JP2003168207A - Perpendicular magnetic recording medium and manufacturing method for perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium and manufacturing method for perpendicular magnetic recording medium

Info

Publication number
JP2003168207A
JP2003168207A JP2001365280A JP2001365280A JP2003168207A JP 2003168207 A JP2003168207 A JP 2003168207A JP 2001365280 A JP2001365280 A JP 2001365280A JP 2001365280 A JP2001365280 A JP 2001365280A JP 2003168207 A JP2003168207 A JP 2003168207A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
magnetic
layer
recording medium
non
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001365280A
Other languages
Japanese (ja)
Other versions
JP3988117B2 (en )
Inventor
Yasushi Sakai
Hiroyuki Uwazumi
Sadayuki Watanabe
洋之 上住
貞幸 渡辺
泰志 酒井
Original Assignee
Fuji Electric Co Ltd
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a perpendicular magnetic recording medium free from elution of Co from a granular magnetic layer and having excellent electromagnetic transducing characteristics, durability, and productivity and to provide a manufacturing method therefor. <P>SOLUTION: The magnetic layer of the perpendicular magnetic recording medium is constituted of a first magnetic layer 14 of a CoCr based alloy which has a granular structure and whose non-magnetic grain boundary consists of metal oxides or nitrides and a second magnetic layer 15 of a CoCr based alloy which has a non-granular structure and whose non-magnetic grain boundary does not contain metal oxides nor nitride. Thereby, in the first magnetic layer 14, satisfactory electromagnetic transducing characteristics due to the granular structure thereof is secured, while in the second magnetic layer 15, Co atoms eluted from the non-magnetic grain boundary of the first magnetic layer are blocked and high durability of the medium can be secured. Spike noise caused by a soft magnetic backing layer 24 can be drastically suppressed by additionally providing a multi layered base layer 22 and a magnetic domain controlling layer 23 between a non-magnetic substrate 21 and the soft magnetic backing layer 24. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、垂直磁気記録媒体及び垂直磁気記録媒体の製造方法に関し、より詳細には、優れた電磁変換特性と良好な耐久性とを具え、かつ、生産性に優れた垂直磁気記録媒体及びその製造方法に関する。 BACKGROUND OF THE INVENTION [0001] 1. Technical Field of the Invention The present invention relates to a method of manufacturing a perpendicular magnetic recording medium and a perpendicular magnetic recording medium, and more particularly, excellent electromagnetic conversion characteristics and good durability comprising the door, and superior relates perpendicular magnetic recording medium and a manufacturing method thereof productivity. 【0002】 【従来の技術】磁気記録の高密度化を実現する技術として、従来の長手磁気記録方式に代えて、垂直磁気記録方式が注目されつつある。 2. Description of the Related Art Techniques for implementing the density of magnetic recording, in place of a conventional longitudinal magnetic recording system, the perpendicular magnetic recording system is attracting attention. 【0003】垂直磁気記録媒体用の磁気記録層用材料としては、現在、主にCoCr系合金結晶質膜が検討されており、垂直磁気記録に用いるために、六方最密充填(hcp)構造をもつCoCr系合金のc軸が膜面に垂直(c面が膜面に平行)になるように結晶配向を制御している。 As a magnetic recording layer material for a perpendicular magnetic recording medium it has now been mainly studied CoCr-based alloy crystalline film, for use in perpendicular magnetic recording, a hexagonal closest packing (hcp) structure perpendicular to the c-axis film surface of the CoCr-based alloy having (c plane parallel to the film surface) is controlling the crystal orientation such that. CoCr系合金の今後の更なる高密度化に対し、このCoCr系結晶粒の微細化、粒径分布の低減、 To future further densification of CoCr-based alloy, the miniaturization of the CoCr-based crystal grains, reduce the grain size distribution,
粒間の磁気的な相互作用の低減等の試みが行なわれている。 Attempts such as reduction of magnetic interaction between grains is performed. 【0004】一方、長手記録媒体の高密度化のための磁性層構造制御の一方式として、例えば特開平8−255 On the other hand, as a method of magnetic layer structure control for high density longitudinal recording medium, for example, JP-A-8-255
342号公報や米国特許5679473号明細書において、一般にグラニュラ磁性層と呼ばれる、磁性結晶粒の周囲を酸化物や窒化物のような非磁性非金属物質で囲んだ構造をもつ磁性層が提案されている。 In 342 JP and U.S. Patent 5,679,473 Pat, commonly referred to as a granular magnetic layer, and a magnetic layer having a surrounding structure in which a periphery of the magnetic crystal grains in the non-magnetic metallic materials, such as oxides or nitrides have been proposed there. このようなグラニュラ磁性膜は、非磁性非金属の粒界相が磁性粒子を物理的に分離するため、磁性粒子間の磁気的な相互作用が低下し、記録ビットの遷移領域に生じるジグザグ磁壁の形成を抑制するので、低ノイズ特性が得られると考えられており、垂直磁気記録媒体の記録層として、グラニュラ磁性層を用いることが提案されている。 Such granular magnetic film, the nonmagnetic nonmetal for the grain boundary phase is physically separated magnetic particles, the magnetic interaction between the magnetic grains is reduced, a zigzag magnetic domain wall occurring in the transition region of the recording bit since inhibiting the formation, believed to low noise characteristic is obtained, as a recording layer of the perpendicular magnetic recording medium has been proposed to use a granular magnetic layer. 例えば、IE For example, IE
EE Trans., Mag., Vol. 36, 2393(2000) には、Ru EE Trans., Mag., Vol. 36, to the 2393 (2000), Ru
を下地層とし、グラニュラ構造をもつCoPtCrO合金を磁性層とした垂直記録媒体が記載されており、グラニュラ磁性層の下地層であるRu層の膜厚を増加させるにしたがってc軸配向性が向上し、それに伴い優れた磁気特性と電磁変換特性が得られている。 Was a base layer, a CoPtCrO alloy having a granular structure have been described perpendicular recording medium with the magnetic layer, c-axis orientation is improved in accordance with increasing the thickness of the Ru layer as a base layer of the granular magnetic layer , excellent magnetic properties and electromagnetic conversion characteristics with it are obtained. 【0005】一方、浮上型磁気ヘッドを用いた磁気記録装置においては、その磁気ヘッドと磁気記録媒体との間の距離が数10nmと非常に小さいため、ヘッド−媒体間の摩擦磨耗特性が装置の耐久性に強く影響する。 On the other hand, in a magnetic recording apparatus using a floating type magnetic head, therefore the distance between the magnetic head and the magnetic recording medium is very small and the number 10 nm, the head - the frictional wear characteristics between media device strongly affect the durability. そのため、媒体表面に分子量数千の液体潤滑材を塗布することで、ヘッドとの摩擦磨耗特性を向上させることが一般に行われている。 Therefore, by applying a liquid lubricant having a molecular weight of thousands medium surface, it is common to improve the frictional wear characteristics of the head. ここで、媒体の磁性層に含まれているCo原子が媒体表面に析出した場合、そのCo原子は媒体表面の液体潤滑材の分解を促進し、媒体の耐久性を著しく劣化させてしまうことが知られている。 Here, if the Co atoms contained in the magnetic layer of the medium were precipitated on the surface of the medium, the Co atom promotes decomposition of the liquid lubricant medium surface, that would significantly degrade the durability of the medium Are known. そこでこのようなCo原子の析出を防ぐため、媒体保護膜の膜厚や膜質の管理及び媒体表面粗さの制御等が、媒体を作製する上で必要不可欠となっている。 Therefore in order to prevent the precipitation of such Co atoms, control of management and media surface roughness of the thickness and quality of the medium protective film it has become indispensable in manufacturing the medium. 【0006】 【発明が解決しようとする課題】しかしながら、本発明者らの検討によると、磁性層としてグラニュラ磁性層を使用した場合には、磁性層に含まれるCo原子が媒体表面に容易に析出することが判明した。 [0006] The object of the invention is to, however, according to the study of the present inventors, when using the granular magnetic layer as the magnetic layer is easily precipitated Co atom medium surface in the magnetic layer it was found that. 特に、優れた磁気特性と電磁変換特性を得るためにスパッタ成膜時のAr In particular, Ar during sputtering deposition in order to obtain excellent magnetic properties and electromagnetic conversion characteristics
ガス圧を増加させた場合にCo溶出量はより顕著になる。 Co elution amount in the case of increasing the gas pressure becomes more pronounced. Co原子が媒体表面に析出すると、そのCo原子が媒体表面の液体潤滑材分子を分解することにより、媒体の摩擦磨耗耐久性を著しく劣化させてしまうという問題が生じる。 When Co atom is deposited on the medium surface, by the Co atoms degrades the liquid lubricant molecules of the medium surface, is a problem that significantly degrade the frictional wear resistance of the medium occurs. 【0007】本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、グラニュラ磁性層からのCoの溶出を抑制して優れた電磁変換特性と良好な耐久性とを両立させ、更に、生産性に優れた垂直磁気記録媒体並びにその製造方法を提供することにある。 [0007] The present invention, which has been made in view of such problems, it is an object of excellent electromagnetic characteristics and good durability by suppressing the elution of Co from granular magnetic layer is both bets, further, is to provide an excellent perpendicular magnetic recording medium and manufacturing method thereof productivity. 【0008】 【課題を解決するための手段】本発明は、このような目的を達成するために、請求項1に記載の発明は、非磁性基体上に、軟磁性裏打ち層と、中間層と、CoCr系合金層の磁性層と、保護層と、液体潤滑剤層とが順次積層されてなる垂直磁気記録媒体であって、前記磁性層は、 [0008] The present invention SUMMARY OF THE INVENTION In order to achieve this object, the invention according to claim 1, on a non-magnetic substrate, a soft magnetic backing layer, an intermediate layer , a magnetic layer of a CoCr-based alloy layer, and a protective layer, a perpendicular magnetic recording medium in which a liquid lubricant layer are sequentially laminated, wherein the magnetic layer,
前記中間層側に設けられたグラニュラ構造の第1の磁性層と、前記保護層側に設けられた非グラニュラ構造の第2の磁性層とから構成されていることを特徴とする。 Characterized in that it is composed of said a first magnetic layer having a granular structure provided on the intermediate layer side, the second magnetic layer of the non-granular structure provided on the protective layer side. 【0009】また、請求項2に記載の発明は、請求項1 [0009] The invention of claim 2, claim 1
に記載の垂直磁気記録媒体において、前記中間層が、六方最密充填(hcp)の結晶構造を有するTi、Re、 The perpendicular magnetic recording medium according to, Ti said intermediate layer having a crystal structure of hexagonal close-packed (hcp), Re,
Ru、Osのいずれかの金属、又は、Ti、Re、R Ru, or a metal of Os, or, Ti, Re, R
u、Osのうちの少なくとも一種の金属を含む合金で構成されていることを特徴とする。 u, characterized in that it consists of an alloy containing at least one metal of the Os. 【0010】更に、請求項3に記載の発明は、請求項1 Furthermore, the invention according to claim 3, claim 1
又は2に記載の垂直磁気記録媒体において、前記非磁性基体と前記軟磁性裏打ち層との間に、前記非磁性基体側の下地層と前記軟磁性裏打ち層側の磁区制御層を順次積層させたことを特徴とする。 Or in the perpendicular magnetic recording medium according to 2, wherein between the nonmagnetic substrate and the soft magnetic backing layer, were sequentially laminated magnetic domain control layer of the underlayer of the non-magnetic base side the soft magnetic backing layer side it is characterized in. 【0011】請求項4に記載の発明は、垂直磁気記録媒体の製造方法であって、非加熱の非磁性基体上に軟磁性裏打ち層を成膜する工程と、該軟磁性裏打ち層上に中間層を成膜する工程と、該中間層上にグラニュラ構造を有するCoCr系合金層の第1の磁性層をスパッタ法により成膜する工程と、該第1の磁性層上に非グラニュラ構造を有するCoCr系合金層の第2の磁性層をスパッタ法により成膜する工程と、該第2の磁性層上に保護層を成膜する工程と、該保護層上に液体潤滑剤層を成膜する工程とを少なくとも備え、前記第1の磁性層の成膜時のガス圧が10mTorr以上で、かつ、前記第2の磁性層の成膜時のガス圧が15mTorr以下であることを特徴とする。 [0011] invention as set forth in claim 4, a method of manufacturing the perpendicular magnetic recording medium, a step of on a nonmagnetic substrate unheated depositing a soft magnetic backing layer, an intermediate in the soft magnetic backing layer and a step of forming the layer, a step of forming by sputtering the first magnetic layer of a CoCr-based alloy layer having a granular structure on the intermediate layer, a non-granular structure on the first magnetic layer depositing a step of forming a second sputtering a magnetic layer of a CoCr-based alloy layer, and a step of forming a protective layer on the second magnetic layer, a liquid lubricant layer on the protective layer at least a step, the gas pressure during film formation of the first magnetic layer is at least 10 mTorr, and the gas pressure during film formation of the second magnetic layer is equal to or not more than 15 mTorr. 【0012】また、請求項5に記載の発明は、請求項4 [0012] The invention described in Claim 5, Claim 4
に記載の垂直磁気記録媒体の製造方法において、前記第2の磁性層の成膜後に、成膜装置内において前記非磁性基体を加熱処理する工程を備えることを特徴とする。 The method of manufacturing the perpendicular magnetic recording medium according to, after the deposition of the second magnetic layer, characterized in that it comprises a step of heat-treating the non-magnetic substrate in a deposition apparatus. 【0013】また、請求項6に記載の発明は、請求項5 [0013] The invention of claim 6, claim 5
に記載の垂直磁気記録媒体の製造方法において、前記非磁性基体の加熱処理後に、成膜装置内において前記非磁性基体を急冷する工程を備えることを特徴とする。 The method of manufacturing the perpendicular magnetic recording medium according to the following heat treatment of the non-magnetic substrate, characterized in that it comprises the step of rapidly cooling the nonmagnetic substrate in the film forming apparatus. 【0014】更に、請求項7に記載の発明は、請求項4 Furthermore, the invention according to claim 7, claim 4
〜6のいずれかに記載の垂直磁気記録媒体の製造方法において、前記非磁性基体の直上に下地層を成膜する工程と、該下地層の直上に磁区制御層を成膜する工程とを備えることを特徴とする。 The method of manufacturing the perpendicular magnetic recording medium according to any one 6 of, and a step of forming an underlying layer directly on the non-magnetic substrate and a step of forming a magnetic domain control layer directly above the underlayer it is characterized in. 【0015】 【発明の実施の形態】以下、図面を参照して本発明の実施の形態について説明する。 DETAILED DESCRIPTION OF THE INVENTION Hereinafter, with reference to the drawings will be described embodiments of the present invention. 【0016】図1は、本発明の垂直磁気記録媒体の構成例を説明するための図で、垂直磁気記録媒体は、非磁性基体11上に、軟磁性裏打ち層12、中間層13、第1 [0016] Figure 1 is a view in vertical magnetic recording medium for illustrating a configuration example of a perpendicular magnetic recording medium of the present invention, on the non-magnetic substrate 11, a soft magnetic backing layer 12, intermediate layer 13, a first
の磁性層14、第2の磁性層15、及び、保護層16が順次積層され、更に、保護層16の上には液体潤滑剤層17が形成されて構成されている。 The magnetic layer 14, the second magnetic layer 15, and protective layer 16 are sequentially stacked, furthermore, on the protective layer 16 is to be constituted by forming a liquid lubricant layer 17. 【0017】また、図2は、本発明の垂直磁気記録媒体の他の構成例を説明するための図で、垂直磁気記録媒体は、非磁性基体21上に、複数層で構成された多層下地層22、磁区制御層23、軟磁性裏打ち層24、中間層25、第1の磁性層26、第2の磁性層27、及び、保護層28が順次積層され、更に、保護層28の上には液体潤滑剤層29が形成されて構成されている。 [0017] FIG. 2 is a diagram for explaining another configuration example of a perpendicular magnetic recording medium of the present invention, a perpendicular magnetic recording medium, on the non-magnetic substrate 21, multilayer under composed of a plurality of layers formations 22, magnetic domain control layer 23, a soft magnetic backing layer 24, intermediate layer 25, the first magnetic layer 26, the second magnetic layer 27, and protective layer 28 are sequentially stacked, furthermore, on the protective layer 28 liquid lubricant layer 29 is formed is formed. 【0018】本発明の垂直磁気記録媒体において、非磁性基体11、21としては、通常の磁気記録媒体用に用いられるNiPメッキを施したAl合金や強化ガラス、 [0018] In the perpendicular magnetic recording medium of the present invention, as the non-magnetic substrate 11 and 21, Al alloy or reinforced glass coated with a NiP plating, which is used for conventional magnetic recording medium,
或いは結晶化ガラス等を用いることができ、磁区制御層23としては、Mnを含む合金系からなるPtMn、I Or can be used crystallized glass, as the magnetic domain control layer 23, PtMn made of an alloy system comprising Mn, I
rMnなどの反強磁性膜、或いは非磁性基体21の半径方向に磁化を配向させたCoCrTa、CoCrPt、 An antiferromagnetic film such as RMN, or CoCrTa which has radially oriented magnetization of the non-magnetic substrate 21, CoCrPt,
CoCrPtB膜などの硬質磁性膜を用いることができる。 It is possible to use a hard magnetic film such as CoCrPtB film. なお、この磁区制御層23は、5〜300nm程度の膜厚とすることが好ましい。 Incidentally, the magnetic domain control layer 23 is preferably a thickness of about 5 to 300 nm. 【0019】多層下地層22としては、磁区制御層23 [0019] The multi-layer base layer 22, the magnetic domain control layer 23
としてMn合金系の反強磁性膜を用いる場合には、面心立方(fcc)構造を有するCu、Irなどの非磁性単金属、あるいはNiFeCrなどの非磁性合金などを用いることが望ましい。 As in the case of using an antiferromagnetic film of Mn alloy system, Cu having face-centered cubic (fcc) structure, non-magnetic single metal such as Ir, or NiFeCr be used as the non-magnetic alloy such as desirable. この場合、さらにその下層に、これらの非磁性単金属膜あるいは非磁性合金膜の微細構造を制御するために、3〜30nmの膜厚のTa、Zr、 In this case, further thereunder, in order to control the microstructure of the non-magnetic single-metal film or a nonmagnetic alloy film, having a thickness of 3 to 30 nm Ta, Zr,
Nbなどの層を設けることとしてもよい。 A layer such as Nb may be provided. また、磁区制御層23として硬質磁性膜を用いた場合には、多層下地層22としては、CrMo、CrWなどのCr合金などを用いることができる。 Further, when the magnetic domain control layer 23 using a hard magnetic film, the multilayer base layer 22, may be used CrMo, and Cr alloy such as CrW. この場合にも、さらにその下層に、これらのCr合金膜の微細構造を制御するために下地層を設けてもよい。 Also in this case, further thereunder, an undercoat layer may be provided to control the microstructure of these Cr alloy film. なお、この多層下地層22は、必ずしも複数の層から構成された多層下地層である必要はなく、所望により、単層の下地層であってもよい。 Incidentally, the multilayer base layer 22 is not necessarily a multilayer base layer composed of a plurality of layers, if desired, it may be a base layer of a single layer. 【0020】軟磁性裏打ち層12、24としては、Ni [0020] as a soft magnetic backing layer 12, 24, Ni
Fe合金、センダスト(FeSiAl)合金等を用いることができるが、非晶質のCo合金、例えばCoNbZ Fe alloy, sendust (FeSiAl) can be used alloys, amorphous Co alloy, for example CoNbZ
r、CoTaZrなどを用いることにより良好な電磁変換特性を得ることができる。 r, it is possible to obtain an excellent electromagnetic conversion characteristics by using such CoTaZr. なお、軟磁性裏打ち層1 In addition, the soft magnetic backing layer 1
2、24の膜厚の最適値は、磁気記録に用いる磁気ヘッドの構造や特性によって変化するが、生産性との兼ね合いから10nm以上300nm以下であることが望ましい。 Optimal value of the film thickness of 2, 24 may vary depending on the structure and characteristics of the magnetic head used for magnetic recording, it is desirable from the consideration of the productivity is 10nm or more 300nm or less. 【0021】中間層13、25としては、第1の磁性層14、26の結晶配向性、結晶粒径及び、粒界偏析を好適に制御するための材料を適宜用いることができ、特に、第1の磁性層14、26の結晶配向制御の観点からは、六方最密充填(hcp)の結晶構造を有するTi、 [0021] As the intermediate layer 13, 25, the crystal orientation of the first magnetic layer 14 and 26, the crystal grain size and can be used a material for suitably controlling the grain boundary segregation appropriate, in particular, the 1 in terms of crystal orientation control of the magnetic layer 14, 26, Ti having a crystal structure of hexagonal close-packed (hcp),
Re、Ru、Osのいずれかの金属、またはTi、R Re, Ru, or a metal of Os or Ti, R,
e、Ru、Osのうちの少なくとも一種の金属を含む合金であることが望ましい。 e, Ru, it is desirable that the alloy containing at least one metal of the Os. なお、その膜厚は特に限定されるものではないが、記録再生分解能の向上や生産性の観点からは、第1の磁性層14、26の結晶構造制御のために必要とされる最小限の膜厚とすることが望ましい。 Although its thickness is not particularly limited, the recording from the viewpoint of improvement and productivity of reproduction resolution, the minimum required for the crystal structure control of the first magnetic layer 14 and 26 it is desirable that the film thickness. 【0022】第1の磁性層14、26は、強磁性を有するCoCr系合金結晶粒とそれを取り巻く非磁性粒界からなり、かつ、その非磁性粒界が金属の酸化物または窒化物からなる、いわゆるグラニュラ磁性層である。 The first magnetic layer 14 and 26 is made of non-magnetic grain boundaries surrounding it and CoCr-based alloy crystal grains having ferromagnetism and the non-magnetic grain boundary is made of a metal oxide or nitride , is a so-called granular magnetic layer. このグラニュラ構造は、例えば、非磁性粒界を構成する酸化物を含有する強磁性金属をターゲットとしたスパッタリングや、酸素を含有するArガス雰囲気中で強磁性金属をターゲットとした反応性スパッタリングによって作製することができる。 This granular structure is produced, for example, a ferromagnetic metal containing oxide constituting the non-magnetic grain boundary sputtering or targeting, by reactive sputtering with a target of ferromagnetic metal in an Ar gas atmosphere containing oxygen can do. なお、グラニュラ磁性層として良好な特性を得るためには、成膜時のガス圧を10mTor In order to obtain good characteristics as a granular magnetic layer, 10 mTOR a gas pressure during film formation
r以上にする必要がある。 It is necessary to be greater than or equal to r. 【0023】ここで、強磁性を有する結晶を成膜するための材料としてはCoCr系合金が好適に用いられ、特に、優れた磁気特性と記録再生特性を得る観点からは、 [0023] Here, CoCr-based alloy is preferably used as a material for forming the crystals having a ferromagnetic, in particular, from the viewpoint of obtaining excellent magnetic characteristics and recording and reproducing characteristics,
CoCr合金にPt、Ni、Taのうちの少なくとも1 Pt on CoCr alloy, Ni, at least one of Ta
つの元素を添加することが望ましい。 It is desirable to add One element. 一方、非磁性粒界を構成する材料としては、安定なグラニュラ構造を形成する観点から、Cr、Co、Si、Al、Ti、Ta、 On the other hand, as a material constituting the nonmagnetic grain boundary, from the viewpoint of forming a stable granular structure, Cr, Co, Si, Al, Ti, Ta,
Hf、Zrのうちの少なくとも1つの元素の酸化物を用いることが望ましく、その膜厚は、記録再生分解能を高めるために、30nm以下とすることが望ましい。 Hf, it is desirable to use an oxide of at least one element of Zr, its thickness, in order to increase the recording resolution, it is desirable to 30nm or less. 【0024】第2の磁性層15、27は、非磁性粒界には金属の酸化物や窒化物を含有しない非グラニュラ構造のCoCr系合金結晶質膜で構成されている。 The second magnetic layer 15, 27 is in the non-magnetic grain boundary is composed of a CoCr-based alloy crystalline film of non-granular structure containing no oxide or nitride of a metal. このCo This Co
Cr系合金結晶質膜の成膜に使用可能な材料の例としては、CoCr、CoCrTa、CoCrPt、CoCr Examples of materials usable for forming the Cr-based alloy crystalline film, CoCr, CoCrTa, CoCrPt, CoCr
PtTa、CoCrPtB等の合金系材料を挙げることができる。 PTTA, mention may be made of an alloy material such as CoCrPtB. なお、耐久性に優れた垂直磁気記録媒体を作製するためには、第2の磁性層14、27を成膜する際のガス圧は15mTorr以下にする必要があり、その膜厚は20nm以下であることが望ましい。 In order to produce a perpendicular magnetic recording medium having excellent durability, gas pressure when forming the second magnetic layer 14 and 27 must be below 15 mTorr, at a film thickness 20nm or less it is desirable. 【0025】すなわち、本発明の垂直磁気記録媒体では、磁気記録を行なうための磁性層を2層で構成し、非磁性基体側の第1の磁性層を、その非磁性粒界が金属の酸化物または窒化物からなるグラニュラ構造のCoCr [0025] That is, in the perpendicular magnetic recording medium of the present invention, a magnetic layer for carrying out magnetic recording and composed of two layers, a first magnetic layer of the non-magnetic substrate side, oxidizing the nonmagnetic grain boundary of the metal CoCr granular structure consisting of mono- or nitride
系合金で構成し、この上に設けられる第2の磁性層を、 Constitute a system alloy, the second magnetic layer provided thereon,
非磁性粒界に金属の酸化物や窒化物を含有しない非グラニュラ構造のCoCr系合金で構成している。 Is constituted by CoCr-based alloy of non-granular structure in the non-magnetic grain boundary does not contain an oxide or nitride of a metal. これらの磁性層のうち、第1の磁性層が、そのグラニュラ構造に起因する良好な電磁変換特性を担保する一方、第2の磁性層は、第1の磁性層の非磁性粒界から溶出してくるC Among these magnetic layers, the first magnetic layer, whereas to guarantee good electromagnetic characteristics due to its granular structure, the second magnetic layer is eluted from the non-magnetic grain boundary of the first magnetic layer come C
o原子をブロックして媒体の高い耐久性を担保するように構成されている。 Blocking o atoms are configured to ensure high durability of the medium. 【0026】保護層16、28は、従来より使用されている保護膜を用いることができ、例えば、カーボンを主体とする保護膜を用いることができる。 The protective layer 16, 28 may be used a protective film that is conventionally used, for example, it is possible to use a protective film mainly made of carbon. また、液体潤滑剤層17、29も、従来より使用されている材料を用いることができ、例えば、パーフルオロポリエーテル系の潤滑剤を用いることができる。 The liquid lubricant layer 17, 29 also, it is possible to use a material that is conventionally used, for example, can be used perfluoropolyether lubricant. なお、保護層16、28 It is to be noted that the protective layer 16, 28
の膜厚等の条件や、液体潤滑剤層17、29の膜厚等の条件は、通常の磁気記録媒体で用いられる諸条件をそのまま用いることができる。 Conditions and film thickness, etc., conditions for the thickness of the liquid lubricant layer 17, 29, etc., can be used as the conditions used in the conventional magnetic recording medium. 【0027】以下に本発明の垂直磁気記録媒体の製造方法の実施例について説明する。 [0027] The following examples of a method for manufacturing a perpendicular magnetic recording medium of the present invention will be described. なお、これらの実施例は、本発明の垂直磁気記録媒体の製造方法を好適に説明するための代表例に過ぎず、これらに限定されるものではない。 These Examples are merely representative examples to illustrate the method of manufacturing the perpendicular magnetic recording medium of the present invention preferably, but not limited thereto. 【0028】(実施例1)非磁性基体として、表面が平滑な化学強化ガラス基板(例えばHOYA社製N−5ガラス基板)を用い、これを洗浄後スパッタ装置内に導入し、CoZrNb非晶質軟磁性裏打ち層を200nm、 [0028] (Example 1) Non-magnetic base, the surface using a smooth chemically strengthened glass substrate (e.g., manufactured by HOYA Corporation N-5 glass substrate), and introduced into a wash after the sputtering apparatus, CoZrNb HiAkiraTadashi 200nm the soft magnetic backing layer,
Ru中間層を30nm積層させた後、CoCrPt−S After the Ru intermediate layer is 30nm laminated, CoCrPt-S
iO ターゲットを用いたRFスパッタ法により第1の磁性層を20nm成膜し、更に、CoCrPtBターゲットを用いて第2の磁性層を10nm成膜させた。 iO 2 to 20nm forming the first magnetic layer by an RF sputtering method using a target, further, it was 10nm form the second magnetic layer by using a CoCrPtB target. ここで、第1の磁性層及び第2の磁性層は、ガス圧を種々変化させた条件で成膜している。 Here, the first magnetic layer and the second magnetic layer is formed under conditions changed variously gas pressure. 最後にカーボンからなる保護層5nmを成膜後、真空装置から取り出し、その後、パーフルオロポリエーテルからなる液体潤滑剤層2 After forming the end of a carbon protective layer 5 nm, removed from the vacuum device, then, a liquid lubricant layer of perfluoropolyether 2
nmをディップ法により形成して垂直磁気記録媒体とした。 And a perpendicular magnetic recording medium nm was formed by a dipping method. なお、成膜に先立つ基板加熱、並びに、磁性層成膜後の加熱・急冷処理は行なっていない。 Note that the substrate heating prior to film formation, as well as heating and quenching treatment after the magnetic layer forming is not performed. 【0029】このようにして作製した垂直磁気記録媒体を、85℃で80%RHの高温高湿環境下に96時間放置した後に50mlの純水中で3分間揺動して溶出したCoを抽出し、その濃度をICP発光分光分析法によって測定した。 The extract thus a perpendicular magnetic recording medium thus fabricated is eluted swung 3 minutes in pure water of 50ml after standing for 96 hours in a high-temperature high-humidity environment of RH 80% at 85 ° C. Co and, its concentration was determined by ICP emission spectroscopy. なお、第1及び第2の磁性層成膜後の媒体の磁化曲線を振動試料型磁力計で測定して磁気特性を評価すると共に、全層を成膜した媒体の電磁変換特性をG Incidentally, while evaluating the magnetic characteristics of the magnetization curve of the first and second medium after the magnetic layer deposited was measured by a vibrating sample magnetometer, the electromagnetic conversion characteristics of media forming a full thickness G
MRヘッドを備えたスピンスタンドテスターにより評価した。 They were evaluated by a spin stand tester equipped with the MR head. 【0030】表1は、第1並びに第2の磁性層を成膜する際のガス圧を種々変化させて作製した垂直磁気記録媒体のCo溶出量を纏めた結果である。 [0030] Table 1 shows the result of summarizing the Co elution amount of perpendicular magnetic recording medium having a gas pressure when forming the first and second magnetic layers produced by variously changing. 【0031】 【表1】 [0031] TABLE 1 【0032】この表から明らかなように、第1の磁性層、第2の磁性層共に、成膜時のガス圧を低下させることにより、Coの溶出量を抑制することができる。 [0032] As is apparent from this table, the first magnetic layer, both the second magnetic layer, by reducing the gas pressure during film formation, it is possible to suppress the elution of Co. 特に、第2の磁性層のガス圧を15mTorr以下とした場合には、第1の磁性層のガス圧によらず、Coの溶出量を10μg/m 以下に抑えることが可能である。 In particular, when the gas pressure of the second magnetic layer was less 15mTorr does not depend on the gas pressure of the first magnetic layer, it is possible to suppress the elution of Co to 10 [mu] g / m 2 or less. 【0033】表2は、第1並びに第2の磁性層の成膜時のガス圧を種々変化させて作製した垂直磁気記録媒体の350kFClにおけるSNR(電磁変換特性の信号とノイズの比)を纏めた結果である。 [0033] Table 2 summarizes the SNR (ratio of signal and noise electromagnetic characteristics) in 350kFCl the first and second magnetic layer perpendicular magnetic recording medium fabricated by variously changing the gas pressure during formation of the It was the result. 【0034】 【表2】 [0034] TABLE 2 【0035】この表から分かるように、第1の磁性層成膜時のガス圧を15mTorr以上とした場合には、第2の磁性層の成膜時のガス圧によらず、15dB以上の良好な電磁変換特性が得られている。 [0035] As can be seen from this table, when the gas pressure during the first magnetic layer deposited or more 15mTorr does not depend on gas pressure during deposition of the second magnetic layer, 15 dB or more good electromagnetic conversion characteristics are obtained such. また、第2の磁性層成膜時のガス圧が15mTorr以下の領域においては、第1の磁性層成膜時のガス圧が10mTorr以上の媒体においても15dB以上の値が得られている。 Further, in the second region the gas pressure is below 15mTorr during magnetic layer deposition, the value of more than 15dB is obtained also in the first magnetic layer deposited upon the gas pressure over the medium 10 mTorr. 【0036】このように、Co溶出量を10μg/m [0036] Thus, the Co elution amount 10 [mu] g / m 2
以下に抑制し、かつ、記録密度350kFClでのSN Suppressed below and, SN in the recording density 350kFCl
R値を15dB以上にするためには、第1の磁性層の成膜時のガス圧を10mTorr以上とし、かつ、第2の磁性層の成膜時のガス圧を15mTorr以下にする必要があることが分かる。 To the R value than 15dB, the gas pressure during formation of the first magnetic layer and above 10 mTorr, and it is necessary to set the gas pressure during formation of the second magnetic layer below 15mTorr it can be seen. 【0037】(実施例2)成膜に先立つ基板加熱(前加熱)、及び、第2の磁性層成膜後の加熱(後加熱)、並びに、急冷処理を同一装置内で行って作製したこと以外は上述した実施例1と同様にして磁気記録媒体を作製した。 [0037] (Example 2) substrate heated prior to deposition (before heating), and, after the second magnetic layer forming heated (post-heating), as well, that prepared the quenching treatment performed in the same apparatus except to produce a magnetic recording medium in the same manner as in example 1 described above. 但し、第1の磁性層成膜時のガス圧を50mTor However, 50MTor the gas pressure during the first magnetic layer deposited
r、第2の磁性層成膜時のガス圧を5mTorr一定とした。 r, and the gas pressure during the second magnetic layer forming a 5mTorr constant. 【0038】表3は、前加熱温度を200℃、後加熱温度200℃、後加熱処理に連続して行う冷却処理工程は10秒後の基板温度が100℃となるように調整を行い、それぞれの処理の有無による保磁力(Hc)並びにSNR値の値を纏めた結果である。 [0038] Table 3, the pre-heating temperature of 200 ° C., post-heating temperature 200 ° C., the cooling process carried out continuously in the post-heating treatment adjusts such that the substrate temperature after 10 seconds is 100 ° C., respectively coercive force with or without treatment (Hc) and a result of summarizing the values ​​of the SNR values. 【0039】 【表3】 [0039] TABLE 3 【0040】この表から分かるとおり、前加熱処理を行うことにより、磁気特性並びにSNRが急激に低下しており、第1の磁性層であるグラニュラ磁性層を成膜する際は、事前に加熱せずに成膜プロセスを行なう必要がある。 [0040] As can be seen from this table, by performing pre-heat treatment, and magnetic properties as well as SNR decreases rapidly, when forming the granular magnetic layer is a first magnetic layer causes heating in advance it is necessary to perform the deposition process without. また、後加熱処理を行った場合には磁気特性とSN The magnetic properties when subjected to post-heating treatment and SN
Rの値が大幅に増加している。 The value of R has increased significantly. これは、後加熱処理により第2の磁性層であるCoCr系合金結晶質膜の特性が改善されたためである。 This is the post-heating treatment is because the characteristic of the second is a magnetic layer CoCr-based alloy crystalline film has been improved. 更に、後加熱処理に連続して急冷処理を行うことにより、さらに特性が向上していることが分かる。 Further, by performing the quenching treatment continuously to the post-heating treatment, it can be seen that further characteristic is improved. 【0041】(実施例3)表4は、中間層として各種の材料を用い、その膜厚を30nmとした以外は実施例1 [0041] (Example 3) Table 4, a variety of materials used as the intermediate layer, except that the film thickness 30nm Example 1
と同様にして作製した磁気記録媒体の、磁性層のhcp The magnetic recording medium, hcp magnetic layer was prepared in the same manner as
(002)回折線をX線回折法により求めたロッキングカーブの半値幅Δθ 50値を纏めた結果である。 (002) the result of the diffraction lines are summarized half width [Delta] [theta] 50 value of the rocking curve obtained by X-ray diffraction method. なお、 It should be noted that,
比較のため、中間層として体心立方(bcc)構造をもつTa、及びCrを使用した場合についても示している。 For comparison, also shows the case of using Ta, and Cr having a body-centered cubic (bcc) structure as an intermediate layer. 【0042】 【表4】 [0042] TABLE 4 【0043】この表から、非磁性下地層としてbcc構造をもつTaやCrを使用した場合に比べ、hcp構造をもつ各種材料を用いた場合にΔθ 50が改善され、磁性層の結晶配向制御が有効に行なわれることがわかる。 [0043] From this table, compared with the case of using the Ta or Cr having a bcc structure as the non-magnetic undercoat layer are improved [Delta] [theta] 50 in the case of using various materials having a hcp structure, crystal orientation control of the magnetic layer it can be seen that is effectively carried out. 【0044】(実施例4)実施例1に記載の製造方法において、非磁性基板と軟磁性裏打ち層との間に、Taターゲットを用いTaの第1下地層を5nm、NiFeC [0044] (Example 4) In the manufacturing method described in Example 1, between the non-magnetic substrate and the soft magnetic backing layer, 5 nm the first underlayer of Ta with Ta target, NiFeC
rターゲットを用いNiFeCrの第2下地層を5n 5n the second base layer of NiFeCr using the r target
m、及び、IrMnの磁区制御層を10nm成膜したことを除き実施例1と同様の手順で磁気記録媒体を作製した。 m, and to prepare a magnetic recording medium in the same manner as in Example 1 except for the 10nm deposited magnetic domain control layer of IrMn. 【0045】この方法にて作製した垂直磁気記録媒体と、実施例1の方法にて作製した垂直磁気記録媒体において、磁気特性並びにSNRに関しては、特に差異が認められなかった。 The perpendicular magnetic recording medium manufactured by this method, in a perpendicular magnetic recording medium manufactured by the method of Example 1, with respect to magnetic properties as well as SNR, especially differences were observed. 【0046】図3は、これらの各々の方法で作成した垂直磁気記録媒体のスピンスタンドテスターによる1周分の出力波形を比較したものである。 [0046] Figure 3 is a comparison of one rotation of the output waveform by spin stand tester perpendicular magnetic recording medium prepared in each of these methods. 下地層並びに磁区制御層を備えない構造の実施例1に示した方法で作製した垂直磁気記録媒体では、全周に渡り不均一にスパイクノイズが発生しているのに対し、下地層並びに磁区制御層を備える構成とすることにより、スパイクノイズは顕著に減少していることが分かる。 While the perpendicular magnetic recording medium fabricated by the method shown in Example 1 of structure without the underlayer and the magnetic domain control layer, unevenly spike noise over the entire circumference is occurring, the base layer and the magnetic domain control with the structure comprising a layer, spike noise is seen to decrease significantly. これは、非磁性基板上に下地層並びに磁区制御層を備えることにより、これらに続いて積層される軟磁性裏打ち層に磁壁が形成されないようになるためである。 This is provided with the undercoat layer and the magnetic domain control layer in the non-magnetic substrate, because the magnetic domain wall in the soft magnetic backing layer laminated Following these is not formed. 【0047】 【発明の効果】以上説明したように、本発明の垂直磁気記録媒体では、磁気記録を行なうための磁性層を2層で構成し、非磁性基体側の第1の磁性層を、その非磁性粒界が金属の酸化物または窒化物からなるグラニュラ構造のCoCr系合金で構成し、この上に設けられる第2の磁性層を、非磁性粒界に金属の酸化物や窒化物を含有しない非グラニュラ構造のCoCr系合金で構成している。 [0047] As described in the foregoing, in the perpendicular magnetic recording medium of the present invention, a magnetic layer for carrying out magnetic recording and composed of two layers, a first magnetic layer of the non-magnetic base side, As non-magnetic grain boundary is composed of CoCr-based alloy having a granular structure comprised of an oxide or nitride of a metal, a second magnetic layer provided thereon, an oxide or nitride of a metal on the non-magnetic grain boundary It is constituted by CoCr-based alloy of non-granular structure containing no. これらの磁性層のうち、第1の磁性層が、そのグラニュラ構造に起因する良好な電磁変換特性を担保する一方、第2の磁性層は、第1の磁性層の非磁性粒界から溶出してくるCo原子をブロックして媒体の高い耐久性を担保するように構成したので、優れた磁気特性と電磁変換特性を有し、かつ、85℃で80%RHの高温高湿環境下に96時間以上放置しても、50mlの純水中で3 Among these magnetic layers, the first magnetic layer, whereas to guarantee good electromagnetic characteristics due to its granular structure, the second magnetic layer is eluted from the non-magnetic grain boundary of the first magnetic layer since it is configured so as to guarantee the high durability of the medium by blocking the Co atoms come, excellent magnetic properties and having electromagnetic characteristics, and, in an environment of high temperature and high humidity RH 80% at 85 ° C. 96 even when it left more than an hour, 3 in pure water of 50ml
分間揺動して抽出したCoの量をICP発光分光分析によって測定した値が、ディスクの面積1m あたり10 Min The amount of swinging Co extracted by was determined by ICP emission spectroscopy value, the area of the disk 1 m 2 per 10
μg以下に抑制され、充分な長期信頼性を有する媒体が実現できる。 μg is suppressed below, the medium having a sufficient long-term reliability can be realized. 【0048】さらに、非磁性基体と軟磁性裏打ち層との間に、1層あるいは複数層からなる下地層並びに磁区制御層を付与することにより軟磁性裏打ち層に起因して発生するスパイクノイズを大幅に抑制することが可能となる。 [0048] Further, between the non-magnetic substrate and the soft magnetic underlayer, the spike noise caused by the soft magnetic backing layer by providing a base layer and the magnetic domain control layer composed of one layer or a plurality of layers significantly it is possible to suppress the.

【図面の簡単な説明】 【図1】本発明の垂直磁気記録媒体の構成例を説明するための図である。 It is a diagram for explaining a configuration example of a perpendicular magnetic recording medium BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 the invention. 【図2】本発明の垂直磁気記録媒体の他の構成例を説明するための図である。 Is a diagram for explaining another configuration example of a perpendicular magnetic recording medium of the present invention; FIG. 【図3】本発明の垂直磁気記録媒体のスピンスタンドテスターによる1周分の出力波形説明するための図である。 3 is a diagram for explaining an output waveform one round of the spin stand tester perpendicular magnetic recording medium of the present invention. 【符号の説明】 11、21 非磁性基体12、24 軟磁性裏打ち層13、25 中間層14、26 第1の磁性層15、27 第2の磁性層16、28 保護層17、29 液体潤滑剤層22 多層下地層23 磁区制御層 DESCRIPTION OF REFERENCE NUMERALS 11, 21 nonmagnetic substrate 12, 24 SUL 13, 25 intermediate layers 14 and 26 first magnetic layer 15 and 27 the second magnetic layer 16, 28 protective layer 17, 29 a liquid lubricant layer 22 multilayer base layer 23 domain control layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 7識別記号 FI テーマコート゛(参考) H01F 10/16 H01F 10/16 41/18 41/18 (72)発明者 上住 洋之 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内Fターム(参考) 5D006 BB02 BB07 BB08 CA01 CA03 CA05 CA06 DA03 DA08 EA03 FA02 FA09 5D112 AA03 AA04 AA05 AA24 BB05 BB06 BD03 FA04 FB20 FB26 5E049 AA04 BA08 GC01 ────────────────────────────────────────────────── ─── of the front page continued (51) Int.Cl. 7 identification mark FI theme Court Bu (reference) H01F 10/16 H01F 10/16 41/18 41/18 ( 72) inventor Hiroyuki Uwazumi Kawasaki City, Kanagawa Prefecture Kawasaki Subdivision Tanabeshinden No. 1 No. 1 Fuji Electric Co., Ltd. in the F-term (reference) 5D006 BB02 BB07 BB08 CA01 CA03 CA05 CA06 DA03 DA08 EA03 FA02 FA09 5D112 AA03 AA04 AA05 AA24 BB05 BB06 BD03 FA04 FB20 FB26 5E049 AA04 BA08 GC01

Claims (1)

  1. 【特許請求の範囲】 【請求項1】 非磁性基体上に、軟磁性裏打ち層と、中間層と、CoCr系合金層の磁性層と、保護層と、液体潤滑剤層とが順次積層されてなる垂直磁気記録媒体であって、 前記磁性層は、前記中間層側に設けられたグラニュラ構造の第1の磁性層と、前記保護層側に設けられた非グラニュラ構造の第2の磁性層とから構成されていることを特徴とする垂直磁気記録媒体。 To the Claims 1 non-magnetic substrate, a soft magnetic backing layer, an intermediate layer, a magnetic layer of a CoCr-based alloy layer, and a protective layer, and a liquid lubricant layer are successively laminated a perpendicular magnetic recording medium comprising the magnetic layer includes a first magnetic layer having a granular structure provided on the intermediate layer side, and a second magnetic layer of the non-granular structure provided on the protective layer side the perpendicular magnetic recording medium characterized by being composed of. 【請求項2】 前記中間層が、六方最密充填(hcp) Wherein said intermediate layer is hexagonal close packed (hcp)
    の結晶構造を有するTi、Re、Ru、Osのいずれかの金属、又は、Ti、Re、Ru、Osのうちの少なくとも一種の金属を含む合金で構成されていることを特徴とする請求項1に記載の垂直磁気記録媒体。 Of Ti having a crystal structure, Re, Ru, or a metal of Os, or claim wherein Ti, Re, Ru, that it is constituted by an alloy containing at least one metal of Os 1 the perpendicular magnetic recording medium according to. 【請求項3】 前記非磁性基体と前記軟磁性裏打ち層との間に、前記非磁性基体側の下地層と前記軟磁性裏打ち層側の磁区制御層を順次積層させたことを特徴とする請求項1又は2に記載の垂直磁気記録媒体。 Between the wherein the non-magnetic substrate and the soft magnetic backing layer, wherein said were sequentially laminated magnetic domain control layer to the underlying layer of non-magnetic base side the soft magnetic backing layer side claimed the perpendicular magnetic recording medium according to claim 1 or 2. 【請求項4】 非加熱の非磁性基体上に軟磁性裏打ち層を成膜する工程と、該軟磁性裏打ち層上に中間層を成膜する工程と、該中間層上にグラニュラ構造を有するCo Co with 4. A step of forming a soft magnetic backing layer on a nonmagnetic substrate unheated, a step of forming an intermediate layer on soft magnetic backing layer, a granular structure on the intermediate layer
    Cr系合金層の第1の磁性層をスパッタ法により成膜する工程と、該第1の磁性層上に非グラニュラ構造を有するCoCr系合金層の第2の磁性層をスパッタ法により成膜する工程と、該第2の磁性層上に保護層を成膜する工程と、該保護層上に液体潤滑剤層を成膜する工程とを少なくとも備え、 前記第1の磁性層の成膜時のガス圧が10mTorr以上で、かつ、前記第2の磁性層の成膜時のガス圧が15 A step of forming a first magnetic layer of the Cr-based alloy layer by sputtering, a second magnetic layer of a CoCr-based alloy layer having a non-granular structure on the first magnetic layer is formed by a sputtering method a step, a step of forming a protective layer on the second magnetic layer, comprising at least a step of forming a liquid lubricant layer on the protective layer, at the time of film formation of the first magnetic layer in gas pressure above 10 mTorr, and the gas pressure during film formation of the second magnetic layer 15
    mTorr以下であることを特徴とする垂直磁気記録媒体の製造方法。 A method of manufacturing a perpendicular magnetic recording medium characterized by mTorr or less. 【請求項5】 前記第2の磁性層の成膜後に、成膜装置内において前記非磁性基体を加熱処理する工程を備えることを特徴とする請求項4に記載の垂直磁気記録媒体の製造方法。 After the film formation of claim 5, wherein said second magnetic layer, the method of manufacturing the perpendicular magnetic recording medium according to claim 4, characterized in that it comprises a step of heat-treating the nonmagnetic substrate in the film forming apparatus . 【請求項6】 前記非磁性基体の加熱処理後に、成膜装置内において前記非磁性基体を急冷する工程を備えることを特徴とする請求項5に記載の垂直磁気記録媒体の製造方法。 6. A post heat treatment of the non-magnetic substrate, method of manufacturing the perpendicular magnetic recording medium according to claim 5, characterized in that it comprises the step of rapidly cooling the nonmagnetic substrate in the film forming apparatus. 【請求項7】 前記非磁性基体の直上に下地層を成膜する工程と、該下地層の直上に磁区制御層を成膜する工程とを備えることを特徴とする請求項4〜6のいずれかに記載の垂直磁気記録媒体の製造方法。 7. A process for formation of the base layer directly on the non-magnetic base, one of the claims 4-6, characterized in that it comprises a step of forming a magnetic domain control layer directly above the underlayer a method of manufacturing a perpendicular magnetic recording medium of the crab according.
JP2001365280A 2001-11-29 2001-11-29 The method of manufacturing a perpendicular magnetic recording medium and a perpendicular magnetic recording medium Active JP3988117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001365280A JP3988117B2 (en) 2001-11-29 2001-11-29 The method of manufacturing a perpendicular magnetic recording medium and a perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001365280A JP3988117B2 (en) 2001-11-29 2001-11-29 The method of manufacturing a perpendicular magnetic recording medium and a perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2003168207A true true JP2003168207A (en) 2003-06-13
JP3988117B2 JP3988117B2 (en) 2007-10-10

Family

ID=19175329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001365280A Active JP3988117B2 (en) 2001-11-29 2001-11-29 The method of manufacturing a perpendicular magnetic recording medium and a perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JP3988117B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090874A1 (en) * 2003-04-07 2004-10-21 Showa Denko K. K. Magnetic recording medium, method for producing thereof, and magnetic recording and reproducing apparatus.
JP2007164941A (en) * 2005-12-16 2007-06-28 Akita Prefecture Perpendicular magnetic recording medium
US7311983B2 (en) 2004-01-08 2007-12-25 Fuji Electric Device Technology Co., Ltd. Perpendicular magnetic recording medium and a method for manufacturing the same
JP2008108415A (en) * 2006-09-27 2008-05-08 Hoya Corp Method for manufacturing magnetic recording medium
US7428115B2 (en) 2004-04-14 2008-09-23 Hitachi Global Storage Technologies Netherlands B.V. Magnetic hard disk drive with countermeasure against spike noise
JP2008276833A (en) * 2007-04-26 2008-11-13 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium and its manufacturing method
US20100092802A1 (en) * 2008-10-15 2010-04-15 Seagate Technology Llc Multi-step etch process for granular media
US7846563B2 (en) * 2007-04-17 2010-12-07 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording exchange-spring type medium with a lateral coupling layer for increasing intergranular exchange coupling in the lower magnetic layer
US7862913B2 (en) 2006-10-23 2011-01-04 Hitachi Global Storage Technologies Netherlands B.V. Oxide magnetic recording layers for perpendicular recording media
US7901801B2 (en) 2007-07-04 2011-03-08 Kabushiki Kaisha Toshiba Perpendicular magnetic recording medium and magnetic recording apparatus
KR101022603B1 (en) * 2005-09-22 2011-03-16 시게이트 테크놀로지 엘엘씨 Tuning exchange coupling in magnetic recording media
JP2011216141A (en) * 2010-03-31 2011-10-27 Wd Media Singapore Pte Ltd Method for manufacturing perpendicular magnetic disk
US8110298B1 (en) 2005-03-04 2012-02-07 Seagate Technology Llc Media for high density perpendicular magnetic recording
US20140002919A1 (en) * 2012-06-28 2014-01-02 Showa Denko K.K. Magnetic recording medium and magnetic storage apparatus
US8697260B2 (en) 2008-07-25 2014-04-15 Seagate Technology Llc Method and manufacture process for exchange decoupled first magnetic layer
US9058831B2 (en) 2011-12-14 2015-06-16 HGST Netherlands B.V. Perpendicular magnetic recording medium with grain boundary controlling layers
US9142240B2 (en) 2010-07-30 2015-09-22 Seagate Technology Llc Apparatus including a perpendicular magnetic recording layer having a convex magnetic anisotropy profile
US9659592B2 (en) 2011-06-03 2017-05-23 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium and method of manufacturing same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7867638B2 (en) 2003-04-07 2011-01-11 Showa Denko K.K. Magnetic recording medium, method for producing thereof, and magnetic recording and reproducing apparatus
WO2004090874A1 (en) * 2003-04-07 2004-10-21 Showa Denko K. K. Magnetic recording medium, method for producing thereof, and magnetic recording and reproducing apparatus.
US7470474B2 (en) 2003-04-07 2008-12-30 Kabushiki Kaisha Toshiba Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus including both oxide and non-oxide perpendicular magnetic layers
US7311983B2 (en) 2004-01-08 2007-12-25 Fuji Electric Device Technology Co., Ltd. Perpendicular magnetic recording medium and a method for manufacturing the same
US7428115B2 (en) 2004-04-14 2008-09-23 Hitachi Global Storage Technologies Netherlands B.V. Magnetic hard disk drive with countermeasure against spike noise
US8110298B1 (en) 2005-03-04 2012-02-07 Seagate Technology Llc Media for high density perpendicular magnetic recording
US8119263B2 (en) 2005-09-22 2012-02-21 Seagate Technology Llc Tuning exchange coupling in magnetic recording media
KR101022603B1 (en) * 2005-09-22 2011-03-16 시게이트 테크놀로지 엘엘씨 Tuning exchange coupling in magnetic recording media
JP2007164941A (en) * 2005-12-16 2007-06-28 Akita Prefecture Perpendicular magnetic recording medium
JP2008108415A (en) * 2006-09-27 2008-05-08 Hoya Corp Method for manufacturing magnetic recording medium
US7862913B2 (en) 2006-10-23 2011-01-04 Hitachi Global Storage Technologies Netherlands B.V. Oxide magnetic recording layers for perpendicular recording media
US7846563B2 (en) * 2007-04-17 2010-12-07 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording exchange-spring type medium with a lateral coupling layer for increasing intergranular exchange coupling in the lower magnetic layer
US8647755B2 (en) 2007-04-26 2014-02-11 HGST Netherlands B. V. Perpendicular magnetic recording medium and manufacturing method thereof
JP2008276833A (en) * 2007-04-26 2008-11-13 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium and its manufacturing method
US7901801B2 (en) 2007-07-04 2011-03-08 Kabushiki Kaisha Toshiba Perpendicular magnetic recording medium and magnetic recording apparatus
US8697260B2 (en) 2008-07-25 2014-04-15 Seagate Technology Llc Method and manufacture process for exchange decoupled first magnetic layer
US20100092802A1 (en) * 2008-10-15 2010-04-15 Seagate Technology Llc Multi-step etch process for granular media
JP2011216141A (en) * 2010-03-31 2011-10-27 Wd Media Singapore Pte Ltd Method for manufacturing perpendicular magnetic disk
US9666221B2 (en) 2010-07-30 2017-05-30 Seagate Technology Llc Apparatus including a perpendicular magnetic recording layer having a convex magnetic anisotropy profile
US9142240B2 (en) 2010-07-30 2015-09-22 Seagate Technology Llc Apparatus including a perpendicular magnetic recording layer having a convex magnetic anisotropy profile
US9659592B2 (en) 2011-06-03 2017-05-23 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium and method of manufacturing same
US9058831B2 (en) 2011-12-14 2015-06-16 HGST Netherlands B.V. Perpendicular magnetic recording medium with grain boundary controlling layers
US8830630B2 (en) * 2012-06-28 2014-09-09 Showa Denko K.K. Magnetic recording medium and magnetic storage apparatus
US20140002919A1 (en) * 2012-06-28 2014-01-02 Showa Denko K.K. Magnetic recording medium and magnetic storage apparatus

Also Published As

Publication number Publication date Type
JP3988117B2 (en) 2007-10-10 grant

Similar Documents

Publication Publication Date Title
US6077586A (en) Laminated thin film disk for longitudinal recording
US6210819B1 (en) Magnetic recording media having a CrTi underlayer deposited under a substrate bias
US20010033949A1 (en) Magnetic recording medium and magnetic storage apparatus
US6010795A (en) Magnetic recording medium comprising a nickel aluminum or iron aluminum underlayer and chromium containing intermediate layer each having (200) dominant crystalographic orientation
US5922442A (en) Magnetic recording medium having a CoCr alloy interlayer of a low saturation magnetization
US7282278B1 (en) Tilted recording media with L10 magnetic layer
US5989674A (en) Thin film disk with acicular magnetic grains
US20070248843A1 (en) Corrosion-resistant granular magnetic media with improved recording performance and methods of manufacturing same
US20050202286A1 (en) Inter layers for perpendicular recording media
US7311983B2 (en) Perpendicular magnetic recording medium and a method for manufacturing the same
US6117570A (en) Thin film medium with surface-oxidized NiAl seed layer
US20030099868A1 (en) Perpendicular magnetic recording media
US6740397B1 (en) Subseedlayers for magnetic recording media
JP2004022138A (en) Vertical magnetic recording medium and its manufacturing method
US6221481B1 (en) High Cr, low saturation magnetization intermediate magnetic layer for high coercivity and low medium noise
JP2003077122A (en) Perpendicular magnetic recording medium and manufacturing method therefor
US6428906B1 (en) Magnetic recording media having a layered structure for perpendicular magnetization of a recording layer
US20100209737A1 (en) Magnetic recording media with enhanced writability and thermal stability
US6150016A (en) High coercivity magnetic recording medium comprising a thin CoCrTa intermediate layer
JP2003123239A (en) Perpendicular magnetic recording medium
US6475611B1 (en) Si-containing seedlayer design for multilayer media
JP2002208129A (en) Magnetic recording medium, its manufacturing method and magnetic recording device
US20060093867A1 (en) Perpendicular magnetic recording medium and the method of manufacturing the same
US6403241B1 (en) CoCrPtB medium with a 1010 crystallographic orientation
US8119263B2 (en) Tuning exchange coupling in magnetic recording media

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250