JP2003168435A - Manufacturing method of negative electrode material for lithium ion secondary battery - Google Patents

Manufacturing method of negative electrode material for lithium ion secondary battery

Info

Publication number
JP2003168435A
JP2003168435A JP2001369547A JP2001369547A JP2003168435A JP 2003168435 A JP2003168435 A JP 2003168435A JP 2001369547 A JP2001369547 A JP 2001369547A JP 2001369547 A JP2001369547 A JP 2001369547A JP 2003168435 A JP2003168435 A JP 2003168435A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrode material
polycarbosilane
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001369547A
Other languages
Japanese (ja)
Other versions
JP3645215B2 (en
Inventor
Keiichi Hirata
平田恵一
Takanobu Kawai
河井隆伸
Takashi Wakizaka
敬 脇阪
Minoru Wakayama
実 若山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP2001369547A priority Critical patent/JP3645215B2/en
Publication of JP2003168435A publication Critical patent/JP2003168435A/en
Application granted granted Critical
Publication of JP3645215B2 publication Critical patent/JP3645215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method in which highly crystalline carbon negative electrode material is obtained in order to manufacture the negative electrode material for a lithium ion secondary battery having a high capacity and a low capacity loss. <P>SOLUTION: This is the manufacturing method of the negative electrode material for the lithium ion secondary battery wherein after raw material coke, binder pitch and polycarbosilane are mixed and mixing heated to mold to obtain a molded body, and subsequently calcination and graphitization are carried out and crushing/classification is carried out. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、リチウムイオン二次電池用負極
材の製造方法に関し、より詳しくは原料コ−クスとバイ
ンダ−ピッチとポリカルボシランとを混合し、混熱、焼
成、黒鉛化して得られる高容量で容量ロスが少ない負極
材の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a negative electrode material for a lithium ion secondary battery, and more specifically, it is obtained by mixing raw material coke, binder pitch and polycarbosilane, and heat-mixing, firing and graphitizing the mixture. The present invention relates to a method for producing a negative electrode material having a high capacity and a small capacity loss.

【0002】[0002]

【従来の技術】近年、リチウム二次電池はハイパワ−、
高容量の二次電池として携帯電話、パソコン等の可搬型
機器類に多く使用され、今後も需要がさらに高まると予
想されている。
2. Description of the Related Art In recent years, lithium secondary batteries have been
It is widely used as a high-capacity secondary battery in portable devices such as mobile phones and personal computers, and it is expected that demand will increase further in the future.

【0003】このような可搬型機器類の小型化への流れ
を受けて、リチウム二次電池も小型化、軽量化への要請
が強まっている。
In response to the trend toward miniaturization of such portable devices, there is an increasing demand for miniaturization and weight reduction of lithium secondary batteries.

【0004】そのため、リチウム二次電池を構成するパ
−ツや材料も高性能化の動きが活発になっており、中で
も負極材は電池の性能を左右するものとしてその重要性
が高まっている。
For this reason, the performance and the performance of the parts and materials constituting the lithium secondary battery are becoming active, and in particular, the negative electrode material is becoming more important because it affects the performance of the battery.

【0005】この負極材としてカ−ボン系材料が注目さ
れている。カ−ボン系負極材にはまず放電容量が高容量
であることが要求されるが、それに加えて容量ロスの低
減も重要で、また電池内に多量の負極材を充填できるよ
うにするため高かさ密度であること、急速充電が可能で
あることも望まれている。
Carbon-based materials are attracting attention as the negative electrode material. Carbon-based negative electrode materials are required to have a high discharge capacity, but in addition to this, it is important to reduce capacity loss, and in order to be able to fill a large amount of negative electrode material into a battery, Bulk density and rapid charging are also desired.

【0006】このようなカ−ボン系負極材の放電容量や
容量ロスは、カ−ボンの結晶性と密接な関係がある。即
ち、カ−ボンの結晶性が高くなるほど放電容量が向上す
る傾向がある。
The discharge capacity and capacity loss of such a carbon-based negative electrode material are closely related to the crystallinity of the carbon. That is, the discharge capacity tends to improve as the carbon crystallinity increases.

【0007】そこでカ−ボンの結晶性を高めるために、
最終処理である黒鉛化の温度を高くする方法が考えられ
る。
Therefore, in order to enhance the crystallinity of carbon,
A method of increasing the temperature of graphitization, which is the final treatment, can be considered.

【0008】しかしながらこのように黒鉛化温度を高め
る方法は、3000℃程度が限度であり、それ以上の高
温になると不都合が生じる。このため高結晶のカ−ボン
を得る方法として、黒鉛化温度を高めることに替わる方
法が検討され、触媒を添加する技術が有力視されてい
る。この触媒としては炭化ケイ素(SiC)粉末が有効
とされており、これを添加するとカ−ボン材の結晶性が
確実に向上し、放電容量が高くなることがわかってい
る。しかし、SiCは固体であるため分散性に難があ
り、触媒添加効果が十分にならない問題がある。このよ
うな問題から触媒添加の効果をいかにして高めて、高結
晶性のカ−ボン負極材を得るかが技術的課題となってい
る。
However, such a method of increasing the graphitization temperature is limited to about 3000 ° C., and at higher temperatures, inconvenience occurs. Therefore, as a method for obtaining highly crystalline carbon, a method replacing the raising of the graphitization temperature has been studied, and a technique of adding a catalyst is regarded as promising. It is known that silicon carbide (SiC) powder is effective as this catalyst, and it is known that the addition of this powder surely improves the crystallinity of the carbon material and increases the discharge capacity. However, since SiC is a solid, it has a difficulty in dispersibility, and there is a problem that the effect of adding a catalyst is not sufficient. From such a problem, it is a technical subject how to enhance the effect of catalyst addition to obtain a highly crystalline carbon negative electrode material.

【0009】[0009]

【発明の課題】上記のようなリチウム二次電池負極材の
高性能化への要求に応えるために、本発明者は高容量で
あるとともに、容量ロスが少ないリチウム二次電池負極
材を製造するために、充分な触媒添加効果により、高結
晶の負極材が得られる方法を提供する。
DISCLOSURE OF THE INVENTION In order to meet the above demand for higher performance of a lithium secondary battery negative electrode material, the present inventor manufactures a lithium secondary battery negative electrode material having a high capacity and a small capacity loss. Therefore, a method for obtaining a highly crystalline negative electrode material by a sufficient catalyst addition effect is provided.

【0010】[0010]

【課題解決の手段】上記のような課題を解決するため
に、本発明者は鋭意検討した結果、炭素材料の黒鉛化促
進触媒として一般に使用されるSiC粉末に替えてSi
Cの前駆体高分子であるポリカルボシランを原料コ−ク
ス、バインダ−ピッチに添加することにより、最初から
固体のSiC粉末を添加するよりSiCの分散性が改善
されることを見出した。
In order to solve the above problems, the present inventor has conducted extensive studies and as a result, as a result of replacing SiC powder commonly used as a graphitization promoting catalyst for carbon materials with Si powder.
It has been found that the addition of polycarbosilane, which is a precursor polymer of C, to the raw material coke and the binder pitch improves the dispersibility of SiC more than the addition of solid SiC powder from the beginning.

【0011】即ち、本発明者が提案するのは、原料ピッ
チとバインダ−ピッチとポリカルボシランとを混合し、
混熱した後、成形して成形体とし、次いで焼成及び黒鉛
化して、粉砕・分級することを特徴とするリチウム二次
電池用負極材の製造方法である。
That is, the present inventor proposes that a raw material pitch, a binder pitch, and polycarbosilane are mixed,
A method for producing a negative electrode material for a lithium secondary battery, which comprises heat-mixing, molding into a molded body, followed by firing and graphitization, followed by pulverization and classification.

【0012】以下に本発明の構成要件について、さらに
詳細に説明する。
The constituent features of the present invention will be described in more detail below.

【0013】本発明においては、原料コ−クス、バイン
ダ−ピッチ、ポリカルボシランの三種の材料を使用する
が、まず原料コ−クスとしては、生コ−クス、カルサイ
ンコ−クス等を使用する。生コ−クスは石炭または石油
系ピッチを熱処理し、不溶融化したメソフェ−ズ系生コ
−クスが、またカルサインコ−クスは生コ−クスを13
50℃付近でカルサイン処理したカルサインコ−クス等
が使用できる。原料コ−クスの粒度は、特に限定される
ものではないが、平均で50μm以下が適当である。
In the present invention, three kinds of raw material coke, binder pitch, and polycarbosilane are used. First, raw coke, calcine coke, etc. are used as the raw coke. The raw coke is a mesophase raw coke which is unmelted by heat treating coal or petroleum pitch, and the calcine coke is 13
It is possible to use calcine coke or the like which has undergone calcine treatment at about 50 ° C. The particle size of the raw coke is not particularly limited, but an average of 50 μm or less is suitable.

【0014】次にバインダ−ピッチは石炭系のピッチを
使用する。ピッチの軟化点は特に限定されないが、通
常、200℃以下のものが適当である。
Next, as the binder pitch, coal pitch is used. The softening point of the pitch is not particularly limited, but normally 200 ° C. or lower is suitable.

【0015】本発明では原料コ−クスおよびバインダ−
ピッチにポリカルボシランを添加することが特徴であ
る。
In the present invention, raw material coke and binder
The feature is that polycarbosilane is added to the pitch.

【0016】ポリカルボシランの軟化点は、150〜3
00℃とする。軟化点が150℃未満では、焼成時の飛
散量が多くなり、効果が低下し、300℃を超えると、
触媒の添加効果が十分に出なくなり、いずれも好ましく
ない。
The softening point of polycarbosilane is 150 to 3
Set to 00 ° C. If the softening point is less than 150 ° C, the amount of scattering during firing increases, and the effect decreases, and if it exceeds 300 ° C,
The effect of adding the catalyst is not sufficiently exerted, which is not preferable.

【0017】本発明では、上記の原料コ−クス、バイン
ダ−ピッチ、ポリカルボシランの三種の材料を混合し、
窒素等の不活性ガス雰囲気中で混熱する。
In the present invention, the above-mentioned three kinds of raw material coke, binder pitch and polycarbosilane are mixed,
Heat is mixed in an atmosphere of an inert gas such as nitrogen.

【0018】混合の重量割合については、原料コ−クス
100部に対してバインダ−ピッチを10〜50部とす
ることが好ましい。バインダ−ピッチが10部未満では
成形が不可能となり、本発明の効果を発揮できなくな
り、また50部を超えると負極材の放電容量等の性能が
低下する。また原料コ−クス100部に対してポリカル
ボシランを7部以上とすることが好ましい。ポリカルボ
シランが7部未満では、放電容量等の電池性能が低下す
る。
Regarding the weight ratio of the mixture, it is preferable that the binder pitch is 10 to 50 parts with respect to 100 parts of the raw material coke. If the binder pitch is less than 10 parts, molding becomes impossible and the effect of the present invention cannot be exhibited, and if it exceeds 50 parts, the performance such as discharge capacity of the negative electrode material deteriorates. Further, it is preferable that the amount of polycarbosilane is 7 parts or more based on 100 parts of the raw material coke. If the amount of polycarbosilane is less than 7 parts, the battery performance such as the discharge capacity is deteriorated.

【0019】混熱の温度は、150℃以上とする。本発
明においては、混熱の温度をポリカルボシランの軟化点
以上とすることにより、ポリカルボシランを均一に分散
させ、焼成後にSiCに転換した場合に、黒鉛化触媒S
iCの添加効果を高め、高容量の負極材を得ることがで
きる。本発明で使用するポリカルボシランの軟化点は、
上記のように150〜300℃なので混熱温度を150
℃以上とする。150℃未満では、混合を均一に行うこ
とができず、負極材の性能が低下する。
The temperature of the mixed heat is 150 ° C. or higher. In the present invention, the temperature of the mixed heat is set to be equal to or higher than the softening point of the polycarbosilane so that the polycarbosilane is uniformly dispersed, and when the polycarbosilane is converted into SiC after firing, the graphitization catalyst S
The effect of adding iC can be enhanced and a high capacity negative electrode material can be obtained. The softening point of the polycarbosilane used in the present invention is
As mentioned above, since the temperature is 150-300 ℃
℃ or above. If the temperature is lower than 150 ° C, the mixing cannot be performed uniformly, and the performance of the negative electrode material deteriorates.

【0020】混熱の方法は特に限定されないが、通常は
ニ−ダ−等を使用する。
The method of mixing heat is not particularly limited, but a kneader or the like is usually used.

【0021】混熱した後は、適宜な方法で成形体とす
る。成形の方法や条件は、特に限定されるものではな
く、成形体を得ることができればよい。
After the heat is mixed, a molded body is formed by an appropriate method. The molding method and conditions are not particularly limited as long as a molded product can be obtained.

【0022】成形後は、不活性ガス雰囲気中または、還
元性ガス雰囲気中で焼成する。焼成の温度は特に限定さ
れないが、通常600℃以上で十分である。
After molding, firing is performed in an inert gas atmosphere or a reducing gas atmosphere. The firing temperature is not particularly limited, but 600 ° C. or higher is usually sufficient.

【0023】焼成後、不活性ガスまたは還元性ガス雰囲
気中で黒鉛化をする。黒鉛化の温度は、2800℃以上
とする。2800℃未満では、放電容量が低下する。
After firing, graphitization is carried out in an inert gas or reducing gas atmosphere. The graphitization temperature is 2800 ° C. or higher. If it is less than 2800 ° C, the discharge capacity is lowered.

【0024】最終的に粉砕・分級することにより、本発
明の製造方法によるリチウム二次電池用負極材が得られ
る。粒度は平均で50μm以下とするのが適当である。
以上のようにして、本発明の製造方法によりリチウム二
次電池負極材が得られる。
By finally pulverizing and classifying, a negative electrode material for a lithium secondary battery according to the manufacturing method of the present invention can be obtained. It is suitable that the average particle size is 50 μm or less.
As described above, the lithium secondary battery negative electrode material is obtained by the manufacturing method of the present invention.

【0025】[0025]

【発明の効果】本発明によるとリチウム二次電池用カ−
ボン負極材の製造につき、黒鉛化温度を高めることな
く、ポリカルボシランの添加効果により、高結晶の負極
材を得ることができる。本発明の製造方法により得られ
たリチウム二次電池負極材は、高容量であるとともに、
容量ロスが少ない。また、かさ密度が高く、電池内に多
量の負極材を充填することができる。さらに急速充電性
があり、ハンドリング性も良好である。
According to the present invention, a lithium secondary battery car
In producing a Bon negative electrode material, a highly crystalline negative electrode material can be obtained by the addition effect of polycarbosilane without increasing the graphitization temperature. The lithium secondary battery negative electrode material obtained by the production method of the present invention has a high capacity,
Little capacity loss. Further, the bulk density is high, and a large amount of negative electrode material can be filled in the battery. Further, it has a quick charge property and a good handling property.

【0026】[0026]

【実施例および比較例】[Examples and Comparative Examples]

【実施例1】市販の石炭系ピッチ(名称:PK−QL
川崎製鉄(株)製)を窒素ガス雰囲気中、500℃で2
4時間熱処理し、更に、平均粒径20μmに粉砕し、生
コ−クスの微粉を得た。この微粉100重量部に対し
て、バインダ−ピッチとして前記のMPM−100を3
0重量部、触媒としてポリカルボシラン(名称:PCS
日本カ−ボン(株)製)の粉末を20重量部混合し
て、ニ−ダ中、200℃で混熱した。これを加圧成形し
た後、窒素ガス雰囲気中、800℃で焼成し、更に、ア
チソン式黒鉛化炉で黒鉛化し、平均粒径25μmに粉砕
してリチウムイオン二次電池用黒鉛粉末を得た。得られ
た黒鉛粉末の黒鉛化度はd002で3.359Åであっ
た。
Example 1 Commercially available coal-based pitch (name: PK-QL
Kawasaki Steel Co., Ltd.) in a nitrogen gas atmosphere at 500 ° C for 2
It was heat-treated for 4 hours and further pulverized to an average particle size of 20 μm to obtain fine powder of raw coke. To 100 parts by weight of this fine powder, 3 parts of the above-mentioned MPM-100 was used as a binder pitch.
0 parts by weight, polycarbosilane as a catalyst (name: PCS
20 parts by weight of powder of Nippon Carbon Co., Ltd. was mixed and mixed in a kneader at 200 ° C. This was pressure-molded, then fired at 800 ° C. in a nitrogen gas atmosphere, further graphitized in an Acheson type graphitizing furnace, and ground to an average particle size of 25 μm to obtain a graphite powder for a lithium ion secondary battery. The graphitization degree of the obtained graphite powder was d 002 and was 3.359Å.

【0027】次にこの黒鉛粉末を用いて以下のように電
池を作成し、電池特性を評価した。本来、黒鉛粉末は負
極として用いるが、本発明では対極にリチウム金属を使
用したため、正極で電池の特性を評価した。電極の製造
は黒鉛粉末100重量部とスチレンブタジェンラバ−2
重量部、カルボキシメチルセルロ−ス1重量部に水を添
加してペ−スト化した後、ドクタ−ブレ−ドを用いて銅
箔上に塗布し、乾燥させた。乾燥後、これを1cm2
面積になるように円形に打ち抜き、更に1ton/cm
2の圧力でプレスし、電極を調整した。対極及び参照極
としてリチウム金属を使用し、電解液として1MLiClO4
/EC:DEC(体積比1:1)を用いて三極式ビ−カ
−セルを組み立てた。
Next, using this graphite powder, a battery was prepared as follows and the battery characteristics were evaluated. Originally, graphite powder was used as the negative electrode, but since lithium metal was used as the counter electrode in the present invention, the characteristics of the battery were evaluated with the positive electrode. The electrode is manufactured by using 100 parts by weight of graphite powder and styrene butadiene rubber-2.
After adding water to 1 part by weight of carboxymethyl cellulose to form a paste, it was applied on a copper foil using a doctor blade and dried. After drying, it was punched out into a circle with an area of 1 cm 2 and further 1 ton / cm
The electrode was adjusted by pressing at a pressure of 2 . Lithium metal is used as the counter electrode and the reference electrode, and 1M LiClO4 is used as the electrolyte.
A triode beaker cell was assembled using / EC: DEC (volume ratio 1: 1).

【0028】充電は0.5mA/cm2の電流密度で定
電流充電後、10mVで定電圧充電に切り替え、0.0
1mAで終止した。また、放電は、0.5mA/cm2
の電流密度で定電流放電1.5Vまで行った。測定温度
は30℃である。測定結果は放電容量が366mAh/
g、容量ロスは22mAh/gであった。
Charging was performed at a constant current of 0.5 mA / cm 2 at a constant current and then switched to a constant voltage at 10 mV to obtain 0.0.
It ended at 1mA. The discharge is 0.5 mA / cm 2
The constant current discharge was performed up to 1.5 V at the current density of. The measurement temperature is 30 ° C. The measurement result shows that the discharge capacity is 366 mAh /
g, the capacity loss was 22 mAh / g.

【0029】[0029]

【比較例1】実施例1においてポリカルボシランを使用
しないこと以外はすべて実施例1と同様の方法でリチウ
ム二次電池用黒鉛粉末を得た。得られた黒鉛粉末の黒鉛
化度はd002で3.364Åであった。実施例1と同様
にして電池特性を測定した結果、放電容量は330mA
h/g、容量ロスは34mAh/gであった。
Comparative Example 1 Graphite powder for a lithium secondary battery was obtained in the same manner as in Example 1 except that polycarbosilane was not used. The degree of graphitization of the obtained graphite powder was d 002 , which was 3.364Å. As a result of measuring the battery characteristics in the same manner as in Example 1, the discharge capacity was 330 mA.
The h / g and the capacity loss were 34 mAh / g.

【0030】[0030]

【比較例2】実施例1おけるポリカルボシランを市販の
炭化珪素粉末とすること以外はすべべて実施例1と同様
にしてリチウム二次電池用黒鉛粉末を得た。得られた黒
鉛粉末の黒鉛化度はd002で3.361Åであった。実
施例1と同様にして電池特性を測定した結果、放電容量
は351mAh/g、容量ロスは38mAh/gであっ
た。
Comparative Example 2 A graphite powder for a lithium secondary battery was obtained in the same manner as in Example 1, except that the commercially available silicon carbide powder was used as the polycarbosilane in Example 1. Graphitization degree of the resulting graphite powder was 3.361Å at d 002. As a result of measuring the battery characteristics in the same manner as in Example 1, the discharge capacity was 351 mAh / g and the capacity loss was 38 mAh / g.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G046 EA01 EA02 EA03 EB02 EC02 EC06 5H029 AJ03 AL07 AM03 AM05 AM07 CJ02 CJ06 CJ08 EJ03 EJ12 HJ01 HJ14 5H050 AA08 BA16 CB08 EA23 GA02 GA05 GA08 GA10 HA01 HA14   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G046 EA01 EA02 EA03 EB02 EC02                       EC06                 5H029 AJ03 AL07 AM03 AM05 AM07                       CJ02 CJ06 CJ08 EJ03 EJ12                       HJ01 HJ14                 5H050 AA08 BA16 CB08 EA23 GA02                       GA05 GA08 GA10 HA01 HA14

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 原料コ−クスとバインダ−ピッチとポリ
カルボシランとを混合し、混熱した後、成形して成形体
とし、次いで焼成および黒鉛化して粉砕・分級すること
を特徴とするリチウムイオン二次電池用負極材の製造方
法。
1. Lithium which is obtained by mixing a raw material coke, a binder pitch and polycarbosilane, mixing them with heat, molding them into a molded body, and then calcining and graphitizing to pulverize and classify. A method for manufacturing a negative electrode material for an ion secondary battery.
【請求項2】 請求項1においてポリカルボシランの
軟化点が150〜300℃であるリチウムイオン二次電
池用負極材の製造方法。
2. The method for producing a negative electrode material for a lithium ion secondary battery according to claim 1, wherein the polycarbosilane has a softening point of 150 to 300 ° C.
【請求項3】 請求項1において原料コ−クスとバイ
ンダ−ピッチとポリカルボシランを混合する重量割合
が、原料コ−クス100部に対してバインダ−ピッチを
10〜50部、かつ原料コ−クス100部に対してポリ
カルボシランを7部以上とするリチウムウムイオン二次
電池用負極材の製造方法。
3. The raw material coke, the binder pitch, and the polycarbosilane according to claim 1, wherein the weight ratio is 10 to 50 parts of binder pitch to 100 parts of raw coke, and the raw coke A method for producing a negative electrode material for a lithium-ion secondary battery, wherein the polycarbosilane is contained in an amount of 7 parts or more per 100 parts of the cast.
【請求項4】 請求項1において、原料コ−クスとバ
インダ−ピッチとポリカルボシランの混熱の温度が15
0℃以上であるリチウムイオン二次電池用負極材の製造
方法。
4. The mixed heat temperature of raw material coke, binder pitch and polycarbosilane according to claim 1,
A method for producing a negative electrode material for a lithium ion secondary battery, which has a temperature of 0 ° C or higher.
【請求項5】 請求項1においてポリカルボシランの
軟化点が150〜300℃で、原料コ−クスとバインダ
−ピッチとポリカルボシランの混熱の温度が150℃以
上であるリチウムイオン二次電池用負極材の製造方法。
5. The lithium ion secondary battery according to claim 1, wherein the polycarbosilane has a softening point of 150 to 300 ° C., and the temperature of mixed heat of the raw material coke, the binder pitch and the polycarbosilane is 150 ° C. or more. For manufacturing negative electrode materials for automobiles.
【請求項6】 請求項5において、原料コ−クスとバ
インダ−ピッチとポリカルボシランを混合する重量割合
が、原料コ−クス100部に対してバインダ−ピッチを
10〜50部、かつ原料コ−クス100部に対してポリ
カルボシランを7部以上とするリチウムイオン二次電池
用負極材の製造方法。
6. The mixing ratio of raw material coke, binder pitch and polycarbosilane according to claim 5, wherein the binder pitch is 10 to 50 parts and the raw material coke is 100 parts of raw coke. -A method for producing a negative electrode material for a lithium-ion secondary battery, wherein the polycarbosilane is 7 parts or more per 100 parts of the cast.
【請求項7】 請求項1〜5記載のいずれかの製造方
法によるリチウムイオン二次電池用負極材を用いたリチ
ウムイオン二次電池。
7. A lithium ion secondary battery using the negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 5.
JP2001369547A 2001-12-04 2001-12-04 Method for producing negative electrode material for high performance lithium ion secondary battery Expired - Fee Related JP3645215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001369547A JP3645215B2 (en) 2001-12-04 2001-12-04 Method for producing negative electrode material for high performance lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001369547A JP3645215B2 (en) 2001-12-04 2001-12-04 Method for producing negative electrode material for high performance lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2003168435A true JP2003168435A (en) 2003-06-13
JP3645215B2 JP3645215B2 (en) 2005-05-11

Family

ID=19178916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001369547A Expired - Fee Related JP3645215B2 (en) 2001-12-04 2001-12-04 Method for producing negative electrode material for high performance lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP3645215B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064980A1 (en) * 2012-10-24 2014-05-01 東海カーボン株式会社 Process for manufacturing graphite powder for lithium secondary battery negative electrode material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064980A1 (en) * 2012-10-24 2014-05-01 東海カーボン株式会社 Process for manufacturing graphite powder for lithium secondary battery negative electrode material
JP2014103095A (en) * 2012-10-24 2014-06-05 Tokai Carbon Co Ltd Method of manufacturing graphite powder for lithium secondary battery negative electrode material
CN104756292A (en) * 2012-10-24 2015-07-01 东海炭素株式会社 Process for manufacturing graphite powder for lithium secondary battery negative electrode material
EP2913873A4 (en) * 2012-10-24 2016-06-29 Tokai Carbon Kk Process for manufacturing graphite powder for lithium secondary battery negative electrode material
TWI573763B (en) * 2012-10-24 2017-03-11 東海碳素股份有限公司 Method for producing graphite powder for lithium secondary battery negative electrode material
US10308511B2 (en) 2012-10-24 2019-06-04 Tokai Carbon Co., Ltd. Process for manufacturing graphite powder for lithium secondary battery negative electrode material

Also Published As

Publication number Publication date
JP3645215B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
CN111225888A (en) Method for preparing negative active material and lithium secondary battery comprising same
JP7471303B2 (en) Negative electrode active material for lithium secondary battery and method for producing same
KR102240777B1 (en) Method for manufacturing negative electrode material for rechargeable lithium battery
KR20090094818A (en) Composite graphite particles for non-aqueous secondary batteries, negative electrode material containing the same, negative electrodes, and non-aqueous secondary batteries
EP3718968B1 (en) Method of manufacturing composite anode material
JP2020024950A (en) Anode active material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
KR101612603B1 (en) Carbon-silicon complex, negative active material for secondary battery including the same and method for preparing the same
KR102176343B1 (en) Method for manufacturing negative electrode material for rechargeable lithium battery
JP3716818B2 (en) Method for producing negative electrode material for high performance lithium ion secondary battery using natural graphite
KR20190054045A (en) Method for manufacturing negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same
KR20060084430A (en) Non-aqueous electrolyte secondary battery-use cathode material, production method therefor, non-aqueous electrolyte secondary battery-use cathode and non-aqueous electrolyte secondary battery using the cathode material
JP2004196609A (en) Production method for composite graphite particle, composite graphite particle, cathode material for lithium ion secondary battery, and lithium ion secondary battery
JPH10294111A (en) Graphite carbon material coated with graphite for lithium secondary battery negative electrode material and its manufacture
JP2003297357A (en) Negative electrode material for lithium secondary battery and manufacturing method for negative electrode material
JP3716830B2 (en) Method for producing negative electrode material for lithium ion secondary battery
KR100450348B1 (en) Carbonaceous material for cell and cell containing the carbonaceous material
JP3915072B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and battery using the same
JP2003132888A (en) Manufacturing method of carbonaceous anode material for lithium secondary battery and lithium secondary battery using the carbonaceous anode material
KR102043788B1 (en) Negative electrode active material for rechargeable lithium battery, method of preparing of the same and rechargeable lithium battery including the same
JP2003168435A (en) Manufacturing method of negative electrode material for lithium ion secondary battery
JP3939842B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material
JP2010257982A (en) Anode active material for lithium secondary battery, and lithium secondary battery including the same
JP2003100291A (en) Negative electrode material of high performance lithium secondary battery
JP4770094B2 (en) Carbon material manufacturing method
JP3588354B2 (en) Method for producing negative electrode material for high performance lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3645215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees