JP3939842B2 - Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material - Google Patents

Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material Download PDF

Info

Publication number
JP3939842B2
JP3939842B2 JP36443197A JP36443197A JP3939842B2 JP 3939842 B2 JP3939842 B2 JP 3939842B2 JP 36443197 A JP36443197 A JP 36443197A JP 36443197 A JP36443197 A JP 36443197A JP 3939842 B2 JP3939842 B2 JP 3939842B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium ion
electrode material
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36443197A
Other languages
Japanese (ja)
Other versions
JPH11185757A (en
Inventor
治雄 阪越
宇大 田中
正之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP36443197A priority Critical patent/JP3939842B2/en
Publication of JPH11185757A publication Critical patent/JPH11185757A/en
Application granted granted Critical
Publication of JP3939842B2 publication Critical patent/JP3939842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオンを脱ドープ/ドープするリチウムイオン二次電池の負極に適用される材料、及びこれを製造するための方法、並びにこの負極材料を用いたリチウムイオン二次電池に関する。
【0002】
【従来の技術】
近年、電子機器の軽量化に伴い、小型且つ軽量で高エネルギー密度の二次電池の要求が高まっている。かかる観点から、非水電解液二次電池、特にLiCoO2 等を正極活物質とし、負極に炭素材料を用いたリチウムイオン二次電池(以下「リチウム二次電池」という。)が脚光を浴びている。
【0003】
上記負極に使用される炭素材料としては、千数百℃以下の温度で熱処理された黒鉛(Graphite) 構造が未発達状態にある「非晶質系」と称されるものと、黒鉛構造が発達した状態にある「黒鉛系」と称されるものに大別される。これらの非晶質系炭素材料及び黒鉛系炭素材料は、それぞれに特徴を有している。しかし、初期サイクルにおける充放電効率の高さ、電位平坦性等を考慮すると、実際の電池においては黒鉛系炭素材料の方が有利との見方が一般的である。
【0004】
このような黒鉛系炭素材料の一つとして、メソフェーズ構造の黒鉛化炭素粒子からなる材料が注目を集めている。この理由は、このようなメソフェーズ構造の黒鉛化炭素粒子からなる材料をリチウム二次電池の負極材として利用した場合には、充放電効率(リチウムイオンの脱ドープ/ドープ量),サイクル特性,安全性等の点でより優れた特性を発揮しやすくなることが明らかとなってきたからである。特に、黒鉛化炭素粒子として、球形を保ちつつその結晶化(黒鉛化)が進んだものほど、顕著な特性を発揮しやすいことが分かってきた。
【0005】
【発明が解決しようとする課題】
ところで、一般に炭素質原料粉末から製品としての黒鉛化炭素粉末を得るプロセスとしては、原料粉末をピッチ,合成樹脂等のバインダーと共に混練りし、ブロック体に成形した後に熱処理(黒鉛化)し、その後粉砕,粒度調整を行う方式が採用される。一旦ブロック体としてから黒鉛化するのは、原料を粉末状態のまま黒鉛化した場合に比べて、粒度調整後の黒鉛化炭素粉末としてバラツキの小さいものを効率よく安定して得ることができるからである。
【0006】
しかし、メソフェーズ構造の黒鉛化炭素粒子粉末を得ようとする場合に、上記プロセスに単純に従っても、優れた特性を持つものは得られないという問題がある。即ち、上記プロセスによる成形(ブロック化)時の加圧により生原料(メソフェーズ構造の黒鉛化炭素粒子の生原料に相当し、メソフェーズ構造を有するもの)が本来特性として有する強い自己焼結作用により、熱処理後の粉砕,粒度調整工程においてかなりの黒鉛化炭素粒子についてメソフェーズ構造が壊れてしまうからである。これでは、メソフェーズ構造の黒鉛化炭素粒子であるがゆえに期待できる負極材としての優れた特性が得られない。
【0007】
そこで、メソフェーズ構造の生原料の熱処理には、通常、非成形(非ブロック化)方式が採用される。具体例で言えば、まずピッチ類の炭化初期過程において生成したメソフェーズ小球体をピットマトリックス中から分離した後、耐熱るつぼに入れて、熱処理を行うことにより、メソフェーズ構造の黒鉛化炭素粒子を得ている。
【0008】
しかし、上記のるつぼ黒鉛化方式では、熱処理後の粉砕,粒度調整によって得られた黒鉛化炭素粒子にはバラツキが大きく、また強い自己焼結作用のために粉砕,粒度調整でメソフェーズ構造がある程度損壊することは避けられない。また、耐熱るつぼに装填できるメソフェーズ小球体の量が少ないため、一度に少量しか黒鉛化することができない。こうした事情のために、メソフェーズ構造の黒鉛化炭素粒子からなる製品としての粉末は、非常に高価なものとなっている。
【0009】
しかも、黒鉛化炭素粒子の高結晶化を実現するために3000℃近くまで加熱(黒鉛化)する際に、一般に2400℃程度を超えると熱エネルギー効率は低下しがちであるが、これが粉体での熱処理の場合、るつぼ内に含まれる空気が断熱層として作用するため、結晶化がより一層鈍くなりがちとなる。その一方で、るつぼの寿命は早まる傾向を示す。このような熱エネルギーロスとるつぼの短命化はランニングコストの増加につながり、この面からもメソフェーズ構造の黒鉛化炭素粒子からなる製品粉末の高価格化に拍車をかけている。
【0010】
なお、熱処理のみで高結晶化を図ろうとするるつぼ黒鉛化方式の改善策として、例えば熱処理温度は2400℃程度でありながら、メソフェーズ小球体に予めホウ素を添加しておくことで黒鉛化品の結晶化度を上げようとする方法も考えられるが、この方法では黒鉛化品のメソフェーズ構造が損なわれて針状構造となり、負極材としての本来の優れた特性が得られにくいという重大な欠点がある。また、メソフェーズ構造を有する黒鉛化炭素粒子は、放電容量としては300mAh/g余が限界であり、そしてその形状的特徴から黒鉛化炭素粒子同士の接点が少なく、このため実際にリチウム二次電池の負極用炭素材として使用する場合、ケッチェンブラック等の導電助剤を添加してシート化されるのが一般的であり、かかる導電助剤の添加も高価格化の一因となっている。
【0011】
本発明は、上記の事情に鑑みてなされたものであり、充放電効率等の点で少なくとも従来以上の優れた特性を発揮でき、さらに放電容量が大きく且つ大量生産が可能で製造コストの大幅な低減化に貢献しうるリチウムイオン二次電池用負極材料及びその製造方法並びにその負極材料を用いたリチウムイオン二次電池を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、原料として、メソフェーズ構造の黒鉛化炭素粒子(製品)の黒鉛化前の生原料だけでなく、この生原料に対して、自己焼結性を有さない複合物を予め添加して使用すれば、以後、るつぼ黒鉛化プロセスにおいても、また成形黒鉛化プロセス(熱処理温度は2400℃程度以上)においても、黒鉛化処理後の粉砕,粒度調整工程でメソフェーズ構造はほとんど損なわれることがなく、性能的にもさらに優れた黒鉛化炭素粒子が得られることを見い出した。しかも成形黒鉛化プロセスの場合には、バラツキの小さいメソフェーズ構造を有する粉体を主体とする黒鉛化炭素粒子を高収率でかつ安定して得られることも見い出した。さらに、上記複合物が、黒鉛化する際に触媒黒鉛化作用を発揮する元素を含有する物質、あるいは人造黒鉛やキッシュ黒鉛である場合には、得られた黒鉛化炭素粒子のリチウム二次電池用負極炭素材としての性能がより優れたものとなることを見出し、これらの知見を基にさらに検討を続けた末、本発明を完成させるに至ったものである。
【0013】
即ち、本発明のリチウム二次電池用負極材料は、メソフェーズ構造の黒鉛化炭素粒子を主体とする粉末であって、前記黒鉛化炭素粒子には、該黒鉛化炭素粒子に対して予め設定された割合で混合され、黒鉛化炭素粒子の生原料(黒鉛化前のものでメソフェーズ構造を有する原料であり、以下「生メソ原料」という。)を黒鉛化する際に自己焼結性を有さない複合物が混在されてなること、そしてこの複合物が、黒鉛化する際に触媒黒鉛化作用を発揮する物質、又は人造黒鉛もしくはキッシュ黒鉛であることを基本的特徴とするものである。
【0014】
また、本発明のリチウム二次電池用負極材料の製造方法は、生メソ原料に上記複合物を混合したものを、粒状集合状態のまま熱処理して、又は加圧によりブロック化した後熱処理し、熱処理物(ブロック体を含む)を粉砕,粒度調整することを基本的特徴とするものである。
【0015】
さらに、本発明のリチウム二次電池は、負極活物質として、上記リチウム二次電池用負極材料を用いてなることを特徴とするものである。これによれば、メソフェーズ構造の黒鉛化炭素粒子が持つ優れた特性は損なうことなく、しかも放電容量の点で少なくとも従来以上の優れた特性を発揮でき、かつ製造コストの低減化に貢献しうるリチウム二次電池とすることができる。
【0016】
以下、本発明を詳細に説明する。
本発明のリチウム二次電池用負極材料は、上記したようにメソフェーズ構造の黒鉛化炭素粒子を主体とする粉末であって、各黒鉛化炭素粒子については粉砕,粒度調整後もその形状が損なわれることなく、しかも従来以上の性能を発揮しうるものであり、このような材料を得るための製造方法は、以下の通りである。
【0017】
▲1▼混合工程
生メソ原料に対し、生メソ原料を黒鉛化する際に自己焼結性を有さない複合物を一定の割合で添加し、混合する工程である。まず、生メソ原料としては、メソフェーズ構造を有する炭素質のものであれば特に制限はないが、入手しやすい点ではメソフェーズ小球体が好適である。このようなメソフェーズ小球体を使用することで、負極板作製のためのシート化時の取り扱いが容易になり、また充放電効率に優れたものとすることができるからである。一方、複合物としては、上記生メソ原料の熱処理時に自己焼結性を有さないものであれば特に制限はないが、黒鉛化時に黒鉛化を促進させる触媒的作用を発揮するような元素を含有するもの、又は人造黒鉛もしくはキッシュ黒鉛であることが望ましい。また、人造黒鉛としては、石油系,石炭系のものがあるが、特に制限はない。自己焼結性を有さない複合物として人造黒鉛やキッシュ黒鉛を使用すると、これらが品質的に比較的安定しているため、その分最終製品である黒鉛化炭素粒子の品質の一層の安定化を期待できるという利点がある。
【0018】
上記の触媒黒鉛化作用を発揮しうる元素としては、鉄,ニッケル,アルミニウム等種々知られており、特に制限はないが、その元素を含有する複合物として、具体的には、ケイ素を含有する天然産出材、ケイ素又はケイ素化合物のいずれか一種以上を含むものであることが望ましい。ケイ素は、岩石中に多く産出し、地殻中の主要成分であって、酸素に次いで多量に存在するものである。そこで、上記のケイ素を含有する天然産出材としては、特に天然黒鉛あるいはカオリナイトが有効である。天然黒鉛等を使用すれば、比較的容易かつ安価に入手することができ、負極材料の製造コストの低減化につながるからである。
【0019】
特に、天然黒鉛又は人造黒鉛もしくはキッシュ黒鉛の添加が好ましいのは、生メソ原料が黒鉛化された後のメソフェーズ構造の黒鉛化炭素粒子同士の接触割合を高め、導電助剤的機能を発揮させることができると共に、それら自体が持つ放電容量の高さを生かすことができるからである。従って、メソフェーズ構造の黒鉛化炭素粒子からなる粉体を負極用炭素材料として用いる場合には、従来、黒鉛化炭素粒子の接触を高めるために一般に添加されていた導電助剤を不要とすることができ、この面からも製造コストの一層の低減化に貢献することができる。
【0020】
