JP2003168207A - Perpendicular magnetic recording medium and manufacturing method for perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium and manufacturing method for perpendicular magnetic recording medium

Info

Publication number
JP2003168207A
JP2003168207A JP2001365280A JP2001365280A JP2003168207A JP 2003168207 A JP2003168207 A JP 2003168207A JP 2001365280 A JP2001365280 A JP 2001365280A JP 2001365280 A JP2001365280 A JP 2001365280A JP 2003168207 A JP2003168207 A JP 2003168207A
Authority
JP
Japan
Prior art keywords
magnetic
layer
recording medium
magnetic recording
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001365280A
Other languages
Japanese (ja)
Other versions
JP3988117B2 (en
Inventor
Yasushi Sakai
泰志 酒井
Sadayuki Watanabe
貞幸 渡辺
Hiroyuki Uwazumi
洋之 上住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001365280A priority Critical patent/JP3988117B2/en
Publication of JP2003168207A publication Critical patent/JP2003168207A/en
Application granted granted Critical
Publication of JP3988117B2 publication Critical patent/JP3988117B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a perpendicular magnetic recording medium free from elution of Co from a granular magnetic layer and having excellent electromagnetic transducing characteristics, durability, and productivity and to provide a manufacturing method therefor. <P>SOLUTION: The magnetic layer of the perpendicular magnetic recording medium is constituted of a first magnetic layer 14 of a CoCr based alloy which has a granular structure and whose non-magnetic grain boundary consists of metal oxides or nitrides and a second magnetic layer 15 of a CoCr based alloy which has a non-granular structure and whose non-magnetic grain boundary does not contain metal oxides nor nitride. Thereby, in the first magnetic layer 14, satisfactory electromagnetic transducing characteristics due to the granular structure thereof is secured, while in the second magnetic layer 15, Co atoms eluted from the non-magnetic grain boundary of the first magnetic layer are blocked and high durability of the medium can be secured. Spike noise caused by a soft magnetic backing layer 24 can be drastically suppressed by additionally providing a multi layered base layer 22 and a magnetic domain controlling layer 23 between a non-magnetic substrate 21 and the soft magnetic backing layer 24. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、垂直磁気記録媒体
及び垂直磁気記録媒体の製造方法に関し、より詳細に
は、優れた電磁変換特性と良好な耐久性とを具え、か
つ、生産性に優れた垂直磁気記録媒体及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a perpendicular magnetic recording medium and a method for manufacturing a perpendicular magnetic recording medium, and more particularly, it has excellent electromagnetic conversion characteristics and good durability and is excellent in productivity. And a method for manufacturing the same.

【0002】[0002]

【従来の技術】磁気記録の高密度化を実現する技術とし
て、従来の長手磁気記録方式に代えて、垂直磁気記録方
式が注目されつつある。
2. Description of the Related Art As a technique for realizing high density of magnetic recording, a perpendicular magnetic recording system is attracting attention in place of the conventional longitudinal magnetic recording system.

【0003】垂直磁気記録媒体用の磁気記録層用材料と
しては、現在、主にCoCr系合金結晶質膜が検討され
ており、垂直磁気記録に用いるために、六方最密充填
(hcp)構造をもつCoCr系合金のc軸が膜面に垂
直(c面が膜面に平行)になるように結晶配向を制御し
ている。CoCr系合金の今後の更なる高密度化に対
し、このCoCr系結晶粒の微細化、粒径分布の低減、
粒間の磁気的な相互作用の低減等の試みが行なわれてい
る。
As a material for a magnetic recording layer for a perpendicular magnetic recording medium, a CoCr type alloy crystalline film is currently being studied, and a hexagonal closest packing (hcp) structure is used for use in perpendicular magnetic recording. The crystal orientation is controlled so that the c-axis of the CoCr-based alloy is perpendicular to the film surface (the c-plane is parallel to the film surface). For further densification of CoCr-based alloys in the future, refinement of CoCr-based crystal grains, reduction of grain size distribution,
Attempts have been made to reduce the magnetic interaction between grains.

【0004】一方、長手記録媒体の高密度化のための磁
性層構造制御の一方式として、例えば特開平8−255
342号公報や米国特許5679473号明細書におい
て、一般にグラニュラ磁性層と呼ばれる、磁性結晶粒の
周囲を酸化物や窒化物のような非磁性非金属物質で囲ん
だ構造をもつ磁性層が提案されている。このようなグラ
ニュラ磁性膜は、非磁性非金属の粒界相が磁性粒子を物
理的に分離するため、磁性粒子間の磁気的な相互作用が
低下し、記録ビットの遷移領域に生じるジグザグ磁壁の
形成を抑制するので、低ノイズ特性が得られると考えら
れており、垂直磁気記録媒体の記録層として、グラニュ
ラ磁性層を用いることが提案されている。例えば、IE
EE Trans., Mag., Vol. 36, 2393(2000) には、Ru
を下地層とし、グラニュラ構造をもつCoPtCrO合
金を磁性層とした垂直記録媒体が記載されており、グラ
ニュラ磁性層の下地層であるRu層の膜厚を増加させる
にしたがってc軸配向性が向上し、それに伴い優れた磁
気特性と電磁変換特性が得られている。
On the other hand, as one method of controlling the magnetic layer structure for increasing the density of the longitudinal recording medium, for example, Japanese Patent Laid-Open No. 8-255 is known.
No. 342 and US Pat. No. 5,679,473 propose a magnetic layer generally called a granular magnetic layer having a structure in which magnetic crystal grains are surrounded by a non-magnetic non-metallic substance such as oxide or nitride. There is. In such a granular magnetic film, the non-magnetic non-metal grain boundary phase physically separates the magnetic particles, so that the magnetic interaction between the magnetic particles is reduced and the zigzag magnetic domain wall generated in the transition region of the recording bit is reduced. Since formation is suppressed, it is considered that low noise characteristics can be obtained, and it has been proposed to use a granular magnetic layer as a recording layer of a perpendicular magnetic recording medium. For example, IE
EE Trans., Mag., Vol. 36, 2393 (2000) contains Ru.
Has been described, and a perpendicular recording medium having a CoPtCrO alloy having a granular structure as a magnetic layer has been described. The c-axis orientation is improved as the thickness of the Ru layer, which is the underlayer of the granular magnetic layer, is increased. Accordingly, excellent magnetic characteristics and electromagnetic conversion characteristics have been obtained.

【0005】一方、浮上型磁気ヘッドを用いた磁気記録
装置においては、その磁気ヘッドと磁気記録媒体との間
の距離が数10nmと非常に小さいため、ヘッド−媒体
間の摩擦磨耗特性が装置の耐久性に強く影響する。その
ため、媒体表面に分子量数千の液体潤滑材を塗布するこ
とで、ヘッドとの摩擦磨耗特性を向上させることが一般
に行われている。ここで、媒体の磁性層に含まれている
Co原子が媒体表面に析出した場合、そのCo原子は媒
体表面の液体潤滑材の分解を促進し、媒体の耐久性を著
しく劣化させてしまうことが知られている。そこでこの
ようなCo原子の析出を防ぐため、媒体保護膜の膜厚や
膜質の管理及び媒体表面粗さの制御等が、媒体を作製す
る上で必要不可欠となっている。
On the other hand, in a magnetic recording apparatus using a floating magnetic head, the distance between the magnetic head and the magnetic recording medium is as small as several tens of nm, so that the frictional wear characteristics between the head and the medium are different from those of the apparatus. Strongly affects durability. Therefore, it is generally practiced to improve the friction and wear characteristics with the head by applying a liquid lubricant having a molecular weight of several thousand to the surface of the medium. Here, when the Co atoms contained in the magnetic layer of the medium are deposited on the medium surface, the Co atoms may accelerate the decomposition of the liquid lubricant on the medium surface and may significantly deteriorate the durability of the medium. Are known. Therefore, in order to prevent such precipitation of Co atoms, management of the film thickness and film quality of the medium protective film, control of the medium surface roughness, and the like are essential for producing the medium.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、本発明
者らの検討によると、磁性層としてグラニュラ磁性層を
使用した場合には、磁性層に含まれるCo原子が媒体表
面に容易に析出することが判明した。特に、優れた磁気
特性と電磁変換特性を得るためにスパッタ成膜時のAr
ガス圧を増加させた場合にCo溶出量はより顕著にな
る。Co原子が媒体表面に析出すると、そのCo原子が
媒体表面の液体潤滑材分子を分解することにより、媒体
の摩擦磨耗耐久性を著しく劣化させてしまうという問題
が生じる。
However, according to the study by the present inventors, when a granular magnetic layer is used as the magnetic layer, Co atoms contained in the magnetic layer are easily deposited on the medium surface. found. In particular, in order to obtain excellent magnetic characteristics and electromagnetic conversion characteristics, Ar during sputtering film formation
The amount of Co elution becomes more remarkable when the gas pressure is increased. When Co atoms are deposited on the surface of the medium, the Co atoms decompose liquid lubricant molecules on the surface of the medium, resulting in a problem that the friction and wear durability of the medium is significantly deteriorated.

【0007】本発明は、このような問題に鑑みてなされ
たものであって、その目的とするところは、グラニュラ
磁性層からのCoの溶出を抑制して優れた電磁変換特性
と良好な耐久性とを両立させ、更に、生産性に優れた垂
直磁気記録媒体並びにその製造方法を提供することにあ
る。
The present invention has been made in view of the above problems, and an object thereof is to suppress elution of Co from the granular magnetic layer to provide excellent electromagnetic conversion characteristics and good durability. It is an object of the present invention to provide a perpendicular magnetic recording medium and a method for manufacturing the same, which are compatible with each other.

【0008】[0008]

【課題を解決するための手段】本発明は、このような目
的を達成するために、請求項1に記載の発明は、非磁性
基体上に、軟磁性裏打ち層と、中間層と、CoCr系合
金層の磁性層と、保護層と、液体潤滑剤層とが順次積層
されてなる垂直磁気記録媒体であって、前記磁性層は、
前記中間層側に設けられたグラニュラ構造の第1の磁性
層と、前記保護層側に設けられた非グラニュラ構造の第
2の磁性層とから構成されていることを特徴とする。
In order to achieve such an object, the present invention provides a soft magnetic backing layer, an intermediate layer and a CoCr system on a non-magnetic substrate. A perpendicular magnetic recording medium in which a magnetic layer of an alloy layer, a protective layer, and a liquid lubricant layer are sequentially laminated, the magnetic layer comprising:
It is characterized by comprising a first magnetic layer having a granular structure provided on the intermediate layer side and a second magnetic layer having a non-granular structure provided on the protective layer side.

【0009】また、請求項2に記載の発明は、請求項1
に記載の垂直磁気記録媒体において、前記中間層が、六
方最密充填(hcp)の結晶構造を有するTi、Re、
Ru、Osのいずれかの金属、又は、Ti、Re、R
u、Osのうちの少なくとも一種の金属を含む合金で構
成されていることを特徴とする。
The invention described in claim 2 is the same as claim 1.
The perpendicular magnetic recording medium as described in (1) above, wherein the intermediate layer has a hexagonal close-packed (hcp) crystal structure of Ti, Re,
Ru, Os metal, Ti, Re, R
It is characterized by being composed of an alloy containing at least one metal of u and Os.

【0010】更に、請求項3に記載の発明は、請求項1
又は2に記載の垂直磁気記録媒体において、前記非磁性
基体と前記軟磁性裏打ち層との間に、前記非磁性基体側
の下地層と前記軟磁性裏打ち層側の磁区制御層を順次積
層させたことを特徴とする。
Further, the invention described in claim 3 is the same as claim 1.
Or in the perpendicular magnetic recording medium according to 2, wherein an underlayer on the nonmagnetic substrate side and a magnetic domain control layer on the soft magnetic underlayer side are sequentially laminated between the nonmagnetic substrate and the soft magnetic underlayer. It is characterized by

【0011】請求項4に記載の発明は、垂直磁気記録媒
体の製造方法であって、非加熱の非磁性基体上に軟磁性
裏打ち層を成膜する工程と、該軟磁性裏打ち層上に中間
層を成膜する工程と、該中間層上にグラニュラ構造を有
するCoCr系合金層の第1の磁性層をスパッタ法によ
り成膜する工程と、該第1の磁性層上に非グラニュラ構
造を有するCoCr系合金層の第2の磁性層をスパッタ
法により成膜する工程と、該第2の磁性層上に保護層を
成膜する工程と、該保護層上に液体潤滑剤層を成膜する
工程とを少なくとも備え、前記第1の磁性層の成膜時の
ガス圧が10mTorr以上で、かつ、前記第2の磁性
層の成膜時のガス圧が15mTorr以下であることを
特徴とする。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a perpendicular magnetic recording medium, comprising a step of forming a soft magnetic backing layer on a non-heated non-magnetic substrate, and an intermediate step on the soft magnetic backing layer. A step of forming a layer, a step of forming a first magnetic layer of a CoCr-based alloy layer having a granular structure on the intermediate layer by a sputtering method, and a step of forming a non-granular structure on the first magnetic layer. Forming a second magnetic layer of the CoCr alloy layer by a sputtering method, forming a protective layer on the second magnetic layer, and forming a liquid lubricant layer on the protective layer And a gas pressure at the time of forming the first magnetic layer is 10 mTorr or more, and a gas pressure at the time of forming the second magnetic layer is 15 mTorr or less.

【0012】また、請求項5に記載の発明は、請求項4
に記載の垂直磁気記録媒体の製造方法において、前記第
2の磁性層の成膜後に、成膜装置内において前記非磁性
基体を加熱処理する工程を備えることを特徴とする。
The invention according to claim 5 is the same as claim 4
The method for manufacturing a perpendicular magnetic recording medium according to the item 1, further comprising a step of heat-treating the nonmagnetic substrate in a film forming apparatus after forming the second magnetic layer.

【0013】また、請求項6に記載の発明は、請求項5
に記載の垂直磁気記録媒体の製造方法において、前記非
磁性基体の加熱処理後に、成膜装置内において前記非磁
性基体を急冷する工程を備えることを特徴とする。
The invention according to claim 6 is the same as claim 5
The method of manufacturing a perpendicular magnetic recording medium according to the aspect 1, further comprising a step of rapidly cooling the nonmagnetic substrate in a film forming apparatus after the heat treatment of the nonmagnetic substrate.

【0014】更に、請求項7に記載の発明は、請求項4
〜6のいずれかに記載の垂直磁気記録媒体の製造方法に
おいて、前記非磁性基体の直上に下地層を成膜する工程
と、該下地層の直上に磁区制御層を成膜する工程とを備
えることを特徴とする。
Furthermore, the invention according to claim 7 is the invention according to claim 4.
7. The method of manufacturing a perpendicular magnetic recording medium according to any one of 1 to 6, further comprising: a step of forming an underlayer on the nonmagnetic substrate, and a step of forming a magnetic domain control layer on the underlayer. It is characterized by

【0015】[0015]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1は、本発明の垂直磁気記録媒体の構成
例を説明するための図で、垂直磁気記録媒体は、非磁性
基体11上に、軟磁性裏打ち層12、中間層13、第1
の磁性層14、第2の磁性層15、及び、保護層16が
順次積層され、更に、保護層16の上には液体潤滑剤層
17が形成されて構成されている。
FIG. 1 is a diagram for explaining a constitutional example of a perpendicular magnetic recording medium of the present invention. In the perpendicular magnetic recording medium, a soft magnetic backing layer 12, an intermediate layer 13 and a first magnetic layer are formed on a non-magnetic substrate 11.
The magnetic layer 14, the second magnetic layer 15, and the protective layer 16 are sequentially laminated, and the liquid lubricant layer 17 is further formed on the protective layer 16.

【0017】また、図2は、本発明の垂直磁気記録媒体
の他の構成例を説明するための図で、垂直磁気記録媒体
は、非磁性基体21上に、複数層で構成された多層下地
層22、磁区制御層23、軟磁性裏打ち層24、中間層
25、第1の磁性層26、第2の磁性層27、及び、保
護層28が順次積層され、更に、保護層28の上には液
体潤滑剤層29が形成されて構成されている。
FIG. 2 is a diagram for explaining another example of the configuration of the perpendicular magnetic recording medium of the present invention. The perpendicular magnetic recording medium comprises a non-magnetic substrate 21 and a multi-layered lower layer. The ground layer 22, the magnetic domain control layer 23, the soft magnetic backing layer 24, the intermediate layer 25, the first magnetic layer 26, the second magnetic layer 27, and the protective layer 28 are sequentially laminated, and further on the protective layer 28. Is formed by forming a liquid lubricant layer 29.

【0018】本発明の垂直磁気記録媒体において、非磁
性基体11、21としては、通常の磁気記録媒体用に用
いられるNiPメッキを施したAl合金や強化ガラス、
或いは結晶化ガラス等を用いることができ、磁区制御層
23としては、Mnを含む合金系からなるPtMn、I
rMnなどの反強磁性膜、或いは非磁性基体21の半径
方向に磁化を配向させたCoCrTa、CoCrPt、
CoCrPtB膜などの硬質磁性膜を用いることができ
る。なお、この磁区制御層23は、5〜300nm程度
の膜厚とすることが好ましい。
In the perpendicular magnetic recording medium of the present invention, the non-magnetic substrates 11 and 21 are made of NiP-plated Al alloy or tempered glass used for ordinary magnetic recording media.
Alternatively, crystallized glass or the like can be used, and as the magnetic domain control layer 23, PtMn, I made of an alloy system containing Mn,
An antiferromagnetic film such as rMn, or CoCrTa, CoCrPt with magnetization oriented in the radial direction of the non-magnetic substrate 21,
A hard magnetic film such as a CoCrPtB film can be used. The magnetic domain control layer 23 preferably has a film thickness of about 5 to 300 nm.

【0019】多層下地層22としては、磁区制御層23
としてMn合金系の反強磁性膜を用いる場合には、面心
立方(fcc)構造を有するCu、Irなどの非磁性単
金属、あるいはNiFeCrなどの非磁性合金などを用
いることが望ましい。この場合、さらにその下層に、こ
れらの非磁性単金属膜あるいは非磁性合金膜の微細構造
を制御するために、3〜30nmの膜厚のTa、Zr、
Nbなどの層を設けることとしてもよい。また、磁区制
御層23として硬質磁性膜を用いた場合には、多層下地
層22としては、CrMo、CrWなどのCr合金など
を用いることができる。この場合にも、さらにその下層
に、これらのCr合金膜の微細構造を制御するために下
地層を設けてもよい。なお、この多層下地層22は、必
ずしも複数の層から構成された多層下地層である必要は
なく、所望により、単層の下地層であってもよい。
A magnetic domain control layer 23 is used as the multilayer underlayer 22.
When using an Mn alloy-based antiferromagnetic film as above, it is desirable to use a nonmagnetic single metal such as Cu or Ir having a face-centered cubic (fcc) structure, or a nonmagnetic alloy such as NiFeCr. In this case, in order to control the fine structure of these non-magnetic single metal film or non-magnetic alloy film, Ta, Zr, and
A layer of Nb or the like may be provided. When a hard magnetic film is used as the magnetic domain control layer 23, a Cr alloy such as CrMo or CrW can be used as the multilayer underlayer 22. Also in this case, an underlying layer may be further provided as an underlying layer for controlling the fine structure of these Cr alloy films. The multilayer underlayer 22 does not necessarily have to be a multilayer underlayer composed of a plurality of layers, and may be a single underlayer if desired.

【0020】軟磁性裏打ち層12、24としては、Ni
Fe合金、センダスト(FeSiAl)合金等を用いる
ことができるが、非晶質のCo合金、例えばCoNbZ
r、CoTaZrなどを用いることにより良好な電磁変
換特性を得ることができる。なお、軟磁性裏打ち層1
2、24の膜厚の最適値は、磁気記録に用いる磁気ヘッ
ドの構造や特性によって変化するが、生産性との兼ね合
いから10nm以上300nm以下であることが望まし
い。
As the soft magnetic backing layers 12 and 24, Ni is used.
An Fe alloy, a sendust (FeSiAl) alloy or the like can be used, but an amorphous Co alloy such as CoNbZ.
By using r, CoTaZr, or the like, good electromagnetic conversion characteristics can be obtained. The soft magnetic backing layer 1
The optimum values of the film thicknesses of 2 and 24 vary depending on the structure and characteristics of the magnetic head used for magnetic recording, but it is preferably 10 nm or more and 300 nm or less in consideration of productivity.

【0021】中間層13、25としては、第1の磁性層
14、26の結晶配向性、結晶粒径及び、粒界偏析を好
適に制御するための材料を適宜用いることができ、特
に、第1の磁性層14、26の結晶配向制御の観点から
は、六方最密充填(hcp)の結晶構造を有するTi、
Re、Ru、Osのいずれかの金属、またはTi、R
e、Ru、Osのうちの少なくとも一種の金属を含む合
金であることが望ましい。なお、その膜厚は特に限定さ
れるものではないが、記録再生分解能の向上や生産性の
観点からは、第1の磁性層14、26の結晶構造制御の
ために必要とされる最小限の膜厚とすることが望まし
い。
For the intermediate layers 13 and 25, a material for suitably controlling the crystal orientation, the crystal grain size, and the grain boundary segregation of the first magnetic layers 14 and 26 can be appropriately used. From the viewpoint of controlling the crystal orientation of the magnetic layers 14 and 26 of No. 1, Ti having a hexagonal close-packed (hcp) crystal structure,
Re, Ru, Os metal, Ti, R
An alloy containing at least one metal selected from e, Ru, and Os is desirable. The film thickness is not particularly limited, but from the viewpoint of improving the recording / reproducing resolution and productivity, it is the minimum required for controlling the crystal structure of the first magnetic layers 14 and 26. It is desirable to set the film thickness.

【0022】第1の磁性層14、26は、強磁性を有す
るCoCr系合金結晶粒とそれを取り巻く非磁性粒界か
らなり、かつ、その非磁性粒界が金属の酸化物または窒
化物からなる、いわゆるグラニュラ磁性層である。この
グラニュラ構造は、例えば、非磁性粒界を構成する酸化
物を含有する強磁性金属をターゲットとしたスパッタリ
ングや、酸素を含有するArガス雰囲気中で強磁性金属
をターゲットとした反応性スパッタリングによって作製
することができる。なお、グラニュラ磁性層として良好
な特性を得るためには、成膜時のガス圧を10mTor
r以上にする必要がある。
The first magnetic layers 14 and 26 are composed of CoCr-based alloy crystal grains having ferromagnetism and non-magnetic grain boundaries surrounding them, and the non-magnetic grain boundaries are composed of metal oxides or nitrides. , A so-called granular magnetic layer. This granular structure is produced by, for example, sputtering targeting a ferromagnetic metal containing an oxide forming a non-magnetic grain boundary or reactive sputtering targeting a ferromagnetic metal in an Ar gas atmosphere containing oxygen. can do. In order to obtain good characteristics as a granular magnetic layer, the gas pressure during film formation should be 10 mTorr.
It must be greater than or equal to r.

【0023】ここで、強磁性を有する結晶を成膜するた
めの材料としてはCoCr系合金が好適に用いられ、特
に、優れた磁気特性と記録再生特性を得る観点からは、
CoCr合金にPt、Ni、Taのうちの少なくとも1
つの元素を添加することが望ましい。一方、非磁性粒界
を構成する材料としては、安定なグラニュラ構造を形成
する観点から、Cr、Co、Si、Al、Ti、Ta、
Hf、Zrのうちの少なくとも1つの元素の酸化物を用
いることが望ましく、その膜厚は、記録再生分解能を高
めるために、30nm以下とすることが望ましい。
Here, a CoCr-based alloy is preferably used as a material for forming a crystal having ferromagnetism, and particularly from the viewpoint of obtaining excellent magnetic characteristics and recording / reproducing characteristics.
At least one of Pt, Ni, and Ta in a CoCr alloy
It is desirable to add two elements. On the other hand, as the material forming the non-magnetic grain boundary, from the viewpoint of forming a stable granular structure, Cr, Co, Si, Al, Ti, Ta,
It is desirable to use an oxide of at least one element of Hf and Zr, and its film thickness is desirably 30 nm or less in order to enhance the recording / reproducing resolution.

【0024】第2の磁性層15、27は、非磁性粒界に
は金属の酸化物や窒化物を含有しない非グラニュラ構造
のCoCr系合金結晶質膜で構成されている。このCo
Cr系合金結晶質膜の成膜に使用可能な材料の例として
は、CoCr、CoCrTa、CoCrPt、CoCr
PtTa、CoCrPtB等の合金系材料を挙げること
ができる。なお、耐久性に優れた垂直磁気記録媒体を作
製するためには、第2の磁性層14、27を成膜する際
のガス圧は15mTorr以下にする必要があり、その
膜厚は20nm以下であることが望ましい。
The second magnetic layers 15 and 27 are made of a non-granular structure CoCr-based alloy crystalline film containing no metal oxide or nitride in the non-magnetic grain boundaries. This Co
Examples of materials that can be used for forming the Cr-based alloy crystalline film include CoCr, CoCrTa, CoCrPt, and CoCr.
Examples include alloy-based materials such as PtTa and CoCrPtB. In order to manufacture a perpendicular magnetic recording medium having excellent durability, the gas pressure for forming the second magnetic layers 14 and 27 needs to be 15 mTorr or less, and the film thickness is 20 nm or less. Is desirable.

【0025】すなわち、本発明の垂直磁気記録媒体で
は、磁気記録を行なうための磁性層を2層で構成し、非
磁性基体側の第1の磁性層を、その非磁性粒界が金属の
酸化物または窒化物からなるグラニュラ構造のCoCr
系合金で構成し、この上に設けられる第2の磁性層を、
非磁性粒界に金属の酸化物や窒化物を含有しない非グラ
ニュラ構造のCoCr系合金で構成している。これらの
磁性層のうち、第1の磁性層が、そのグラニュラ構造に
起因する良好な電磁変換特性を担保する一方、第2の磁
性層は、第1の磁性層の非磁性粒界から溶出してくるC
o原子をブロックして媒体の高い耐久性を担保するよう
に構成されている。
That is, in the perpendicular magnetic recording medium of the present invention, the magnetic layer for performing magnetic recording is composed of two layers, and the first magnetic layer on the non-magnetic substrate side has the non-magnetic grain boundary of metal oxidation. CoCr with granular structure composed of oxide or nitride
A second magnetic layer formed of a system alloy and provided thereon,
It is composed of a non-granular structure CoCr-based alloy containing no metal oxide or nitride in the non-magnetic grain boundary. Among these magnetic layers, the first magnetic layer ensures good electromagnetic conversion characteristics due to its granular structure, while the second magnetic layer elutes from the non-magnetic grain boundaries of the first magnetic layer. C coming
It is constructed so as to block the atoms and ensure the high durability of the medium.

【0026】保護層16、28は、従来より使用されて
いる保護膜を用いることができ、例えば、カーボンを主
体とする保護膜を用いることができる。また、液体潤滑
剤層17、29も、従来より使用されている材料を用い
ることができ、例えば、パーフルオロポリエーテル系の
潤滑剤を用いることができる。なお、保護層16、28
の膜厚等の条件や、液体潤滑剤層17、29の膜厚等の
条件は、通常の磁気記録媒体で用いられる諸条件をその
まま用いることができる。
As the protective layers 16 and 28, conventionally used protective films can be used, for example, a protective film mainly containing carbon can be used. The liquid lubricant layers 17 and 29 can also be made of conventionally used materials, for example, perfluoropolyether-based lubricants can be used. In addition, the protective layers 16 and 28
As the conditions such as the film thickness of the magnetic recording medium and the conditions such as the film thickness of the liquid lubricant layers 17 and 29, various conditions used in a normal magnetic recording medium can be used as they are.

【0027】以下に本発明の垂直磁気記録媒体の製造方
法の実施例について説明する。なお、これらの実施例
は、本発明の垂直磁気記録媒体の製造方法を好適に説明
するための代表例に過ぎず、これらに限定されるもので
はない。
An embodiment of the method of manufacturing the perpendicular magnetic recording medium of the present invention will be described below. Note that these examples are merely representative examples for suitably explaining the method of manufacturing the perpendicular magnetic recording medium of the present invention, and are not limited to these.

【0028】(実施例1)非磁性基体として、表面が平
滑な化学強化ガラス基板(例えばHOYA社製N−5ガ
ラス基板)を用い、これを洗浄後スパッタ装置内に導入
し、CoZrNb非晶質軟磁性裏打ち層を200nm、
Ru中間層を30nm積層させた後、CoCrPt−S
iOターゲットを用いたRFスパッタ法により第1の
磁性層を20nm成膜し、更に、CoCrPtBターゲ
ットを用いて第2の磁性層を10nm成膜させた。ここ
で、第1の磁性層及び第2の磁性層は、ガス圧を種々変
化させた条件で成膜している。最後にカーボンからなる
保護層5nmを成膜後、真空装置から取り出し、その
後、パーフルオロポリエーテルからなる液体潤滑剤層2
nmをディップ法により形成して垂直磁気記録媒体とし
た。なお、成膜に先立つ基板加熱、並びに、磁性層成膜
後の加熱・急冷処理は行なっていない。
(Example 1) As a non-magnetic substrate, a chemically strengthened glass substrate having a smooth surface (for example, N-5 glass substrate manufactured by HOYA) was used, and after cleaning, the substrate was introduced into a sputtering apparatus to make CoZrNb amorphous. 200nm soft magnetic backing layer,
After stacking a Ru intermediate layer of 30 nm, CoCrPt-S
A first magnetic layer having a thickness of 20 nm was formed by an RF sputtering method using an iO 2 target, and a second magnetic layer having a thickness of 10 nm was formed using a CoCrPtB target. Here, the first magnetic layer and the second magnetic layer are formed under the condition that the gas pressure is variously changed. Finally, after forming a protective layer of 5 nm of carbon, the protective layer of 5 nm was taken out from the vacuum device, and then the liquid lubricant layer 2 of perfluoropolyether was formed.
nm was formed by the dip method to obtain a perpendicular magnetic recording medium. The substrate heating prior to film formation and the heating / quenching treatment after the magnetic layer film formation were not performed.

【0029】このようにして作製した垂直磁気記録媒体
を、85℃で80%RHの高温高湿環境下に96時間放
置した後に50mlの純水中で3分間揺動して溶出した
Coを抽出し、その濃度をICP発光分光分析法によっ
て測定した。なお、第1及び第2の磁性層成膜後の媒体
の磁化曲線を振動試料型磁力計で測定して磁気特性を評
価すると共に、全層を成膜した媒体の電磁変換特性をG
MRヘッドを備えたスピンスタンドテスターにより評価
した。
The perpendicular magnetic recording medium thus prepared was left in a high temperature and high humidity environment of 85 ° C. and 80% RH for 96 hours, and then shaken in 50 ml of pure water for 3 minutes to extract the eluted Co. And its concentration was measured by ICP emission spectroscopy. The magnetization curves of the medium after the first and second magnetic layers are formed are measured by a vibrating sample magnetometer to evaluate the magnetic characteristics, and the electromagnetic conversion characteristics of the medium in which all layers are formed are G
It was evaluated by a spin stand tester equipped with an MR head.

【0030】表1は、第1並びに第2の磁性層を成膜す
る際のガス圧を種々変化させて作製した垂直磁気記録媒
体のCo溶出量を纏めた結果である。
Table 1 shows the results of collecting the Co elution amount of the perpendicular magnetic recording media produced by changing various gas pressures when forming the first and second magnetic layers.

【0031】[0031]

【表1】 [Table 1]

【0032】この表から明らかなように、第1の磁性
層、第2の磁性層共に、成膜時のガス圧を低下させるこ
とにより、Coの溶出量を抑制することができる。特
に、第2の磁性層のガス圧を15mTorr以下とした
場合には、第1の磁性層のガス圧によらず、Coの溶出
量を10μg/m以下に抑えることが可能である。
As is clear from this table, the elution amount of Co can be suppressed by reducing the gas pressure during film formation in both the first magnetic layer and the second magnetic layer. Particularly, when the gas pressure of the second magnetic layer is set to 15 mTorr or less, the elution amount of Co can be suppressed to 10 μg / m 2 or less regardless of the gas pressure of the first magnetic layer.

【0033】表2は、第1並びに第2の磁性層の成膜時
のガス圧を種々変化させて作製した垂直磁気記録媒体の
350kFClにおけるSNR(電磁変換特性の信号と
ノイズの比)を纏めた結果である。
Table 2 summarizes the SNR (ratio of signal to noise of electromagnetic conversion characteristics) at 350 kFCl of the perpendicular magnetic recording medium produced by changing the gas pressure during film formation of the first and second magnetic layers. It is the result.

【0034】[0034]

【表2】 [Table 2]

【0035】この表から分かるように、第1の磁性層成
膜時のガス圧を15mTorr以上とした場合には、第
2の磁性層の成膜時のガス圧によらず、15dB以上の
良好な電磁変換特性が得られている。また、第2の磁性
層成膜時のガス圧が15mTorr以下の領域において
は、第1の磁性層成膜時のガス圧が10mTorr以上
の媒体においても15dB以上の値が得られている。
As can be seen from this table, when the gas pressure during the film formation of the first magnetic layer is set to 15 mTorr or higher, the good pressure of 15 dB or higher is obtained regardless of the gas pressure during the film formation of the second magnetic layer. Excellent electromagnetic conversion characteristics are obtained. Further, in the region where the gas pressure during film formation of the second magnetic layer is 15 mTorr or less, a value of 15 dB or more is obtained even in the medium whose gas pressure during film formation of the first magnetic layer is 10 mTorr or more.

【0036】このように、Co溶出量を10μg/m
以下に抑制し、かつ、記録密度350kFClでのSN
R値を15dB以上にするためには、第1の磁性層の成
膜時のガス圧を10mTorr以上とし、かつ、第2の
磁性層の成膜時のガス圧を15mTorr以下にする必
要があることが分かる。
Thus, the Co elution amount was 10 μg / m 2
SN at the recording density of 350 kFCl
In order to set the R value to 15 dB or more, it is necessary to set the gas pressure during film formation of the first magnetic layer to 10 mTorr or higher and the gas pressure during film formation of the second magnetic layer to 15 mTorr or lower. I understand.

【0037】(実施例2)成膜に先立つ基板加熱(前加
熱)、及び、第2の磁性層成膜後の加熱(後加熱)、並
びに、急冷処理を同一装置内で行って作製したこと以外
は上述した実施例1と同様にして磁気記録媒体を作製し
た。但し、第1の磁性層成膜時のガス圧を50mTor
r、第2の磁性層成膜時のガス圧を5mTorr一定と
した。
(Example 2) A substrate was heated prior to film formation (pre-heating), heating after film formation of the second magnetic layer (post-heating), and quenching treatment in the same apparatus. A magnetic recording medium was manufactured in the same manner as in Example 1 except for the above. However, the gas pressure during film formation of the first magnetic layer is 50 mTorr.
r, the gas pressure during film formation of the second magnetic layer was kept constant at 5 mTorr.

【0038】表3は、前加熱温度を200℃、後加熱温
度200℃、後加熱処理に連続して行う冷却処理工程は
10秒後の基板温度が100℃となるように調整を行
い、それぞれの処理の有無による保磁力(Hc)並びに
SNR値の値を纏めた結果である。
Table 3 shows that the pre-heating temperature is 200 ° C., the post-heating temperature is 200 ° C., and the cooling treatment step which is continuously performed after the post-heating treatment is adjusted so that the substrate temperature after 10 seconds becomes 100 ° C. It is the result of collecting the values of coercive force (Hc) and SNR value depending on the presence or absence of the process.

【0039】[0039]

【表3】 [Table 3]

【0040】この表から分かるとおり、前加熱処理を行
うことにより、磁気特性並びにSNRが急激に低下して
おり、第1の磁性層であるグラニュラ磁性層を成膜する
際は、事前に加熱せずに成膜プロセスを行なう必要があ
る。また、後加熱処理を行った場合には磁気特性とSN
Rの値が大幅に増加している。これは、後加熱処理によ
り第2の磁性層であるCoCr系合金結晶質膜の特性が
改善されたためである。更に、後加熱処理に連続して急
冷処理を行うことにより、さらに特性が向上しているこ
とが分かる。
As can be seen from this table, the magnetic properties and the SNR are drastically reduced by performing the pre-heating treatment, and it is necessary to heat the granular magnetic layer as the first magnetic layer in advance. It is necessary to carry out the film forming process without doing so. When the post heat treatment is performed, the magnetic characteristics and SN are
The value of R has increased significantly. This is because the post-heat treatment improved the characteristics of the CoCr-based alloy crystalline film as the second magnetic layer. Further, it can be seen that the characteristics are further improved by performing the rapid cooling treatment continuously with the post heat treatment.

【0041】(実施例3)表4は、中間層として各種の
材料を用い、その膜厚を30nmとした以外は実施例1
と同様にして作製した磁気記録媒体の、磁性層のhcp
(002)回折線をX線回折法により求めたロッキング
カーブの半値幅Δθ50値を纏めた結果である。なお、
比較のため、中間層として体心立方(bcc)構造をも
つTa、及びCrを使用した場合についても示してい
る。
Example 3 Table 4 shows Example 1 except that various materials were used for the intermediate layer and the film thickness was 30 nm.
Of the magnetic layer of the magnetic recording medium manufactured in the same manner as
It is the result of putting together the half width Δθ 50 values of the rocking curve obtained by the X-ray diffraction method for the (002) diffraction line. In addition,
For comparison, the case where Ta and Cr having a body-centered cubic (bcc) structure are used as the intermediate layer is also shown.

【0042】[0042]

【表4】 [Table 4]

【0043】この表から、非磁性下地層としてbcc構
造をもつTaやCrを使用した場合に比べ、hcp構造
をもつ各種材料を用いた場合にΔθ50が改善され、磁
性層の結晶配向制御が有効に行なわれることがわかる。
From this table, as compared with the case of using Ta or Cr having the bcc structure as the non-magnetic underlayer, Δθ 50 is improved when various materials having the hcp structure are used, and the crystal orientation control of the magnetic layer is controlled. You can see that it is done effectively.

【0044】(実施例4)実施例1に記載の製造方法に
おいて、非磁性基板と軟磁性裏打ち層との間に、Taタ
ーゲットを用いTaの第1下地層を5nm、NiFeC
rターゲットを用いNiFeCrの第2下地層を5n
m、及び、IrMnの磁区制御層を10nm成膜したこ
とを除き実施例1と同様の手順で磁気記録媒体を作製し
た。
(Example 4) In the manufacturing method described in Example 1, a Ta target was used between the non-magnetic substrate and the soft magnetic backing layer to form a Ta first underlayer of 5 nm and NiFeC.
2n of NiFeCr second underlayer using r target
A magnetic recording medium was manufactured in the same procedure as in Example 1 except that the magnetic domain control layers of m and IrMn were formed to a thickness of 10 nm.

【0045】この方法にて作製した垂直磁気記録媒体
と、実施例1の方法にて作製した垂直磁気記録媒体にお
いて、磁気特性並びにSNRに関しては、特に差異が認
められなかった。
No particular difference was observed in the magnetic characteristics and SNR between the perpendicular magnetic recording medium manufactured by this method and the perpendicular magnetic recording medium manufactured by the method of Example 1.

【0046】図3は、これらの各々の方法で作成した垂
直磁気記録媒体のスピンスタンドテスターによる1周分
の出力波形を比較したものである。下地層並びに磁区制
御層を備えない構造の実施例1に示した方法で作製した
垂直磁気記録媒体では、全周に渡り不均一にスパイクノ
イズが発生しているのに対し、下地層並びに磁区制御層
を備える構成とすることにより、スパイクノイズは顕著
に減少していることが分かる。これは、非磁性基板上に
下地層並びに磁区制御層を備えることにより、これらに
続いて積層される軟磁性裏打ち層に磁壁が形成されない
ようになるためである。
FIG. 3 is a comparison of the output waveforms for one round by the spin stand tester of the perpendicular magnetic recording medium produced by each of these methods. In the perpendicular magnetic recording medium manufactured by the method shown in Example 1 having no structure of the underlayer and the magnetic domain control layer, spike noise is unevenly generated over the entire circumference, whereas the underlayer and the magnetic domain control It can be seen that the spike noise is remarkably reduced by the configuration including the layers. This is because by providing the underlayer and the magnetic domain control layer on the non-magnetic substrate, the magnetic domain wall is not formed in the soft magnetic backing layer laminated subsequently to these layers.

【0047】[0047]

【発明の効果】以上説明したように、本発明の垂直磁気
記録媒体では、磁気記録を行なうための磁性層を2層で
構成し、非磁性基体側の第1の磁性層を、その非磁性粒
界が金属の酸化物または窒化物からなるグラニュラ構造
のCoCr系合金で構成し、この上に設けられる第2の
磁性層を、非磁性粒界に金属の酸化物や窒化物を含有し
ない非グラニュラ構造のCoCr系合金で構成してい
る。これらの磁性層のうち、第1の磁性層が、そのグラ
ニュラ構造に起因する良好な電磁変換特性を担保する一
方、第2の磁性層は、第1の磁性層の非磁性粒界から溶
出してくるCo原子をブロックして媒体の高い耐久性を
担保するように構成したので、優れた磁気特性と電磁変
換特性を有し、かつ、85℃で80%RHの高温高湿環
境下に96時間以上放置しても、50mlの純水中で3
分間揺動して抽出したCoの量をICP発光分光分析に
よって測定した値が、ディスクの面積1mあたり10
μg以下に抑制され、充分な長期信頼性を有する媒体が
実現できる。
As described above, in the perpendicular magnetic recording medium of the present invention, the magnetic layer for magnetic recording is composed of two layers, and the first magnetic layer on the nonmagnetic substrate side is made of the nonmagnetic material. The grain boundary is made of a CoCr-based alloy having a granular structure consisting of a metal oxide or a nitride, and the second magnetic layer provided thereon is a non-magnetic grain boundary containing no metal oxide or nitride. It is composed of a CoCr-based alloy having a granular structure. Among these magnetic layers, the first magnetic layer ensures good electromagnetic conversion characteristics due to its granular structure, while the second magnetic layer elutes from the non-magnetic grain boundaries of the first magnetic layer. Since it is configured so as to block incoming Co atoms and ensure high durability of the medium, it has excellent magnetic characteristics and electromagnetic conversion characteristics, and has a high temperature and high humidity environment of 85% and 80% RH. 3 hours in 50 ml of pure water
The value of the amount of Co extracted by rocking for 10 minutes by ICP emission spectroscopy was 10 per 1 m 2 of the disc area.
It is possible to realize a medium which is suppressed to less than μg and has sufficient long-term reliability.

【0048】さらに、非磁性基体と軟磁性裏打ち層との
間に、1層あるいは複数層からなる下地層並びに磁区制
御層を付与することにより軟磁性裏打ち層に起因して発
生するスパイクノイズを大幅に抑制することが可能とな
る。
Further, by providing an underlayer consisting of one layer or a plurality of layers and a magnetic domain control layer between the non-magnetic substrate and the soft magnetic backing layer, spike noise generated due to the soft magnetic backing layer is greatly increased. Can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の垂直磁気記録媒体の構成例を説明する
ための図である。
FIG. 1 is a diagram for explaining a configuration example of a perpendicular magnetic recording medium of the present invention.

【図2】本発明の垂直磁気記録媒体の他の構成例を説明
するための図である。
FIG. 2 is a diagram for explaining another configuration example of the perpendicular magnetic recording medium of the present invention.

【図3】本発明の垂直磁気記録媒体のスピンスタンドテ
スターによる1周分の出力波形説明するための図であ
る。
FIG. 3 is a diagram for explaining an output waveform for one rotation by a spin stand tester of the perpendicular magnetic recording medium of the present invention.

【符号の説明】[Explanation of symbols]

11、21 非磁性基体 12、24 軟磁性裏打ち層 13、25 中間層 14、26 第1の磁性層 15、27 第2の磁性層 16、28 保護層 17、29 液体潤滑剤層 22 多層下地層 23 磁区制御層 11, 21 Non-magnetic substrate 12, 24 Soft magnetic backing layer 13, 25 Middle layer 14, 26 First magnetic layer 15, 27 Second magnetic layer 16, 28 Protective layer 17, 29 Liquid lubricant layer 22 Multilayer underlayer 23 magnetic domain control layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 10/16 H01F 10/16 41/18 41/18 (72)発明者 上住 洋之 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 5D006 BB02 BB07 BB08 CA01 CA03 CA05 CA06 DA03 DA08 EA03 FA02 FA09 5D112 AA03 AA04 AA05 AA24 BB05 BB06 BD03 FA04 FB20 FB26 5E049 AA04 BA08 GC01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01F 10/16 H01F 10/16 41/18 41/18 (72) Inventor Hiroyuki Uesumi Kawasaki, Kawasaki City, Kanagawa Prefecture 1-1-1 Nitta, Tanabe, Fuji Electric Co., Ltd. F term (reference) 5D006 BB02 BB07 BB08 CA01 CA03 CA05 CA06 DA03 DA08 EA03 FA02 FA09 5D112 AA03 AA04 AA05 AA24 BB05 BB06 BD03 FA04 FB20 FB26 5E049 AA04 BA08 GC01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基体上に、軟磁性裏打ち層と、中
間層と、CoCr系合金層の磁性層と、保護層と、液体
潤滑剤層とが順次積層されてなる垂直磁気記録媒体であ
って、 前記磁性層は、前記中間層側に設けられたグラニュラ構
造の第1の磁性層と、前記保護層側に設けられた非グラ
ニュラ構造の第2の磁性層とから構成されていることを
特徴とする垂直磁気記録媒体。
1. A perpendicular magnetic recording medium in which a soft magnetic backing layer, an intermediate layer, a magnetic layer of a CoCr-based alloy layer, a protective layer, and a liquid lubricant layer are sequentially laminated on a non-magnetic substrate. The magnetic layer includes a first magnetic layer having a granular structure provided on the intermediate layer side and a second magnetic layer having a non-granular structure provided on the protective layer side. A perpendicular magnetic recording medium characterized by:
【請求項2】 前記中間層が、六方最密充填(hcp)
の結晶構造を有するTi、Re、Ru、Osのいずれか
の金属、又は、Ti、Re、Ru、Osのうちの少なく
とも一種の金属を含む合金で構成されていることを特徴
とする請求項1に記載の垂直磁気記録媒体。
2. The hexagonal closest packing (hcp) as the intermediate layer.
2. A metal selected from the group consisting of Ti, Re, Ru, and Os having a crystal structure of, or an alloy containing at least one metal selected from Ti, Re, Ru, and Os. The perpendicular magnetic recording medium according to 1.
【請求項3】 前記非磁性基体と前記軟磁性裏打ち層と
の間に、前記非磁性基体側の下地層と前記軟磁性裏打ち
層側の磁区制御層を順次積層させたことを特徴とする請
求項1又は2に記載の垂直磁気記録媒体。
3. An underlayer on the side of the non-magnetic substrate and a magnetic domain control layer on the side of the soft-magnetic backing layer are sequentially laminated between the non-magnetic substrate and the soft magnetic backing layer. Item 3. The perpendicular magnetic recording medium according to item 1 or 2.
【請求項4】 非加熱の非磁性基体上に軟磁性裏打ち層
を成膜する工程と、該軟磁性裏打ち層上に中間層を成膜
する工程と、該中間層上にグラニュラ構造を有するCo
Cr系合金層の第1の磁性層をスパッタ法により成膜す
る工程と、該第1の磁性層上に非グラニュラ構造を有す
るCoCr系合金層の第2の磁性層をスパッタ法により
成膜する工程と、該第2の磁性層上に保護層を成膜する
工程と、該保護層上に液体潤滑剤層を成膜する工程とを
少なくとも備え、 前記第1の磁性層の成膜時のガス圧が10mTorr以
上で、かつ、前記第2の磁性層の成膜時のガス圧が15
mTorr以下であることを特徴とする垂直磁気記録媒
体の製造方法。
4. A step of forming a soft magnetic backing layer on an unheated non-magnetic substrate, a step of forming an intermediate layer on the soft magnetic backing layer, and a Co having a granular structure on the intermediate layer.
Step of forming a first magnetic layer of a Cr-based alloy layer by a sputtering method, and forming a second magnetic layer of a CoCr-based alloy layer having a non-granular structure on the first magnetic layer by a sputtering method A step of forming a protective layer on the second magnetic layer, and a step of forming a liquid lubricant layer on the protective layer; The gas pressure is 10 mTorr or more, and the gas pressure at the time of forming the second magnetic layer is 15
A method of manufacturing a perpendicular magnetic recording medium, which is equal to or less than mTorr.
【請求項5】 前記第2の磁性層の成膜後に、成膜装置
内において前記非磁性基体を加熱処理する工程を備える
ことを特徴とする請求項4に記載の垂直磁気記録媒体の
製造方法。
5. The method of manufacturing a perpendicular magnetic recording medium according to claim 4, further comprising a step of heat-treating the non-magnetic substrate in a film forming apparatus after forming the second magnetic layer. .
【請求項6】 前記非磁性基体の加熱処理後に、成膜装
置内において前記非磁性基体を急冷する工程を備えるこ
とを特徴とする請求項5に記載の垂直磁気記録媒体の製
造方法。
6. The method of manufacturing a perpendicular magnetic recording medium according to claim 5, further comprising a step of rapidly cooling the non-magnetic substrate in a film forming apparatus after the heat treatment of the non-magnetic substrate.
【請求項7】 前記非磁性基体の直上に下地層を成膜す
る工程と、該下地層の直上に磁区制御層を成膜する工程
とを備えることを特徴とする請求項4〜6のいずれかに
記載の垂直磁気記録媒体の製造方法。
7. The method according to claim 4, further comprising a step of forming an underlayer on the non-magnetic substrate and a step of forming a magnetic domain control layer on the underlayer. A method of manufacturing a perpendicular magnetic recording medium according to claim 1.
JP2001365280A 2001-11-29 2001-11-29 Perpendicular magnetic recording medium and method of manufacturing perpendicular magnetic recording medium Expired - Lifetime JP3988117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001365280A JP3988117B2 (en) 2001-11-29 2001-11-29 Perpendicular magnetic recording medium and method of manufacturing perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001365280A JP3988117B2 (en) 2001-11-29 2001-11-29 Perpendicular magnetic recording medium and method of manufacturing perpendicular magnetic recording medium

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2006195939A Division JP2006277950A (en) 2006-07-18 2006-07-18 Vertical magnetic recording medium
JP2007010582A Division JP4522418B2 (en) 2007-01-19 2007-01-19 Perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2003168207A true JP2003168207A (en) 2003-06-13
JP3988117B2 JP3988117B2 (en) 2007-10-10

Family

ID=19175329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001365280A Expired - Lifetime JP3988117B2 (en) 2001-11-29 2001-11-29 Perpendicular magnetic recording medium and method of manufacturing perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JP3988117B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090874A1 (en) * 2003-04-07 2004-10-21 Showa Denko K. K. Magnetic recording medium, method for producing thereof, and magnetic recording and reproducing apparatus.
JP2007164941A (en) * 2005-12-16 2007-06-28 Akita Prefecture Perpendicular magnetic recording medium
US7311983B2 (en) 2004-01-08 2007-12-25 Fuji Electric Device Technology Co., Ltd. Perpendicular magnetic recording medium and a method for manufacturing the same
CN100377218C (en) * 2004-04-12 2008-03-26 日立环球储存科技荷兰有限公司 Magnetic recording medium and magnetic recording apparatus
JP2008108415A (en) * 2006-09-27 2008-05-08 Hoya Corp Method for manufacturing magnetic recording medium
US7428115B2 (en) 2004-04-14 2008-09-23 Hitachi Global Storage Technologies Netherlands B.V. Magnetic hard disk drive with countermeasure against spike noise
JP2008276833A (en) * 2007-04-26 2008-11-13 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium and its manufacturing method
US20100092802A1 (en) * 2008-10-15 2010-04-15 Seagate Technology Llc Multi-step etch process for granular media
US7846563B2 (en) * 2007-04-17 2010-12-07 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording exchange-spring type medium with a lateral coupling layer for increasing intergranular exchange coupling in the lower magnetic layer
US7862913B2 (en) 2006-10-23 2011-01-04 Hitachi Global Storage Technologies Netherlands B.V. Oxide magnetic recording layers for perpendicular recording media
US7901801B2 (en) 2007-07-04 2011-03-08 Kabushiki Kaisha Toshiba Perpendicular magnetic recording medium and magnetic recording apparatus
KR101022603B1 (en) * 2005-09-22 2011-03-16 시게이트 테크놀로지 엘엘씨 Tuning exchange coupling in magnetic recording media
JP2011216141A (en) * 2010-03-31 2011-10-27 Wd Media Singapore Pte Ltd Method for manufacturing perpendicular magnetic disk
US8110298B1 (en) 2005-03-04 2012-02-07 Seagate Technology Llc Media for high density perpendicular magnetic recording
US20140002919A1 (en) * 2012-06-28 2014-01-02 Showa Denko K.K. Magnetic recording medium and magnetic storage apparatus
US8697260B2 (en) 2008-07-25 2014-04-15 Seagate Technology Llc Method and manufacture process for exchange decoupled first magnetic layer
US9058831B2 (en) 2011-12-14 2015-06-16 HGST Netherlands B.V. Perpendicular magnetic recording medium with grain boundary controlling layers
US9142240B2 (en) 2010-07-30 2015-09-22 Seagate Technology Llc Apparatus including a perpendicular magnetic recording layer having a convex magnetic anisotropy profile
US9659592B2 (en) 2011-06-03 2017-05-23 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium and method of manufacturing same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090874A1 (en) * 2003-04-07 2004-10-21 Showa Denko K. K. Magnetic recording medium, method for producing thereof, and magnetic recording and reproducing apparatus.
US7867638B2 (en) 2003-04-07 2011-01-11 Showa Denko K.K. Magnetic recording medium, method for producing thereof, and magnetic recording and reproducing apparatus
US7470474B2 (en) 2003-04-07 2008-12-30 Kabushiki Kaisha Toshiba Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus including both oxide and non-oxide perpendicular magnetic layers
US7311983B2 (en) 2004-01-08 2007-12-25 Fuji Electric Device Technology Co., Ltd. Perpendicular magnetic recording medium and a method for manufacturing the same
CN100377218C (en) * 2004-04-12 2008-03-26 日立环球储存科技荷兰有限公司 Magnetic recording medium and magnetic recording apparatus
US7428115B2 (en) 2004-04-14 2008-09-23 Hitachi Global Storage Technologies Netherlands B.V. Magnetic hard disk drive with countermeasure against spike noise
US8110298B1 (en) 2005-03-04 2012-02-07 Seagate Technology Llc Media for high density perpendicular magnetic recording
KR101022603B1 (en) * 2005-09-22 2011-03-16 시게이트 테크놀로지 엘엘씨 Tuning exchange coupling in magnetic recording media
US8119263B2 (en) 2005-09-22 2012-02-21 Seagate Technology Llc Tuning exchange coupling in magnetic recording media
JP2007164941A (en) * 2005-12-16 2007-06-28 Akita Prefecture Perpendicular magnetic recording medium
JP2008108415A (en) * 2006-09-27 2008-05-08 Hoya Corp Method for manufacturing magnetic recording medium
US7862913B2 (en) 2006-10-23 2011-01-04 Hitachi Global Storage Technologies Netherlands B.V. Oxide magnetic recording layers for perpendicular recording media
US7846563B2 (en) * 2007-04-17 2010-12-07 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording exchange-spring type medium with a lateral coupling layer for increasing intergranular exchange coupling in the lower magnetic layer
US8647755B2 (en) 2007-04-26 2014-02-11 HGST Netherlands B. V. Perpendicular magnetic recording medium and manufacturing method thereof
JP2008276833A (en) * 2007-04-26 2008-11-13 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium and its manufacturing method
US7901801B2 (en) 2007-07-04 2011-03-08 Kabushiki Kaisha Toshiba Perpendicular magnetic recording medium and magnetic recording apparatus
US8697260B2 (en) 2008-07-25 2014-04-15 Seagate Technology Llc Method and manufacture process for exchange decoupled first magnetic layer
US20100092802A1 (en) * 2008-10-15 2010-04-15 Seagate Technology Llc Multi-step etch process for granular media
JP2011216141A (en) * 2010-03-31 2011-10-27 Wd Media Singapore Pte Ltd Method for manufacturing perpendicular magnetic disk
US9142240B2 (en) 2010-07-30 2015-09-22 Seagate Technology Llc Apparatus including a perpendicular magnetic recording layer having a convex magnetic anisotropy profile
US9666221B2 (en) 2010-07-30 2017-05-30 Seagate Technology Llc Apparatus including a perpendicular magnetic recording layer having a convex magnetic anisotropy profile
US9659592B2 (en) 2011-06-03 2017-05-23 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium and method of manufacturing same
US9058831B2 (en) 2011-12-14 2015-06-16 HGST Netherlands B.V. Perpendicular magnetic recording medium with grain boundary controlling layers
US20140002919A1 (en) * 2012-06-28 2014-01-02 Showa Denko K.K. Magnetic recording medium and magnetic storage apparatus
US8830630B2 (en) * 2012-06-28 2014-09-09 Showa Denko K.K. Magnetic recording medium and magnetic storage apparatus

Also Published As

Publication number Publication date
JP3988117B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
US7311983B2 (en) Perpendicular magnetic recording medium and a method for manufacturing the same
US8685547B2 (en) Magnetic recording media with enhanced writability and thermal stability
JP4332832B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2003168207A (en) Perpendicular magnetic recording medium and manufacturing method for perpendicular magnetic recording medium
JP3755449B2 (en) Perpendicular magnetic recording medium
JPWO2009014205A1 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP2005251373A (en) Magnetic recording medium, manufacturing method of the same, and magnetic storage device
JP4534711B2 (en) Perpendicular magnetic recording medium
US6403241B1 (en) CoCrPtB medium with a 1010 crystallographic orientation
JP3900999B2 (en) Perpendicular magnetic recording medium
JP2006277950A (en) Vertical magnetic recording medium
JP2004178748A (en) Perpendicular magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
US6475611B1 (en) Si-containing seedlayer design for multilayer media
JP2006185489A (en) Magnetic recording medium and magnetic storage device
JP4287099B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP4624838B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device
US20140178714A1 (en) Method and Manufacture Process for Exchange Decoupled First Magnetic Layer
JP4367326B2 (en) Perpendicular magnetic recording medium
US6908689B1 (en) Ruthenium-aluminum underlayer for magnetic recording media
JP2004272982A (en) Manufacturing method of perpendicular magnetic recording medium, and perpendicular magnetic recording medium
JP4522418B2 (en) Perpendicular magnetic recording medium
JP2003346334A (en) Vertical magnetic record medium and manufacturing method therefor
JP4066845B2 (en) Magnetic recording medium and method for manufacturing the same
JP4534347B2 (en) Magnetic recording medium and manufacturing method thereof
JP4591806B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3988117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term