169491A - Motor driver - Google Patents

Motor driver

Info

Publication number
JP2003169491A
JP2003169491A JP2001369446A JP2001369446A JP2003169491A JP 2003169491 A JP2003169491 A JP 2003169491A JP 2001369446 A JP2001369446 A JP 2001369446A JP 2001369446 A JP2001369446 A JP 2001369446A JP 2003169491 A JP2003169491 A JP 2003169491A
Authority
JP
Japan
Prior art keywords
signal
motor drive
drive current
pwm
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001369446A
Other languages
Japanese (ja)
Inventor
Kan Yamamoto
完 山本
Susumu Yamamoto
進 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001369446A priority Critical patent/JP2003169491A/en
Publication of JP2003169491A publication Critical patent/JP2003169491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotatably driving motor driver which has low noise and vibration. <P>SOLUTION: A motor drive current control signal generating means 6 controls the total sum of a motor drive current in response to a torque command signal 20, and outputs a PWM control signal for switching an energizing period by a PWM-Duty control means 4'. A phase switching means 3 outputs a PWM control signal in response to a position signal 21, and supplies a current for PWM driving the motor 2 by an output control means 2. An energizing period switching means 25 controls the energizing period of the motor drive current in response to the input of the torque command signal 20. When the motor drive current is large at the time of starting or the like, voltages Vds of output transistors 13 to 18 in switching the energization are low and the slope of the motor drive current cannot be controlled, and a signal having a short energizing period is outputted to eliminate a two-phase on-state to prevent the motor drive current from occurring. When the torque command signal 20 is low, the difference in the voltages Vds of a Sink side and a Source side of the output transistors 13 to 18 is large, the slope of the motor drive current can be controlled, and the signal for prolonging the energizing period is output. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種ディスク及び
テープメディアの駆動モータに使用するモータ駆動装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motor drive device used for a drive motor of various discs and tape media.

【0002】[0002]

【従来の技術】図3は従来の三相全波モータを駆動する
モータ駆動装置の概略構成を示す図である。図3におい
て、1はモータ、2は出力制御手段、3は相切換手段、
4はPWM−Duty制御手段、6はモータ駆動電流制御
信号発生手段、7は通電位置信号発生手段、8は電流検
出抵抗、9は回転子、10〜12のモータ巻線、13〜
18は出力トランジスタ、13d〜18dは出力トラン
ジスタ13〜18であるMOSトランジスタに構造的に
つくボディダイオード、19は電源、20はトルク指令
信号、21は位置信号である。
2. Description of the Related Art FIG. 3 is a diagram showing a schematic configuration of a motor drive device for driving a conventional three-phase full-wave motor. In FIG. 3, 1 is a motor, 2 is output control means, 3 is phase switching means,
4 is PWM-Duty control means, 6 is motor drive current control signal generation means, 7 is energization position signal generation means, 8 is current detection resistor, 9 is rotor, 10-12 motor windings, 13-
Reference numeral 18 is an output transistor, 13d to 18d are body diodes structurally attached to the MOS transistors which are the output transistors 13 to 18, 19 is a power supply, 20 is a torque command signal, and 21 is a position signal.

【0003】モータ1は回転子9とモータ巻線10〜1
2とから構成される。出力制御手段2は出力トランジス
タ13〜18とボディダイオード13d〜18dから構
成される。モータ1の各端子をU,V,W,Nとする。
U,V,Wは出力トランジスタ13〜18との接続端子
であり、Nはモータ1の中点の接続端子である。
The motor 1 comprises a rotor 9 and motor windings 10-1.
2 and. The output control means 2 comprises output transistors 13-18 and body diodes 13d-18d. The terminals of the motor 1 are U, V, W and N.
U, V, and W are connection terminals with the output transistors 13 to 18, and N is a connection terminal at the midpoint of the motor 1.

【0004】以上のように構成されたモータ駆動装置に
ついて、以下にその動作説明をする。位置信号21は通
常ホール素子等のセンサーを用い、モータ1の回転軸に
対して互いに120度の位置に配置され、モータ1の回
転磁界を検出し位置信号として出力する。また、モータ
巻線に発生する誘起電圧を位置信号として利用する場合
もある。通電位置信号発生手段7は位置信号の位相に応
じた信号を出力する。トルク指令信号20は通常マイク
ロコンピュータ(以下、マイコンという)等から出力さ
れ、モータ1の回転数を所定の回転に制御するための電
流を制御するための信号である。
The operation of the motor drive device constructed as described above will be described below. The position signal 21 normally uses a sensor such as a Hall element and is arranged at a position of 120 degrees with respect to the rotation axis of the motor 1, and detects the rotating magnetic field of the motor 1 and outputs it as a position signal. In some cases, the induced voltage generated in the motor winding is used as the position signal. The energized position signal generating means 7 outputs a signal according to the phase of the position signal. The torque command signal 20 is a signal that is normally output from a microcomputer (hereinafter, referred to as a microcomputer) or the like and that controls a current for controlling the rotation speed of the motor 1 to a predetermined rotation.

【0005】モータ駆動電流制御信号発生手段6はトル
ク指令信号20と電流検出抵抗8の電圧を入力とし、モ
ータ駆動電流の総和をトルク指令信号20に応じて制御
する信号を出力する。PWM−Duty制御手段4はモー
タ駆動電流制御信号発生手段6の出力信号に応じてPW
M制御信号を出力する。相切換手段3はPWM−Duty
制御手段4の出力信号と通電位置信号発生手段7の出力
信号とを入力とし位置信号に応じて120度の通電位置
に応じたPWM制御信号を出力する。
The motor drive current control signal generating means 6 receives the torque command signal 20 and the voltage of the current detection resistor 8 as inputs, and outputs a signal for controlling the total motor drive current according to the torque command signal 20. The PWM-Duty control means 4 outputs PW according to the output signal of the motor drive current control signal generation means 6.
Output M control signal. The phase switching means 3 is PWM-Duty
The output signal of the control unit 4 and the output signal of the energization position signal generation unit 7 are input, and a PWM control signal corresponding to the energization position of 120 degrees is output according to the position signal.

【0006】出力制御手段2は相切換手段3の出力信号
を入力とし、モータ1をPWM駆動する電流を供給す
る。出力トランジスタ13〜18はPWM−Duty制御
手段4の出力に応じて順次、通電位相を切り換える。ボ
ディダイオード13d〜18dは、PWM駆動により出
力トランジスタ13〜18が非導通状態になった時に電
流が流れる。この構成によりモータ1をPWM駆動す
る。
The output control means 2 receives the output signal of the phase switching means 3 as an input and supplies a current for PWM driving the motor 1. The output transistors 13 to 18 sequentially switch the energization phase according to the output of the PWM-Duty control means 4. A current flows through the body diodes 13d to 18d when the output transistors 13 to 18 are turned off by PWM driving. With this configuration, the motor 1 is PWM-driven.

【0007】以上のような構成において、図3および図
4(a),図4(b)に示すタイミングチャートを参照
しながら説明する。まず、図4(a)に示すタイミング
チャートに従って各部動作を説明する。位置信号21は
回転子の位相に応じて120度ずつ位相がずれた信号が
入力される。位置信号21の入力位相に応じてPWM−
Duty制御手段4のPWM区間の出力パルスに応じて出
力制御手段2が制御される。
The above structure will be described with reference to the timing charts shown in FIGS. 3 and 4A and 4B. First, the operation of each part will be described with reference to the timing chart shown in FIG. As the position signal 21, a signal whose phase is shifted by 120 degrees according to the phase of the rotor is input. Depending on the input phase of the position signal 21, PWM-
The output control means 2 is controlled according to the output pulse of the duty control means 4 in the PWM section.

【0008】出力トランジスタ13〜18は、図4
(a)に示すように位置信号21の位相に応動してPW
M駆動する。モータ1への通電波形は120度通電であ
り、PWM−Duty制御手段4は120度通電に相当す
る制御信号を出力する。このとき、モータ巻線10〜1
2(図3参照)に発生する誘起電圧をVbemf(U),
(V),(W)とする。
The output transistors 13-18 are shown in FIG.
As shown in (a), PW is performed in response to the phase of the position signal 21.
M drive. The energization waveform to the motor 1 is 120 degrees energization, and the PWM-Duty control means 4 outputs a control signal corresponding to 120 degrees energization. At this time, the motor windings 10 to 1
2 (see FIG. 3), the induced voltage Vemf (U),
(V) and (W).

【0009】次に、図4(b)について説明する。図4
(a)と同様に位置信号21は、回転子9の位相に応じ
て120度ずつ位相がずれた信号が入力される。位置信
号21の入力位相に応じてPWM−Duty制御手段4の
PWM区間の出力パルスに応じて出力制御手段2が制御
される。出力トランジスタ13〜18は図4(b)に示
すように、位置信号21の位相に応動してPWM駆動す
る。図4(b)には150度通電の場合を示している。
このとき、PWM−Duty制御手段4は150度通電に
相当する制御信号を出力する。これは、PWM区間のP
WM−Dutyを制御することでモータ駆動電流のスロー
プを調整している。
Next, FIG. 4B will be described. Figure 4
As in the case of (a), the position signal 21 is input as a signal whose phase is shifted by 120 degrees according to the phase of the rotor 9. The output control means 2 is controlled according to the output pulse of the PWM section of the PWM-Duty control means 4 according to the input phase of the position signal 21. As shown in FIG. 4B, the output transistors 13 to 18 are PWM-driven in response to the phase of the position signal 21. FIG. 4B shows the case of energization at 150 degrees.
At this time, the PWM-Duty control means 4 outputs a control signal corresponding to energization of 150 degrees. This is P in the PWM section
The slope of the motor drive current is adjusted by controlling WM-Duty.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前記の
従来の構成では、以下ような各種の課題があった。前記
従来のモータ駆動装置における120度通電と150度
通電とを比較すると、150度通電のようにモータ駆動
電流の通電相の切換時にモータ駆動電流のスロープを付
けた場合の方が、モータトルクの回転子位置によるトル
クの変化を低減し、モータの騒音や振動を低減できるこ
とが知られている。機器の低騒音化や低振動化のため
に、モータ駆動電流にスロープをつける駆動方式が使用
されてきている。
However, the above-mentioned conventional structure has various problems as described below. Comparing 120-degree energization and 150-degree energization in the conventional motor drive device described above, when the motor drive current slope is added at the time of switching the energized phase of the motor drive current as in the case of 150-degree energization, the motor torque becomes smaller. It is known that the change in torque depending on the rotor position can be reduced and the noise and vibration of the motor can be reduced. In order to reduce the noise and vibration of the equipment, a drive method in which a slope is added to the motor drive current has been used.

【0011】しかしながら、150度通電のように通電
期間を長くすると、電流の切換位相で必ず2相ONの状
態が発生することになる。ここで、図5は、PWM区間
のONタイミングにおけるモータの巻線,抵抗に発生す
る電圧の状態を表す等価回路であり、図5に示すように
各端子電圧は各相に流れる電流とモータ巻線に発生する
誘起電圧で決まり、モータの誘起電圧はモータの回転子
の位相に一致しており、図4(a),図4(b)に示す
ように位置信号21の位相と一致する。また、誘起電圧
はモータの回転数と位相で決まることから、回転数に比
例し、かつ位置信号21の位相で決まる。
However, if the energization period is lengthened such as 150-degree energization, the two-phase ON state is always generated in the current switching phase. Here, FIG. 5 is an equivalent circuit showing the state of the voltage generated in the winding and the resistance of the motor at the ON timing of the PWM section. As shown in FIG. 5, each terminal voltage is the current flowing in each phase and the motor winding. It is determined by the induced voltage generated in the line, and the induced voltage of the motor matches the phase of the rotor of the motor, and matches the phase of the position signal 21 as shown in FIGS. 4 (a) and 4 (b). Since the induced voltage is determined by the rotation speed and phase of the motor, it is proportional to the rotation speed and determined by the phase of the position signal 21.

【0012】モータ巻線U相の出力トランジスタ13と
モータ巻線W相の出力トランジスタ18とがONして、
モータ巻線V相の出力トランジスタ14がOFFしてい
る位相、つまりSink側とSource側とが1相ずつONし
ている状態から、モータ巻線V相の出力トランジスタ1
4がONとなる状態を図6(a),図6(b)に示す。
The motor winding U-phase output transistor 13 and the motor winding W-phase output transistor 18 are turned on,
From the phase where the motor winding V-phase output transistor 14 is OFF, that is, the state where the sink side and the Source side are ON one by one, the motor winding V-phase output transistor 1
The state in which 4 is turned on is shown in FIGS. 6 (a) and 6 (b).

【0013】U相の出力トランジスタ13のドレイン・
ソース間の電圧Vds(U)は電源19の電圧をVcc
とした場合、以下の(数1)で示される。
The drain of the U-phase output transistor 13
The voltage Vds (U) between the sources is equal to the voltage of the power supply 19 Vcc.
Then, it is shown by the following (Equation 1).

【0014】[0014]

【数1】Vds(U)=Vcc−Vbemf(U)−Ru
×Iu−Rw×Iw−Vbemf(W)−Ron(18)
×Iw−Rsense×Iout ただし、モータ巻線9,10,11(U,V,W相)の
抵抗値をそれぞれRu,Rv,Rw、電流をIu,I
v,Iwとして、モータに流れる電流の和をIout、出
力トランジスタ13〜18のON抵抗をRon(13)
〜Ron(18)、電流検出抵抗の抵抗値をRsenseと
する。(数1)で示されるようにモータの起動時等でモ
ータ駆動電流が大きい場合、電圧Vds(U)は小さ
い。
## EQU1 ## Vds (U) = Vcc-Vbemf (U) -Ru
× Iu-Rw × Iw-Vbemf (W) -Ron (18)
* Iw-Rsense * Iout However, the resistance values of the motor windings 9, 10, 11 (U, V, W phases) are Ru, Rv, Rw, and the currents are Iu, I
As v and Iw, the sum of the currents flowing through the motor is Iout, and the ON resistances of the output transistors 13 to 18 are Ron (13).
~ Ron (18), the resistance value of the current detection resistor is Rsense. As shown in (Equation 1), the voltage Vds (U) is small when the motor drive current is large at the time of starting the motor.

【0015】一方、V相の出力トランジスタ14の電圧
Vds(V)は以下の(数2)で示される。
On the other hand, the voltage Vds (V) of the V-phase output transistor 14 is represented by the following (Equation 2).

【0016】[0016]

【数2】Vds(V)=Vcc−Vbemf(V)−Ru
×Iv−Rw×Iw−Vbemf(W)−Ron(18)
×Iw−Rsense×Iout (数1)、(数2)における電圧Vds(U)、電圧V
ds(V)の位相による電圧変化の概略図を図7
(a),図7(b)に示す。
## EQU00002 ## Vds (V) = Vcc-Vbemf (V) -Ru
× Iv-Rw × Iw-Vbemf (W) -Ron (18)
× Iw−Rsense × Iout (voltage 1), voltage Vds (U) in (expression 2), voltage V
FIG. 7 shows a schematic diagram of voltage changes depending on the phase of ds (V).
(A), It shows in FIG.7 (b).

【0017】図7(a)に示すように、モータ駆動電流
が大きい場合は電流切換位相でのVds(U),Vds
(V)の電圧差が大きいことが分かる。V相のSource
電流Iv=0が初期値であり、また、Vbemf(V)と
Vbemf(U)とを比較したとき図6(a)に示すIv
のSource側から立ち上がる位相では、
As shown in FIG. 7 (a), when the motor drive current is large, Vds (U), Vds in the current switching phase.
It can be seen that the voltage difference of (V) is large. V-phase Source
The current Iv = 0 is the initial value, and when Vbemf (V) and Vbemf (U) are compared, Iv shown in FIG.
In the phase rising from the Source side of

【0018】[0018]

【数3】Vbemf(U)>Vbemf(V) となる。[Formula 3] Vbemf (U)> Vbemf (V) Becomes

【0019】このような条件でV相とU相の出力トラン
ジスタ13,14の電圧Vdsを比較した場合、モータ
駆動電流が大きい時は、U相の電圧Vds(U)は小さ
く、V相の電圧Vds(V)は大きく
When the voltages Vds of the V-phase and U-phase output transistors 13 and 14 are compared under such conditions, the U-phase voltage Vds (U) is small and the V-phase voltage is large when the motor drive current is large. Vds (V) is large

【0020】[0020]

【数4】Vds(V)>>Vds(U) となる。## EQU00004 ## Vds (V) >> Vds (U) Becomes

【0021】この電圧差が原因で、出力トランジスタ1
3,14の電流の立ち上がりを比較すると出力トランジ
スタ14の電流Ivの立ち上がりは急峻で大きく、出力
トランジスタ13の電流Iuの立ち上がりは小さい。こ
の状態を図8に示す。時定数はモータ巻線のL値で決ま
るため一定であるが、電流到達値が異なるため、大きく
傾きが異なる。そのため、図6(a)に示すようにモー
タ駆動電流の波形がPWM−Duty制御手段4に制御さ
れない状態になる。すなわち、図6(a)に示すような
モータ駆動電流の歪により、トルクが位相により大きく
変化し、モータのジッターやモータの振動が急激に悪化
する原因になる。
Due to this voltage difference, the output transistor 1
Comparing the rising edges of the currents 3 and 14, the rising edge of the current Iv of the output transistor 14 is steep and large, and the rising edge of the current Iu of the output transistor 13 is small. This state is shown in FIG. The time constant is constant because it is determined by the L value of the motor winding, but the current reaching value is different, so the slope is significantly different. Therefore, as shown in FIG. 6A, the waveform of the motor drive current is not controlled by the PWM-Duty control means 4. That is, due to the distortion of the motor drive current as shown in FIG. 6A, the torque largely changes depending on the phase, which causes the jitter of the motor and the vibration of the motor to rapidly deteriorate.

【0022】したがって、モータ駆動電流が大きい、す
なわちトルク指令信号20が大きいときに電流の歪が生
じる。このときのモータのジッターや振動は120度通
電の時よりも大きい。これが、ディスク装置等の騒音や
振動の原因となっていた。騒音は機器の品位の問題上好
ましくなく、また、振動はCD−ROMやHDD等複数
の機器が内蔵されているとき、他の機器へ影響を与える
ことから問題である。
Therefore, when the motor drive current is large, that is, when the torque command signal 20 is large, current distortion occurs. Jitter and vibration of the motor at this time are larger than those at 120-degree energization. This has been a cause of noise and vibration of the disk device and the like. Noise is unfavorable in terms of the quality of the equipment, and vibration is a problem because it affects other equipment when a plurality of equipment such as a CD-ROM or HDD is built in.

【0023】次に、図7(b)はモータ駆動電流が少な
い場合のVds(U),Vds(V)の電圧関係を示す
図である。このときVds(V)とVds(U)との電
位差は比較的小さく、モータ駆動電流はPWM−Duty
制御手段4に制御されるので、図6(b)に示すよう
に、急峻な変化の少ない電流波形となる。
Next, FIG. 7B is a diagram showing a voltage relationship between Vds (U) and Vds (V) when the motor drive current is small. At this time, the potential difference between Vds (V) and Vds (U) is relatively small, and the motor drive current is PWM-Duty.
Since it is controlled by the control means 4, as shown in FIG. 6 (b), the current waveform has few sharp changes.

【0024】このように、モータ駆動電流にスロープを
付ける方式において、モータ駆動電流の少ない時(低負
荷時、定常回転時等)は良好な電流波形が得られるが、
モータ駆動電流が大きい時(重負荷時、起動時等)は電
流波形に急激な変化が発生する。
As described above, in the system in which the motor drive current is sloped, a good current waveform can be obtained when the motor drive current is small (low load, steady rotation, etc.).
When the motor drive current is large (heavy load, startup, etc.), the current waveform changes abruptly.

【0025】また、120度通電の場合、トルク指令信
号20が大きいときは(特に起動時や重負荷時などは)
モータ駆動電流にスロープがある場合よりもモータの騒
音や振動が低減できるが、一方、トルク指令信号20が
小さくなるとき(特に定常回転時)にはモータの騒音や
振動を低減しがたい。
When the torque command signal 20 is large in the case of 120 degree energization (especially at the time of starting or heavy load)
Although the noise and vibration of the motor can be reduced more than when the motor drive current has a slope, it is difficult to reduce the noise and vibration of the motor when the torque command signal 20 becomes small (especially during steady rotation).

【0026】以上のように、ジッターや振動の面で定常
回転時(電流が小の時;トルク指令信号20が小)は1
50度通電のようにモータ駆動電流にスロープがある方
が、120度通電のようにモータ駆動電流にスロープが
無い方より良く、起動時や重負荷時(電流が大の時;ト
ルク指令信号20が大)には120度通電のようにモー
タ駆動電流にスロープが無い方が、150度通電のよう
にモータ駆動電流にスロープが有るときよりも良い。
As described above, in terms of jitter and vibration, it is 1 during steady rotation (when current is small; torque command signal 20 is small).
It is better that the motor drive current has a slope as in the case of 50 degree conduction than that without the motor drive current as in the case of 120 degree conduction, at the time of startup or heavy load (when the current is large; the torque command signal 20). Is large, it is better that the motor drive current has no slope as in the case of 120-degree conduction than it does when the motor drive current has a slope as in 150-degree conduction.

【0027】本発明は、前記従来技術の問題を解決する
ことに指向するものであり、騒音や振動の少ないディス
ク装置とディスクなどの回転駆動に適したモータ駆動装
置を提供することを目的とする。
The present invention is directed to solving the above-mentioned problems of the prior art, and an object of the present invention is to provide a disk drive with less noise and vibration and a motor drive suitable for rotationally driving a disk or the like. .

【0028】[0028]

【課題を解決するための手段】この目的を達成するため
に、本発明の請求項1に係るモータ駆動装置は、トルク
指令信号を入力としてトルク指令信号に応動してモータ
駆動電流の通電期間を切り換える信号を出力する通電期
間切換手段と、モータ駆動電流を検出する電流検出抵抗
と、トルク指令信号と電流検出抵抗に発生した電圧とを
入力としてモータ駆動電流の制御信号を発生するモータ
駆動電流制御信号発生手段と、位置信号を入力として通
電位置信号を発生する通電位置信号発生手段と、通電期
間切換手段の出力信号とモータ駆動電流制御信号発生手
段の出力信号とを入力としてPWM−Dutyを制御する
PWM制御信号を発生するPWM―Duty制御手段と、
PWM−Duty制御手段の出力信号と通電位置信号発生
手段の出力信号とを入力として位置信号に応動した位相
にPWM制御信号を切り換える相切換手段と、相切換手
段の出力を入力としてモータにモータ駆動電流を供給す
る出力制御手段とを備え、トルク指令信号に応動してP
WM−Dutyを制御しモータ駆動電流の通電期間を切り
換えることを特徴とする。
In order to achieve this object, a motor drive device according to a first aspect of the present invention receives a torque command signal as an input, and responds to the torque command signal to set a motor drive current energization period. Energization period switching means for outputting a signal for switching, a current detection resistor for detecting a motor drive current, and a motor drive current control for generating a motor drive current control signal by inputting a torque command signal and a voltage generated in the current detection resistor. PWM-Duty is controlled by inputting the signal generating means, the energized position signal generating means for generating the energized position signal by inputting the position signal, the output signal of the energized period switching means and the output signal of the motor drive current control signal generating means. PWM-Duty control means for generating a PWM control signal for
Phase-switching means for inputting the output signal of the PWM-Duty control means and the output signal of the energization position signal generating means for switching the PWM control signal to a phase responsive to the position signal, and a motor for driving the motor with the output of the phase-switching means as input An output control means for supplying a current is provided, and in response to a torque command signal, P
It is characterized in that WM-Duty is controlled to switch the energization period of the motor drive current.

【0029】また、請求項2において、請求項1のモー
タ駆動装置に、モータの誘起電圧を検出する誘起電圧検
出手段と、誘起電圧検出手段の出力とトルク指令信号と
を入力として誘起電圧とトルク指令信号とに応動してモ
ータ駆動電流の通電期間を切り換える信号を出力する通
電期間切換手段とを備え、トルク指令信号と誘起電圧と
に応動してPWM−Dutyを制御しモータ駆動電流の通
電期間を切り換えることを特徴とする。
According to a second aspect of the present invention, the induced voltage and the torque are input to the motor drive device according to the first aspect by inputting the induced voltage detecting means for detecting the induced voltage of the motor and the output of the induced voltage detecting means and the torque command signal. An energization period switching means for outputting a signal for switching the energization period of the motor drive current in response to the command signal, and controlling the PWM-Duty in response to the torque command signal and the induced voltage to energize the motor drive current. It is characterized by switching.

【0030】また、請求項3において、請求項2のモー
タ駆動装置における通電期間切換手段に代えて、誘起電
圧検出手段の出力とトルク指令信号とを入力として誘起
電圧とトルク指令信号とに応動してモータ駆動電流の通
電期間を変化させる信号を出力する通電期間変更手段を
備え、トルク指令信号と誘起電圧とに応動してPWM−
Dutyを制御しモータ駆動電流の通電期間を応動させる
ことを特徴とする。
Further, in claim 3, instead of the energization period switching means in the motor drive device of claim 2, the output of the induced voltage detecting means and the torque command signal are used as inputs to respond to the induced voltage and the torque command signal. And a PWM-responsive to the torque command signal and the induced voltage, the energization period changing means for outputting a signal for changing the energization period of the motor drive current is provided.
It is characterized in that the duty is controlled to respond to the energization period of the motor drive current.

【0031】前記構成によれば、トルク指令信号に応動
してPWM−Dutyを制御してモータ駆動電流の通電期
間を切り換え、または変化させることにより、ディスク
装置等の回転駆動に適した騒音,振動の小さいモータ駆
動装置を実現できる。
According to the above construction, the PWM-Duty is controlled in response to the torque command signal to switch or change the energization period of the motor drive current, whereby noise and vibration suitable for rotational drive of the disk device or the like are obtained. It is possible to realize a small motor drive device.

【0032】[0032]

【発明の実施の形態】以下、図面を参照して本発明にお
ける実施の形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0033】図1は本発明の実施の形態1における三相
全波モータを駆動するモータ駆動装置の概略構成を示し
たものである。ここで、前記従来例を示す図3において
説明した構成部材に対応し実質的に同等の機能を有する
ものには同一の符号を付してこれを示し、以下の各図に
おいても同様とする。
FIG. 1 shows a schematic structure of a motor drive device for driving a three-phase full-wave motor according to the first embodiment of the present invention. Here, components having substantially the same functions as the components described in FIG. 3 showing the above-mentioned conventional example are designated by the same reference numerals to show them, and the same applies to each of the following drawings.

【0034】図1において、1はモータ、2は出力制御
手段、3は相切換手段、4’はPWM−Duty制御手
段、6はモータ駆動電流制御信号発生手段、7は通電位
置信号発生手段、8は電流検出抵抗、9は回転子、10
〜12のモータ巻線、13〜18は出力トランジスタ、
13d〜18dはボディダイオード、19は電源、20
はトルク指令信号、21は位置信号、25は通電期間切
換手段である。
In FIG. 1, 1 is a motor, 2 is output control means, 3 is phase switching means, 4'is PWM-Duty control means, 6 is motor drive current control signal generating means, 7 is energization position signal generating means, 8 is a current detection resistor, 9 is a rotor, 10
~ 12 motor windings, 13-18 are output transistors,
13d to 18d are body diodes, 19 is a power source, 20
Is a torque command signal, 21 is a position signal, and 25 is an energization period switching means.

【0035】モータ1は回転子9とモータ巻線10〜1
2とから構成される。出力制御手段2は出力トランジス
タ13〜18とボディダイオード13d〜18dから構
成される。また、モータ1の各端子をU,V,W,Nと
して、このU,V,Wは出力トランジスタ13〜18と
の接続端子であり、Nはモータ1の中点の接続端子であ
る。
The motor 1 includes a rotor 9 and motor windings 10 to 1.
2 and. The output control means 2 comprises output transistors 13-18 and body diodes 13d-18d. Also, assuming that each terminal of the motor 1 is U, V, W, N, these U, V, W are connection terminals with the output transistors 13 to 18, and N is a connection terminal at the middle point of the motor 1.

【0036】以上のように構成されたモータ駆動装置に
ついて、以下にその動作を説明する。位置信号21は通
常ホール素子等のセンサーを用い、モータ1の回転軸に
対して互いに120度の位置に配置され、モータ1の回
転磁界を検出し位置信号を出力する。また、モータ巻線
に発生する誘起電圧を位置信号21として利用する場合
もある。通電位置信号発生手段7は位置信号21に応じ
た信号を出力する。トルク指令信号20は通常マイコン
等から出力され、モータ1の回転数を所定の回転に制御
するための電流制御用の信号である。通電期間切換手段
25はトルク指令信号20を入力としモータ駆動電流の
通電期間を制御する。
The operation of the motor drive device constructed as described above will be described below. The position signal 21 normally uses a sensor such as a Hall element and is arranged at positions of 120 degrees with respect to the rotation axis of the motor 1. The position signal 21 detects the rotating magnetic field of the motor 1 and outputs a position signal. Further, the induced voltage generated in the motor winding may be used as the position signal 21. The energized position signal generating means 7 outputs a signal according to the position signal 21. The torque command signal 20 is a signal for current control, which is normally output from a microcomputer or the like and controls the rotation speed of the motor 1 to a predetermined rotation. The energization period switching means 25 receives the torque command signal 20 and controls the energization period of the motor drive current.

【0037】モータ1の起動時などモータ駆動電流が大
きく、モータ1を駆動する通電切換時は出力トランジス
タ13〜18の電圧Vdsが小さく、モータ駆動電流の
スロープが制御できないときは通電期間を120度と短
くする信号を出力する。これにより2相ONの状態が無
いのでモータ駆動電流に歪が発生しない。また、トルク
指令信号20が小の時には出力トランジスタ13〜18
のSink側とSource側との電圧Vdsの差が大きいの
で、モータ駆動電流のスロープが制御できることから、
通電期間を150度と長くする信号を出力する。
When the motor driving current is large such as when the motor 1 is started, the voltage Vds of the output transistors 13 to 18 is small at the time of switching the energization for driving the motor 1, the energization period is 120 degrees when the slope of the motor driving current cannot be controlled. And output the signal to shorten. As a result, the motor drive current is not distorted because there is no 2-phase ON state. When the torque command signal 20 is small, the output transistors 13-18
Since the difference in the voltage Vds between the Sink side and the Source side is large, the slope of the motor drive current can be controlled,
A signal for increasing the energization period to 150 degrees is output.

【0038】モータ駆動電流制御信号発生手段6はトル
ク指令信号20と電流検出抵抗8の電圧とを入力とし、
モータ駆動電流の総和をトルク指令信号20に応じて制
御する信号を出力する。PWM−Duty制御手段4’は
通電期間切換手段25の出力信号とモータ駆動電流制御
信号発生手段6の出力信号とを入力とし、トルク指令信
号20に応じて通電期間を切り換え、電流の総和を制御
するPWM制御信号を出力する。
The motor drive current control signal generating means 6 receives the torque command signal 20 and the voltage of the current detecting resistor 8 as input,
A signal for controlling the total sum of the motor drive currents according to the torque command signal 20 is output. The PWM-Duty control means 4 ′ receives the output signal of the energization period switching means 25 and the output signal of the motor drive current control signal generation means 6, switches the energization period according to the torque command signal 20, and controls the total current. Output a PWM control signal.

【0039】また、相切換手段3は通電位置信号発生手
段7の出力信号とPWM−Duty制御手段4’の出力信
号とを入力とし、位置信号21に応じた位相にPWM制
御信号を出力制御手段2へ出力する。出力制御手段2は
PWM−Duty制御手段4’の出力信号を入力とし、モ
ータ1をPWM駆動する電流を供給する。出力トランジ
スタ13〜18はPWM−Duty制御手段4’の出力に
応じて順次、通電位相を切り換える。ボディダイオード
13d〜18dはPWM駆動により、出力トランジスタ
13〜18が非導通状態になった時にボディダイオード
13d〜18dに電流が流れる。
The phase switching means 3 receives the output signal of the energization position signal generating means 7 and the output signal of the PWM-Duty control means 4 ', and outputs the PWM control signal in the phase corresponding to the position signal 21. Output to 2. The output control means 2 receives the output signal of the PWM-Duty control means 4 ', and supplies a current for PWM driving the motor 1. The output transistors 13 to 18 sequentially switch the energization phase according to the output of the PWM-Duty control means 4 '. Due to the PWM drive of the body diodes 13d to 18d, a current flows through the body diodes 13d to 18d when the output transistors 13 to 18 are turned off.

【0040】さらに、前述したトルク指令信号の大きさ
で通電期間を切り換えて、図4(a)の120度通電に
トルク指令信号が大の時、図4(b)の150度通電に
トルク指令信号が小の時の各部波形を示す各図を用い
て、まず図4(a)を参照しながら説明する。位置信号
21は回転子9の位相に応じて120度ずつ位相がずれ
た信号が入力される。位置信号21の入力位相に応じて
PWM−Duty制御手段4’の出力が相切換手段3で分
配される。出力制御手段2は相切換手段3のPWM区間
の出力パルスに応じて制御され、出力トランジスタ13
〜18は図4(a)に示すように、位置信号21の位相
に応動してPWM駆動する。このとき、トルク指令信号
20が大きいときは120度通電に通電切換信号により
選択する。これにより、トルク指令信号20が大きくと
も前記従来例の150度通電のように、通電相の切換時
に歪は発生しない。
Further, the energization period is switched according to the magnitude of the torque command signal described above, and when the torque command signal is large for 120-degree energization in FIG. 4A, when the torque command signal is large for 150-degree energization in FIG. A description will be given first with reference to FIG. 4A using the drawings showing the waveforms at various portions when the signal is small. As the position signal 21, a signal whose phase is shifted by 120 degrees according to the phase of the rotor 9 is input. The output of the PWM-Duty control means 4 ′ is distributed by the phase switching means 3 according to the input phase of the position signal 21. The output control means 2 is controlled according to the output pulse of the phase switching means 3 in the PWM section, and the output transistor 13
As shown in FIG. 4A, PWM signals 18 to 18 are driven in response to the phase of the position signal 21. At this time, when the torque command signal 20 is large, 120-degree energization is selected by the energization switching signal. As a result, even if the torque command signal 20 is large, no distortion occurs when the energized phase is switched, unlike the conventional 150 ° energization.

【0041】次に、図4(b)を参照しながら説明す
る。図4(a)と同様に位置信号21は回転子9の位相
に応じた120度の位相がずれた信号が入力される。位
置信号21の入力位相に応じてPWM−Duty制御手段
4’の出力が相切換手段3で分配される。出力制御手段
2は相切換手段3のPWM区間の出力パルスに応じて制
御され、出力トランジスタ13〜18は図4(b)に示
すように、位置信号21の位相に応動してPWM駆動す
る。このとき、トルク指令信号20は小なので通電期間
は長い状態に制御される。
Next, description will be given with reference to FIG. As in FIG. 4A, as the position signal 21, a signal whose phase is shifted by 120 degrees according to the phase of the rotor 9 is input. The output of the PWM-Duty control means 4 ′ is distributed by the phase switching means 3 according to the input phase of the position signal 21. The output control means 2 is controlled according to the output pulse of the phase switching means 3 in the PWM section, and the output transistors 13 to 18 are PWM-driven in response to the phase of the position signal 21, as shown in FIG. At this time, since the torque command signal 20 is small, the energization period is controlled to be long.

【0042】図4(b)は150度通電のモータ駆動電
流が小さい場合を示している。この150度通電におい
て出力トランジスタ13〜18の切換位相での電圧Vd
sが十分あり、PWM−Duty制御手段4’の出力に応
じてモータ駆動電流が制御されるので、通電相が2相O
Nする位相でも通電波形に歪は発生しない。
FIG. 4 (b) shows a case where the motor drive current for energizing 150 degrees is small. The voltage Vd at the switching phase of the output transistors 13 to 18 in this energization of 150 degrees
s is sufficient and the motor drive current is controlled according to the output of the PWM-Duty control means 4 ', so that the energized phase is two-phase O.
No distortion occurs in the energization waveform even in the N phase.

【0043】以上のような構成により、トルク指令信号
20の大小に応じて、120度通電と150度通電の通
電期間を切り換えることにより、モータ1の起動時や重
負荷時から定常回転時まで、騒音・振動の小さい高性能
なモータ駆動装置を実現できる。
With the above configuration, by switching the energization period of 120-degree energization and 150-degree energization according to the magnitude of the torque command signal 20, from when the motor 1 is started or under heavy load to steady rotation. A high-performance motor drive with low noise and vibration can be realized.

【0044】次に、図2は本発明の実施の形態2におけ
る三相全波モータを駆動するモータ駆動装置の概略構成
を示したものである。図2において、1はモータ、2は
出力制御手段、3は相切換手段、4’はPWM−Duty
制御手段、6はモータ駆動電流制御信号発生手段、7は
通電位置信号発生手段、8は電流検出抵抗、9は回転
子、10〜12のモータ巻線、13〜18は出力トラン
ジスタ、13d〜18dはボディダイオード、19は電
源、20はトルク指令信号、21は位置信号、25’は
通電期間切換手段、26は誘起電圧検出手段である。
Next, FIG. 2 shows a schematic structure of a motor drive device for driving a three-phase full-wave motor according to a second embodiment of the present invention. In FIG. 2, 1 is a motor, 2 is output control means, 3 is phase switching means, and 4'is PWM-Duty.
Control means, 6 is a motor drive current control signal generating means, 7 is an energization position signal generating means, 8 is a current detecting resistor, 9 is a rotor, 10 to 12 motor windings, 13 to 18 are output transistors, and 13d to 18d. Is a body diode, 19 is a power supply, 20 is a torque command signal, 21 is a position signal, 25 'is an energization period switching means, and 26 is an induced voltage detection means.

【0045】モータ1は回転子9とモータ巻線10〜1
2とから構成され、出力制御手段2はモータ出力トラン
ジスタ13〜18とボディダイオード13d〜18dか
ら構成される。モータ1の各端子U,V,Wは出力トラ
ンジスタ13〜18との接続端子であり、Nはモータ1
の中点の接続端子である。本実施の形態2の通電期間切
換手段25’はトルク指令信号20と誘起電圧検出手段
26の出力信号を入力としてモータ1を駆動する通電期
間を切り換える。誘起電圧検出手段26はモータ1のモ
ータ巻線10〜12に発生する誘起電圧を検出する。
The motor 1 comprises a rotor 9 and motor windings 10-1.
2 and the output control means 2 is composed of motor output transistors 13-18 and body diodes 13d-18d. Each terminal U, V, W of the motor 1 is a connection terminal with the output transistors 13 to 18, and N is the motor 1
This is the connection terminal at the middle point. The energization period switching means 25 'of the second embodiment switches the energization period for driving the motor 1 by using the torque command signal 20 and the output signal of the induced voltage detecting means 26 as input. The induced voltage detecting means 26 detects the induced voltage generated in the motor windings 10 to 12 of the motor 1.

【0046】ここで、誘起電圧の関係式は(数5)のよ
うになる。
Here, the relational expression of the induced voltage is as shown in (Equation 5).

【0047】[0047]

【数5】Vbemf=Ldφ/dt ここで、φは磁束、tは時間である。(数5)に示すよ
うに誘起電圧はモータの回転数に比例することが知られ
ており、モータ1の回転数を検出し誘起電圧に変換して
も良いし、モータ1のU,V,Wの各端子電圧とNの端
子電圧からも検出可能である。
Vbemf = Ldφ / dt where φ is the magnetic flux and t is the time. It is known that the induced voltage is proportional to the rotation speed of the motor as shown in (Equation 5), and the rotation speed of the motor 1 may be detected and converted into the induced voltage. It can also be detected from each terminal voltage of W and the terminal voltage of N.

【0048】本実施の形態2は前記実施の形態1と同様
に、位置信号21,通電位置信号発生手段7,トルク指
令信号20,モータ駆動電流制御信号発生手段6は動作
する。先に説明したように、出力トランジスタ13〜1
8のドレイン−ソース間に発生する電圧Vdsの関係は
図5で示される。出力トランジスタ13〜18の電圧V
dsを正確に求め、よりモータ駆動電流の歪を削減する
ためには、モータ1に流れる電流と誘起電圧の検出をす
れば可能になる。前記実施の形態1では電流が少なく
(トルク指令信号小)回転数が高い(誘起電圧が大)条
件では電圧Vdsが小になる可能性がある。
In the second embodiment, the position signal 21, the energized position signal generating means 7, the torque command signal 20, and the motor drive current control signal generating means 6 operate as in the first embodiment. As described above, the output transistors 13-1
The relationship of the voltage Vds generated between the drain and the source of No. 8 is shown in FIG. Voltage V of output transistors 13-18
In order to accurately obtain ds and further reduce the distortion of the motor drive current, it is possible to detect the current flowing in the motor 1 and the induced voltage. In the first embodiment, the voltage Vds may be small under the condition that the current is small (torque command signal is small) and the rotation speed is high (induced voltage is large).

【0049】本実施の形態2では誘起電圧検出手段26
により誘起電圧を検出することで、より正確に出力トラ
ンジスタ13〜18の電圧Vdsを検出する。また、通
電期間切換手段25’は誘起電圧検出手段26とトルク
指令信号20の出力により通電期間を切り換え、出力ト
ランジスタ13〜18の電圧Vdsに応じて通電期間を
切り換える信号をPWM−Duty制御手段4’に出力す
る。PWM−Duty制御手段4’はモータ駆動電流が制
御できる領域のみ通電期間を150度と長くし、制御で
きない領域では通電期間を120度と短くし電流の歪を
回避する。
In the second embodiment, the induced voltage detecting means 26
By detecting the induced voltage with, the voltage Vds of the output transistors 13 to 18 is detected more accurately. The energization period switching means 25 'switches the energization period by the output of the induced voltage detection means 26 and the torque command signal 20, and the PWM-Duty control means 4 outputs a signal for switching the energization period according to the voltage Vds of the output transistors 13-18. Output to '. The PWM-Duty control means 4'prolongs the energization period to 150 degrees only in the region where the motor drive current can be controlled, and shortens the energization period to 120 degrees in the region where the motor drive current cannot be controlled to avoid current distortion.

【0050】PWM−Duty制御手段4’の出力信号は
相切換手段3に入力される。相切換手段3は、通電位置
信号発生手段7の出力信号とPWM−Duty制御手段
4’の出力信号とが入力され、PWM制御信号を位置信
号21に応じて分配する。出力制御手段2は前記実施の
形態1と同様に相切換信号から出力されるPWM制御信
号に応じて動作し、モータ1をPWM駆動する。
The output signal of the PWM-Duty control means 4'is input to the phase switching means 3. The phase switching means 3 receives the output signal of the energization position signal generating means 7 and the output signal of the PWM-Duty control means 4 ′, and distributes the PWM control signal according to the position signal 21. The output control means 2 operates in accordance with the PWM control signal output from the phase switching signal as in the first embodiment, and drives the motor 1 by PWM.

【0051】これにより前記実施の形態1よりも正確に
モータ駆動電流のスロープを制御できるので、モータ1
の起動時や重負荷時から定常回転時まで、騒音・振動の
より小さい高性能なモータ駆動装置を実現できる。
As a result, the slope of the motor drive current can be controlled more accurately than in the first embodiment.
It is possible to realize a high-performance motor drive device with less noise and vibration during startup and heavy load to steady rotation.

【0052】さらに、前述のように120度通電と15
0度通電を2段階で切換えても良いし、トルク指令信号
20と誘起電圧検出手段26とに応じて、通電期間をリ
ニアに変化させる通電期間変更手段を通電期間切換手段
25’に代えて設けても良い。
Further, as described above, the power supply is 120 degrees and 15
The 0-degree energization may be switched in two steps, or an energization period changing means for linearly changing the energization period according to the torque command signal 20 and the induced voltage detecting means 26 may be provided instead of the energization period switching means 25 '. May be.

【0053】なお、本実施の各形態におけるモータ駆動
装置の集積回路化には、周知の半導体プロセスによる1
チップ集積回路技術が使用可能であることはいうまでも
ない。例えば、二重拡散MOS型FETトランジスタ,
バイポーラトランジスタ,CMOSトランジスタが使用
できる1チップ集積回路技術、二重拡散MOS型FET
トランジスタ,CMOSトランジスタが使用できる1チ
ップ集積回路技術等がある。いずれも、接合分離によっ
て集積回路化を行い、接合分離部分を直流電源の負極端
子側の電位(アース電位)に接続して使用する。1チッ
プ内の具体的なトランジスタ配置や接合分離のための拡
散層の形成配置は、個々の集積回路設計によって異なる
ので、ここでは詳細な説明を省略する。また、本発明の
主旨を変えずして種々の変形が可能であり、本発明に含
まれることはいうまでもない。
In order to integrate the motor drive device in each of the embodiments into an integrated circuit, a well-known semiconductor process is used.
It goes without saying that chip integrated circuit technology can be used. For example, a double diffusion MOS type FET transistor,
One-chip integrated circuit technology that can use bipolar transistors and CMOS transistors, double diffused MOS type FET
There is a one-chip integrated circuit technology that can use transistors and CMOS transistors. In both cases, an integrated circuit is formed by junction separation, and the junction separation portion is used by connecting it to the potential (earth potential) on the negative electrode terminal side of the DC power supply. The specific transistor arrangement within one chip and the formation arrangement of the diffusion layer for junction separation differ depending on the individual integrated circuit design, and therefore detailed description thereof is omitted here. Further, it goes without saying that various modifications can be made without changing the gist of the present invention and are included in the present invention.

【0054】[0054]

【発明の効果】以上説明したように、本発明によれば、
トルク指令信号、またはトルク指令信号とモータの誘起
電圧とに応動したモータ駆動電流の通電期間を切り換え
ることにより、モータの起動時や重負荷時から定常回転
時まで、騒音・振動の小さい高性能なモータ駆動装置を
実現できるという効果を奏する。
As described above, according to the present invention,
By switching the energization period of the torque command signal or the motor drive current that responds to the torque command signal and the induced voltage of the motor, high performance with low noise and vibration can be obtained from the time of starting the motor or from heavy load to steady rotation. This has the effect of realizing a motor drive device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1における三相全波モータ
を駆動するモータ駆動装置の概略構成を示す図
FIG. 1 is a diagram showing a schematic configuration of a motor drive device that drives a three-phase full-wave motor according to a first embodiment of the present invention.

【図2】本発明の実施の形態2における三相全波モータ
を駆動するモータ駆動装置の概略構成を示す図
FIG. 2 is a diagram showing a schematic configuration of a motor drive device that drives a three-phase full-wave motor according to a second embodiment of the present invention.

【図3】従来の三相全波モータを駆動するモータ駆動装
置の概略構成を示す図
FIG. 3 is a diagram showing a schematic configuration of a motor drive device for driving a conventional three-phase full-wave motor.

【図4】三相全波モータを駆動する各部動作のタイミン
グチャートを示す図
FIG. 4 is a diagram showing a timing chart of the operation of each part that drives a three-phase full-wave motor.

【図5】PWM区間のONタイミングにおけるモータの
巻線,抵抗に発生する電圧の状態を表す等価回路を示す
FIG. 5 is a diagram showing an equivalent circuit showing a state of a voltage generated in a winding and a resistance of a motor at an ON timing in a PWM section.

【図6】モータ巻線U相,W相の出力トランジスタがO
N、モータ巻線V相の出力トランジスタがOFF状態か
ら、モータ巻線V相の出力トランジスタがONする状態
を示す図
FIG. 6: The output transistors of the motor winding U-phase and W-phase are O
A diagram showing a state in which the output transistor of the motor winding V phase is turned on from the state of the output transistor of the V phase of the motor winding N being turned off.

【図7】U相,V相の各出力トランジスタの電圧Vds
(U)、電圧Vds(V)の電圧変化の概略図
FIG. 7 is a voltage Vds of each output transistor of U phase and V phase.
(U), schematic diagram of voltage change of voltage Vds (V)

【図8】出力トランジスタの電流Ivと電流Iuの立ち
上がり比較を示す図
FIG. 8 is a diagram showing a comparison of rising edges of a current Iv and a current Iu of an output transistor.

【符号の説明】[Explanation of symbols]

1 モータ 2 出力制御手段 3 相切換手段 4,4’ PWM−Duty制御手段 6 モータ駆動電流制御信号発生手段 7 通電位置信号発生手段 8 電流検出抵抗 9 回転子 10,11,12 モータ巻線 13〜18 出力トランジスタ 13d〜18d ボディダイオード 19 電源 20 トルク指令信号 21 位置信号 25,25’ 通電期間切換手段 26 誘起電圧検出手段 1 motor 2 Output control means 3-phase switching means 4,4 'PWM-Duty control means 6 Motor drive current control signal generating means 7 Energized position signal generation means 8 Current detection resistor 9 rotor 10, 11, 12 motor winding 13-18 output transistor 13d-18d body diode 19 power supply 20 Torque command signal 21 Position signal 25, 25 'energization period switching means 26 Induced voltage detection means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 トルク指令信号を入力として前記トルク
指令信号に応動してモータ駆動電流の通電期間を切り換
える信号を出力する通電期間切換手段と、前記モータ駆
動電流を検出する電流検出抵抗と、前記トルク指令信号
と前記電流検出抵抗に発生した電圧とを入力としてモー
タ駆動電流の制御信号を発生するモータ駆動電流制御信
号発生手段と、位置信号を入力として通電位置信号を発
生する通電位置信号発生手段と、前記通電期間切換手段
の出力信号と前記モータ駆動電流制御信号発生手段の出
力信号とを入力としてPWM−Dutyを制御するPWM
制御信号を発生するPWM―Duty制御手段と、前記P
WM−Duty制御手段の出力信号と前記通電位置信号発
生手段の出力信号とを入力として位置信号に応動した位
相にPWM制御信号を切り換える相切換手段と、前記相
切換手段の出力を入力としてモータにモータ駆動電流を
供給する出力制御手段とを備え、 前記トルク指令信号に応動してPWM−Dutyを制御し
前記モータ駆動電流の通電期間を切り換えることを特徴
とするモータ駆動装置。
1. An energization period switching means for inputting a torque command signal and outputting a signal for switching the energization period of a motor drive current in response to the torque command signal; a current detection resistor for detecting the motor drive current; Motor drive current control signal generation means for generating a motor drive current control signal by inputting a torque command signal and the voltage generated in the current detection resistor, and energized position signal generation means for generating a energized position signal by inputting a position signal. And a PWM for controlling the PWM-Duty with the output signal of the energization period switching means and the output signal of the motor drive current control signal generating means as inputs.
PWM-Duty control means for generating a control signal, and P
Phase switching means for switching the PWM control signal to a phase in response to the position signal by using the output signal of the WM-Duty control means and the output signal of the energization position signal generating means as input, and the output of the phase switching means as input to the motor. An output control means for supplying a motor drive current, wherein the PWM-Duty is controlled in response to the torque command signal to switch the energization period of the motor drive current.
【請求項2】 モータの誘起電圧を検出する誘起電圧検
出手段と、前記誘起電圧検出手段の出力とトルク指令信
号とを入力として誘起電圧とトルク指令信号とに応動し
てモータ駆動電流の通電期間を切り換える信号を出力す
る通電期間切換手段と、前記モータ駆動電流を検出する
電流検出抵抗と、前記トルク指令信号と前記電流検出抵
抗に発生した電圧とを入力としてモータ駆動電流の制御
信号を発生するモータ駆動電流制御信号発生手段と、位
置信号を入力として通電位置信号を発生する通電位置信
号発生手段と、前記通電期間切換手段の出力信号と前記
モータ駆動電流制御信号発生手段の出力信号とを入力と
してPWM−Dutyを制御するPWM制御信号を発生す
るPWM―Duty制御手段と、前記PWM−Duty制御手
段の出力信号と前記通電位置信号発生手段の出力信号と
を入力として位置信号に応動した位相にPWM制御信号
を切り換える相切換手段と、前記相切換手段の出力信号
を入力としてモータにモータ駆動電流を供給する出力制
御手段とを備え、 前記トルク指令信号と前記誘起電圧とに応動してPWM
−Dutyを制御し前記モータ駆動電流の通電期間を切り
換えることを特徴とするモータ駆動装置。
2. An induced voltage detecting means for detecting an induced voltage of a motor, and an energization period of a motor drive current in response to the induced voltage and the torque instruction signal with the output of the induced voltage detecting means and the torque instruction signal as inputs. An energization period switching means for outputting a signal for switching the motor drive current, a current detection resistor for detecting the motor drive current, and a torque command signal and a voltage generated in the current detection resistor are input to generate a motor drive current control signal. Motor drive current control signal generation means, energization position signal generation means for generating energization position signals by inputting position signals, output signal of the energization period switching means and output signal of the motor drive current control signal generation means , PWM-Duty control means for generating a PWM control signal for controlling PWM-Duty, an output signal of the PWM-Duty control means, and the energization Phase switching means for inputting the output signal of the position signal generating means to switch the PWM control signal to a phase in response to the position signal, and output control means for supplying the motor drive current to the motor by receiving the output signal of the phase switching means as input. And PWM in response to the torque command signal and the induced voltage.
A motor drive device characterized by controlling the duty and switching the energization period of the motor drive current.
【請求項3】 モータの誘起電圧を検出する誘起電圧検
出手段と、前記誘起電圧検出手段の出力とトルク指令信
号とを入力として誘起電圧とトルク指令信号とに応動し
てモータ駆動電流の通電期間を変化させる信号を出力す
る通電期間変更手段と、前記モータ駆動電流を検出する
電流検出抵抗と、前記トルク指令信号と前記電流検出抵
抗に発生した電圧とを入力としてモータ駆動電流の制御
信号を発生するモータ駆動電流制御信号発生手段と、位
置信号を入力として通電位置信号を発生する通電位置信
号発生手段と、前記通電期間変更手段の出力信号と前記
モータ駆動電流制御信号発生手段の出力信号とを入力と
してPWM−Dutyを制御するPWM制御信号を発生す
るPWM―Duty制御手段と、前記PWM−Duty制御手
段の出力信号と前記通電位置信号発生手段の出力信号と
を入力として位置信号に応動した位相にPWM制御信号
を切り換える相切換手段と、前記相切換手段の出力信号
を入力としてモータにモータ駆動電流を供給する出力制
御手段とを備え、 前記トルク指令信号と前記誘起電圧とに応動してPWM
−Dutyを制御し前記モータ駆動電流の通電期間を応動
させることを特徴とするモータ駆動装置。
3. An induced voltage detecting means for detecting an induced voltage of a motor, and an energization period of a motor drive current in response to the induced voltage and the torque instruction signal with an output of the induced voltage detecting means and a torque instruction signal as inputs. A control signal for the motor drive current is generated by inputting an energization period changing means for outputting a signal for changing the motor drive current, a current detection resistor for detecting the motor drive current, and the torque command signal and the voltage generated in the current detection resistor. A motor drive current control signal generating means, an energization position signal generating means for generating an energization position signal by inputting a position signal, an output signal of the energization period changing means and an output signal of the motor drive current control signal generating means. PWM-Duty control means for generating a PWM control signal for controlling PWM-Duty as an input, an output signal of the PWM-Duty control means, and the energization Phase switching means for inputting the output signal of the position signal generating means to switch the PWM control signal to a phase in response to the position signal, and output control means for supplying the motor drive current to the motor by receiving the output signal of the phase switching means as input. And PWM in response to the torque command signal and the induced voltage.
A motor drive device characterized in that the duty is controlled to respond to the energization period of the motor drive current.
JP2001369446A 2001-12-04 2001-12-04 Motor driver Pending JP2003169491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001369446A JP2003169491A (en) 2001-12-04 2001-12-04 Motor driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001369446A JP2003169491A (en) 2001-12-04 2001-12-04 Motor driver

Publications (1)

Publication Number Publication Date
JP2003169491A true JP2003169491A (en) 2003-06-13

Family

ID=19178833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001369446A Pending JP2003169491A (en) 2001-12-04 2001-12-04 Motor driver

Country Status (1)

Country Link
JP (1) JP2003169491A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524746A (en) * 2010-04-23 2013-06-17 峰▲チァオ▼科技(深▲セン▼)有限公司 Sensorless driving method for permanent magnet AC motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524746A (en) * 2010-04-23 2013-06-17 峰▲チァオ▼科技(深▲セン▼)有限公司 Sensorless driving method for permanent magnet AC motor

Similar Documents

Publication Publication Date Title
JP3890906B2 (en) Brushless motor drive device and motor using the same
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
JP2007110778A (en) Motor drive and driving method
JP2007097363A (en) Control method and control device of hydraulic brushless motor
JPH0937584A (en) Motor driving method and electric apparatus
US20040108827A1 (en) Motor driving circuit
JPH11122979A (en) Sensorless three-phase pldc motor drive circuit
JP4055372B2 (en) Motor drive device
JP2003169491A (en) Motor driver
JP3240535B2 (en) Motor phase current detector
JP2008259360A (en) Energization control circuit for brushless motor
JP4203329B2 (en) Motor control device
JP4079702B2 (en) Motor drive control circuit and motor drive device
JP3258743B2 (en) Brushless motor drive
JP4143958B2 (en) DC brushless motor parallel drive circuit
US7049770B2 (en) Current control circuit and motor drive circuit that can accurately and easily control a drive current
JP3810424B2 (en) PWM motor drive device
JP4424931B2 (en) Integrated circuit for motor drive
JP4240832B2 (en) Three-phase motor phase detection circuit
JP3741629B2 (en) Disk unit
JP3647684B2 (en) Disk unit
JP3771824B2 (en) Disk unit
JP2004080863A (en) Changing method for power transistor carrier frequency
JP3705725B2 (en) PWM motor drive device
JPH08251976A (en) Speed detector for brushless motor