また、上記複合物としては、工業的に容易かつ安価に製造することができるケイ素又はケイ素化合物、特にケイ素酸化物も有効である。ケイ素酸化物は、石英,珪砂及び珪石(これらはケイ素炭化物も含んでいる。)の主成分である一方、従来公知の半導体技術を駆使して容易に製造することもでき、製造コストの低減化に貢献できると共に、黒鉛化時の一部昇華により微細気孔が生成されて充放電容量のアップに寄与することができるからである。
【0021】
上記複合物の添加量は、上記メソフェーズ構造の黒鉛化炭素粒子に対する混合割合にして、1〜40重量%相当分に設定することが望ましい。複合物が少なすぎるとメソフェーズの自己焼結性を分散させることができず、初期の目的つまりメソフェーズ構造の損壊もあまりなく、性能的にも優れた黒鉛化炭素粒子を得るとの目的が達成しにくくなるため、1重量%以上とすることが望ましい。また、黒鉛化時に触媒黒鉛化作用を引き出し、高結晶化されたメソフェーズを得るという観点からも1重量%以上とすることが望ましい。
【0022】
その反面、複合物が多すぎると生メソ原料の割合が相対的に少なくなり、黒鉛化炭素粒子そのものの充放電効率の低下等、メソフェーズ材の持つ優れた特性が生かされなくなってしまうため、40重量%以下とすることが望ましい。特に複合物としてケイ素酸化物を使用する場合は、その混合割合は、1〜20重量%でも十分である。これは、ケイ素酸化物中の酸素による酸化作用あるいは黒鉛化時の昇華等により黒鉛化炭素粒子に微細気孔が生成されるが、20重量%を超えるとその微細気孔が多くなり、充放電容量の増加分以上に充放電効率の低下を招きやすくなるためである
【0023】
▲2▼熱処理工程
るつぼ黒鉛化プロセスの場合は、上記▲1▼の混合工程で得られた混合原料物を耐熱製るつぼに投入して所定温度まで昇温し、黒鉛化する工程である。なお、黒鉛化工程の前に、1000℃前後の焼成工程を経由させることは、任意に採用可能な付加的手段である。耐熱性るつぼとしては種々の材質のものが挙げられるが、黒鉛化物への汚染防止の観点から黒鉛るつぼが望ましい。また、黒鉛化温度は2400℃以上に設定する。2400℃未満では十分な黒鉛化構造が得られないためである。
【0024】
また、黒鉛化時に触媒黒鉛化作用を営む元素、例えばケイ素の場合、ケイ素そのものが一部昇華してしまうか、又は残留して黒鉛化が終了する。従って、昇華が起こった部分では、ケイ素原子に相当する空隙が生じ、リチウムイオンをトラップするサイトが新たに生成することになり、充放電容量の増大につながる。また、ケイ素が残留した場合は、充放電効率の向上が期待できる。
【0025】
一方、成形黒鉛化プロセスの場合は、上記▲1▼の混合工程で得られた混合原料物を冷間静水圧プレス等の加圧によりブロック化した後、所定温度まで昇温し、黒鉛化する工程である。なお、るつぼ黒鉛化プロセスの場合と同様に、黒鉛化工程の前に1000℃前後の焼成工程を経由させることは、任意に採用可能な付加的手段であるが、焼成工程を事前に経由させると、黒鉛化過程でのブロックの割れ発生を効果的に防止でき、その後のハンドリングが行いやすくなるため、黒鉛化プロセスとしてはより望ましい形態となる。加圧によりブロック化するのは、熱処理後の粉砕,粒度調整により得られる黒鉛化炭素粒子のバラツキをできるだけ小さなものとするためである。
【0026】
ブロック化のための成形圧力は、熱処理後の粉砕しやすさ等の観点から、1500kgf/cm2 以下が望ましい。また、成形によりブロック化された混合原料物中の複合物は、生メソ原料相互のいわば緩衝材としての機能を発揮し、生メソ原料そのものは本来、自己焼結性が強いものであるが、ブロック体として熱処理することにより、生メソ原料の自己焼結力を弱めることが可能となる。
【0027】
▲3▼粒度調整工程
上記▲2▼の熱処理工程で得られた黒鉛化物を粉砕し、粒度調整を行う工程である。成形黒鉛化プロセスの場合は、前記黒鉛化物は黒鉛化ブロックとなる。粉砕等の粒度調整は常法に従って行えばよいが、平均粒径(50%D)として10〜40μmのメソフェーズ黒鉛粉末が得られるように予め設定して粉砕し、粒度調整することが望ましい。平均粒径が10μm未満では、微粉部分が増えることにより比表面積が大きくなり、従って充放電効率の低下が目立つようになるからである。一方、平均粒径が40μmを超えると、リチウムイオンが黒鉛層間を拡散する時間が長くなり、その分急速充放電性能の低下が目立つようになるからである。
【0028】
上記▲1▼〜▲3▼の一連の工程として、るつぼ黒鉛化プロセスにて2400℃以上での黒鉛化及びその後の粉砕,粒度調整工程を経由しても、メソフェーズ構造はほとんど損なわれておらず、性能的にも優れた黒鉛化炭素粒子を得ることが可能となる。また、成形黒鉛化プロセスを経由した場合でも、るつぼ黒鉛化プロセスの場合と同様に優れた特性を有するメソフェーズ構造の黒鉛化炭素粒子が得られ、しかも本プロセスの場合には、バラツキの小さいメソフェーズ構造の黒鉛化炭素粒子を高収率でかつ安定して得ることが可能となる。
【0029】
【実施例】
(実施例1)
以下の混合工程(▲1▼),熱処理工程(▲2▼)及び粒度調整工程(▲3▼)を順次経て、本発明負極材料となる粉末(メソフェーズ構造の黒鉛化炭素粒子を主体とする粉末)を得た。即ち、
▲1▼まず、平均粒径20μmのメソフェーズ小球体炭素粉末と平均粒径10μmの天然黒鉛粉末,人造黒鉛粉末及びキッシュ黒鉛粉末とを用意し、メソフェーズ小球体粉末と天然黒鉛粉末,メソフェーズ小球体粉末と人造黒鉛粉末、及びメソフェーズ小球体粉末とキッシュ黒鉛粉末の3種類の組合わせでそれぞれ配合する。但し、その配合割合は、メソフェーズ小球体の黒鉛化品に対する天然黒鉛,人造黒鉛あるいはキッシュ黒鉛の割合にして1〜40重量%相当になるように、天然黒鉛粉末,人造黒鉛粉末又はキッシュ黒鉛粉末のそれぞれと生メソ原料を配合し、その後混合する(混合工程)。
▲2▼次に、上記▲1▼の混合工程で得られた混合原料物を黒鉛るつぼに投入して、いわゆるアチェソン法に従って2600℃まで昇温し、黒鉛化を行う(熱処理工程)。
▲3▼さらに、上記▲2▼の熱処理工程より、天然黒鉛,人造黒鉛又はキッシュ黒鉛が分散介在する状態で黒鉛化された熱処理物を、平均粒径20μmとなるように粉砕した後、さらに粒度調整を行う(粒度調整工程)。
【0030】
(比較例1)
実施例1の混合工程で、配合割合がメソフェーズ小球体の黒鉛化品に対する天然黒鉛の割合にして0.5重量%相当になるように混合したものと45重量%相当になるように混合したもののそれぞれについて、以後実施例1と同じプロセスで熱処理,粒度調整された黒鉛化粉体を得た。
【0031】
(実施例2)
以下の混合工程(▲1▼),成形工程(▲2▼),熱処理工程(▲3▼)及び粒度調整工程(▲4▼)を順次経て、本発明負極材料となる粉末(メソフェーズ構造の黒鉛化炭素粒子を主体とする粉末)を得た。即ち、
▲1▼まず、平均粒径20μmのメソフェーズ小球体炭素粉末と平均粒径10μmの天然黒鉛粉末,人造黒鉛粉末及びキッシュ黒鉛粉末とを用意し、メソフェーズ小球体粉末と天然黒鉛粉末,メソフェーズ小球体粉末と人造黒鉛粉末、及びメソフェーズ小球体粉末とキッシュ黒鉛粉末の3種類の組合わせでそれぞれ配合する。但し、その配合割合は、メソフェーズ小球体の黒鉛化品に対する天然黒鉛,人造黒鉛あるいはキッシュ黒鉛の割合にして1〜40重量%相当になるように、天然黒鉛粉末,人造黒鉛粉末又はキッシュ黒鉛粉末のそれぞれと生メソ原料を配合し、その後混合する(混合工程)。
▲2▼次に、上記▲1▼の混合工程で得られた混合原料物を金枠付きのラバー容器に入れ、1000kgf/cm2 下での静水圧成形を行って、混合原料物をブロック化する(成形工程)。
▲3▼次に、上記▲2▼の成形工程にてブロック化された混合原料物を1000℃還元性雰囲気下で焼成した後、さらにアチェソン法に従って2600℃まで昇温し、黒鉛化を行う(熱処理工程)。
▲4▼さらに、上記▲3▼の熱処理工程より、天然黒鉛,人造黒鉛又はキッシュ黒鉛が分散介在する状態で黒鉛化された熱処理物を、平均粒径20μmとなるように粉砕した後、さらに粒度調整を行う(粒度調整工程)。
【0032】
(実施例3)
以下の混合工程(▲1▼),熱処理工程(▲2▼)及び粒度調整工程(▲3▼)を順次経て、本発明負極材料となる粉末(メソフェーズ構造の黒鉛化炭素粒子を主体とする粉末)を得た。即ち、
▲1▼まず、平均粒径20μmのメソフェーズ小球体粉末と平均粒径10μmのSiO2 粉末とを用意して両者を配合する。但し、その配合割合は、メソフェーズ小球体の黒鉛化品に対するSiO2 の割合にして1〜20重量%相当になるように、SiO2 粉末と生メソ原料を配合し、その後混合する(混合工程)。
▲2▼次に、上記▲1▼の混合工程で得られた混合原料物を黒鉛るつぼに投入して、アチェソン法に従って2600℃まで昇温し、黒鉛化を行う(熱処理工程)。
▲3▼さらに、上記▲2▼の熱処理工程より、SiO2 が分散介在する状態で黒鉛化された熱処理物を、平均粒径20μmとなるように粉砕した後、さらに粒度調整を行う(粒度調整工程)。
【0033】
(比較例2)
実施例3の混合工程で、配合割合がメソフェーズ小球体の黒鉛化品に対するSiO2 の割合にして0.5重量%相当になるように混合したものと25重量%相当になるように混合したもののそれぞれについて、以後実施例3と同じプロセスで熱処理,粒度調整された黒鉛化粉体を得た。
【0034】
(実施例4)
以下の混合工程(▲1▼),成形工程(▲2▼),熱処理工程(▲3▼)及び粒度調整工程(▲4▼)を順次経て、本発明負極材料となる粉末(メソフェーズ構造の黒鉛化炭素粒子を主体とする粉末)を得た。即ち、
▲1▼まず、平均粒径20μmのメソフェーズ小球体粉末と平均粒径10μmのSiO2 粉末とを用意して両者を配合する。但し、その配合割合は、メソフェーズ小球体の黒鉛化品に対するSiO2 の割合にして1〜20重量%相当になるように、SiO2 粉末と生メソ原料を配合し、この後混合する(混合工程)。
▲2▼次に、上記▲1▼の混合工程で得られた混合原料物を金枠付きラバー容器に入れ、1000kgf/cm2 下での静水圧成形を行って、混合原料物をブロック化する(成形工程)。
▲3▼次に、上記▲2▼の成形工程にてブロック化された混合原料物を1000℃還元性雰囲気下で焼成した後、さらにアチェソン法に従って2600℃まで昇温し、黒鉛化を行う(熱処理工程)。
▲4▼さらに、上記▲3▼の熱処理工程より、SiO2 が分散介在する状態で黒鉛化された熱処理物を、平均粒径20μmとなるように粉砕した後、さらに粒度調整を行う(粒度調整工程)。
【0035】
(比較例3)
以下の熱処理工程(▲1▼)及び粒度調整工程(▲2▼)を経て、メソフェーズ小球体の黒鉛化炭素粉末を得た。
▲1▼平均粒径20μmの生メソ原料を黒鉛るつぼに投入し、アチェソン法に従って2600℃まで昇温し、生メソ原料の熱処理(黒鉛化)を行う(熱処理工程)。
▲2▼上記▲1▼の熱処理工程で得られたメソフェーズ小球体の熱処理物を、平均粒径20μmとなるように粉した後、さらに粒度調整を行う(粒度調整工程)。
【0036】
(比較例4)
熱処理(黒鉛化)温度を3000℃に設定する以外は、比較例1と同じ条件でメソフェーズ小球体の黒鉛化炭素の粉末を得た。
【0037】
(比較例5)
以下の成形工程(▲1▼),熱処理工程(▲2▼)及び粒度調整工程(▲3▼)を経て、メソフェーズ小球体黒鉛化炭素の粉末を得た。
▲1▼平均粒径20μmの生メソ原料を金枠付きラバー容器に入れ、1000kgf/cm2 下での静水圧成形を行って、生メソ原料をブロック化する(成形工程)。
▲2▼次に、上記▲1▼の成形工程にてブロック化された生メソブロックを1000℃還元性雰囲気下で焼成した後、さらにアチェソン法に従って2600℃まで昇温し、生メソブロックの熱処理(黒鉛化)を行う(熱処理工程)。
▲3▼さらに、上記▲2▼の熱処理工程で得られたメソフェーズ小球体の黒鉛化ブロックを、平均粒径20μmとなるように粉砕した後、さらに粒度調整を行う(粒度調整工程)。
【0038】
〔黒鉛化粉体の収率の調査、及びメソフェーズ小球体の形状の観察〕
上記実施例1〜4及び比較例1〜5で平均粒径20μmに粉砕された黒鉛化粉体を、粒径5〜63μmに収まるように粒度調整を行ったが、▲1▼そのときの収率、▲2▼その粒径範囲内における黒鉛化メソフェーズ小球体の形状確認、▲3▼その粒度調整済黒鉛化粉体の結晶化度についてそれぞれ調べた結果を、表1〜3に示す。なお、黒鉛化メソフェーズ小球体の球形度の確認は走査型電子顕微鏡の観察により行った。実施例1〜4、比較例4,5で得られた黒鉛化メソフェーズ小球体のSEM写真を図1〜6に示す。図1〜6は、それぞれ実施例1〜4、比較例4,5に対応する。また、結晶化度の測定は、X線回折法(学振法)及びn−ブタノールによる真密度測定法により行った。
【0039】
【表1】

Figure 0003939842
【0040】
【表2】
Figure 0003939842
【0041】
【表3】
Figure 0003939842
【0042】
表1〜3及び図1〜6より、以下の諸事項((1) 〜(4) )が理解できる。
(1) 実施例1〜4の収率は、比較例3〜5の収率よりも高い。実施例1〜4では、本発明に係る複合物の添加によりメソフェーズ構造が本来有する強い自己焼結作用を抑制する効果が現れているものと考えられる。一方、比較例3〜5は、生メソ原料のみを使用しているために、メソフェーズ構造に由来する強い自己焼結作用を受けてメソフェーズ構造の損壊の割合が増え、その分収率が低くなっているものと考えられる。特に、比較例5の場合、収率が低いだけでなく、成形時の加圧でメソフェーズ構造がほとんど壊れてしまっていることが分かる(図6参照)。
(2) 黒鉛化粉体の真密度の値は、自己焼結性を有さない複合物の添加量が増えるにつれて大きくなる傾向にある。
(3) X線回折の結果、a軸方向の結晶子の大きさLaはすべて100nmを超えていたが、c軸方向の結晶子の大きさLcは上記複合物の添加量が増えるに従って大きくなる傾向にある。
(4) 黒鉛化メソフェーズ小球体は、上記複合物の添加量が増えるに従って、より球形度を保持しやすくなる傾向にある。
(5) 成形工程(ブロック化)を経て得られた黒鉛化粉体は、成形工程を経ていないものに比べてLcが大きくなっており、真密度も若干大きくなっていることが分かる。また、上記複合物の添加量が20%の場合には、収率も増加していることが分かる。
【0043】
〔負極板の作製〕
厚み20μmの銅箔からなる集電体の表面に、活物質の炭素材料として、上記実施例1〜4及び比較例3〜5でそれぞれ得られた粉体(86重量部)と、バインダーとしてのポリフッ化ビニリデン(14重量部)とを混合し、N−メチル−2−ピロリドン(NMP)を適宜加えてペースト状に調整したものを塗布、乾燥することにより負極板を製作した。
【0044】
〔単板試験〕
上記の実施例1〜4及び比較例1〜5のそれぞれ対応する負極板(合計29種類)を単板試験に供し、各負極板の充放電容量及び初期効率を測定した。このとき、対極及び参照電極として、リチウム金属を用い、0.5mA/cm2 で0Vまで充電し、3Vまで放電を行った。電解液としては、LiPF6 を含むエチレンカーボネートとジメチルカーボネートの混合液を使用した。但し、エチレンカーボネートとジメチルカーボネートの等体積混合溶媒にLiPF6 を1mol/lの濃度で溶かした溶液を使用した。
【0045】
かかる単板試験における各負極板の放電容量及び初期効率の測定結果を表1〜3に併せて示す。
【0046】
表1〜3から明らかなように、次の事項が判明した。即ち、自己焼結性を有さない複合物(天然黒鉛,人造黒鉛,キッシュ黒鉛,SiO2 )の添加量が本発明要件(特定範囲)を満たす実施例1〜4の場合は、いずれも初期効率に優れており、かつ放電容量が非常に高くなっていることが分かる。特にSiO2 の添加の場合(実施例3,4)は、2600℃と比較的低めの熱処理温度であるにもかかわらず、熱処理時の結晶化の促進が放電容量のアップにつながっていることが推察できる。しかも、比較例1〜5に比べ、初期効率の改善度も高くなっていることが分かる。
【0047】
〔リチウム二次電池の作製〕
図2は本発明に係るリチウム二次電池の一例を示す分解斜視図である。図2において、1はリチウム二次電池、2は非水系の電解液からなる渦巻き状の電極群、3は正極板、4は負極板、5はセパレータ、6は電池ケース、7はケース蓋、8は安全弁、10は正極端子、11は正極リードである。リチウム二次電池1は、角形リチウム二次電池と称されるものであって、電池ケース6内には、正極板3、負極板4、セパレータ5及び電極群2を収納している。電池ケース6の本体は、鉄で作製する。具体的には、このケース本体の厚みを0.3mmに設定し、内寸を33.1×46.5×7.5mmに設定する。さらに、ケース本体の表面には、厚さ5μmのニッケルメッキを施し、側面上部には、電解液を注入するための孔100を開けた。
【0048】
また、正極板3は、集電体である厚さ20μmのアルミニウム箔に、活物質として、リチウムコバルト複合酸化物を保持している。正極板3は、バインダーであるポリフッ化ビニリデン(8重量部)と、導電剤であるアセチレンブラック(5重量部)とを、活物質(87重量部)とともに混合してペースト状に調整した後、集電体材料の両面に塗布及び乾燥することによって作製した。
【0049】
また、負極板4は、実施例1(b) ,2(b) ,3(b) ,4(b) 及び比較例3〜5に対応させて7種類のものを作製した。即ち、まず実施例1〜4の各粉体(86重量部)と、バインダーとしてのポリフッ化ビニリデン(14重量部)とを混合した後、NMPを適宜加えてペースト状にしたものを塗布、乾燥することにより、7種類の負極板を製作した。次に比較例3〜5の各粉体についても、同様の作業を実施して3種類の負極板を製作した。さらに、セパレータ5としては、ポリエチレン微多孔膜を使用した。
【0050】
一方、電解液としては、LiPF6 を含むエチレンカーボネートとジメチルカーボネートとの混合液を使用した。但し、エチレンカーボネートとジメチルカーボネートの等体積混合溶媒にLiPF6 を1mol/lの濃度で溶かした溶液とした。
【0051】
上記のようにして、最終的に上記構成に係る設計容量900mAhの電池A,B,C,D(使用炭素材は、それぞれ上記実施例1(b) ,2(b) ,3(b) ,4(b) の各粉体である。)及び電池E,F,G(使用炭素材は、上記比較例3〜5の各粉体である。)を作製した。但し、電解液量は、25mlである。
【0052】
〔リチウム二次電池の性能試験〕
クーロン効率及び放電容量を測定し、サイクル特性を評価した。
即ち、実施例電池A〜Gについて、0.5Cの電流で5時間、4.1Vまで定電流定電圧充電を行って満充電状態とした。この状態で、各電池A〜Gを1Cの電流で2.75Vまで放電し、クーロン効率及び放電容量を測定した。さらに、この測定と同様の条件で、500サイクルまで実施した。これらの結果を表4に示す。
【0053】
【表4】
Figure 0003939842
【0054】
表4から明らかなように、本発明の要件を満足するリチウム二次電池(A〜D)は、本発明の要件、特に特定量の自己焼結性を有さない複合物を含有するという要件を欠くリチウム二次電池(E〜G)に比べ、放電容量,クーロン効率とも非常に高くなっており、またサイクル特性も非常に優れていることが分かる。
【0055】
なお、本発明に係るリチウム二次電池については、その構成として、正極,負極及びセパレータと非水電解液との組み合わせとしてもよい。あるいは、正極、負極及びセパレータとしての有機又は無機固体電解質と非水電解液との組み合わせとしてもよく、またこれに限定されるものではない。
【0056】
また、上記実施例では、正極の活物質として、リチウムコバルト複合酸化物を用いる場合について記載したが、リチウムコバルト系複合酸化物、リチウムニッケル又はリチウムニッケル系複合酸化物、二硫化チタンをはじめとするスピネル型リチウムマンガン酸化物等のマンガン系活物質、あるいは五酸化バナジウム及び三酸化モリブデン等のように、リチウムイオンを吸蔵放出するホスト物質であれば種々のものを用いることができる。
【0057】
加えて、上記実施例に係る電池は角形であるが、円筒形、コイン形あるいはペーパー形等のように、その形状は任意のものが考えられる。
また、有機溶媒も基本的に限定されるものではない。従って、リチウム二次電池に用いられるものであれば、本発明の目的を十分に達成することができる。例えば、溶媒としては、プロピレンカーボネート、エチレンカーボネート、γ−プチロラクトン、スルホラン等の高誘電体溶媒に、1,2−ジメトキシエタン、ジメチルカーボネート等の低粘度溶媒を混合したものを用いることができる。あるいは、リチウムイオン伝導性の固体電解質、例えばPAN等の有機系固体電解質又はリチウムタイタネート等の無機系固体電解質を単独で又は有機溶媒と組み合わせて用いてもよい。
【0058】
【発明の効果】
以上説明したように、本発明によれば、充放電容量等の点で少なくとも従来以上の優れた特性を発揮でき、且つ大量生産が可能で製造コストの大幅な低減化に貢献しうるリチウムイオン二次電池用負極材料及びその製造方法並びにその負極材料を用いたリチウムイオン二次電池を提供することができる。
【図面の簡単な説明】
【図1】実施例1(b) で得られた黒鉛化メソフェーズ小球体のSEM写真を示す図である。
【図2】実施例2(b) で得られた黒鉛化メソフェーズ小球体のSEM写真を示す図である。
【図3】実施例3(b) で得られた黒鉛化メソフェーズ小球体のSEM写真を示す図である。
【図4】実施例4(b) で得られた黒鉛化メソフェーズ小球体のSEM写真を示す図である。
【図5】比較例4で得られた黒鉛化メソフェーズ小球体のSEM写真を示す図である。
【図6】比較例5で得られた黒鉛化メソフェーズ小球体のSEM写真を示す図である。
【図7】本発明に係るリチウム二次電池の一例を示す分解斜視図である。
【符号の説明】
1 リチウムイオン二次電池
2 電極群
3 正極板
4 負極板
5 セパレータ
6 電池ケース
7 ケース蓋
8 安全弁
10 正極端子
11 正極リード[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a material applied to a negative electrode of a lithium ion secondary battery in which lithium ions are dedoped / doped, a method for producing the same, and a lithium ion secondary battery using the negative electrode material.
[0002]
[Prior art]
In recent years, with the reduction in weight of electronic devices, there is an increasing demand for secondary batteries that are small, lightweight, and have high energy density. From this point of view, non-aqueous electrolyte secondary batteries, particularly LiCoO 2 Lithium ion secondary batteries (hereinafter referred to as “lithium secondary batteries”) using, for example, a positive electrode active material and a carbon material for the negative electrode are in the spotlight.
[0003]
Carbon materials used for the negative electrode include those called “amorphous” in which the graphite (Graphite) structure that has been heat-treated at a temperature of several hundreds of degrees C or less is in an undeveloped state, and the graphite structure has been developed. It is divided roughly into what is called “graphite-based” in the state. Each of these amorphous carbon materials and graphite carbon materials has a characteristic. However, in view of the high charge / discharge efficiency in the initial cycle, potential flatness, and the like, it is common to see that the graphite-based carbon material is more advantageous in an actual battery.
[0004]
As one of such graphite-based carbon materials, a material made of graphitized carbon particles having a mesophase structure has attracted attention. The reason for this is that when such a material consisting of graphitized carbon particles having a mesophase structure is used as a negative electrode material for a lithium secondary battery, charge / discharge efficiency (lithium ion dedoping / doping amount), cycle characteristics, safety This is because it has become clear that more excellent characteristics in terms of properties and the like are easily exhibited. In particular, as graphitized carbon particles, it has been found that the more the crystallization (graphitization) progresses while maintaining the spherical shape, the more easily the remarkable characteristics are exhibited.
[0005]
[Problems to be solved by the invention]
By the way, in general, as a process for obtaining graphitized carbon powder as a product from carbonaceous raw material powder, the raw material powder is kneaded with a binder such as pitch and synthetic resin, formed into a block body, heat treated (graphitized), and thereafter A method of crushing and adjusting the particle size is adopted. Once the block body is graphitized, the graphitized carbon powder after adjusting the particle size can be efficiently and stably obtained as a graphitized carbon powder after the particle size adjustment compared to the case of graphitizing the raw material. is there.
[0006]
However, when obtaining graphitized carbon particle powder having a mesophase structure, there is a problem that even if simply following the above process, a product having excellent characteristics cannot be obtained. That is, due to the strong self-sintering action that the raw material (corresponding to the raw material of graphitized carbon particles having a mesophase structure and having a mesophase structure) by pressurization at the time of molding (blocking) by the above process inherently has the characteristics, This is because the mesophase structure of a considerable amount of graphitized carbon particles is broken in the pulverization and particle size adjustment process after the heat treatment. In this case, excellent characteristics as a negative electrode material that can be expected due to the graphitized carbon particles having a mesophase structure cannot be obtained.
[0007]
Therefore, a non-molding (non-blocking) method is generally employed for heat treatment of raw materials having a mesophase structure. Specifically, first, mesophase spherules formed in the initial stage of carbonization of pitches are separated from the pit matrix, and then put into a heat-resistant crucible and subjected to heat treatment to obtain graphitized carbon particles having a mesophase structure. Yes.
[0008]
However, in the above crucible graphitization method, the graphitized carbon particles obtained by pulverization and particle size adjustment after heat treatment have large variations, and the mesophase structure is damaged to some extent by pulverization and particle size adjustment due to strong self-sintering action. It is inevitable to do. Also, since the amount of mesophase spherules that can be loaded into the heat-resistant crucible is small, only a small amount can be graphitized at a time. For these reasons, powders as products made of graphitized carbon particles having a mesophase structure are very expensive.
[0009]
Moreover, in order to achieve high crystallization of the graphitized carbon particles, when heating to about 3000 ° C. (graphitization), generally, the thermal energy efficiency tends to decrease when the temperature exceeds about 2400 ° C. This is a powder. In the case of this heat treatment, since the air contained in the crucible acts as a heat insulating layer, the crystallization tends to become even slower. On the other hand, crucible life tends to be shortened. This shortening of the heat energy loss crucible leads to an increase in running cost, and from this aspect, the price of product powder made of graphitized carbon particles having a mesophase structure is spurred.
[0010]
As an improvement measure of the crucible graphitization method for achieving high crystallization only by heat treatment, for example, while the heat treatment temperature is about 2400 ° C., boron is added to the mesophase spherules in advance to crystallize the graphitized product. Although a method of increasing the degree of conversion is also conceivable, this method has a serious drawback in that the mesophase structure of the graphitized product is damaged and becomes a needle-like structure, and it is difficult to obtain the original excellent characteristics as a negative electrode material. . In addition, the graphitized carbon particles having a mesophase structure have a limit of more than 300 mAh / g in terms of discharge capacity, and there are few contacts between the graphitized carbon particles because of their shape characteristics. When used as a carbon material for a negative electrode, it is common to form a sheet by adding a conductive aid such as ketjen black, and the addition of such conductive aid also contributes to an increase in cost.
[0011]
The present invention has been made in view of the above circumstances, can exhibit at least superior characteristics in terms of charge / discharge efficiency, etc., and further has a large discharge capacity and enables mass production, resulting in significant manufacturing costs. It aims at providing the negative electrode material for lithium ion secondary batteries which can contribute to reduction, its manufacturing method, and the lithium ion secondary battery using the negative electrode material.
[0012]
[Means for Solving the Problems]
As a result of intensive research to achieve the above object, the present inventors have not only used raw materials before graphitization of graphitized carbon particles (products) having a mesophase structure as raw materials, but also the raw materials. If a composite that does not have self-sintering properties is added and used in advance, both in the crucible graphitization process and in the molding graphitization process (heat treatment temperature of about 2400 ° C. or higher) after the graphitization treatment It has been found that the mesophase structure is hardly impaired in the pulverization and particle size adjustment processes, and that graphitized carbon particles having further superior performance can be obtained. Moreover, in the case of the molding graphitization process, it has also been found that graphitized carbon particles mainly composed of powder having a mesophase structure with small variations can be obtained stably in a high yield. Further, when the composite is a substance containing an element that exhibits catalytic graphitization when graphitizing, or artificial graphite or quiche graphite, the obtained graphitized carbon particles are used for a lithium secondary battery. The present inventors have found that the performance as a negative electrode carbon material is further improved, and have further studied based on these findings, and have completed the present invention.
[0013]
That is, the negative electrode material for a lithium secondary battery of the present invention is a powder mainly composed of graphitized carbon particles having a mesophase structure, and the graphitized carbon particles are preset with respect to the graphitized carbon particles. It is mixed at a ratio and does not have self-sinterability when graphitizing raw material of graphitized carbon particles (raw material before graphitization and having mesophase structure, hereinafter referred to as “raw meso raw material”) The basic feature is that the composite is mixed, and the composite is a substance that exhibits catalytic graphitization when graphitizing, or artificial graphite or quiche graphite.
[0014]
Moreover, the method for producing a negative electrode material for a lithium secondary battery according to the present invention includes a raw meso raw material mixed with the above composite, heat-treated in a granular aggregate state, or heat-treated after blocking by pressurization, The basic feature is that the heat-treated product (including the block body) is pulverized and the particle size is adjusted.
[0015]
Furthermore, the lithium secondary battery of the present invention is characterized by using the above-described negative electrode material for a lithium secondary battery as a negative electrode active material. According to this, lithium is capable of contributing to a reduction in manufacturing cost without impairing the excellent characteristics of graphitized carbon particles having a mesophase structure and at least excellent characteristics in terms of discharge capacity. It can be set as a secondary battery.
[0016]
Hereinafter, the present invention will be described in detail.
The negative electrode material for a lithium secondary battery of the present invention is a powder mainly composed of graphitized carbon particles having a mesophase structure as described above, and the shape of each graphitized carbon particle is impaired even after pulverization and particle size adjustment. The manufacturing method for obtaining such a material is as follows.
[0017]
(1) Mixing process
This is a step of adding and mixing a composite having no self-sintering property at a constant ratio when the raw meso raw material is graphitized with respect to the raw meso raw material. First, the raw meso raw material is not particularly limited as long as it is a carbonaceous material having a mesophase structure, but mesophase microspheres are preferable in terms of easy availability. By using such mesophase spherules, the sheet can be easily handled for producing the negative electrode plate, and the charge / discharge efficiency can be improved. On the other hand, the composite is not particularly limited as long as it does not have self-sintering properties during the heat treatment of the raw meso raw material, but an element that exhibits a catalytic action for promoting graphitization during graphitization is used. It is desirable to contain, artificial graphite or quiche graphite. Artificial graphite includes petroleum-based and coal-based ones, but is not particularly limited. When artificial graphite or quiche graphite is used as a composite that does not have self-sintering properties, these are relatively stable in quality, so the quality of the graphitized carbon particles that are the final product is further stabilized. There is an advantage that can be expected.
[0018]
Various elements such as iron, nickel, and aluminum are known as elements capable of exhibiting the above catalytic graphitizing action, and are not particularly limited. Specifically, the composite containing the elements contains silicon. It is desirable that it contains any one or more of natural products, silicon or silicon compounds. Silicon is produced in large amounts in rocks and is a major component in the earth's crust, and is present in large quantities after oxygen. Therefore, natural graphite or kaolinite is particularly effective as the naturally occurring material containing silicon. This is because if natural graphite or the like is used, it can be obtained relatively easily and inexpensively, leading to a reduction in the manufacturing cost of the negative electrode material.
[0019]
In particular, the addition of natural graphite, artificial graphite, or quiche graphite is preferable because the contact ratio between graphitized carbon particles having a mesophase structure after raw meso raw material is graphitized is increased, and the function of a conductive assistant is exhibited. This is because it is possible to make use of the high discharge capacity of the device itself. Therefore, when using a powder composed of graphitized carbon particles having a mesophase structure as a carbon material for a negative electrode, it is unnecessary to use a conductive additive that is conventionally added to enhance the contact of the graphitized carbon particles. This can also contribute to further reduction in manufacturing cost.
[0020]
Further, as the composite, silicon or a silicon compound, particularly silicon oxide, which can be produced industrially easily and inexpensively is also effective. Silicon oxide is the main component of quartz, silica sand, and silica stone (which also contains silicon carbide), but can also be easily manufactured by making use of conventionally known semiconductor technology, thereby reducing manufacturing costs. This is because fine pores are generated by partial sublimation during graphitization and can contribute to an increase in charge / discharge capacity.
[0021]
The addition amount of the composite is desirably set to a value corresponding to 1 to 40% by weight in a mixing ratio with respect to the graphitized carbon particles having the mesophase structure. If the amount of the composite is too small, the self-sintering property of the mesophase cannot be dispersed, and the initial purpose, that is, the purpose of obtaining graphitized carbon particles excellent in performance with little damage to the mesophase structure is achieved. Since it becomes difficult, it is desirable to set it as 1 weight% or more. Moreover, it is desirable to make it 1% by weight or more from the viewpoint of drawing out the catalyst graphitizing action during graphitization and obtaining a highly crystallized mesophase.
[0022]
On the other hand, if the amount of the composite is too large, the proportion of the raw meso raw material is relatively reduced, and the excellent characteristics of the mesophase material such as a decrease in charge / discharge efficiency of the graphitized carbon particles themselves cannot be utilized. It is desirable to make it not more than wt%. In particular, when silicon oxide is used as the composite, 1 to 20% by weight of the mixing ratio is sufficient. This is because fine pores are generated in graphitized carbon particles due to oxidation by oxygen in silicon oxide or sublimation at the time of graphitization. However, if the amount exceeds 20% by weight, the number of fine pores increases, and the charge / discharge capacity increases. This is because the charge / discharge efficiency is likely to decrease more than the increase.
[0023]
(2) Heat treatment process
In the case of the crucible graphitization process, the mixed raw material obtained in the mixing step (1) is put into a heat-resistant crucible, heated to a predetermined temperature, and graphitized. In addition, it is an additional means which can be arbitrarily employ | adopted to pass through the baking process of about 1000 degreeC before a graphitization process. Examples of the heat-resistant crucible include various materials, but a graphite crucible is desirable from the viewpoint of preventing contamination of the graphitized material. The graphitization temperature is set to 2400 ° C. or higher. This is because if it is less than 2400 ° C., a sufficient graphitized structure cannot be obtained.
[0024]
In the case of an element that performs catalytic graphitization during graphitization, such as silicon, silicon itself partially sublimes or remains and graphitization ends. Therefore, in the portion where sublimation has occurred, voids corresponding to silicon atoms are generated, and sites for trapping lithium ions are newly generated, leading to an increase in charge / discharge capacity. Moreover, when silicon remains, the improvement of charging / discharging efficiency can be expected.
[0025]
On the other hand, in the case of the molding graphitization process, the mixed raw material obtained in the mixing step (1) is blocked by pressurization such as a cold isostatic press, and then heated to a predetermined temperature and graphitized. It is a process. As in the case of the crucible graphitization process, passing the firing step at around 1000 ° C. before the graphitization step is an additional means that can be arbitrarily adopted, but if the firing step is passed in advance, Further, the occurrence of block cracks during the graphitization process can be effectively prevented, and the subsequent handling becomes easier, so that the graphitization process is more desirable. The reason why the block is formed by pressurization is to make the variation of graphitized carbon particles obtained by pulverization and particle size adjustment after heat treatment as small as possible.
[0026]
The molding pressure for blocking is 1500 kgf / cm from the viewpoint of ease of grinding after heat treatment. 2 The following is desirable. In addition, the composite in the mixed raw material blocked by molding exhibits a function as a so-called cushioning material between the raw meso raw materials, and the raw meso raw material itself is inherently highly self-sintering, By heat-treating as a block body, it becomes possible to weaken the self-sintering power of the raw meso raw material.
[0027]
(3) Particle size adjustment process
In this step, the graphitized material obtained in the heat treatment step (2) is pulverized to adjust the particle size. In the case of a molded graphitization process, the graphitized product becomes a graphitized block. The particle size adjustment such as pulverization may be carried out according to a conventional method, but it is desirable to adjust the particle size by setting in advance so as to obtain mesophase graphite powder having an average particle size (50% D) of 10 to 40 μm. This is because if the average particle size is less than 10 μm, the specific surface area increases due to an increase in the fine powder portion, and therefore the reduction in charge / discharge efficiency becomes conspicuous. On the other hand, when the average particle size exceeds 40 μm, the time for lithium ions to diffuse between the graphite layers becomes longer, and the rapid charge / discharge performance decreases accordingly.
[0028]
As a series of steps (1) to (3) above, the mesophase structure is hardly damaged even after passing through graphitization at 2400 ° C. or higher in the crucible graphitization process and subsequent grinding and particle size adjustment steps. Thus, it is possible to obtain graphitized carbon particles having excellent performance. In addition, mesophase-structured mesophase carbon particles having excellent characteristics as in the case of the crucible graphitization process can be obtained even when going through the molding graphitization process. It is possible to stably obtain the graphitized carbon particles with a high yield.
[0029]
【Example】
Example 1
Powder (mainly composed of graphitized carbon particles having a mesophase structure) as a negative electrode material of the present invention through the following mixing step (1), heat treatment step (2) and particle size adjustment step (3) ) That is,
(1) First, mesophase microsphere carbon powder having an average particle diameter of 20 μm and natural graphite powder, artificial graphite powder and quiche graphite powder having an average particle diameter of 10 μm are prepared, and mesophase microsphere powder, natural graphite powder and mesophase microsphere powder are prepared. And artificial graphite powder, and mesophase spherule powder and quiche graphite powder. However, the blending ratio of natural graphite powder, artificial graphite powder or quiche graphite powder is such that the ratio of natural graphite, artificial graphite or quiche graphite to the mesophase spheroidized graphitized product is 1 to 40% by weight. Each and raw meso raw materials are blended and then mixed (mixing step).
(2) Next, the mixed raw material obtained in the mixing step (1) is put into a graphite crucible and heated to 2600 ° C. in accordance with the so-called Acheson method for graphitization (heat treatment step).
(3) Further, after the heat-treated product graphitized in a state where natural graphite, artificial graphite or quiche graphite is dispersed and dispersed from the heat treatment step of (2) above, the powder is further pulverized so as to have an average particle size of 20 μm. Adjustment is performed (particle size adjustment step).
[0030]
(Comparative Example 1)
In the mixing step of Example 1, the blending ratio was a ratio of natural graphite with respect to the graphitized product of mesophase spherules, which was mixed so as to correspond to 0.5% by weight, and mixed so as to correspond to 45% by weight. Thereafter, graphitized powders that were heat-treated and adjusted in particle size by the same process as in Example 1 were obtained.
[0031]
(Example 2)
The powder (mesophase-structured graphite) that becomes the negative electrode material of the present invention is obtained through the following mixing step (1), molding step (2), heat treatment step (3) and particle size adjustment step (4). A powder mainly composed of carbonized carbon particles). That is,
(1) First, mesophase microsphere carbon powder having an average particle diameter of 20 μm and natural graphite powder, artificial graphite powder and quiche graphite powder having an average particle diameter of 10 μm are prepared, and mesophase microsphere powder, natural graphite powder and mesophase microsphere powder are prepared. And artificial graphite powder, and mesophase spherule powder and quiche graphite powder. However, the blending ratio of natural graphite powder, artificial graphite powder or quiche graphite powder is such that the ratio of natural graphite, artificial graphite or quiche graphite to the mesophase spheroidized graphitized product is 1 to 40% by weight. Each and raw meso raw materials are blended and then mixed (mixing step).
(2) Next, the mixed raw material obtained in the mixing step (1) is put into a rubber container with a metal frame, and 1000 kgf / cm. 2 The hydrostatic pressure molding below is performed to block the mixed raw material (molding process).
(3) Next, the mixed raw material blocked in the molding step (2) is calcined in a reducing atmosphere at 1000 ° C., and further heated to 2600 ° C. according to the Acheson method for graphitization ( Heat treatment step).
(4) Further, after the heat-treated product obtained by graphitizing natural graphite, artificial graphite or quiche graphite in a state of being dispersed in the heat treatment step of (3) above, is pulverized so as to have an average particle size of 20 μm, Adjustment is performed (particle size adjustment step).
[0032]
(Example 3)
Powder (mainly composed of graphitized carbon particles having a mesophase structure) as a negative electrode material of the present invention through the following mixing step (1), heat treatment step (2) and particle size adjustment step (3) ) That is,
(1) First, mesophase microsphere powder having an average particle diameter of 20 μm and SiO having an average particle diameter of 10 μm 2 Prepare powder and mix both. However, the blending ratio is SiO for the graphitized product of mesophase spherules. 2 SiO 2 so as to correspond to 1 to 20% by weight. 2 Powder and raw meso raw material are mixed and then mixed (mixing step).
(2) Next, the mixed raw material obtained in the mixing step (1) is put into a graphite crucible and heated to 2600 ° C. according to the Acheson method for graphitization (heat treatment step).
(3) Further, from the heat treatment step (2) above, SiO 2 2 After pulverizing the heat-treated product graphitized in a state of being dispersed and having an average particle size of 20 μm, the particle size is further adjusted (particle size adjusting step).
[0033]
(Comparative Example 2)
In the mixing step of Example 3, the mixing ratio is SiO for graphitized products having mesophase spherules. 2 The graphitized powder obtained by heat treatment and particle size adjustment in the same process as in Example 3 for each of the mixture of 0.5% by weight and the mixture of 25% by weight. Got.
[0034]
Example 4
The powder (mesophase-structured graphite) as the negative electrode material of the present invention is obtained through the following mixing step (1), molding step (2), heat treatment step (3) and particle size adjustment step (4). A powder mainly composed of carbonized carbon particles). That is,
(1) First, mesophase microsphere powder having an average particle diameter of 20 μm and SiO having an average particle diameter of 10 μm 2 Prepare powder and mix both. However, the blending ratio is SiO for the graphitized product of mesophase spherules. 2 SiO 2 so as to correspond to 1 to 20% by weight. 2 Powder and raw meso raw materials are blended and then mixed (mixing step).
(2) Next, the mixed raw material obtained in the mixing step (1) is placed in a rubber container with a metal frame, and 1000 kgf / cm. 2 The hydrostatic pressure molding below is performed to block the mixed raw material (molding process).
(3) Next, the mixed raw material blocked in the molding step (2) is calcined in a reducing atmosphere at 1000 ° C., and further heated to 2600 ° C. according to the Acheson method for graphitization ( Heat treatment step).
(4) Further, from the heat treatment step (3) above, SiO 2 2 After pulverizing the heat-treated product graphitized in a state of being dispersed and having an average particle size of 20 μm, the particle size is further adjusted (particle size adjusting step).
[0035]
(Comparative Example 3)
Through the following heat treatment step (1) and particle size adjustment step (2), graphitized carbon powder of mesophase microspheres was obtained.
(1) Raw meso raw material having an average particle diameter of 20 μm is put into a graphite crucible, and heated to 2600 ° C. according to the Acheson method to perform heat treatment (graphitization) of the raw meso raw material (heat treatment step).
(2) The mesophase spherule heat-treated product obtained in the heat treatment step (1) is pulverized so as to have an average particle size of 20 μm, and then the particle size is further adjusted (particle size adjustment step).
[0036]
(Comparative Example 4)
A mesophase microsphere graphitized carbon powder was obtained under the same conditions as in Comparative Example 1 except that the heat treatment (graphitization) temperature was set to 3000 ° C.
[0037]
(Comparative Example 5)
Through the following forming step (1), heat treatment step (2) and particle size adjustment step (3), mesophase microsphere graphitized carbon powder was obtained.
(1) Place raw meso raw material with an average particle size of 20 μm in a rubber container with a metal frame, and 1000 kgf / cm 2 The raw meso raw material is blocked by forming under hydrostatic pressure (molding process).
(2) Next, after the raw mesoblock blocked in the molding step (1) is fired in a reducing atmosphere at 1000 ° C., the temperature is further raised to 2600 ° C. according to the Acheson method to heat-treat the raw mesoblock. (Graphitization) is performed (heat treatment step).
(3) Further, the graphitized block of mesophase spherules obtained in the heat treatment step (2) is pulverized to an average particle size of 20 μm, and then the particle size is further adjusted (particle size adjusting step).
[0038]
[Investigation of the yield of graphitized powder and observation of the shape of mesophase microspheres]
In the above Examples 1 to 4 and Comparative Examples 1 to 5, the graphitized powder pulverized to an average particle size of 20 μm was adjusted to have a particle size of 5 to 63 μm. Tables 1 to 3 show the results obtained by examining the ratio, (2) confirmation of the shape of the graphitized mesophase spherules within the particle size range, and (3) the crystallinity of the graphitized powder whose particle size has been adjusted. The sphericity of the graphitized mesophase spherules was confirmed by observation with a scanning electron microscope. SEM photographs of the graphitized mesophase microspheres obtained in Examples 1 to 4 and Comparative Examples 4 and 5 are shown in FIGS. 1 to 6 correspond to Examples 1 to 4 and Comparative Examples 4 and 5, respectively. The crystallinity was measured by an X-ray diffraction method (Gakushin method) and a true density measurement method using n-butanol.
[0039]
[Table 1]
Figure 0003939842
[0040]
[Table 2]
Figure 0003939842
[0041]
[Table 3]
Figure 0003939842
[0042]
The following items ((1) to (4)) can be understood from Tables 1 to 3 and FIGS.
(1) The yield of Examples 1-4 is higher than the yield of Comparative Examples 3-5. In Examples 1 to 4, it is considered that the effect of suppressing the strong self-sintering action inherent in the mesophase structure appears by the addition of the composite according to the present invention. On the other hand, since Comparative Examples 3 to 5 use only raw meso raw materials, the ratio of damage to the mesophase structure increases due to the strong self-sintering action derived from the mesophase structure, and the yield decreases accordingly. It is thought that. In particular, in the case of Comparative Example 5, it can be seen that not only the yield is low, but also the mesophase structure is almost broken by pressurization during molding (see FIG. 6).
(2) The true density value of the graphitized powder tends to increase as the amount of the composite having no self-sintering property increases.
(3) As a result of X-ray diffraction, the crystallite size La in the a-axis direction exceeded 100 nm, but the crystallite size Lc in the c-axis direction increased as the amount of the composite added increased. There is a tendency.
(4) Graphitized mesophase microspheres tend to maintain sphericity more easily as the amount of the composite added is increased.
(5) It can be seen that the graphitized powder obtained through the molding step (blocking) has a larger Lc and a slightly higher true density than those not subjected to the molding step. It can also be seen that when the amount of the composite added is 20%, the yield also increases.
[0043]
(Production of negative electrode plate)
As a carbon material of the active material on the surface of a current collector made of copper foil having a thickness of 20 μm, the powder (86 parts by weight) obtained in Examples 1 to 4 and Comparative Examples 3 to 5, respectively, and a binder A negative electrode plate was manufactured by mixing polyvinylidene fluoride (14 parts by weight), applying N-methyl-2-pyrrolidone (NMP) as appropriate to prepare a paste, and drying.
[0044]
[Single plate test]
The corresponding negative electrode plates (29 types in total) in Examples 1 to 4 and Comparative Examples 1 to 5 were subjected to a single plate test, and the charge / discharge capacity and initial efficiency of each negative electrode plate were measured. At this time, lithium metal was used as a counter electrode and a reference electrode, and 0.5 mA / cm. 2 The battery was charged to 0V and discharged to 3V. As the electrolyte, LiPF 6 A mixed solution of ethylene carbonate and dimethyl carbonate containing was used. However, LiPF is used in an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate. 6 Was used at a concentration of 1 mol / l.
[0045]
The measurement results of the discharge capacity and the initial efficiency of each negative electrode plate in the single plate test are shown in Tables 1 to 3.
[0046]
As is clear from Tables 1 to 3, the following matters were found. That is, composites that do not have self-sintering properties (natural graphite, artificial graphite, quiche graphite, SiO 2 In the case of Examples 1 to 4 where the addition amount of () satisfies the requirement (specific range) of the present invention, it can be seen that all are excellent in initial efficiency and have a very high discharge capacity. Especially SiO 2 In the case of the addition of (Examples 3 and 4), it can be inferred that, although the heat treatment temperature is relatively low at 2600 ° C., the promotion of crystallization during the heat treatment leads to an increase in discharge capacity. And it turns out that the improvement degree of initial efficiency is also high compared with Comparative Examples 1-5.
[0047]
[Production of lithium secondary battery]
FIG. 2 is an exploded perspective view showing an example of the lithium secondary battery according to the present invention. In FIG. 2, 1 is a lithium secondary battery, 2 is a spiral electrode group made of a non-aqueous electrolyte, 3 is a positive electrode plate, 4 is a negative electrode plate, 5 is a separator, 6 is a battery case, 7 is a case lid, 8 is a safety valve, 10 is a positive terminal, and 11 is a positive lead. The lithium secondary battery 1 is called a square lithium secondary battery, and a positive electrode plate 3, a negative electrode plate 4, a separator 5, and an electrode group 2 are accommodated in a battery case 6. The main body of the battery case 6 is made of iron. Specifically, the thickness of the case body is set to 0.3 mm, and the inner dimension is set to 33.1 × 46.5 × 7.5 mm. Further, the surface of the case body was plated with nickel having a thickness of 5 μm, and a hole 100 for injecting an electrolytic solution was formed in the upper part of the side surface.
[0048]
The positive electrode plate 3 holds a lithium cobalt composite oxide as an active material in an aluminum foil having a thickness of 20 μm, which is a current collector. The positive electrode plate 3 is prepared by mixing polyvinylidene fluoride (8 parts by weight) as a binder and acetylene black (5 parts by weight) as a conductive agent together with an active material (87 parts by weight) to prepare a paste. It produced by apply | coating and drying on both surfaces of a collector material.
[0049]
Moreover, the negative electrode plate 4 produced seven types corresponding to Example 1 (b), 2 (b), 3 (b), 4 (b) and Comparative Examples 3-5. That is, first, each powder (86 parts by weight) of Examples 1 to 4 and polyvinylidene fluoride (14 parts by weight) as a binder were mixed, and NMP was added as appropriate to form a paste, which was then applied and dried. As a result, seven types of negative electrode plates were produced. Next, the same operation was performed on the powders of Comparative Examples 3 to 5 to produce three types of negative electrode plates. Further, a polyethylene microporous film was used as the separator 5.
[0050]
On the other hand, as an electrolytic solution, LiPF 6 A mixed solution of ethylene carbonate and dimethyl carbonate containing was used. However, LiPF is used in an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate. 6 Was dissolved at a concentration of 1 mol / l.
[0051]
As described above, the batteries A, B, C, and D having a design capacity of 900 mAh according to the above configuration (the carbon materials used are the above Examples 1 (b), 2 (b), 3 (b), 4 (b)) and batteries E, F, and G (the carbon materials used are the powders of Comparative Examples 3 to 5). However, the amount of the electrolytic solution is 25 ml.
[0052]
[Performance test of lithium secondary battery]
Coulomb efficiency and discharge capacity were measured and cycle characteristics were evaluated.
That is, the batteries A to G were charged at a constant current and a constant voltage up to 4.1 V for 5 hours at a current of 0.5 C to be in a fully charged state. In this state, each of the batteries A to G was discharged to 2.75 V with a current of 1 C, and the coulomb efficiency and the discharge capacity were measured. Furthermore, it implemented to 500 cycles on the conditions similar to this measurement. These results are shown in Table 4.
[0053]
[Table 4]
Figure 0003939842
[0054]
As is clear from Table 4, the lithium secondary batteries (A to D) satisfying the requirements of the present invention include the requirements of the present invention, particularly the requirement that the composite material does not have a specific amount of self-sinterability. It can be seen that the discharge capacity and the coulomb efficiency are very high as compared with lithium secondary batteries (E to G) lacking, and the cycle characteristics are also excellent.
[0055]
In addition, about the lithium secondary battery which concerns on this invention, it is good also as a combination of a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte. Or it is good also as a combination of the organic or inorganic solid electrolyte as a positive electrode, a negative electrode, and a separator, and a non-aqueous electrolyte, It is not limited to this.
[0056]
Moreover, in the said Example, although the case where lithium cobalt complex oxide was used as an active material of a positive electrode was described, lithium cobalt type complex oxide, lithium nickel or lithium nickel type complex oxide, and titanium disulfide are included. Various materials can be used as long as they are manganese active materials such as spinel type lithium manganese oxide, or host materials that occlude and release lithium ions, such as vanadium pentoxide and molybdenum trioxide.
[0057]
In addition, the battery according to the above embodiment has a square shape, but may have any shape such as a cylindrical shape, a coin shape, or a paper shape.
Also, the organic solvent is not basically limited. Therefore, if it is used for a lithium secondary battery, the object of the present invention can be sufficiently achieved. For example, a solvent obtained by mixing a high-dielectric solvent such as propylene carbonate, ethylene carbonate, γ-ptyrolactone, or sulfolane with a low-viscosity solvent such as 1,2-dimethoxyethane or dimethyl carbonate can be used. Alternatively, a lithium ion conductive solid electrolyte, for example, an organic solid electrolyte such as PAN or an inorganic solid electrolyte such as lithium titanate may be used alone or in combination with an organic solvent.
[0058]
【The invention's effect】
As described above, according to the present invention, the lithium ion secondary battery can exhibit at least superior characteristics in terms of charge / discharge capacity and the like, can be mass-produced, and can contribute to a significant reduction in manufacturing cost. A negative electrode material for a secondary battery, a production method thereof, and a lithium ion secondary battery using the negative electrode material can be provided.
[Brief description of the drawings]
FIG. 1 is a view showing an SEM photograph of graphitized mesophase microspheres obtained in Example 1 (b).
FIG. 2 is a view showing an SEM photograph of graphitized mesophase microspheres obtained in Example 2 (b).
FIG. 3 is a view showing an SEM photograph of the graphitized mesophase microspheres obtained in Example 3 (b).
FIG. 4 is a view showing an SEM photograph of the graphitized mesophase microspheres obtained in Example 4 (b).
5 is a view showing an SEM photograph of graphitized mesophase microspheres obtained in Comparative Example 4. FIG.
6 is a view showing an SEM photograph of graphitized mesophase microspheres obtained in Comparative Example 5. FIG.
FIG. 7 is an exploded perspective view showing an example of a lithium secondary battery according to the present invention.
[Explanation of symbols]
1 Lithium ion secondary battery
2 Electrode group
3 Positive plate
4 Negative electrode plate
5 Separator
6 Battery case
7 Case lid
8 Safety valve
10 Positive terminal
11 Positive lead

Claims (12)

メソフェーズ構造の黒鉛化炭素粒子を主体とする粉末であって、前記黒鉛化炭素粒子には、該黒鉛化炭素粒子に対して予め設定された割合で混合され、黒鉛化炭素粒子の生原料(黒鉛化前のものでメソフェーズ構造を有する炭素質原料)を黒鉛化する際に自己焼結性を有さない複合物が混在されてなることを特徴とするリチウムイオン二次電池用負極材料。It is a powder mainly composed of graphitized carbon particles having a mesophase structure, and is mixed with the graphitized carbon particles at a ratio set in advance with respect to the graphitized carbon particles. A negative electrode material for a lithium ion secondary battery, wherein a composite material having no self-sintering properties is mixed when graphitizing a carbonaceous raw material having a mesophase structure before conversion. 請求項1に記載のリチウムイオン二次電池用負極材料において、黒鉛化炭素粒子に対する自己焼結性を有さない複合物の混合割合は、1〜40重量%に設定されていることを特徴とするリチウムイオン二次電池用負極材料。2. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the mixing ratio of the composite having no self-sintering property to the graphitized carbon particles is set to 1 to 40 wt%. A negative electrode material for a lithium ion secondary battery. 請求項1又は請求項2に記載のリチウムイオン二次電池用負極材料において、上記生原料は、メソフェーズ小球体であることを特徴とするリチウムイオン二次電池用負極材料。3. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the raw material is a mesophase microsphere. 4. 請求項1〜3のいずれか一項に記載のリチウムイオン二次電池用負極材料において、上記自己焼結性を有さない複合物が、黒鉛化する際に触媒黒鉛化作用を発揮する元素を含有するものであることを特徴とするリチウムイオン二次電池用負極材料。The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the composite that does not have self-sintering properties exhibits an element that exhibits catalytic graphitization when graphitizing. A negative electrode material for a lithium ion secondary battery, comprising: 請求項4に記載のリチウムイオン二次電池用負極材料において、上記複合物は、ケイ素を含有する天然産出材,ケイ素又はケイ素化合物のいずれか一種以上を含むことを特徴とするリチウムイオン二次電池用負極材料。5. The negative electrode material for a lithium ion secondary battery according to claim 4, wherein the composite includes at least one of a naturally occurring material containing silicon, silicon, or a silicon compound. Negative electrode material. 請求項5に記載のリチウムイオン二次電池用負極材料において、天然産出材は、天然黒鉛又はカオリナイトであることを特徴とするリチウムイオン二次電池用負極材料。6. The negative electrode material for a lithium ion secondary battery according to claim 5, wherein the naturally produced material is natural graphite or kaolinite. 請求項5に記載のリチウムイオン二次電池用負極材料において、ケイ素化合物は、ケイ素酸化物であることを特徴とするリチウムイオン二次電池用負極材料。6. The negative electrode material for a lithium ion secondary battery according to claim 5, wherein the silicon compound is a silicon oxide. 請求項1〜3のいずれか一項に記載のリチウムイオン二次電池用負極材料において、上記自己焼結性を有さない複合物が、人造黒鉛又はキッシュ黒鉛であることを特徴とするリチウムイオン二次電池用負極材料。The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the composite having no self-sintering property is artificial graphite or quiche graphite. Negative electrode material for secondary batteries. 請求項1〜8のいずれか一項に記載のリチウムイオン二次電池用負極材料を製造するための方法であって、
▲1▼上記生原料と上記複合物とを混合する混合工程と、
▲2▼この混合工程で得られた混合原料物を耐熱製るつぼに投入して予め定める温度まで昇温し、当該混合原料物を黒鉛化する熱処理工程と、
▲3▼この熱処理工程で得られた黒鉛化物を粉砕及び粒度調整する工程とを含むことを特徴とするリチウムイオン二次電池用負極材料の製造方法。
A method for producing the negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 8,
(1) a mixing step of mixing the raw material and the composite;
(2) A heat treatment step in which the mixed raw material obtained in this mixing step is put into a heat-resistant crucible and heated to a predetermined temperature to graphitize the mixed raw material,
(3) A method for producing a negative electrode material for a lithium ion secondary battery, comprising a step of pulverizing and adjusting the particle size of the graphitized product obtained in the heat treatment step.
請求項1〜8のいずれか一項に記載のリチウムイオン二次電池用負極材料を製造するための方法であって、
▲1▼上記生原料と上記複合物とを混合する混合工程と、
▲2▼この混合工程で得られた混合原料物を加圧してブロック化する成形工程と、
▲3▼この成形工程でブロック化された混合原料物を予め定める温度まで昇温し、当該混合原料物を黒鉛化する熱処理工程と、
▲4▼この熱処理工程で得られた黒鉛化ブロックを粉砕及び粒度調整する工程とを含むことを特徴とするリチウムイオン二次電池用負極材料の製造方法。
A method for producing the negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 8,
(1) a mixing step of mixing the raw material and the composite;
(2) A molding step in which the mixed raw material obtained in this mixing step is pressed to form a block;
(3) A heat treatment step of heating the mixed raw material blocked in this molding step to a predetermined temperature and graphitizing the mixed raw material,
(4) A method for producing a negative electrode material for a lithium ion secondary battery, comprising a step of pulverizing and adjusting the particle size of the graphitized block obtained in the heat treatment step.
請求項9又は請求項10に記載のリチウムイオン二次電池用負極材料の製造方法において、上記熱処理工程における熱処理温度は、2400℃以上に設定されていることを特徴とするリチウムイオン二次電池用負極材料の製造方法。The method for manufacturing a negative electrode material for a lithium ion secondary battery according to claim 9 or 10, wherein the heat treatment temperature in the heat treatment step is set to 2400 ° C or higher. Manufacturing method of negative electrode material. 負極活物質として、請求項1〜8のいずれか一項に記載のリチウムイオン二次電池用負極材料を用いてなることを特徴とするリチウムイオン二次電池。A lithium ion secondary battery comprising the negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 8 as a negative electrode active material.
JP36443197A 1997-12-17 1997-12-17 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material Expired - Fee Related JP3939842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36443197A JP3939842B2 (en) 1997-12-17 1997-12-17 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36443197A JP3939842B2 (en) 1997-12-17 1997-12-17 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material

Publications (2)

Publication Number Publication Date
JPH11185757A JPH11185757A (en) 1999-07-09
JP3939842B2 true JP3939842B2 (en) 2007-07-04

Family

ID=18481794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36443197A Expired - Fee Related JP3939842B2 (en) 1997-12-17 1997-12-17 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material

Country Status (1)

Country Link
JP (1) JP3939842B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001582A (en) * 2011-06-13 2013-01-07 Kansai Coke & Chem Co Ltd Isotropic graphite material, and method for producing the same
JP6120626B2 (en) * 2012-03-22 2017-04-26 三菱化学株式会社 Method for producing composite carbon material for non-aqueous secondary battery
JP6905159B1 (en) * 2019-09-17 2021-07-21 Jfeケミカル株式会社 Method for manufacturing graphite material
CN114744166A (en) * 2022-02-25 2022-07-12 深圳市翔丰华科技股份有限公司 Preparation method of pre-lithiated silica composite material

Also Published As

Publication number Publication date
JPH11185757A (en) 1999-07-09

Similar Documents

Publication Publication Date Title
JP4215633B2 (en) Method for producing composite graphite particles
US9735421B2 (en) Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
TWI390792B (en) Production method of negative electrode for lithium ion secondary battery
JP6511726B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR20130094853A (en) Anode material for lithium ion rechargeable battery, anode for lithium ion rechargeable battery, and lithium ion rechargeable battery
JP5131913B2 (en) Carbon coating method for particles used for electrode material and secondary battery
KR19990083322A (en) Graphite Powders Suited for Negative Electrode Material of Lithium Ion Secondary Battery
JP4403327B2 (en) Graphite powder for negative electrode of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
KR101181623B1 (en) Non-aqueous electrolyte secondary battery-use cathode material, production method therefor, non-aqueous electrolyte secondary battery-use cathode and non-aqueous electrolyte secondary battery using the cathode material
KR20110033134A (en) Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
JPH11339777A (en) Manufacture of secondary battery negative electrode
KR20190019430A (en) Method for manufacturing negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same
JP4128314B2 (en) Carbon material active material for lithium ion secondary battery
KR20190054045A (en) Method for manufacturing negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same
JP4014637B2 (en) Lithium ion secondary battery negative electrode material, manufacturing method thereof, and lithium ion secondary battery using the negative electrode material
JP2004196609A (en) Production method for composite graphite particle, composite graphite particle, cathode material for lithium ion secondary battery, and lithium ion secondary battery
JPH10294111A (en) Graphite carbon material coated with graphite for lithium secondary battery negative electrode material and its manufacture
JP6584975B2 (en) Carbon material for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and method for producing lithium ion secondary battery
JP2016115418A (en) Method for using silicon graphite complex particles, material for improvement of discharge capacity of graphite negative electrode for nonaqueous secondary battery, mix particle, electrode and nonaqueous electrolyte secondary battery
JP3939842B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material
JP4012362B2 (en) Negative electrode active material for lithium secondary battery and method for producing the same
JP3915072B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and battery using the same
JP2023554662A (en) Negative electrode active material for lithium secondary batteries, method for producing the same, and lithium secondary batteries containing the same
JP3522410B2 (en) Anode material for lithium secondary battery and method for producing the same
KR102043788B1 (en) Negative electrode active material for rechargeable lithium battery, method of preparing of the same and rechargeable lithium battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees