JP2004178748A - Perpendicular magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device - Google Patents

Perpendicular magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device Download PDF

Info

Publication number
JP2004178748A
JP2004178748A JP2002345994A JP2002345994A JP2004178748A JP 2004178748 A JP2004178748 A JP 2004178748A JP 2002345994 A JP2002345994 A JP 2002345994A JP 2002345994 A JP2002345994 A JP 2002345994A JP 2004178748 A JP2004178748 A JP 2004178748A
Authority
JP
Japan
Prior art keywords
perpendicular magnetic
recording medium
magnetic recording
underlayer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002345994A
Other languages
Japanese (ja)
Inventor
Takayuki Iwasaki
剛之 岩崎
Kazuyuki Hikosaka
和志 彦坂
Soichi Oikawa
壮一 及川
Futoshi Nakamura
太 中村
Hiroshi Sakai
浩志 酒井
Kenji Shimizu
謙治 清水
Akira Sakawaki
彰 坂脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Toshiba Corp filed Critical Showa Denko KK
Priority to JP2002345994A priority Critical patent/JP2004178748A/en
Priority to SG200306009A priority patent/SG105013A1/en
Priority to US10/701,488 priority patent/US20040106010A1/en
Priority to CNA200310118358A priority patent/CN1505006A/en
Publication of JP2004178748A publication Critical patent/JP2004178748A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/656Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing Co
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7369Two or more non-magnetic underlayers, e.g. seed layers or barrier layers
    • G11B5/737Physical structure of underlayer, e.g. texture
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7373Non-magnetic single underlayer comprising chromium
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7377Physical structure of underlayer, e.g. texture
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a perpendicular magnetic recording medium having high SNRm ( signal to noise ratio of medium) and excellent thermal fluctuation resistance. <P>SOLUTION: The perpendicular magnetic recording medium has a perpendicular magnetic layer containing Co, Pt, Cr, and at least one additive component of Mo and W, formed at 280 to 450°C film-deposition temperature and comprising a plurality of magnetic crystal particles separated by grain boundaries, wherein the additive component and chromium are segregated in the grain boundaries. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ハードディスク装置として使用される磁気記録再生装置、特に、垂直方向磁化を利用する磁気記録再生装置、これに用いられる垂直磁気記録媒体及びその製造方法に関する。
【0002】
【従来の技術】
垂直磁気記録媒体に使用される代表的な磁性層の1つとして例えばCoCr系磁性層があげられる。CoCr系磁性層は、Coに例えば20at%より多いCrを添加して、Co系磁性結晶粒子の周りに非磁性のCrを偏析させることによって、磁性結晶粒子間の磁気的相互作用を分断し、高密度の磁気記録を実現している。近年、垂直磁気記録媒体には、記録密度のさらなる向上が要求されている。しかしながら、媒体SN比(SNRm)を向上させるために垂直磁性層の磁性結晶粒子を小さくすると、熱揺らぎが発生しやすくなり、記録した情報が消える傾向があることが問題となっていた。
【0003】
このようなことから、Co系垂直磁性層に、様々な元素を添加することで熱ゆらぎ耐性を保ちつつ、記録再生特性を改善させる検討がされてきた。
【0004】
例えばCoを主成分とし、これにCr、Fe、Mo、V、Ta、Pt、Si、B、Ir、W、Hf、Nb、Ru、Niおよび希土類元素の中から選ばれる少なくとも1種類の元素を添加することが提案されている(例えば特許文献1参照)。
【0005】
しかしながら、SNRm向上と熱揺らぎ防止とを両立することは困難であった。
【0006】
また、面内磁性層として、下地層にCrを使用し、その上に、CoCrに、Ta、Mo、及びWを添加した磁性層を形成した媒体が開示されている(例えば特許文献2参照)。
【0007】
しかしながら、この面内磁性層を垂直磁気記録媒体に適用しても、MoやWが結晶配向性を乱し、垂直磁気異方性が著しく悪化することから、SNRmも熱揺らぎ防止特性も改善されなかった。このように、面内磁気記録媒体と垂直磁気記録媒体では、下地層から磁性層の組成、磁気異方性の方向、磁気ヘッドの違いによる軟磁性裏打ち膜の有無など、多くの点で異なっている。よって、面内磁気記録媒体に使用される磁性層を単純に垂直磁気記録媒体に応用しても、良好な効果を得ることはできない。
【0008】
【特許文献1】
特開平11−185236号
【0009】
【特許文献2】
特開昭63−148411号
【0010】
【発明が解決しようとする課題】
本発明の第1の目的は、高いSNRm及び優れた熱ゆらぎ耐性を有する垂直記録媒体の製造方法を提供することにある。
【0011】
本発明の第2の目的は、高いSNRm及び優れた熱ゆらぎ耐性を有する垂直記録媒体を提供することにある。
【0012】
本発明の第3の目的は、熱揺らぎの発生が抑制され、かつ高いSNRmで磁気記録再生が可能な磁気記録再生装置を提供することにある。
【0013】
【課題を解決するための手段】
本発明の垂直磁気記録媒体の製造方法は、非磁性基板上に、コバルトと、プラチナと、モリブデン及びタングステンのうち少なくとも1つの添加成分とを含有する磁性層形成材料を使用し、280℃ないし450℃の成膜温度で成膜を行い、結晶粒界に隔てられた複数の磁性結晶粒子を含む構造を有し、該添加成分が該結晶粒界中に偏析された垂直磁性層を形成する工程を含むことを特徴とする。
【0014】
本発明の垂直磁気記録媒体は、非磁性基板、及び
該非磁性基板上に形成され、Coと、Ptと、Mo及びWのうち少なくとも1つの添加成分とを含有し、280℃ないし450℃の成膜温度で形成され、結晶粒界に隔てられた複数の磁性結晶粒子を含む構造を有し、該添加成分が該結晶粒界中に偏析された垂直磁性層を具備することを特徴とする。
【0015】
本発明の磁気記録再生装置は、上述の垂直磁気記録媒体と、該垂直磁気記録媒体を支持および回転駆動する機構と、該垂直磁気記録媒体に対して情報の記録を行うための素子及び記録された情報の再生を行うための素子を有する磁気ヘッドと、該磁気ヘッドを該垂直磁気記録媒体に対して移動自在に支持したキャリッジアッセンブリとを具備することを特徴とする。
【0016】
【発明の実施の形態】
本発明の垂直磁気記録媒体の製造方法は、非磁性基板上に垂直磁性層を形成する工程を含み、この垂直磁性層形成工程では、Coと、Ptと、Mo及びWのうち少なくとも1つの添加成分とを含有する磁性層形成材料を使用し、280℃ないし450℃の成膜温度で成膜を行い、結晶粒界に隔てられた複数の磁性結晶粒子を含む構造を有し、該添加成分が該結晶粒界中に偏析された垂直磁性層を形成する。
【0017】
また、本発明の垂直磁気記録媒体は、上記方法を用いて製造されるもので、非磁性基板及び非磁性基板上に形成された垂直磁性層を含む垂直磁気記録媒体であって、
垂直磁性層は、Co、及びPtと、さらなる添加成分として少なくともMo及びWのいずれかとを含み、280℃ないし450℃の成膜温度で形成され、結晶粒界に隔てられた複数の磁性結晶粒子を含む構造を有し、この結晶粒界中に、この添加成分が偏析されている。
【0018】
本発明によれば、Mo及びWが結晶粒界に十分拡散して偏析し、磁性結晶粒子間の磁気的分断の効果を高め、高いSNRm及び優れた熱ゆらぎ耐性が得られる。
【0019】
本発明に用いられる垂直磁性層には、さらにCrを添加することができる。
【0020】
Mo、W及びCrのうち、磁性結晶粒子間の磁気的分断の効果は、Wが最も高く、次いでMo、Crの順に低くなる。これは、Wの格子定数が最も大きく、次いでMo、Crの順に低くなること、及びCo−Crは磁性結晶粒子内でも偏析した結晶粒界でも同じ六方最密充填構造をとるのに対し、Co−MoやCo−Wは偏析後の結晶粒界で磁性結晶粒子内と異なる構造例えばCsCl型構造等を示すことによる。
【0021】
しかし、Mo及びWは、拡散速度(偏析速度)がCrに比べて遅く、この速度は、Mo及びWの順で低くなる。よって、Mo及びWは結晶粒界への拡散が起こりにくい。これは、Moの融点は約2700℃、及びWの融点は約3500℃であって、Crの融点約1700℃に比べて、高いためである。さらに、Mo及びWは、Co系磁性結晶粒子内に残った場合、Coに比べ格子定数が大きいために、その結晶配向性や磁気異方性を大きく乱す傾向がある。
【0022】
このように、MoとWは、高い磁気的分断が期待されているにも関わらず、実用的には弊害を生ずる場合が多い。
【0023】
なお、Ptを用いると、垂直磁性層の結晶格子間隔を広げて、MoやWが引き起こす結晶配向性の乱れを軽減し、それらの偏析を良好にする傾向がある。
【0024】
このようなことから、本発明らは、MoやWをより結晶粒界に偏析させるべく、記録層にPtを添加し、高耐熱性を有する基板を用いて充分高温まで、成膜温度を変化させて垂直磁性層の形成を行うことを試みた。
【0025】
図1に、Co−16at%Pt−14at%Cr−xat%Mo垂直磁性層に関する成膜温度とSNRmとの関係を表すグラフ図を示す。
【0026】
曲線101はxが0のとき、曲線102はxが5のとき、曲線103はxが10のときを各々示す。
【0027】
曲線101に示すように、CoPt系磁性材料にCrを偏析成分として添加した場合には、比較的偏析速度が早いので約250℃付近で最適なSNRmが得られる。これに対し、曲線102及び曲線103に示すように、Cr及びMoを含む垂直磁性層を有する垂直磁気記録媒体では、Crに起因する250℃付近の極値の他に、Moに起因する約350℃付近の極値が現れる。これは、MoがCrより偏析速度が遅く、また高い融点を持つことが原因であると考えられる。曲線102及び曲線103から、Co、Pt、Cr、及びMoを含有し、Wを含まない垂直磁性層を使用した場合には、280℃ないし450℃、好ましくは290ないし420℃でより良好、さらに好ましくは320ないし380℃で良好なSNRm値が得られることがわかる。また、低域出力50kFCIでの減衰値を測定したところ、290ないし420℃の範囲で作成された媒体については、−0.10〜−0.15dB/decadeであり、良好な熱ゆらぎ耐性を維持していることが分かった。
【0028】
また、図2に、Co−16at%Pt−14at%Cr−yat%W垂直磁性層に関する成膜温度とSNRmとの関係を表すグラフ図を示す。
【0029】
曲線201はyが0のとき、曲線202はyが5のとき、曲線203はyが10のときを各々示す。
【0030】
曲線201に示すように、CoPt系磁性材料にCrを偏析成分として添加した場合には、比較的偏析速度が早いので約250℃付近で最適なSNRmが得られる。これに対し、曲線202及び曲線203に示すように、Cr及びWを含む垂直磁性層を有する垂直磁気記録媒体では、図1と同様に、Crに起因する250℃付近の極値の他に、Wに起因する約375℃の極値も現れる。曲線202及び曲線203から、Co、Pt、Cr、及びWを含有し、Moを含まない垂直磁性層を使用した場合には、280℃ないし450℃、好ましくは300ないし425℃、さらに好ましくは320ないし410℃で良好なSNRm値が得られることがわかる。また、低域出力50kFCIでの減衰値を測定したところ、300ないし425℃の範囲で作成された媒体については、−0.11〜−0.16dB/decadeであり、良好な熱ゆらぎ耐性を維持していることが分かった。
【0031】
また、図3に、Co−16at%Pt−14at%Cr−xat%Mo−yat%W垂直磁性層に関する成膜温度とSNRmとの関係を表すグラフ図を示す。
【0032】
曲線301はx及びyが0のとき、曲線302はx及びyが5のとき、曲線303はx及びyが10のときを各々示す。
【0033】
曲線301に示すように、CoPt系磁性材料にCrを偏析成分として添加した場合には、比較的偏析速度が早いので約250℃付近で最適なSNRmが得られる。これに対し、曲線302及び曲線303に示すように、図1と同様に、Co、Pt、Cr、Mo、及びWを含む垂直磁性層を有する垂直磁気記録媒体では、Crに起因する250℃付近の極値の他に、Wに起因する約350℃に極値が現れ、280℃ないし480℃、好ましくは300ないし460℃、さらに好ましくは320ないし420℃で良好なSNRm値が得られることがわかる。また、低域出力50kFCIでの減衰値を測定したところ、300ないし460℃の範囲で作成された媒体については、−0.09〜−0.16dB/decadeであり、良好な熱ゆらぎ耐性を維持していることが分かった。
【0034】
図1ないし図3に共通して良好なSNRm値が得られる成膜温度範囲から、Co、Pt、及びCrと、さらなる添加成分として少なくともMo及びWのいずれかとを含有する垂直磁性層を含む垂直磁気記録媒体の成膜温度は、280℃ないし450℃、好ましくは300ないし400℃、さらに好ましくは320ないし380℃である。
【0035】
本願発明によれば、上述のような高い成膜温度で垂直磁性層を形成することにより、Mo及びWが結晶粒界に十分拡散して偏析し、磁性結晶粒子間の磁気的分断の効果を高め、高いSNRm及び優れた熱ゆらぎ耐性が得られる。
【0036】
また、発明者らは、結晶配向性の乱れを低減し、六方最密充填構造を有する磁性結晶粒子を得るべくMo及びWの好適な添加量を調べた。
【0037】
図4に、CoPtCrMo系垂直磁性層に関するCr含有量とSNRmとの関係を表すグラフ図を示す。
【0038】
曲線401は、CoPtCrMo系垂直磁性層のPt含有量を16at%、Mo含有量を5at%とし、Crを変化させて、残部をCoとした場合、曲線402は、Pt含有量を16at%、Mo含有量を10at%とし、Crを変化させて、残部をCoとした場合、及び曲線403は、Pt含有量を16at%、Mo含有量を15at%とし、Crを変化させて、残部をCoとした場合を各々示す。
【0039】
曲線401、402、及び403に示すように、Cr含有量が好ましくは5at%ないし20at%であるとき、良好なSNRm値が得られることがわかる。また、低域出力50kFCIでの減衰値を測定したところ、5ないし20at%の範囲で作成された媒体については、−0.12〜−0.15dB/decadeであり、良好な熱ゆらぎ耐性を維持していることが分かった。
【0040】
図5に、CoPtCrMo系垂直磁性層に関するMo含有量とSNRmとの関係を表すグラフ図を示す。
【0041】
曲線501は、CoPtCrMo系垂直磁性層のPt含有量を16at%、Cr含有量を5at%とし、Moを変化させて、残部をCoとした場合、曲線502は、Pt含有量を16at%、Cr含有量を10at%とし、Moを変化させて、残部をCoとした場合、及び曲線503は、Pt含有量を16at%、Cr含有量を15at%とし、Moを変化させて、残部をCoとした場合を各々示す。
【0042】
曲線501、502、及び503に示すように、Mo含有量が好ましくは5at%ないし20at%であるとき、良好なSNRm値が得られることがわかる。また、低域出力50kFCIでの減衰値を測定したところ、5ないし20at%の範囲で作成された媒体については、−0.12〜−0.14dB/decadeであり、良好な熱ゆらぎ耐性を維持していることが分かった。
【0043】
図6に、CoPtCrMoW系垂直磁性層に関するMo含有量とSNRmとの関係を表すグラフ図を示す。
【0044】
曲線601は、CoPtCrMoW系垂直磁性層のPt含有量を16at%、Cr含有量を14at%とし、Moを5at%とし、Wを変化させて、残部をCoとした場合を示す。
【0045】
曲線601に示すように、W含有量が5at%ないし15at%であるとき、良好なSNRm値が得られることがわかる。また、低域出力50kFCIでの減衰値を測定したところ、5ないし15at%の範囲で作成された媒体については、−0.13〜−0.16dB/decadeであり、良好な熱ゆらぎ耐性を維持していることが分かった。
【0046】
また、本発明に用いられる垂直磁性層中のPt含有量は、5at%ないし25at%、Coの含有量は、50at%ないし80at%が好ましい。これらの組成量は垂直磁性膜中のCo系磁性結晶粒子が六方最密充填(HCP)構造を持つ範囲を表す。
【0047】
本発明に用いられる成膜温度で垂直磁性層を形成するためには、従来の低い耐熱温度例えば250℃程度を持つアルミノケイ酸ガラス、化学強化ガラスおよびNiPメッキAlMg基板を用いることは出来ない。本発明には、より高い耐熱温度を有する非磁性基板例えば結晶化ガラス基板、Si基板、C基板、及びTi基板等を好適に使用することができる。
【0048】
図7に、本発明の垂直磁気記録媒体の一例の構成を表す断面図を示す。
【0049】
図示するように、この垂直磁気記録媒体10は、非磁性基板1と垂直磁性層2を有する。
【0050】
図8は、本発明の垂直磁気記録媒体の他の一例の構成を表す断面図を示す。
【0051】
図示するように、この垂直磁気記録媒体20は、非磁性基板1と垂直磁性層2の間に下地層3をさらに設けること以外は、図7に示す垂直磁気記録媒体と同様の構成を有する。
【0052】
このような下地層の材料として、Ti、Ru、Cr、Hf、Co、Pt、B、Cu、Ta、Mo及びWからなる群から選択される少なくとも1種、好ましくはTi、Ru、RuCr、Hf、CoCrPt、CoCrPtB、CoCrPtRu、CoCrPtCu、CoCrPtTa、CoCrPtMo及びCoCrPtWがあげられる。さらに好ましい下地層は、Co、Cr、及びPtのうち少なくとも1つを含む。さらにまた好ましくは、Co、Cr、及びPtのうち少なくとも1つと、B、Ta、Ru及びOのうち少なくとも1つとを含む。
【0053】
本発明では、MoやWを添加することで、垂直磁性膜の配向が乱れやすくなるため、垂直磁性膜の下に少なくとも一層のHCP構造を持つ非磁性の下地膜を形成することが望ましい。
【0054】
図9は、本発明の垂直磁気記録媒体のさらに他の一例の構成を表す断面図を示す。
【0055】
図示するように、この垂直磁気記録媒体30は、下地層4が第1の下地膜5及び第2の下地膜6からなる二層構造をもつこと以外は、図7に示す垂直磁気記録媒体と同様の構成を有する。
【0056】
図示するように、第1の下地膜5には、図8の下地層3の材料と同様の材料を適用し得る。その非磁性基板側にさらに他の下地膜として第2の下地膜6を含み得る。
【0057】
この第2の下地膜の材料としては、Ni、Nb、Ta、Al、W、Co、C及びTiからなる群から選択される少なくとも1種、好ましくはNiNb、NiTa、NiAl、NiW、NiTaW、CoNb、CoW、CoTa、NiTaC、CoTaW、CoTaC、CoTaW、及びTiを使用することができる。
【0058】
さらに好ましくは、NiNb、NiTa、NiAl、NiW、NiTaW、及びNiTaC等のNi化合物を使用することが出来る。このようなNi化合物を用いると、薄い膜厚で高い配向制御性を得られることと、該下地膜上に形成した膜の粒子が、適度な粒径を持つという利点がある。
【0059】
図10は、本発明の垂直磁気記録媒体のさらにまた他の一例の構成を表す断面図を示す。
【0060】
図示するように、この垂直磁気記録媒体40は、下地層4と非磁性基板1との間に軟磁性裏打ち層7をさらに設けること以外は、図9に示す垂直磁気記録媒体と同様の構成を有する。
【0061】
また、軟磁性裏打ち層7と非磁性基板1との間には、図示しない硬磁性層を設けることが出来る。垂直磁気記録媒体の作成工程において、例えば非磁性基板上に、CoCrPt、CoZrNbを順に作成後、硬磁性層に対し、半径方向の一方向に磁界を印加することにより、軟磁性層にバイアス磁界をかけて磁壁の発生を防ぐことができる。
【0062】
さらに、硬磁性層と非磁性基板1との間、例えばCr、VおよびNiAl等の下地層を設けることができる。
【0063】
軟磁性裏打ち層の材料としては、例えばCoZrNb、FeTaC、FeZrN、FeSi合金、FeAl合金、パーマロイなどのFeNi合金、パーメンジュールなどのFeCo系合金、パーミンバーなどのFeCoNi合金、NiCo合金、センダスト、MnZn系フェライト、NiZn系フェライト、MgZn系フェライト、MgMn系フェライト、FeAlGa、FeCuNbSiB、FeGaGe、FeGeSi、FeNiPb、FeRuGaSi、FeSiB、FeSiC、FeZrB、FeZrBCu、CoFeSiB、CoTi、及びCoZrTa等の高透磁率を有する軟磁性材料があげられる。
【0064】
高透磁率な軟磁性層を設けることにより、軟磁性層上に垂直磁性膜を有するいわゆる垂直二層媒体が構成される。この垂直二層媒体において、軟磁性層は、垂直磁性膜を磁化するための磁気ヘッドからの記録磁界を、水平方向に通して、磁気ヘッド側へ還流させるという磁気ヘッドの機能の一部を担っており、記録再生効率を向上させる役目を果たし得る。
【0065】
また、硬磁性層としては、例えばCoSm、CoPt、CoCrPt、CoCrPtBおよびCoCrPtCu等があげられる。
【0066】
図11は、本発明の垂直磁気記録媒体のさらに他の例の構成を表す断面図を示す。
【0067】
図示するように、この垂直磁気記録媒体50は、下地層3と垂直磁磁性層2との間に他の垂直磁性層8をさらに設けること以外は、図7に示す垂直磁気記録媒体と同様の構成を有する。
【0068】
他の垂直磁性膜としては、例えばCoPt、CoCr、CoCrPt、CoCrO、CoPtO、CoPtCrO、CoCrPtB、CoCrPtTa、CoCrPtW、CoCrPtMo、CoCrPtCu、CoCrPtRu、CoCrPtWC、CoCrPtRuC、CoCrPtCuB、CoCrPtWB、CoCrPtTaCu、CoCrPtTaW、CoPt−SiO2、及びCoPtSiOを使用することができる。
【0069】
なお、上記図7ないし図11に示される垂直磁気記録媒体に使用されている各層は、互いに適宜組み合わせることが可能である。
【0070】
本発明に使用される垂直磁性層表面上には、例えばC等の保護層を設けることができる。
【0071】
さらに、本発明に使用される垂直磁性層表面あるいは保護層表面には、例えばディップ法等を用いて、パーフルオロポリエーテル等を塗布することにより、潤滑層を形成することができる。
【0072】
図12に、本発明にかかる磁気記録再生装置の一例を一部分解した斜視図を示す。
【0073】
本発明に係る情報を記録するための剛構成の磁気ディスク121はスピンドル122に装着されており、図示しないスピンドルモータによって一定回転数で回転駆動される。磁気ディスク121にアクセスして情報の記録を行う例えば単磁極型記録ヘッド及び情報の再生を行うためのMRヘッドを搭載したスライダー123は、薄板状の板ばねからなるサスペンション124の先端に取付けられている。サスペンション124は図示しない駆動コイルを保持するボビン部等を有するアーム125の一端側に接続されている。
【0074】
アーム125の他端側には、リニアモータの一種であるボイスコイルモータ126が設けられている。ボイスコイルモータ126は、アーム125のボビン部に巻き上げられた図示しない駆動コイルと、それを挟み込むように対向して配置された永久磁石および対向ヨークにより構成される磁気回路とから構成されている。
【0075】
アーム125は、固定軸127の上下2カ所に設けられた図示しないボールベアリングによって保持され、ボイスコイルモータ126によって回転揺動駆動される。すなわち、磁気ディスク121上におけるスライダー123の位置は、ボイスコイルモータ126によって制御される。なお、図12中、128は蓋体を示している。
【0076】
【実施例】
以下、実施例を示し、本発明を具体的に説明する。
【0077】
実施例1
2.5インチ磁気ディスク用のSi基板からなる非磁性基板を用意した。
【0078】
1×10−5Paの真空度を有する真空チャンバー内に非磁性Si基板を設置し、基板温度を350℃まで加熱して、ガス圧0.6PaのAr雰囲気中でDCマグネトロンスパッタリングを行った。まず、非磁性基板をターゲットに対向するように配置し、DC500Wをターゲットに放電し、裏打ち非磁性膜として、Cr膜を厚さ40nm形成した。
【0079】
その上に厚さ25nmになるようにCoCrPt硬磁性層を製膜した。得られたCoCrPt硬磁性層上に、厚さ200nmのCoZrNb裏打ち軟磁性層を形成した。
【0080】
その後、CoZrNb裏打ち軟磁性層上に、第2の下地膜として、Ni−30at%Nbターゲットを用いて、DC300Wで放電し、厚さ5nmになるように製膜してNiNb膜を形成した。
【0081】
次に、NiNb膜上に、第1の下地膜として、HCP構造を持つRuをDC500Wで放電させ、厚さ15nmまで製膜して非磁性Ru膜を形成した。
【0082】
その後、Co−16at%Pt−14at%Cr−5at%Moのターゲットを用意し、非磁性Ru下地膜上に、CoPtCrMo垂直磁性膜を30nm製膜した。
【0083】
最後に、C保護層を7nmの厚さで製膜した。
【0084】
このように真空容器内で連続して製膜した基板を大気中に取り出した後、C保護層に、ディップ法によりパーフルオロポリエーテル(PFPE)系潤滑層を1.5nmの厚さに形成し、垂直磁気記録媒体を得た。
【0085】
図13に、得られた垂直磁気記録媒体60の構成を表す概略図を示す。図示するように、この垂直磁気記録媒体60は、非磁性基板1上に、Cr非磁性膜10、CoCrPt硬磁性層9、CoZrNb軟磁性層7、NiNb第2の下地膜6及びRu第1の下地膜5からなる下地層4、CoPtCrMo垂直磁性膜2、C保護層11、及び図示しない潤滑層を順次積層した構造を有する。
【0086】
まず、得られた垂直磁気記録媒体の垂直磁性層に対して、透過型分析電子顕微鏡を用いたエネルギー分散型X線分光装置(TEM−EDX)を用いて、局所的な元素濃度分布を調べたところ、Coを主成分としたCo系磁性結晶粒子と、各Co系磁性結晶粒子の周りにMoおよびCrを主成分とした結晶粒界が存在する構造を確認することができた。
【0087】
得られた垂直磁気記録媒体10について、電磁石を備えた着磁装置を用いて、円板上基板の半径方向外向きに1185kA/mの磁界を印加し、硬磁性層の面内半径方向への磁化を行った。着磁された垂直磁気記録媒体について、磁気抵抗効果を利用した、記録トラック幅0.3μm、再生トラック幅0.2μmの単磁極ヘッドを用いて記録再生特性の評価を行ったところ、SNRm(S:低域出力、N:400kFCIのノイズ)が23.0dBという良好な値であった。さらに、熱揺らぎ指標である低域出力50kFCIでの減衰値は、−0.12dB/decadeという良好な値であった。
【0088】
比較例1
比較として、非磁性基板上に、CoPtCrMo垂直磁性膜の代わりに、Co−19at%Cr−16at%Ptのターゲットを用い、CoCrPt層を30nmの厚さで形成した以外は、実施例1と同様にして垂直磁気記録媒体を得た。
【0089】
得られた垂直磁気記録媒体について、TEM−EDXを用いて、局所的な元素濃度分布を調べたところ、Coを主成分としたCo系磁性結晶粒子と、各Co系磁性結晶粒子の周りにCrを主成分とした結晶粒界が存在する構造であった。また、実施例1と同様にして、記録再生特性の評価を行ったところ、SNRmが20.7dBであった。また、低域出力50kFCIでの減衰値は−0.20dB/decadeであり、熱ゆらぎ耐性に劣ることがわかった。
【0090】
実施例2
第1の下地膜として、六方最密充填構造を持つCo−37at%Cr−8at%Ptターゲットを利用して、DC500Wで放電させ、厚さ20nmまで製膜して非磁性CoCrPt膜を形成する以外は、実施例1と同様にして、垂直磁気記録媒体を得た。
【0091】
まず、得られた垂直磁気記録媒体の垂直磁性層に対して、実施例1と同様に、局所的な元素濃度分布を調べたところ、Coを主成分としたCo系磁性結晶粒子と、各Co系磁性結晶粒子の周りにMoおよびCrを主成分とした結晶粒界が存在する構造を確認することができた。
【0092】
また、この垂直磁気記録媒体について、エックス線回折装置を用いて、Co(00.2)ピークに対して、ロッキングカーブ測定を行った。そこから得られたピークの半値幅は7°という良好な値を得た。これにより、Coの結晶配向性が良いことがわかった。また、実施例1と同様にして記録再生特性の評価を行ったところ、SNRmが23.5dBと良好な値であった。また、低域出力50kFCIでの減衰値は、−0.11dB/decadeであり、熱揺らぎ耐性が良好であることがわかった。
【0093】
比較例2
非磁性基板上に、第1の下地膜として、面心立方(FCC)構造を持つPtのターゲットを用い、Pt膜を30nmの厚さで形成した以外は、実施例1と同様にして従来の垂直磁気記録媒体を得た。
【0094】
まず、得られた垂直磁気記録媒体の垂直磁性層に対して、実施例1と同様に、局所的な元素濃度分布を調べたところ、Coを主成分としたCo系磁性結晶粒子と、各Co系磁性結晶粒子の周りにCrを主成分とした結晶粒界からなる構造であるが、粒界がはっきりしない構造であった。
【0095】
得られた垂直磁気記録媒体について、実施例2と同様に、Co(00.2)ピークに対する同様のロッキングカーブ測定を行ったところ、得られたピークの半値幅は11°であった。よって、実施例2の媒体に比べて、Co系磁性結晶粒子の結晶配向性が悪化していることがわかった。さらに、記録再生特性の評価を行ったところ、SNRmが19.2dBであった。また、低域出力50kFCIでの減衰値は−0.25dB/decadeとなり耐熱揺らぎ性に劣っていた。
【0096】
実施例3
第1の下地膜として、Ru膜の代わりに、Co−37at%Cr−8at%Pt−3at%Taターゲットを利用し、DC500Wで放電させ、厚さ20nmまで製膜して非磁性CoCrPtTa膜を形成する以外は、実施例1と同様にして、垂直磁気記録媒体を得た。
【0097】
まず、得られた垂直磁気記録媒体の垂直磁性層に対して、実施例1と同様に、局所的な元素濃度分布を調べたところ、Coを主成分としたCo系磁性結晶粒子と、各Co系磁性結晶粒子の周りにMoおよびCrを主成分とした結晶粒界が存在する構造を確認することができた。
【0098】
また、得られた垂直磁気記録媒体について、実施例2と同様にしてロッキングカーブ測定を行ったところ、ピークの半値幅は5°であった。また、記録再生特性の評価を行ったところ、SNRmが23.7dBという良好な値であった。また、低域出力50kFCIでの減衰値は−0.10dB/decadeであった。
【0099】
また、Taの代わりにRu、B、及びOを各々添加して、第1の下地膜を形成し、同様にして垂直磁気記録媒体を作成したところ、Co系磁性結晶粒子の結晶配向性及び熱揺らぎ耐性を低下させることなく、SNRmの改善効果が得られた。
【0100】
実施例4
第1の下地膜の形成後、Co−19at%Cr−16at%Ptのターゲットを用い、CoCrPt磁性層を15nmの厚さで形成し、その上に、実施例1と同様のCoPtCrMo垂直磁性層を15nm製膜する以外は、実施例1と同様にして垂直磁気記録媒体を得た。
【0101】
まず、得られた垂直磁気記録媒体の垂直磁性層に対して、TEM−EDXを用いて、局所的な元素濃度分布を調べたところ、Coを主成分としたCo系磁性結晶粒子と、各Co系磁性結晶粒子の周りにMoおよびCrを主成分とした結晶粒界が存在する構造を確認することができた。
【0102】
得られた垂直磁気記録媒体について、記録再生特性の評価を行ったところ、SNRm=23.8dBという良好な媒体を得ることができた。また、低域出力50kFCIでの減衰値は、−0.11dB/decadeと良好であった。また、エックス線回折装置を用いてCo(00.2)ピークのロッキングカーブ測定を行ったところ、得られたピークの半値幅は5°であった。
【0103】
実施例5
非磁性Cr層、CoCrPt硬磁性層およびCoZrNb軟磁性裏打ち層を製膜しないこと以外は、実施例1と同様にして、垂直磁気記録媒体を作製した。図14に、得られた垂直磁気記録媒体の構成を表す図を示す。図示するように、垂直磁気記録媒体70は、非磁性基板1上に、NiNb第2の下地膜6、及びRu第1の下地膜5からなる下地層4、CoPtCrMoの垂直磁性膜2、C保護層11、及び図示しない潤滑層を順次積層した構成を有する。
【0104】
まず、得られた垂直磁気記録媒体の垂直磁性層に対して、TEM−EDXを用いて、局所的な元素濃度分布を調べたところ、Coを主成分としたCo系磁性結晶粒子と、各Co系磁性結晶粒子の周りにMoおよびCrを主成分とした結晶粒界が存在する構造を確認することができた。
【0105】
また、実施例1と同様にして記録再生特性の評価を行ったところ、SNRmが22.1dBという良好な結果が得られた。また、低域出力50kFCIでの減衰値は、−0.14dB/decadeであり、良好な熱ゆらぎ耐性を維持していることがわかった。
【0106】
比較例3
比較として、CoPtCrMo垂直磁性膜の代わりに、Co−19at%Cr−16at%Ptのターゲットを用い、CoCrPt層を30nmの厚さで形成した以外は、実施例5と同様にして垂直磁気記録媒体を得た。
【0107】
得られた垂直磁気記録媒体について、実施例1と同様にして局所的な元素濃度分布を調べたところ、Coを主成分としたCo系磁性結晶粒子と、各Co系磁性結晶粒子の周りにCrを主成分とした結晶粒界が存在する構造であった。
【0108】
また、実施例1と同様にして、記録再生特性の評価を行ったところ、SNRmが17.5dBという多少劣る値であった。また、低域出力50kFCIでの減衰値は、−0.22dB/decadeであり、熱ゆらぎ耐性も劣っていた。
【0109】
実施例6
垂直磁性層として、Co−16at%Pt−15at%Moターゲットを利用して、DC500Wで放電させ、厚さ30nmまで製膜して垂直磁性膜を形成する以外は、実施例1と同様にして、垂直磁気記録媒体を得た。
【0110】
まず、得られた垂直磁気記録媒体の垂直磁性層に対して、実施例1と同様に、局所的な元素濃度分布を調べたところ、Coを主成分としたCo系磁性結晶粒子と、各Co系磁性結晶粒子の周りにMoを主成分とした結晶粒界が存在する構造を確認することができた。
【0111】
また、この垂直磁気記録媒体について、エックス線回折装置を用いて、Co(00.2)ピークに対して、ロッキングカーブ測定を行った。そこから得られたピークの半値幅は9°という良好な値を得た。これにより、Coの結晶配向性が良いことがわかった。また、実施例1と同様にして記録再生特性の評価を行ったところ、SNRmが23.6dBと良好な値であった。また、低域出力50kFCIでの減衰値は、−0.12dB/decadeであり、熱揺らぎ耐性が良好であることがわかった。
【0112】
【発明の効果】
本発明によれば、熱ゆらぎの発生を抑制し、高いSNRmで、優れた垂直磁気記録が可能となる。
【図面の簡単な説明】
【図1】CoPtCrMo垂直磁性層に関する成膜温度とSNRmとの関係を表すグラフ図
【図2】CoPtCrW垂直磁性層に関する成膜温度とSNRmとの関係を表すグラフ図
【図3】CoPtCrMoW垂直磁性層に関する成膜温度とSNRmとの関係を表すグラフ図
【図4】CoPtCrMo系垂直磁性層に関するCr含有量とSNRmとの関係を表すグラフ図
【図5】CoPtCrMo系垂直磁性層に関するMo含有量とSNRmとの関係を表すグラフ図
【図6】CoPtCrMoW系垂直磁性層に関するMo含有量とSNRmとの関係を表すグラフ図
【図7】本発明にかかる垂直磁気記録媒体の一例の構成を表す断面図
【図8】本発明にかかる垂直磁気記録媒体の一例の構成を表す断面図
【図9】本発明にかかる垂直磁気記録媒体の一例の構成を表す断面図
【図10】本発明にかかる垂直磁気記録媒体の一例の構成を表す断面図
【図11】本発明にかかる垂直磁気記録媒体の一例の構成を表す断面図
【図12】本発明にかかる磁気記録再生装置の一例を一部分解した斜視図
【図13】本発明にかかる垂直磁気記録媒体の一例の構成を表す断面図
【図14】本発明にかかる垂直磁気記録媒体の一例の構成を表す断面図
【符号の説明】
1…非磁性基板、2,8…垂直磁性膜、3,4…下地層、5…第1の下地膜、6…第2の下地膜、7…軟磁性層、9…硬磁性層、10,20,30,40,50,60,70…垂直磁気記録媒体、11…保護層、12…下地層、50…着磁装置、51,52…コイル、123…スライダー、124…サスペンション、125…アーム、126…ボイスコイルモータ、127…固定軸、128…蓋体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic recording / reproducing device used as a hard disk device, and more particularly, to a magnetic recording / reproducing device using perpendicular magnetization, a perpendicular magnetic recording medium used for the same, and a method of manufacturing the same.
[0002]
[Prior art]
One of the typical magnetic layers used for a perpendicular magnetic recording medium is, for example, a CoCr-based magnetic layer. The CoCr-based magnetic layer separates the magnetic interaction between the magnetic crystal grains by adding, for example, more than 20 at% of Cr to Co and segregating non-magnetic Cr around the Co-based magnetic crystal grains, High density magnetic recording is realized. In recent years, a perpendicular magnetic recording medium has been required to further improve the recording density. However, when the size of the magnetic crystal grains in the perpendicular magnetic layer is reduced to improve the medium SN ratio (SNRm), there has been a problem that thermal fluctuations are likely to occur and recorded information tends to disappear.
[0003]
For these reasons, studies have been made to improve the recording / reproducing characteristics while maintaining thermal fluctuation resistance by adding various elements to the Co-based perpendicular magnetic layer.
[0004]
For example, Co is used as a main component, and at least one element selected from Cr, Fe, Mo, V, Ta, Pt, Si, B, Ir, W, Hf, Nb, Ru, Ni, and a rare earth element is used. It has been proposed to add (for example, see Patent Document 1).
[0005]
However, it has been difficult to achieve both improvement in SNRm and prevention of thermal fluctuation.
[0006]
Further, there is disclosed a medium in which Cr is used for an underlayer as an in-plane magnetic layer, and a magnetic layer in which Ta, Mo, and W are added to CoCr is formed thereon (for example, see Patent Document 2). .
[0007]
However, even when this in-plane magnetic layer is applied to a perpendicular magnetic recording medium, Mo and W disturb the crystal orientation and the perpendicular magnetic anisotropy is remarkably deteriorated, so that the SNRm and the thermal fluctuation prevention properties are also improved. Did not. Thus, the longitudinal magnetic recording medium and the perpendicular magnetic recording medium differ in many respects, such as the composition of the magnetic layer from the underlayer, the direction of the magnetic anisotropy, and the presence or absence of the soft magnetic backing film depending on the magnetic head. I have. Therefore, even if the magnetic layer used for the longitudinal magnetic recording medium is simply applied to the perpendicular magnetic recording medium, no good effect can be obtained.
[0008]
[Patent Document 1]
JP-A-11-185236
[0009]
[Patent Document 2]
JP-A-63-148411
[0010]
[Problems to be solved by the invention]
A first object of the present invention is to provide a method for manufacturing a perpendicular recording medium having high SNRm and excellent thermal fluctuation resistance.
[0011]
A second object of the present invention is to provide a perpendicular recording medium having high SNRm and excellent resistance to thermal fluctuation.
[0012]
A third object of the present invention is to provide a magnetic recording / reproducing apparatus capable of suppressing the occurrence of thermal fluctuation and performing magnetic recording / reproducing with a high SNRm.
[0013]
[Means for Solving the Problems]
The method of manufacturing a perpendicular magnetic recording medium according to the present invention uses a magnetic layer forming material containing cobalt, platinum, and at least one of molybdenum and tungsten on a non-magnetic substrate, and uses a magnetic layer forming material at 280 ° C. to 450 ° C. Forming a perpendicular magnetic layer having a structure including a plurality of magnetic crystal grains separated by crystal grain boundaries, wherein the additive component is segregated in the crystal grain boundaries at a film formation temperature of about ℃. It is characterized by including.
[0014]
The perpendicular magnetic recording medium of the present invention comprises a non-magnetic substrate,
A plurality of layers formed on the non-magnetic substrate, containing Co, Pt, and at least one of Mo and W, formed at a film forming temperature of 280 ° C. to 450 ° C., and separated by crystal grain boundaries; Characterized by comprising a perpendicular magnetic layer in which the additional component is segregated in the crystal grain boundaries.
[0015]
The magnetic recording / reproducing apparatus of the present invention includes the above-described perpendicular magnetic recording medium, a mechanism for supporting and rotating the perpendicular magnetic recording medium, an element for recording information on the perpendicular magnetic recording medium, and a recording medium. A magnetic head having an element for reproducing the information, and a carriage assembly supporting the magnetic head movably with respect to the perpendicular magnetic recording medium.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The method of manufacturing a perpendicular magnetic recording medium according to the present invention includes a step of forming a perpendicular magnetic layer on a non-magnetic substrate. In this perpendicular magnetic layer forming step, at least one of Co, Pt, Mo and W is added. Layer is formed at a film formation temperature of 280 ° C. to 450 ° C. using a magnetic layer-forming material containing a magnetic component and a plurality of magnetic crystal grains separated by crystal grain boundaries. Forms a perpendicular magnetic layer segregated in the crystal grain boundaries.
[0017]
Further, the perpendicular magnetic recording medium of the present invention is manufactured using the above method, a perpendicular magnetic recording medium including a non-magnetic substrate and a perpendicular magnetic layer formed on the non-magnetic substrate,
The perpendicular magnetic layer includes Co, Pt, and at least one of Mo and W as an additional component, is formed at a film formation temperature of 280 ° C. to 450 ° C., and is formed of a plurality of magnetic crystal grains separated by crystal grain boundaries. And the additional component is segregated in the crystal grain boundaries.
[0018]
According to the present invention, Mo and W are sufficiently diffused and segregated in the crystal grain boundaries, the effect of magnetic separation between magnetic crystal grains is enhanced, and high SNRm and excellent thermal fluctuation resistance are obtained.
[0019]
The perpendicular magnetic layer used in the present invention may further contain Cr.
[0020]
Among Mo, W, and Cr, the effect of magnetic separation between magnetic crystal grains is highest for W, and then decreases for Mo and Cr in this order. This is because the lattice constant of W is the largest and then decreases in the order of Mo and Cr. Co-Cr takes the same hexagonal close-packed structure both in the magnetic crystal grains and in the segregated grain boundaries, whereas -Mo and Co-W are due to exhibiting a structure different from that in the magnetic crystal grain, for example, a CsCl type structure at the crystal grain boundary after segregation.
[0021]
However, Mo and W have a slower diffusion speed (segregation speed) than Cr, and this speed decreases in the order of Mo and W. Therefore, Mo and W hardly diffuse into the crystal grain boundaries. This is because the melting point of Mo is about 2700 ° C. and the melting point of W is about 3500 ° C., which is higher than the melting point of Cr of about 1700 ° C. Furthermore, when Mo and W remain in the Co-based magnetic crystal grains, they tend to greatly disturb the crystal orientation and magnetic anisotropy because of their larger lattice constants than Co.
[0022]
As described above, although Mo and W are expected to have high magnetic separation, they often cause a problem in practical use.
[0023]
Note that when Pt is used, the crystal lattice spacing of the perpendicular magnetic layer is widened, the disorder of crystal orientation caused by Mo and W is reduced, and the segregation tends to be improved.
[0024]
Therefore, the present invention changes the film forming temperature to a sufficiently high temperature using a substrate having high heat resistance by adding Pt to the recording layer in order to segregate Mo and W more to the crystal grain boundary. Then, an attempt was made to form a perpendicular magnetic layer.
[0025]
FIG. 1 is a graph showing the relationship between the film forming temperature and SNRm for the Co-16 at% Pt-14 at% Cr-xat% Mo perpendicular magnetic layer.
[0026]
Curve 101 shows the case where x is 0, curve 102 shows the case where x is 5, and curve 103 shows the case where x is 10.
[0027]
As shown by the curve 101, when Cr is added to the CoPt-based magnetic material as a segregation component, the segregation speed is relatively fast, so that an optimum SNRm is obtained at about 250 ° C. On the other hand, as shown by the curves 102 and 103, in the perpendicular magnetic recording medium having the perpendicular magnetic layer containing Cr and Mo, in addition to the extreme value around 250 ° C. due to Cr, about 350 ° C. due to Mo. Extreme values around ° C appear. This is probably because Mo has a lower segregation rate than Cr and has a higher melting point. From the curves 102 and 103, when a perpendicular magnetic layer containing Co, Pt, Cr, and Mo and not containing W is used, it is better at 280 to 450 ° C., preferably 290 to 420 ° C., and It is understood that a good SNRm value is preferably obtained at 320 to 380 ° C. Also, when the attenuation value at a low-frequency output of 50 kFCI was measured, the medium produced in the range of 290 to 420 ° C. was −0.10 to −0.15 dB / decade, and maintained good thermal fluctuation resistance. I knew I was doing it.
[0028]
FIG. 2 is a graph showing the relationship between the deposition temperature and SNRm for the Co-16 at% Pt-14 at% Cr-yat% W perpendicular magnetic layer.
[0029]
The curve 201 shows the case where y is 0, the curve 202 shows the case where y is 5, and the curve 203 shows the case where y is 10.
[0030]
As shown by the curve 201, when Cr is added to the CoPt-based magnetic material as a segregation component, the segregation speed is relatively high, so that an optimum SNRm is obtained at about 250 ° C. On the other hand, as shown by the curves 202 and 203, in the perpendicular magnetic recording medium having the perpendicular magnetic layer containing Cr and W, in addition to the extreme value around 250 ° C. caused by Cr as in FIG. An extreme value of about 375 ° C. due to W also appears. From the curves 202 and 203, when a perpendicular magnetic layer containing Co, Pt, Cr, and W and not containing Mo is used, 280 ° C. to 450 ° C., preferably 300 ° C. to 425 ° C., and more preferably 320 ° C. It can be seen that a good SNRm value can be obtained at a temperature of from −410 ° C. Further, when the attenuation value at a low-frequency output of 50 kFCI was measured, the medium produced in the range of 300 to 425 ° C. was −0.11 to −0.16 dB / decade, and a good thermal fluctuation resistance was maintained. I knew I was doing it.
[0031]
FIG. 3 is a graph showing the relationship between the film forming temperature and the SNRm for the Co-16at% Pt-14at% Cr-xat% Mo-yat% W perpendicular magnetic layer.
[0032]
Curve 301 shows the case where x and y are 0, curve 302 shows the case where x and y are 5, and curve 303 shows the case where x and y are 10.
[0033]
As shown by the curve 301, when Cr is added to the CoPt-based magnetic material as a segregation component, the segregation speed is relatively high, so that an optimum SNRm is obtained at around 250 ° C. On the other hand, as shown by the curves 302 and 303, similarly to FIG. 1, the perpendicular magnetic recording medium having the perpendicular magnetic layer containing Co, Pt, Cr, Mo, and W has a temperature of about 250 ° C. due to Cr. In addition to the extreme value of, an extreme value appears at about 350 ° C due to W, and a good SNRm value can be obtained at 280 ° C to 480 ° C, preferably 300 to 460 ° C, more preferably 320 to 420 ° C. Understand. Further, when the attenuation value at a low-frequency output of 50 kFCI was measured, the medium produced in the range of 300 to 460 ° C. was −0.09 to −0.16 dB / decade, and maintained good thermal fluctuation resistance. I knew I was doing it.
[0034]
From the film formation temperature range in which a good SNRm value can be obtained in common with FIGS. 1 to 3, the perpendicular magnetic layer including a perpendicular magnetic layer containing Co, Pt, and Cr and at least one of Mo and W as an additional component is included. The film forming temperature of the magnetic recording medium is 280 to 450 ° C., preferably 300 to 400 ° C., and more preferably 320 to 380 ° C.
[0035]
According to the invention of the present application, by forming the perpendicular magnetic layer at the above-described high film formation temperature, Mo and W are sufficiently diffused and segregated in the crystal grain boundaries, and the effect of magnetic separation between the magnetic crystal grains is reduced. High SNRm and excellent thermal fluctuation resistance are obtained.
[0036]
In addition, the present inventors have investigated the suitable amounts of Mo and W to reduce the disorder of crystal orientation and obtain magnetic crystal particles having a hexagonal close-packed structure.
[0037]
FIG. 4 is a graph showing the relationship between the Cr content and SNRm for the CoPtCrMo-based perpendicular magnetic layer.
[0038]
Curve 401 shows a case where the Pt content of the CoPtCrMo-based perpendicular magnetic layer is 16 at%, Mo content is 5 at%, Cr is changed, and the balance is Co, and curve 402 is a Pt content of 16 at% and Mo is Mo. When the content is 10 at%, Cr is changed, and the balance is Co, and the curve 403 shows that the Pt content is 16 at%, the Mo content is 15 at%, the Cr is changed, and the balance is Co. Each case is shown.
[0039]
As shown by the curves 401, 402, and 403, it can be seen that when the Cr content is preferably 5 at% to 20 at%, a good SNRm value is obtained. Further, when the attenuation value at a low-frequency output of 50 kFCI was measured, the medium produced in the range of 5 to 20 at% was -0.12 to -0.15 dB / decade, and maintained good thermal fluctuation resistance. I knew I was doing it.
[0040]
FIG. 5 is a graph showing the relationship between the Mo content and SNRm for the CoPtCrMo-based perpendicular magnetic layer.
[0041]
Curve 501 shows that the Pt content of the CoPtCrMo-based perpendicular magnetic layer is 16 at%, the Cr content is 5 at%, the Mo is changed, and the balance is Co. The curve 502 is a Pt content of 16 at%, When the content is 10 at%, Mo is changed, and the balance is Co, the curve 503 shows a Pt content of 16 at%, a Cr content of 15 at%, Mo is changed, and the balance is Co. Each case is shown.
[0042]
As shown by the curves 501, 502, and 503, it can be seen that when the Mo content is preferably 5 at% to 20 at%, a good SNRm value is obtained. Also, when the attenuation value at a low-frequency output of 50 kFCI was measured, the medium produced in the range of 5 to 20 at% was -0.12 to -0.14 dB / decade, and maintained good thermal fluctuation resistance. I knew I was doing it.
[0043]
FIG. 6 is a graph showing the relationship between the Mo content and the SNRm for the CoPtCrMoW-based perpendicular magnetic layer.
[0044]
A curve 601 shows the case where the Pt content of the CoPtCrMoW-based perpendicular magnetic layer is 16 at%, the Cr content is 14 at%, Mo is 5 at%, W is changed, and the balance is Co.
[0045]
As shown by the curve 601, it is found that when the W content is 5 at% to 15 at%, a good SNRm value is obtained. Further, when the attenuation value at a low-frequency output of 50 kFCI was measured, the medium produced in the range of 5 to 15 at% was -0.13 to -0.16 dB / decade, and maintained good thermal fluctuation resistance. I knew I was doing it.
[0046]
The Pt content in the perpendicular magnetic layer used in the present invention is preferably 5 at% to 25 at%, and the Co content is preferably 50 at% to 80 at%. These composition amounts represent a range in which the Co-based magnetic crystal grains in the perpendicular magnetic film have a hexagonal close-packed (HCP) structure.
[0047]
In order to form a perpendicular magnetic layer at the film forming temperature used in the present invention, it is not possible to use a conventional aluminosilicate glass, a chemically strengthened glass or a NiP-plated AlMg substrate having a low heat resistance temperature of, for example, about 250 ° C. In the present invention, a non-magnetic substrate having a higher heat-resistant temperature, such as a crystallized glass substrate, a Si substrate, a C substrate, and a Ti substrate, can be suitably used.
[0048]
FIG. 7 is a sectional view showing a configuration of an example of the perpendicular magnetic recording medium of the present invention.
[0049]
1, the perpendicular magnetic recording medium 10 has a non-magnetic substrate 1 and a perpendicular magnetic layer 2.
[0050]
FIG. 8 is a sectional view showing a configuration of another example of the perpendicular magnetic recording medium of the present invention.
[0051]
As shown, the perpendicular magnetic recording medium 20 has the same configuration as the perpendicular magnetic recording medium shown in FIG. 7, except that an underlayer 3 is further provided between the nonmagnetic substrate 1 and the perpendicular magnetic layer 2.
[0052]
As a material for such an underlayer, at least one selected from the group consisting of Ti, Ru, Cr, Hf, Co, Pt, B, Cu, Ta, Mo and W, preferably Ti, Ru, RuCr, Hf , CoCrPt, CoCrPtB, CoCrPtRu, CoCrPtCu, CoCrPtTa, CoCrPtMo and CoCrPtW. More preferably, the underlayer contains at least one of Co, Cr, and Pt. Still more preferably, at least one of Co, Cr, and Pt and at least one of B, Ta, Ru, and O are included.
[0053]
In the present invention, since the orientation of the perpendicular magnetic film is easily disturbed by adding Mo or W, it is desirable to form at least one non-magnetic underlayer having an HCP structure under the perpendicular magnetic film.
[0054]
FIG. 9 is a sectional view showing a configuration of still another example of the perpendicular magnetic recording medium of the present invention.
[0055]
As shown, the perpendicular magnetic recording medium 30 has the same structure as that of the perpendicular magnetic recording medium shown in FIG. It has a similar configuration.
[0056]
As shown, the same material as the material of the underlayer 3 in FIG. 8 can be applied to the first underlayer 5. On the non-magnetic substrate side, a second base film 6 may be further included as another base film.
[0057]
The material of the second underlayer is at least one selected from the group consisting of Ni, Nb, Ta, Al, W, Co, C and Ti, preferably NiNb, NiTa, NiAl, NiW, NiTaW, CoNb. , CoW, CoTa, NiTaC, CoTaW, CoTaC, CoTaW, and Ti can be used.
[0058]
More preferably, Ni compounds such as NiNb, NiTa, NiAl, NiW, NiTaW, and NiTaC can be used. The use of such a Ni compound has the advantage that a high orientation controllability can be obtained with a small film thickness and that the particles of the film formed on the base film have an appropriate particle size.
[0059]
FIG. 10 is a sectional view showing the configuration of still another example of the perpendicular magnetic recording medium of the present invention.
[0060]
As shown, the perpendicular magnetic recording medium 40 has the same configuration as the perpendicular magnetic recording medium shown in FIG. 9 except that a soft magnetic underlayer 7 is further provided between the underlayer 4 and the non-magnetic substrate 1. Have.
[0061]
Further, a hard magnetic layer (not shown) can be provided between the soft magnetic underlayer 7 and the non-magnetic substrate 1. In the step of forming a perpendicular magnetic recording medium, for example, after forming CoCrPt and CoZrNb in order on a nonmagnetic substrate, a bias magnetic field is applied to the soft magnetic layer by applying a magnetic field in one radial direction to the hard magnetic layer. The generation of domain walls can be prevented.
[0062]
Further, an underlayer made of, for example, Cr, V, and NiAl can be provided between the hard magnetic layer and the nonmagnetic substrate 1.
[0063]
Examples of the material of the soft magnetic underlayer include CoZrNb, FeTaC, FeZrN, FeSi alloy, FeAl alloy, FeNi alloy such as Permalloy, FeCo alloy such as Permendur, FeCoNi alloy such as Perminbar, NiCo alloy, Sendust, and MnZn alloy. Soft magnetic material having high magnetic permeability such as ferrite, NiZn ferrite, MgZn ferrite, MgMn ferrite, FeAlGa, FeCuNbSiB, FeGaGe, FeGeSi, FeNiPb, FeRuGaSi, FeSiB, FeSiC, FeZrB, FeZrBCu, CoFeSiB, CoTi, and CoZrTa Is raised.
[0064]
By providing a soft magnetic layer having a high magnetic permeability, a so-called perpendicular two-layer medium having a perpendicular magnetic film on the soft magnetic layer is formed. In this perpendicular double-layered medium, the soft magnetic layer plays a part of the function of the magnetic head that passes the recording magnetic field from the magnetic head for magnetizing the perpendicular magnetic film in the horizontal direction and returns to the magnetic head side. And can play a role in improving the recording and reproducing efficiency.
[0065]
Examples of the hard magnetic layer include CoSm, CoPt, CoCrPt, CoCrPtB, and CoCrPtCu.
[0066]
FIG. 11 is a sectional view showing a configuration of still another example of the perpendicular magnetic recording medium of the present invention.
[0067]
As shown, the perpendicular magnetic recording medium 50 is the same as the perpendicular magnetic recording medium shown in FIG. 7 except that another perpendicular magnetic layer 8 is further provided between the underlayer 3 and the perpendicular magnetic layer 2. Having a configuration.
[0068]
Other perpendicular magnetic films include, for example, CoPt, CoCr, CoCrPt, CoCrO, CoPtO, CoPtCrO, CoCrPtB, CoCrPtTa, CoCrPtW, CoCrPtMo, CoCrPtCu, CoCrPtRu, CoCrPtWC, CoCrPtRuC, CoCrPtWP, CrCrPtCuP, CoCrPtRuC CoPtSiO can be used.
[0069]
The layers used in the perpendicular magnetic recording medium shown in FIGS. 7 to 11 can be combined with each other as appropriate.
[0070]
On the surface of the perpendicular magnetic layer used in the present invention, for example, a protective layer such as C can be provided.
[0071]
Further, a lubricating layer can be formed on the surface of the perpendicular magnetic layer or the surface of the protective layer used in the present invention by applying perfluoropolyether or the like using, for example, a dipping method.
[0072]
FIG. 12 is a partially exploded perspective view of an example of the magnetic recording / reproducing apparatus according to the present invention.
[0073]
A rigid magnetic disk 121 for recording information according to the present invention is mounted on a spindle 122 and is driven to rotate at a constant rotational speed by a spindle motor (not shown). A slider 123 mounted with, for example, a single-pole type recording head for accessing the magnetic disk 121 to record information and an MR head for reproducing information is attached to the tip of a suspension 124 made of a thin plate spring. I have. The suspension 124 is connected to one end of an arm 125 having a bobbin for holding a drive coil (not shown).
[0074]
At the other end of the arm 125, a voice coil motor 126, which is a type of linear motor, is provided. The voice coil motor 126 includes a drive coil (not shown) wound around a bobbin portion of the arm 125, and a magnetic circuit including a permanent magnet and a facing yoke which are opposed to each other so as to sandwich the drive coil.
[0075]
The arm 125 is held by ball bearings (not shown) provided at two positions above and below the fixed shaft 127, and is rotationally driven by a voice coil motor 126. That is, the position of the slider 123 on the magnetic disk 121 is controlled by the voice coil motor 126. In FIG. 12, reference numeral 128 denotes a lid.
[0076]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples.
[0077]
Example 1
A non-magnetic substrate made of a Si substrate for a 2.5-inch magnetic disk was prepared.
[0078]
1 × 10 -5 A nonmagnetic Si substrate was placed in a vacuum chamber having a degree of vacuum of Pa, the substrate was heated to 350 ° C., and DC magnetron sputtering was performed in an Ar atmosphere at a gas pressure of 0.6 Pa. First, a non-magnetic substrate was placed so as to face the target, and DC 500 W was discharged to the target to form a Cr film as a backing non-magnetic film with a thickness of 40 nm.
[0079]
A CoCrPt hard magnetic layer was formed thereon to have a thickness of 25 nm. On the obtained CoCrPt hard magnetic layer, a 200 nm-thick CoZrNb backing soft magnetic layer was formed.
[0080]
Then, on the CoZrNb-backed soft magnetic layer, a Ni-30 at% Nb target was used as a second underlayer, and discharge was performed at DC 300 W to form a NiNb film having a thickness of 5 nm.
[0081]
Next, a nonmagnetic Ru film was formed on the NiNb film as a first underlayer by discharging Ru having an HCP structure at DC 500 W to a thickness of 15 nm.
[0082]
Thereafter, a target of Co-16 at% Pt-14 at% Cr-5 at% Mo was prepared, and a 30-nm CoPtCrMo perpendicular magnetic film was formed on the non-magnetic Ru underlayer.
[0083]
Finally, a C protective layer was formed to a thickness of 7 nm.
[0084]
After taking out the substrate continuously formed in the vacuum container into the atmosphere, a perfluoropolyether (PFPE) -based lubricating layer having a thickness of 1.5 nm is formed on the C protective layer by a dipping method. Thus, a perpendicular magnetic recording medium was obtained.
[0085]
FIG. 13 is a schematic diagram showing the configuration of the obtained perpendicular magnetic recording medium 60. As shown in the figure, the perpendicular magnetic recording medium 60 has a nonmagnetic substrate 1, a Cr nonmagnetic film 10, a CoCrPt hard magnetic layer 9, a CoZrNb soft magnetic layer 7, a NiNb second base film 6, and a Ru first It has a structure in which an underlayer 4 composed of an underlayer 5, a CoPtCrMo perpendicular magnetic film 2, a C protective layer 11, and a lubricating layer (not shown) are sequentially laminated.
[0086]
First, a local element concentration distribution of the perpendicular magnetic layer of the obtained perpendicular magnetic recording medium was examined using an energy dispersive X-ray spectrometer (TEM-EDX) using a transmission analysis electron microscope. However, a structure in which Co-based magnetic crystal grains containing Co as a main component and crystal grain boundaries mainly containing Mo and Cr exist around each Co-based magnetic crystal grain could be confirmed.
[0087]
A magnetic field of 1185 kA / m is applied to the obtained perpendicular magnetic recording medium 10 outward in the radial direction of the substrate on the disk by using a magnetizing device equipped with an electromagnet, and the magnetic field is applied to the in-plane radial direction of the hard magnetic layer. Magnetization was performed. The recording and reproduction characteristics of the magnetized perpendicular magnetic recording medium were evaluated using a single pole head having a recording track width of 0.3 μm and a reproduction track width of 0.2 μm utilizing the magnetoresistance effect. : Low-frequency output, N: noise of 400 kFCI) was a good value of 23.0 dB. Further, the attenuation value at a low-frequency output of 50 kFCI, which is a thermal fluctuation index, was a favorable value of -0.12 dB / decade.
[0088]
Comparative Example 1
As a comparison, the same procedure as in Example 1 was performed except that a CoCrPt layer was formed with a thickness of 30 nm on a non-magnetic substrate, using a Co-19 at% Cr-16 at% Pt target instead of the CoPtCrMo perpendicular magnetic film. Thus, a perpendicular magnetic recording medium was obtained.
[0089]
When the local elemental concentration distribution of the obtained perpendicular magnetic recording medium was examined using TEM-EDX, Co-based magnetic crystal grains containing Co as a main component and Cr around the respective Co-based magnetic crystal grains. This was a structure in which a crystal grain boundary mainly composed of was present. When the recording / reproducing characteristics were evaluated in the same manner as in Example 1, the SNRm was 20.7 dB. In addition, the attenuation value at a low-frequency output of 50 kFCI was -0.20 dB / decade, which proved to be poor in thermal fluctuation resistance.
[0090]
Example 2
Using a Co-37 at% Cr-8 at% Pt target having a hexagonal close-packed structure as a first underlayer, discharging at DC 500 W and forming a non-magnetic CoCrPt film to a thickness of 20 nm In the same manner as in Example 1, a perpendicular magnetic recording medium was obtained.
[0091]
First, the local elemental concentration distribution of the perpendicular magnetic layer of the obtained perpendicular magnetic recording medium was examined in the same manner as in Example 1. A structure in which crystal grain boundaries containing Mo and Cr as main components exist around the system magnetic crystal grains was confirmed.
[0092]
The rocking curve of this perpendicular magnetic recording medium was measured for the Co (00.2) peak using an X-ray diffractometer. The peak half width obtained therefrom was a good value of 7 °. Thus, it was found that the crystal orientation of Co was good. When the recording and reproduction characteristics were evaluated in the same manner as in Example 1, the SNRm was a good value of 23.5 dB. Further, the attenuation value at a low-frequency output of 50 kFCI was −0.11 dB / decade, and it was found that the thermal fluctuation resistance was good.
[0093]
Comparative Example 2
A Pt target having a face-centered cubic (FCC) structure was used as a first base film on a non-magnetic substrate, and a Pt film was formed with a thickness of 30 nm in the same manner as in Example 1, except that a Pt target was formed. A perpendicular magnetic recording medium was obtained.
[0094]
First, the local elemental concentration distribution of the perpendicular magnetic layer of the obtained perpendicular magnetic recording medium was examined in the same manner as in Example 1. Although the structure is composed of crystal grain boundaries mainly composed of Cr around the system magnetic crystal grains, the grain boundaries are not clear.
[0095]
The same rocking curve measurement for the Co (00.2) peak was performed on the obtained perpendicular magnetic recording medium as in Example 2, and the half-width of the obtained peak was 11 °. Therefore, it was found that the crystal orientation of the Co-based magnetic crystal grains was worse than that of the medium of Example 2. Further, when the recording / reproducing characteristics were evaluated, the SNRm was 19.2 dB. In addition, the attenuation value at a low-frequency output of 50 kFCI was -0.25 dB / decade, which was inferior in heat fluctuation resistance.
[0096]
Example 3
As a first underlayer, a non-magnetic CoCrPtTa film is formed by using a Co-37 at% Cr-8 at% Pt-3 at% Ta target instead of the Ru film and discharging at DC 500 W to form a film up to a thickness of 20 nm. A perpendicular magnetic recording medium was obtained in the same manner as in Example 1 except for performing the above.
[0097]
First, the local elemental concentration distribution of the perpendicular magnetic layer of the obtained perpendicular magnetic recording medium was examined in the same manner as in Example 1. A structure in which crystal grain boundaries containing Mo and Cr as main components exist around the system magnetic crystal grains was confirmed.
[0098]
When the rocking curve of the obtained perpendicular magnetic recording medium was measured in the same manner as in Example 2, the half-width of the peak was 5 °. When the recording / reproducing characteristics were evaluated, the SNRm was a favorable value of 23.7 dB. The attenuation value at a low-frequency output of 50 kFCI was -0.10 dB / decade.
[0099]
In addition, Ru, B, and O were added instead of Ta to form a first underlayer, and a perpendicular magnetic recording medium was produced in the same manner. The effect of improving SNRm was obtained without lowering the fluctuation resistance.
[0100]
Example 4
After the formation of the first underlayer, a CoCrPt magnetic layer is formed with a thickness of 15 nm using a target of Co-19 at% Cr-16 at% Pt, and a CoPtCrMo perpendicular magnetic layer similar to that of Example 1 is formed thereon. A perpendicular magnetic recording medium was obtained in the same manner as in Example 1 except that a 15 nm film was formed.
[0101]
First, a local element concentration distribution of the perpendicular magnetic layer of the obtained perpendicular magnetic recording medium was examined by using TEM-EDX. A structure in which crystal grain boundaries containing Mo and Cr as main components exist around the system magnetic crystal grains was confirmed.
[0102]
When the recording / reproduction characteristics of the obtained perpendicular magnetic recording medium were evaluated, a good medium having SNRm = 23.8 dB could be obtained. Further, the attenuation value at a low-frequency output of 50 kFCI was as good as −0.11 dB / decade. When a rocking curve of the Co (00.2) peak was measured using an X-ray diffractometer, the half width of the obtained peak was 5 °.
[0103]
Example 5
A perpendicular magnetic recording medium was manufactured in the same manner as in Example 1, except that the nonmagnetic Cr layer, the CoCrPt hard magnetic layer, and the CoZrNb soft magnetic underlayer were not formed. FIG. 14 is a diagram showing the configuration of the obtained perpendicular magnetic recording medium. As shown in the figure, a perpendicular magnetic recording medium 70 has an underlayer 4 composed of a NiNb second underlayer 6 and a Ru first underlayer 5 on a non-magnetic substrate 1, a perpendicular magnetic film 2 of CoPtCrMo, and C protection. It has a configuration in which a layer 11 and a lubrication layer (not shown) are sequentially laminated.
[0104]
First, a local element concentration distribution of the perpendicular magnetic layer of the obtained perpendicular magnetic recording medium was examined by using TEM-EDX. The structure in which a crystal grain boundary mainly composed of Mo and Cr exists around the system magnetic crystal grains was confirmed.
[0105]
In addition, when the recording / reproducing characteristics were evaluated in the same manner as in Example 1, a good result with an SNRm of 22.1 dB was obtained. In addition, the attenuation value at a low-frequency output of 50 kFCI was −0.14 dB / decade, and it was found that good thermal fluctuation resistance was maintained.
[0106]
Comparative Example 3
As a comparison, a perpendicular magnetic recording medium was prepared in the same manner as in Example 5, except that a Co-19 at% Cr-16 at% Pt target was used instead of the CoPtCrMo perpendicular magnetic film, and a CoCrPt layer was formed with a thickness of 30 nm. Obtained.
[0107]
When the local elemental concentration distribution of the obtained perpendicular magnetic recording medium was examined in the same manner as in Example 1, Co-based magnetic crystal grains containing Co as a main component and Cr This was a structure in which a crystal grain boundary mainly composed of was present.
[0108]
When the recording and reproduction characteristics were evaluated in the same manner as in Example 1, the SNRm was a slightly inferior value of 17.5 dB. The attenuation value at a low-frequency output of 50 kFCI was -0.22 dB / decade, and the thermal fluctuation resistance was poor.
[0109]
Example 6
Using a Co-16 at% Pt-15 at% Mo target as a perpendicular magnetic layer, discharging at 500 W DC and forming a perpendicular magnetic film by forming a film up to a thickness of 30 nm in the same manner as in Example 1 A perpendicular magnetic recording medium was obtained.
[0110]
First, a local element concentration distribution of the perpendicular magnetic layer of the obtained perpendicular magnetic recording medium was examined in the same manner as in Example 1. A structure in which a crystal grain boundary containing Mo as a main component is present around the system magnetic crystal grains was confirmed.
[0111]
The rocking curve of the perpendicular magnetic recording medium was measured for the Co (00.2) peak using an X-ray diffractometer. The half width of the peak obtained therefrom was as good as 9 °. Thus, it was found that the crystal orientation of Co was good. When the recording and reproduction characteristics were evaluated in the same manner as in Example 1, the SNRm was a good value of 23.6 dB. The attenuation value at a low-frequency output of 50 kFCI was -0.12 dB / decade, which proved that the thermal fluctuation resistance was good.
[0112]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of thermal fluctuation is suppressed, and excellent perpendicular magnetic recording is attained at high SNRm.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the deposition temperature and SNRm for a CoPtCrMo perpendicular magnetic layer.
FIG. 2 is a graph showing the relationship between the deposition temperature and SNRm for a CoPtCrW perpendicular magnetic layer.
FIG. 3 is a graph showing the relationship between the deposition temperature and SNRm for a CoPtCrMoW perpendicular magnetic layer.
FIG. 4 is a graph showing the relationship between Cr content and SNRm for a CoPtCrMo-based perpendicular magnetic layer.
FIG. 5 is a graph showing the relationship between Mo content and SNRm for a CoPtCrMo-based perpendicular magnetic layer.
FIG. 6 is a graph showing the relationship between Mo content and SNRm for a CoPtCrMoW-based perpendicular magnetic layer.
FIG. 7 is a cross-sectional view illustrating a configuration of an example of a perpendicular magnetic recording medium according to the present invention.
FIG. 8 is a sectional view showing a configuration of an example of a perpendicular magnetic recording medium according to the present invention.
FIG. 9 is a cross-sectional view illustrating a configuration of an example of a perpendicular magnetic recording medium according to the present invention.
FIG. 10 is a cross-sectional view illustrating a configuration of an example of a perpendicular magnetic recording medium according to the present invention.
FIG. 11 is a cross-sectional view illustrating a configuration of an example of a perpendicular magnetic recording medium according to the present invention.
FIG. 12 is a partially exploded perspective view of an example of a magnetic recording / reproducing apparatus according to the present invention.
FIG. 13 is a sectional view showing a configuration of an example of a perpendicular magnetic recording medium according to the present invention.
FIG. 14 is a cross-sectional view illustrating a configuration of an example of a perpendicular magnetic recording medium according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Non-magnetic substrate, 2, 8 ... Perpendicular magnetic film, 3, 4 ... Underlayer, 5 ... First underlayer, 6 ... Second underlayer, 7 ... Soft magnetic layer, 9 ... Hard magnetic layer, 10 , 20, 30, 40, 50, 60, 70: perpendicular magnetic recording medium, 11: protective layer, 12: underlayer, 50: magnetizing device, 51, 52: coil, 123: slider, 124: suspension, 125: Arm, 126: Voice coil motor, 127: Fixed shaft, 128: Lid

Claims (20)

非磁性基板上に、コバルトと、プラチナと、モリブデン及びタングステンのうち少なくとも1つの添加成分とを含有する磁性層形成材料を使用し、280℃ないし450℃の成膜温度で成膜を行い、結晶粒界に隔てられた複数の磁性結晶粒子を含む構造を有し、該添加成分が該結晶粒界中に偏析された垂直磁性層を形成する工程を含むことを特徴とする垂直磁気記録媒体の製造方法。A film is formed on a nonmagnetic substrate using a magnetic layer forming material containing cobalt, platinum, and at least one of molybdenum and tungsten at a film forming temperature of 280 ° C. to 450 ° C. A perpendicular magnetic recording medium having a structure including a plurality of magnetic crystal grains separated by a grain boundary, wherein the additive component includes a step of forming a perpendicular magnetic layer segregated in the crystal grain boundary. Production method. 前記成膜温度は、300℃ないし400℃であることを特徴とする請求項1に記載の垂直磁気記録媒体の製造方法。The method according to claim 1, wherein the film forming temperature is in a range of 300C to 400C. 前記垂直磁性層形成工程の前に、少なくとも一層の六方最密充填構造を有する下地層を形成する工程をさらに有することを特徴とする請求項1または2のいずれか1項に記載の垂直磁気記録媒体の製造方法。3. The perpendicular magnetic recording according to claim 1, further comprising a step of forming at least one underlayer having a hexagonal close-packed structure before the step of forming the perpendicular magnetic layer. The method of manufacturing the medium. 前記下地層形成工程は、ニッケル、ニオブ、タンタル、アルミニウム、タングステン、コバルト、炭素及びチタンからなる群から選択される少なくとも1種を含む第2の下地膜を形成する工程と、該第2の下地膜上に、チタン、ルテニウム、クロム、ハフニウム、コバルト、白金、ホウ素、銅、タンタル、モリブデン及びタングステンからなる群から選択される少なくとも1種を含む第1の下地膜を形成する工程とを含むことを特徴とする請求項3に記載の垂直磁気記録媒体の製造方法。The underlayer forming step includes forming a second underlayer including at least one selected from the group consisting of nickel, niobium, tantalum, aluminum, tungsten, cobalt, carbon, and titanium; Forming a first underlayer containing at least one selected from the group consisting of titanium, ruthenium, chromium, hafnium, cobalt, platinum, boron, copper, tantalum, molybdenum, and tungsten on the ground film. 4. The method for manufacturing a perpendicular magnetic recording medium according to claim 3, wherein: 前記下地層形成工程の前に、軟磁性裏打ち層を形成する工程をさらに含む請求項3または4のいずれか1項に記載の垂直磁気記録媒体の製造方法。The method for manufacturing a perpendicular magnetic recording medium according to claim 3, further comprising a step of forming a soft magnetic underlayer before the underlayer forming step. 前記垂直磁性膜形成工程と前記下地層形成工程の間に、コバルト−クロム系垂直磁性層を形成する工程をさらに含むことを特徴とする請求項3ないし5のいずれか1項に記載の垂直磁気記録媒体の製造方法。6. The perpendicular magnetic device according to claim 3, further comprising a step of forming a cobalt-chromium-based perpendicular magnetic layer between the step of forming the perpendicular magnetic film and the step of forming the underlayer. Manufacturing method of recording medium. 非磁性基板、及び
該非磁性基板上に形成され、コバルトと、プラチナと、モリブデン及びタングステンのうち少なくとも1つの添加成分とを含有し、280℃ないし450℃の成膜温度で形成され、結晶粒界に隔てられた複数の磁性結晶粒子を含む構造を有し、該添加成分が該結晶粒界中に偏析された垂直磁性層を具備することを特徴とする垂直磁気記録媒体。
A non-magnetic substrate, formed on the non-magnetic substrate, containing cobalt, platinum, and at least one additional component of molybdenum and tungsten, formed at a film formation temperature of 280 ° C. to 450 ° C .; A perpendicular magnetic recording medium having a structure including a plurality of magnetic crystal grains separated by a perpendicular magnetic layer, wherein the perpendicular magnetic layer has the additive component segregated in the crystal grain boundaries.
前記垂直磁気記録層にクロムを含み、その含有量が5at%ないし20at%であることを特徴とする請求項7に記載の垂直磁気記録媒体。8. The perpendicular magnetic recording medium according to claim 7, wherein the perpendicular magnetic recording layer contains chromium and has a content of 5 at% to 20 at%. 前記モリブデンの含有量は5at%ないし20at%であることを特徴とする請求項7または8に記載の垂直磁気記録媒体。9. The perpendicular magnetic recording medium according to claim 7, wherein the content of molybdenum is 5 at% to 20 at%. 前記タングステンの含有量は5at%ないし15at%であることを特徴とする請求項7ないし9のいずれか1項に記載の垂直磁気記録媒体。10. The perpendicular magnetic recording medium according to claim 7, wherein the content of the tungsten is 5 at% to 15 at%. 前記成膜温度は、300℃ないし400℃である請求項7ないし10のいずれか1項に記載の垂直磁気記録媒体。The perpendicular magnetic recording medium according to claim 7, wherein the film forming temperature is 300 ° C. to 400 ° C. 11. 前記非磁性基板と前記垂直磁性層との間に、少なくとも一層の六方最密充填構造を有する下地層がさらに設けられていることを特徴とする請求項7ないし11のいずれか1項に記載の垂直磁気記録媒体。The underlayer having at least one hexagonal close-packed structure is further provided between the non-magnetic substrate and the perpendicular magnetic layer, according to any one of claims 7 to 11, wherein: Perpendicular magnetic recording medium. 前記下地層は、コバルト、クロム、プラチナのうち少なくとも1つを含むことを特徴とする請求項12に記載の垂直磁気記録媒体。13. The perpendicular magnetic recording medium according to claim 12, wherein the underlayer contains at least one of cobalt, chromium, and platinum. 前記下地層は、ホウ素、タンタル、ルテニウム及び酸素のうち少なくとも1つをさらに含むことを特徴とする請求項13に記載の垂直磁気記録媒体。The medium of claim 13, wherein the underlayer further comprises at least one of boron, tantalum, ruthenium, and oxygen. 前記下地層は、チタン、ルテニウム、クロム、ハフニウム、コバルト、白金、ホウ素、銅、タンタル、モリブデン及びタングステンからなる群から選択される少なくとも1種を含む第1の下地膜と、該第1の下地膜の非磁性基板側に形成され、ニッケル、ニオブ、タンタル、アルミニウム、タングステン、コバルト、炭素及びチタンからなる群から選択される少なくとも1種を含む第2の下地膜とを有することを特徴とする請求項12に記載の垂直磁気記録媒体。The underlayer includes a first underlayer including at least one selected from the group consisting of titanium, ruthenium, chromium, hafnium, cobalt, platinum, boron, copper, tantalum, molybdenum, and tungsten; A second base film formed on the non-magnetic substrate side of the base film and including at least one selected from the group consisting of nickel, niobium, tantalum, aluminum, tungsten, cobalt, carbon, and titanium. The perpendicular magnetic recording medium according to claim 12. 前記第2の下地膜は、NiNb、NiTa、NiAl、NiW、NiTaW、及びNiTaCからなる群から選択される少なくとも1種を含むことを特徴とする請求項15に記載の垂直磁気記録媒体。16. The perpendicular magnetic recording medium according to claim 15, wherein the second underlayer contains at least one selected from the group consisting of NiNb, NiTa, NiAl, NiW, NiTaW, and NiTaC. 前記下地層と垂直磁性膜の間に、少なくとも一層のコバルト−クロム系垂直磁性層をさらに含むことを特徴とする請求項7ないし16のいずれか1項に記載の垂直磁気記録媒体。17. The perpendicular magnetic recording medium according to claim 7, further comprising at least one cobalt-chromium-based perpendicular magnetic layer between the underlayer and the perpendicular magnetic film. 前記下地層と前記非磁性基板との間に、軟磁性裏打ち層をさらに含む請求項7ないし17のいずれか1項に記載の垂直磁気記録媒体。18. The perpendicular magnetic recording medium according to claim 7, further comprising a soft magnetic underlayer between the underlayer and the nonmagnetic substrate. 請求項7ないし18のいずれか1項に記載の垂直磁気記録媒体と、該垂直磁気記録媒体を支持および回転駆動する機構と、該垂直磁気記録媒体に対して情報の記録を行うための素子及び記録された情報の再生を行うための素子を有する磁気ヘッドと、該磁気ヘッドを該垂直磁気記録媒体に対して移動自在に支持したキャリッジアッセンブリとを具備することを特徴とする磁気記録再生装置。19. A perpendicular magnetic recording medium according to claim 7, a mechanism for supporting and rotating said perpendicular magnetic recording medium, an element for recording information on said perpendicular magnetic recording medium, and A magnetic recording / reproducing apparatus comprising: a magnetic head having an element for reproducing recorded information; and a carriage assembly that supports the magnetic head movably with respect to the perpendicular magnetic recording medium. 前記磁気ヘッドは、単磁極ヘッドである請求項19に記載の磁気記録再生装置。20. The magnetic recording and reproducing apparatus according to claim 19, wherein the magnetic head is a single pole head.
JP2002345994A 2002-11-28 2002-11-28 Perpendicular magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device Pending JP2004178748A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002345994A JP2004178748A (en) 2002-11-28 2002-11-28 Perpendicular magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
SG200306009A SG105013A1 (en) 2002-11-28 2003-10-14 Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording-reproducing apparatus
US10/701,488 US20040106010A1 (en) 2002-11-28 2003-11-06 Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording-reproducing apparatus
CNA200310118358A CN1505006A (en) 2002-11-28 2003-11-25 Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording-reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345994A JP2004178748A (en) 2002-11-28 2002-11-28 Perpendicular magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device

Publications (1)

Publication Number Publication Date
JP2004178748A true JP2004178748A (en) 2004-06-24

Family

ID=32376040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345994A Pending JP2004178748A (en) 2002-11-28 2002-11-28 Perpendicular magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device

Country Status (4)

Country Link
US (1) US20040106010A1 (en)
JP (1) JP2004178748A (en)
CN (1) CN1505006A (en)
SG (1) SG105013A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074585A1 (en) * 2005-12-27 2007-07-05 Showa Denko K.K. Magnetic recording medium and magnetic recording and reproducing device using the magnetic recording medium

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4247575B2 (en) * 2003-05-20 2009-04-02 富士電機デバイステクノロジー株式会社 Method for manufacturing perpendicular magnetic recording medium
US8603650B2 (en) * 2004-06-30 2013-12-10 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording disk and manufacturing method thereof
JP4254643B2 (en) * 2004-07-23 2009-04-15 株式会社日立製作所 Perpendicular magnetic recording medium and magnetic storage device
US7651794B2 (en) * 2005-04-28 2010-01-26 Hitachi Global Storage Technologies Netherlands B.V. Adhesion layer for thin film magnetic recording medium
US7632580B2 (en) * 2005-06-06 2009-12-15 Hitachi Global Storage Technologies Netherlands, B.V. Perpendicular magnetic recording medium having an interlayer of a non-magnetic nickel alloy
US7662492B2 (en) * 2007-03-02 2010-02-16 Hitachi Global Storage Techologies Netherlands, B.V. Perpendicular magnetic recording medium having a multi-layer interlayer that includes BCC material
US7736767B2 (en) * 2007-03-02 2010-06-15 Hitachi Global Storage Technologies Netherlands, B.V. Perpendicular magnetic recording medium having an interlayer formed from a NiWCr alloy
US7879470B2 (en) * 2007-11-15 2011-02-01 Hitachi Global Storage Technologies Netherlands B.V. Apparatus, system, and method for the selection of perpendicular media segregant materials
WO2009158121A2 (en) * 2008-05-30 2009-12-30 The Regents Of The University Of California Magnetic recording medium
US8268462B2 (en) * 2008-12-22 2012-09-18 Seagate Technology Llc Hybrid grain boundary additives
US8722214B2 (en) 2008-12-22 2014-05-13 Seagate Technology Llc Hybrid grain boundary additives in granular media
US9822441B2 (en) * 2015-03-31 2017-11-21 WD Media, LLC Iridium underlayer for heat assisted magnetic recording media

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4405677A (en) * 1981-09-28 1983-09-20 Xerox Corporation Post treatment of perpendicular magnetic recording media
US6287429B1 (en) * 1992-10-26 2001-09-11 Hoya Corporation Magnetic recording medium having an improved magnetic characteristic
US5834085A (en) * 1996-02-26 1998-11-10 Densitek Corporation Grain isolated multilayer perpendicular recording medium
US6524730B1 (en) * 1999-11-19 2003-02-25 Seagate Technology, Llc NiFe-containing soft magnetic layer design for multilayer media
JP2002190108A (en) * 2000-10-13 2002-07-05 Fuji Electric Co Ltd Magnetic recording medium and its production method
KR100387237B1 (en) * 2001-01-10 2003-06-12 삼성전자주식회사 Perpendicular magnetic thin film for ultrahigh density recording

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074585A1 (en) * 2005-12-27 2007-07-05 Showa Denko K.K. Magnetic recording medium and magnetic recording and reproducing device using the magnetic recording medium
US8088504B2 (en) 2005-12-27 2012-01-03 Showa Denko K.K. Magnetic recording medium and magnetic recording and reproducing device using the magnetic recording medium

Also Published As

Publication number Publication date
CN1505006A (en) 2004-06-16
SG105013A1 (en) 2004-07-30
US20040106010A1 (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP2006268972A (en) Perpendicular magnetic recording disk and its manufacturing method
JP2006155861A (en) Perpendicular magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
US6902835B2 (en) Perpendicular magnetic recording medium and magnetic recording apparatus
JP3988117B2 (en) Perpendicular magnetic recording medium and method of manufacturing perpendicular magnetic recording medium
JP2005251373A (en) Magnetic recording medium, manufacturing method of the same, and magnetic storage device
JP2005032352A (en) Magnetic recording medium using particle dispersion type film for base, method for manufacturing the same, and magnetic recording/reproducing device
JP4534711B2 (en) Perpendicular magnetic recording medium
US6403241B1 (en) CoCrPtB medium with a 1010 crystallographic orientation
JP4585214B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP2002334424A (en) Magnetic recording medium, method for manufacturing the same and magnetic recording and reproducing device
US7252896B2 (en) Magnetic recording medium and magnetic recording/reproducing apparatus
JP2004303377A (en) Vertical magnetic recording medium, and magnetic recording and reproducing device
JP2004178748A (en) Perpendicular magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
JP2007172704A (en) Magnetic recording medium and magnetic recording and reproducing device
US7192664B1 (en) Magnetic alloy containing TiO2 for perpendicular magnetic recording application
CN108573715A (en) Assisted magnetic recording medium and magnetic memory apparatus
JP4287099B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP2006277950A (en) Vertical magnetic recording medium
JP5782819B2 (en) Perpendicular magnetic recording medium
JP2006185489A (en) Magnetic recording medium and magnetic storage device
JP2004303376A (en) Perpendicular magnetic recording medium, and magnetic recording/reproducing device using the same
JP4624838B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device
JP2004227618A (en) Disk substrate for perpendicular magnetic recording medium, perpendicular magnetic recording disk and their manufacturing method
JP4478834B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP2003228815A (en) Perpendicular magnetic recording medium and magnetic recording and reproducing device using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060725