JP2003166006A - Dispersion liquid of copper fine-particle - Google Patents

Dispersion liquid of copper fine-particle

Info

Publication number
JP2003166006A
JP2003166006A JP2001364327A JP2001364327A JP2003166006A JP 2003166006 A JP2003166006 A JP 2003166006A JP 2001364327 A JP2001364327 A JP 2001364327A JP 2001364327 A JP2001364327 A JP 2001364327A JP 2003166006 A JP2003166006 A JP 2003166006A
Authority
JP
Japan
Prior art keywords
copper
copper fine
less
particles
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001364327A
Other languages
Japanese (ja)
Inventor
Mutsuhiro Maruyama
睦弘 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001364327A priority Critical patent/JP2003166006A/en
Publication of JP2003166006A publication Critical patent/JP2003166006A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dispersion liquid of copper fine-particles having particle diameters of less than 200 nm. <P>SOLUTION: This dispersion liquid is obtained by suspending a copper compound having the particle diameter of less than 200 nm, in a polyol solvent, and subsequently reducing it at a lower temperature than 150&deg;C and in an atmosphere of pressurized hydrogen. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器の実装分
野において導電性ペースト、導電性インク等の用途で用
いられている銅微粒子分散液に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper fine particle dispersion liquid used in applications such as conductive paste and conductive ink in the field of mounting electronic equipment.

【0002】[0002]

【従来の技術】従来、電子機器の実装分野において導電
性ペースト・導電性インク等の用途で用いられている銅
微粒子分散液は、近年配線密度の高密度化に伴い、フィ
ラーサイズの低減が必要とされている。銅微粒子の作成
方法には、物理的方法、化学的方法等の方法がある。物
理的方法の中では、ガス中蒸発法によって100nm以
下の粒子径を有する銅微粒子の製造方法が公知であるが
(特開平3−34211)、この方法では銅微粒子間の
凝集を防ぐために、銅微粒子は炭素数が5以上のアルコ
ール、有機エステル(α―テルピネオール、シトロネノ
ール、オレイン酸メチル、リノール酸グリセリド等)で
被覆される必要がある。これらの被覆有機物は、立体的
に嵩高い長鎖アルキル、あるいは環状骨格を有するた
め、このため、例えばこの粒子を銅微粒子分散液のフィ
ラーとして用いる場合には、銅微粒子間の接触が不十分
である。加熱して被覆有機物を除去することも可能であ
るが、その場合には400℃程度あるいはそれ以上の高
温を必要とするという問題がある。
2. Description of the Related Art Copper fine particle dispersion liquids that have been used in the past in the field of mounting electronic equipment, such as conductive pastes and conductive inks, require a reduction in filler size as wiring density increases in recent years. It is said that. There are methods such as a physical method and a chemical method for producing the copper fine particles. Among the physical methods, a method for producing copper fine particles having a particle diameter of 100 nm or less by a gas evaporation method is known (Japanese Patent Laid-Open No. 3-34211). However, in this method, copper is used to prevent aggregation between copper fine particles. The fine particles need to be coated with an alcohol having 5 or more carbon atoms or an organic ester (α-terpineol, citronenol, methyl oleate, linoleic acid glyceride, etc.). Since these coated organic substances have a sterically bulky long-chain alkyl or cyclic skeleton, therefore, when these particles are used as a filler for a copper fine particle dispersion, for example, contact between copper fine particles is insufficient. is there. It is possible to remove the coating organic matter by heating, but in that case, there is a problem that a high temperature of about 400 ° C. or higher is required.

【0003】一方、化学的な作成方法としては、銅化合
物を溶液中においてヒドラジン等の還元剤によって還元
する方法がある。しかしながらこの方法は、作成した銅
粒子間に強い凝集力が働くため、保護ポリマー等の添加
なしには200nm未満の粒子径を有する銅微粒子を作
成することができない。即ち、配線密度の高密度化に対
応できても導電性が不充分である。また、銅化合物をポ
リオール溶媒中にてポリオールの沸点(例えばポリオー
ルにエチレングリコールを用いた場合には198℃)で
加熱還元する方法によって銅微粒子を得る方法も公知で
あるが(特公平4−24402)、この方法では高温下
での銅化合物の溶解−析出反応を利用するために、得ら
れる銅微粒子の粒径は大きくなり、200nm未満の粒
子径を有する銅微粒子を得ることはできない。即ち、こ
の方法では導電性は十分であっても配線密度の高密度化
に対応できないのである。
On the other hand, as a chemical preparation method, there is a method of reducing a copper compound in a solution with a reducing agent such as hydrazine. However, in this method, a strong cohesive force acts between the prepared copper particles, so that it is impossible to prepare fine copper particles having a particle diameter of less than 200 nm without addition of a protective polymer or the like. That is, the conductivity is insufficient even if the wiring density can be increased. Further, a method of obtaining copper fine particles by a method of heating and reducing a copper compound in a polyol solvent at the boiling point of the polyol (for example, 198 ° C. when ethylene glycol is used as the polyol) is also known (Japanese Patent Publication No. 4-24402). In this method, since the dissolution-precipitation reaction of the copper compound at a high temperature is used, the particle size of the obtained copper particles becomes large, and it is not possible to obtain the copper particles having a particle size of less than 200 nm. That is, this method cannot cope with the increase in wiring density even if the conductivity is sufficient.

【0004】さらに、銅化合物を常圧で水素還元する方
法も提案されているが(特開昭64−47801)、こ
の方法では通常150℃あるいはそれ以上の高い反応温
度を必要とする。こういった高温での反応では生成する
銅微粒子が容易に凝集するために、200nm未満の粒
子径を有する銅微粒子を得ることはできない。
Further, a method of hydrogen-reducing a copper compound at atmospheric pressure has been proposed (JP-A-64-47801), but this method usually requires a high reaction temperature of 150 ° C. or higher. In such a reaction at a high temperature, the copper fine particles produced easily aggregate, so that it is not possible to obtain copper fine particles having a particle diameter of less than 200 nm.

【0005】[0005]

【発明が解決しようとする課題】即ち、本発明は、銅本
来の導電性を損なうことなく200nm未満の粒子径を
有する銅微粒子分散液を提供することを目的とするもの
である。
That is, the object of the present invention is to provide a copper fine particle dispersion having a particle size of less than 200 nm without impairing the intrinsic conductivity of copper.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意検討を進めた結果、200nm未満
の粒子径を有する銅化合物の超微粒子を、ポリオール溶
媒中に懸濁し、特定の温度および圧力下で水素を用いて
還元処理をして得られた銅粒子の分散液が銅本来の導電
性を損なうことなく配性密度の高密度化に対応できるこ
とを見出し本発明を完成したのである。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventor suspended ultrafine particles of a copper compound having a particle diameter of less than 200 nm in a polyol solvent and The present invention has been completed by finding that a dispersion liquid of copper particles obtained by reduction treatment with hydrogen under the temperature and pressure of 1 can respond to a high density of distributive density without impairing the intrinsic conductivity of copper. Of.

【0007】即ち、本発明は、200nm未満の粒子径
を有する銅微粒子がポリオール溶媒に分散していること
を特徴とする銅微粒子分散液、特に該ポリオール溶媒が
ジエチレングリコールであることを特徴とする銅微粒子
分散液に関するものであり、200nm未満の粒子径を
有する銅化合物を、ポリオール溶媒中に懸濁した後、引
き続き温度150℃未満で、加圧水素下で還元処理して
得られることを特徴とする銅微粒子分散液の製造方法に
関するものである。
That is, the present invention provides a copper fine particle dispersion characterized in that fine copper particles having a particle size of less than 200 nm are dispersed in a polyol solvent, and particularly, the copper characterized in that the polyol solvent is diethylene glycol. The present invention relates to a fine particle dispersion, which is obtained by suspending a copper compound having a particle size of less than 200 nm in a polyol solvent, and subsequently performing a reduction treatment under pressurized hydrogen at a temperature of less than 150 ° C. The present invention relates to a method for producing a copper fine particle dispersion.

【0008】以下に本発明を詳細に説明する。本発明の
銅微粒子分散液は粒子径200nm未満の銅粒子がポリ
オール溶媒に分散していることを特徴としている。本発
明の銅微粒子は球形、立方形、あるいは多面体形の形状
を有し、1nm以上200nm未満、さらに限定すると
1nm以上100nm未満の粒子径を有する。また、銅
の分散液全体の中の含有率は、0.01質量%以上、9
0質量%未満、さらに好ましくは0.01質量%以上8
5質量%未満である。
The present invention will be described in detail below. The copper fine particle dispersion of the present invention is characterized in that copper particles having a particle diameter of less than 200 nm are dispersed in a polyol solvent. The copper fine particles of the present invention have a spherical shape, a cubic shape, or a polyhedral shape, and have a particle diameter of 1 nm or more and less than 200 nm, and more specifically, 1 nm or more and less than 100 nm. The content of copper in the entire dispersion is 0.01% by mass or more, 9
Less than 0 mass%, more preferably 0.01 mass% or more 8
It is less than 5% by mass.

【0009】本発明の銅微粒子分散液に溶媒として用い
ることができるポリオールは、分子中に2個以上の水酸
基を有し、室温において溶液である化合物であり、ポリ
エチレングリコール、ポリプロピレングリコール、アル
キレングリコール、グリセロール等である。ポリオール
は高温で加熱するとそれ自身に還元性があることが知ら
れており、分子構造の違いによってその還元力が大きく
異なるが、本発明は水素の還元力を利用する反応である
ので、ポリオールの還元力に制限はない。
The polyol that can be used as a solvent in the copper fine particle dispersion of the present invention is a compound that has two or more hydroxyl groups in the molecule and is a solution at room temperature, and includes polyethylene glycol, polypropylene glycol, alkylene glycol, Glycerol and the like. It is known that the polyol itself has a reducing property when heated at a high temperature, and its reducing power greatly varies depending on the difference in molecular structure.However, since the present invention is a reaction utilizing the reducing power of hydrogen, There is no limit to the reducing power.

【0010】室温において粘度の低いエチレングリコー
ル、ジエチレングリコール、1,2−プロパンジオー
ル、1,3−プロパンジオール、1,2−ブタンジオー
ル、1,3−ブタンジオール、1,4−ブタンジオー
ル、2,3−ブタンジオール等、炭素数の小さなものが
好ましいが、ペンタンジオール、ヘキサンジオール、オ
クタンジオール、ポリエチレングリコール等の炭素数の
大きなものも使用可能である。これらのポリオール溶媒
1種類のみを単独溶媒として用いても良いし、複数のポ
リオール溶媒を混合して混合溶媒として用いてもよい。
ポリオール溶媒の中で、最も好ましい溶媒はジエチレン
グリコールである。
Ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2, whose viscosity is low at room temperature, Those having a small carbon number such as 3-butanediol are preferable, but those having a large carbon number such as pentanediol, hexanediol, octanediol and polyethylene glycol can also be used. Only one of these polyol solvents may be used as a single solvent, or a plurality of polyol solvents may be mixed and used as a mixed solvent.
Of the polyol solvents, the most preferred solvent is diethylene glycol.

【0011】次に本発明の銅微粒子分散液の製造方法に
ついて説明する。本発明の銅微粒子分散液は200nm
未満の粒子径を有する銅化合物をポリオール溶媒中に懸
濁し、特定の温度および圧力下で水素を用いて還元処理
をして得られることを特徴とする。
Next, a method for producing the copper fine particle dispersion of the present invention will be described. The copper fine particle dispersion of the present invention has a thickness of 200 nm.
It is characterized by being obtained by suspending a copper compound having a particle size of less than in a polyol solvent and performing a reduction treatment with hydrogen under a specific temperature and pressure.

【0012】以下、詳細について説明する。本発明に使
用し得る銅化合物としては第一銅化合物、例えば、酸化
第一銅、塩化第一銅、臭化第一銅、ヨウ化第一銅、硫酸
第一銅、硝酸第一銅、酢酸第一銅である。また第二銅化
合物として、例えば酸化第二銅、水酸化第二銅、塩化第
二銅、臭化第二銅、ヨウ化第二銅、硫酸第二銅、硝酸第
二銅、酢酸第二銅、アジ化第二銅等が例示される。これ
ら銅化合物の中でより好ましいものとしては、ハロゲン
イオンを含まない、酸化第一銅、酸化第二銅を挙げるこ
とができる。
The details will be described below. As a copper compound that can be used in the present invention, a cuprous compound, for example, cuprous oxide, cuprous chloride, cuprous bromide, cuprous iodide, cuprous sulfate, cuprous nitrate, acetic acid. It is cuprous. As the cupric compound, for example, cupric oxide, cupric hydroxide, cupric chloride, cupric bromide, cupric iodide, cupric sulfate, cupric nitrate, cupric acetate. , Cupric azide and the like. Among these copper compounds, more preferable are cuprous oxide and cupric oxide containing no halogen ion.

【0013】本発明では上記の銅化合物の粒子径が20
0nm未満の粒子径であることを特徴とする。これらは
市販品を用いてもかまわないし、公知の合成方法を用い
て合成することも可能である。例えば、粒子径が200
nm未満である酸化第一銅の合成方法としてはアセチル
アセトナト銅錯体をポリオール溶媒中で200℃程度で
加熱して合成する方法が公知である(アンゲバンテ ケ
ミ インターナショナル エディション、40号、2
巻、p.359、2001年)。原料である銅化合物の
粒子径が200nmを越えると、還元処理によって20
0nm未満の銅微粒子を得ることができない。
In the present invention, the above copper compound has a particle size of 20.
The particle diameter is less than 0 nm. These may be commercially available products or can be synthesized by a known synthesis method. For example, the particle size is 200
As a method of synthesizing cuprous oxide having a thickness of less than nm, a method of synthesizing an acetylacetonato copper complex by heating at about 200 ° C. in a polyol solvent is known (Angevante Chemi International Edition, No. 40, 2).
Vol., P. 359, 2001). If the particle diameter of the copper compound as a raw material exceeds 200 nm, the reduction treatment causes
Copper fine particles of less than 0 nm cannot be obtained.

【0014】本発明では、上記の銅化合物の超微粒子を
先ずポリオール溶媒中に分散する。ポリオール溶媒中に
銅化合物を分散する方法としては、銅化合物粉体を溶液
に分散する一般的な方法を用いることができる。例え
ば、超音波法、ミキサー法、3本ロール法、ボールミル
法、等を挙げることができる。中でも特に好ましいの
は、超音波法、及びボールミル法である。通常は、これ
らの分散手段の複数を組み合わせて分散を行う。これら
の分散処理は室温で行っても構わないし、溶媒の粘度を
下げるために、加熱して行っても構わない。
In the present invention, the ultrafine particles of the copper compound are first dispersed in a polyol solvent. As a method of dispersing the copper compound in the polyol solvent, a general method of dispersing the copper compound powder in the solution can be used. For example, an ultrasonic method, a mixer method, a three-roll method, a ball mill method and the like can be mentioned. Above all, the ultrasonic method and the ball mill method are particularly preferable. Usually, a plurality of these dispersion means are combined to perform dispersion. These dispersion treatments may be performed at room temperature, or may be performed by heating to reduce the viscosity of the solvent.

【0015】ポリオール溶媒中に分散させる銅化合物超
微粒子の重量に特に制限はないが、混合する粉体が大き
な表面積を有する超微粒子であるために、90wt%を
超える条件で、均一な分散液を作成することは不可能で
ある。尚、200nm未満の粒子径を有する銅化合物の
超微粒子をポリオール溶媒中にて合成することによっ
て、分散処理を省略することも可能である。
The weight of the copper compound ultrafine particles to be dispersed in the polyol solvent is not particularly limited, but since the powder to be mixed is an ultrafine particle having a large surface area, a uniform dispersion liquid is obtained under the condition of more than 90 wt%. It is impossible to create. The dispersion treatment can be omitted by synthesizing ultrafine particles of a copper compound having a particle diameter of less than 200 nm in a polyol solvent.

【0016】上記の方法でポリオール溶媒中に分散した
銅化合物は反応容器中で水素に接触させ、熱を加えるこ
とによって銅化合物を還元処理し銅微粒子を合成する。
水素との接触は、耐圧の反応容器を用い、真空ポンプを
用いて反応容器中の酸素を窒素等の不活性ガスで充分に
置換した後、所定の圧力まで水素を充填することによっ
て行う。水素の圧力と加える熱の量は、原料である銅化
合物超微粒子の粒子径に依存して変わるが、加える圧力
は大気圧より大きい必要がある。好ましくは、大気圧よ
り大きく、10MPa未満の圧力で、さらに好ましく
は、大気圧より大きく、8MPa未満の圧力である。一
般に原料となる銅化合物超微粒子の粒子径が小さくなる
と、粒子が還元されやすくなるので、低圧の水素雰囲気
で還元反応が進む。加圧水素を用いると、一般的に加え
る熱量を小さくすることができるのでより好ましい。
The copper compound dispersed in the polyol solvent by the above-mentioned method is brought into contact with hydrogen in a reaction vessel, and heat is applied to reduce the copper compound to synthesize copper fine particles.
The contact with hydrogen is carried out by using a pressure-resistant reaction vessel, sufficiently replacing oxygen in the reaction vessel with an inert gas such as nitrogen using a vacuum pump, and then filling hydrogen up to a predetermined pressure. The pressure of hydrogen and the amount of heat applied vary depending on the particle size of the copper compound ultrafine particles as the raw material, but the pressure applied must be greater than atmospheric pressure. The pressure is preferably higher than atmospheric pressure and lower than 10 MPa, and more preferably higher than atmospheric pressure and lower than 8 MPa. Generally, when the particle diameter of the copper compound ultrafine particles as a raw material becomes small, the particles are easily reduced, so that the reduction reaction proceeds in a low-pressure hydrogen atmosphere. The use of pressurized hydrogen is more preferable because the amount of heat applied can generally be reduced.

【0017】反応温度の範囲は、150℃未満、さらに
好ましくは120℃未満である。一般に、原料となる銅
化合物超微粒子の粒子径が小さくなると、加える熱の量
は少なくてよい。また、加える熱の量が多すぎると、生
成する銅微粒子間で凝集が進み、たとえ200nm未満
の粒子径を有する銅化合物を原料としても、生成する銅
微粒子の粒子径は200nmより大きくなる。本発明の
還元処理は反応雰囲気を窒素、アルゴン、ヘリウム等の
不活性ガスと水素の混合雰囲気にしても差し支えない。
酸素の存在は銅化合物からの銅イオンの溶出を促進する
ので好ましくない。
The reaction temperature range is below 150 ° C, more preferably below 120 ° C. Generally, when the particle size of the copper compound ultrafine particles used as a raw material becomes small, the amount of heat applied may be small. Further, when the amount of heat applied is too large, agglomeration progresses among the generated copper fine particles, and even if a copper compound having a particle diameter of less than 200 nm is used as a raw material, the particle diameter of the generated copper fine particles becomes larger than 200 nm. In the reduction treatment of the present invention, the reaction atmosphere may be a mixed atmosphere of hydrogen with an inert gas such as nitrogen, argon or helium.
The presence of oxygen promotes the elution of copper ions from the copper compound and is not preferred.

【0018】[0018]

【発明の実施の形態】次に実施例により本発明を更に詳
細に説明するが、本発明はこれらの例によってなんら限
定されるべきではない。なお、以下の実施例中、比較例
中に記載の銅化合物粒子及び銅粒子の粒径は、いずれも
堀場製作所製レーザー散乱式粒度分布計(LA−92
0)で測定した。また、水素処理によって得られた分散
液中の超微粒子が銅であることは、株式会社リガク製X
線回折装置(Rigaku−RINT 2500)で確
認した。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail with reference to Examples, but the present invention should not be limited to these Examples. In addition, the particle diameters of the copper compound particles and the copper particles described in Comparative Examples in the following examples are all laser scattering type particle size distribution analyzer (LA-92, manufactured by Horiba, Ltd.).
It was measured in 0). Further, the fact that the ultrafine particles in the dispersion liquid obtained by the hydrogen treatment are copper means that X is manufactured by Rigaku Corporation.
It confirmed with the line diffraction apparatus (Rigaku-RINT 2500).

【0019】[0019]

【実施例1】酢酸銅(和光純薬工業株式会社製)0.3
gをジエチレングリコール(和光純薬工業株式会社製)
50mlに懸濁し、水0.5mlを加えて190℃で3
時間加熱反応させ、平均粒径80nmの酸化第一銅分散
液を得た。この分散液をステンレス製の反応器(オート
クレーブ)に入れ、また、攪拌のためのマグネティック
攪拌子を入れ、真空ポンプを使って反応器中の酸素を除
去した後、4.4MPaの圧力になるよう、容器内に水
素を充填した。70℃に設定したオイルバス中で5時
間、内部をマグネティックスターラーで攪拌しながら反
応器を過熱して銅微粒子分散液を得た。得られた銅微粒
子の平均粒径は75nmであった。
Example 1 Copper acetate (manufactured by Wako Pure Chemical Industries, Ltd.) 0.3
g is diethylene glycol (Wako Pure Chemical Industries, Ltd.)
Suspend in 50 ml, add 0.5 ml of water and add 3 at 190 ° C.
The mixture was heated and reacted for a time to obtain a cuprous oxide dispersion having an average particle size of 80 nm. This dispersion was placed in a stainless steel reactor (autoclave), a magnetic stirrer for stirring was placed, and oxygen was removed from the reactor using a vacuum pump, so that the pressure became 4.4 MPa. The container was filled with hydrogen. The reactor was overheated for 5 hours in an oil bath set at 70 ° C. while stirring the inside with a magnetic stirrer to obtain a copper fine particle dispersion. The average particle size of the obtained copper fine particles was 75 nm.

【0020】[0020]

【実施例2】平均粒子径30nmを有するCuOナノ粒
子(シーアイ化成株式会社製)1gを、ジエチレングリ
コール50mlに加え、超音波分散機とボールミル分散
機にて分散処理を行った。得られた分散液をオートクレ
ーブに入れ、真空ポンプを使って反応器中の酸素を除去
した後、3.9MPaの圧力になるよう、容器内に水素
を充填した。70℃に設定したオイルバス中で5時間、
内部をマグネティックスターラーで攪拌しながら反応器
を過熱して銅微粒子分散液を得た。銅微粒子の平均粒径
は50nmであった。
Example 2 1 g of CuO nanoparticles having an average particle diameter of 30 nm (manufactured by CI Kasei Co., Ltd.) was added to 50 ml of diethylene glycol, and a dispersion treatment was carried out with an ultrasonic disperser and a ball mill disperser. The obtained dispersion was placed in an autoclave, oxygen in the reactor was removed using a vacuum pump, and then hydrogen was filled in the container so that the pressure became 3.9 MPa. 5 hours in an oil bath set at 70 ° C
The reactor was heated while stirring the inside with a magnetic stirrer to obtain a copper fine particle dispersion. The average particle size of the copper fine particles was 50 nm.

【0021】[0021]

【実施例3】実施例1と同様の操作で得た平均粒径80
nmの酸化第一銅分散液を、さらに室温で1週間攪拌す
ることで、平均粒径120nmの酸化第一銅分散液を得
た。この分散液をオートクレーブに入れ、真空ポンプを
使って反応器中の酸素を除去した後、1.2MPaの圧
力になるよう、容器内に水素を充填した。102℃に設
定したオイルバス中で2時間、内部をマグネティックス
ターラーで攪拌しながら反応器を過熱して銅微粒子分散
液を得た。得られた銅微粒子の平均粒径は94nmであ
った。
Example 3 Average particle size 80 obtained by the same operation as in Example 1
The cuprous oxide dispersion having a particle size of 120 nm was further stirred at room temperature for 1 week to obtain a cuprous oxide dispersion having an average particle size of 120 nm. This dispersion was put into an autoclave, oxygen in the reactor was removed using a vacuum pump, and then hydrogen was filled in the container so that the pressure was 1.2 MPa. The reactor was heated in an oil bath set at 102 ° C. for 2 hours while stirring the inside with a magnetic stirrer to obtain a copper fine particle dispersion. The average particle diameter of the obtained copper fine particles was 94 nm.

【0022】[0022]

【比較例1】水素圧力が大気圧である以外は実施例3と
同じ条件で反応を行ったが、酸化第一銅粒子は還元され
ず、銅微粒子分散液は得られなかった。
Comparative Example 1 The reaction was performed under the same conditions as in Example 3 except that the hydrogen pressure was atmospheric pressure, but the cuprous oxide particles were not reduced and a copper fine particle dispersion was not obtained.

【0023】[0023]

【比較例2】反応温度が200℃である以外は実施例1
と同じ条件で反応を行った。酸化第一銅粒子は還元され
たが、銅は約1ミリ角の大きさをもつ凝集体となって沈
降し、銅微粒子分散液は得られなかった。
Comparative Example 2 Example 1 except that the reaction temperature was 200 ° C.
The reaction was carried out under the same conditions as. Although the cuprous oxide particles were reduced, copper settled as aggregates having a size of about 1 mm square, and a copper fine particle dispersion liquid was not obtained.

【0024】[0024]

【発明の効果】本発明による方法においては、被覆有機
物や保護ポリマー等の添加物を必要とせずに、200n
m未満の粒子径を有する銅微粒子分散液を合成できるた
め、絶縁物成分が低減された高密度配線用の導電性ペー
スト、導電性インクを提供できる。
The method according to the present invention does not require additives such as a coating organic substance and a protective polymer, and is 200 n
Since a copper fine particle dispersion having a particle diameter of less than m can be synthesized, it is possible to provide a conductive paste for high-density wiring and a conductive ink in which the insulating component is reduced.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 200nm未満の粒子径を有する銅微粒
子をポリオール溶媒に含有させてなる銅微粒子分散液。
1. A copper fine particle dispersion liquid containing copper fine particles having a particle diameter of less than 200 nm in a polyol solvent.
【請求項2】 該ポリオール溶媒がジエチレングリコー
ルであることを特徴とする請求項1に記載の銅微粒子分
散液。
2. The copper fine particle dispersion liquid according to claim 1, wherein the polyol solvent is diethylene glycol.
【請求項3】 200nm未満の粒子径を有する銅化合
物を、ポリオール溶媒中に懸濁した後、引き続き温度1
50℃未満で、加圧水素下で還元処理して得られること
を特徴とする請求項1または2のいずれかに記載の銅微
粒子分散液の製造方法。
3. A copper compound having a particle size of less than 200 nm is suspended in a polyol solvent and then continuously heated to a temperature of 1.
The method for producing a copper fine particle dispersion according to claim 1 or 2, which is obtained by a reduction treatment under pressurized hydrogen at a temperature of less than 50 ° C.
【請求項4】 該銅化合物が、酸化第一銅、酸化第二銅
であることを特徴とする請求項3に記載の銅微粒子分散
液の製造方法。
4. The method for producing a copper fine particle dispersion according to claim 3, wherein the copper compound is cuprous oxide or cupric oxide.
JP2001364327A 2001-11-29 2001-11-29 Dispersion liquid of copper fine-particle Pending JP2003166006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001364327A JP2003166006A (en) 2001-11-29 2001-11-29 Dispersion liquid of copper fine-particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364327A JP2003166006A (en) 2001-11-29 2001-11-29 Dispersion liquid of copper fine-particle

Publications (1)

Publication Number Publication Date
JP2003166006A true JP2003166006A (en) 2003-06-13

Family

ID=19174536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364327A Pending JP2003166006A (en) 2001-11-29 2001-11-29 Dispersion liquid of copper fine-particle

Country Status (1)

Country Link
JP (1) JP2003166006A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056222A1 (en) * 2003-12-15 2005-06-23 Nippon Sheet Glass Co., Ltd. Metal nanocolloidal liquid, method for producing metal support and metal support
JP2005169334A (en) * 2003-12-15 2005-06-30 Nippon Sheet Glass Co Ltd Manufacturing method for metal carrier and metal carrier
JP2008146999A (en) * 2006-12-08 2008-06-26 Harima Chem Inc Forming method of fine shape conductor of copper-based particulate sintering compact
JP2008146991A (en) * 2006-12-08 2008-06-26 Harima Chem Inc Forming method for copper particulate sintered body type micro profile conductive body and forming method for copper micro profile wiring and copper thin film using same method
US8535573B2 (en) 2007-11-05 2013-09-17 Sumitomo Metal Mining Co., Ltd. Copper fine particles, method for producing the same, and copper fine particle dispersion
JP2014028994A (en) * 2012-07-31 2014-02-13 Furukawa Electric Co Ltd:The Copper fine particle dispersion and conductive material
KR101397980B1 (en) 2012-10-08 2014-05-27 한국지질자원연구원 Remove the copper ions and process for preparing copper powder from mixed solution containing copper ions

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056222A1 (en) * 2003-12-15 2005-06-23 Nippon Sheet Glass Co., Ltd. Metal nanocolloidal liquid, method for producing metal support and metal support
JP2005169334A (en) * 2003-12-15 2005-06-30 Nippon Sheet Glass Co Ltd Manufacturing method for metal carrier and metal carrier
US7648938B2 (en) 2003-12-15 2010-01-19 Nippon Sheet Glass Company, Limited Metal nanocolloidal liquid, method for producing metal support and metal support
JP4647906B2 (en) * 2003-12-15 2011-03-09 日本板硝子株式会社 Method for producing metal carrier and metal carrier.
JP2008146999A (en) * 2006-12-08 2008-06-26 Harima Chem Inc Forming method of fine shape conductor of copper-based particulate sintering compact
JP2008146991A (en) * 2006-12-08 2008-06-26 Harima Chem Inc Forming method for copper particulate sintered body type micro profile conductive body and forming method for copper micro profile wiring and copper thin film using same method
US8535573B2 (en) 2007-11-05 2013-09-17 Sumitomo Metal Mining Co., Ltd. Copper fine particles, method for producing the same, and copper fine particle dispersion
JP2014028994A (en) * 2012-07-31 2014-02-13 Furukawa Electric Co Ltd:The Copper fine particle dispersion and conductive material
KR101397980B1 (en) 2012-10-08 2014-05-27 한국지질자원연구원 Remove the copper ions and process for preparing copper powder from mixed solution containing copper ions

Similar Documents

Publication Publication Date Title
US11767443B2 (en) Copper particle mixture and method for manufacturing same, copper particle mixture dispersion, ink containing copper particle mixture, method for storing copper particle mixture, and method for sintering copper particle mixture
EP2420336B1 (en) Coated silver nanoparticles and manufacturing method therefor
EP2671655B1 (en) Method for manufacturing coated metal fine particles
JP4047304B2 (en) Fine silver particle-attached silver powder and method for producing the fine silver particle-attached silver powder
KR100790457B1 (en) Method for producing metal nanoparticles
JP5288063B2 (en) Silver powder and method for producing the same
JP5785023B2 (en) Silver particle dispersion composition, conductive circuit using the same, and method for forming conductive circuit
JP2007031835A (en) Metal nanoparticle, its production method and conductive ink
JP6717289B2 (en) Copper-containing particles, conductor forming composition, conductor manufacturing method, conductor and device
JP7480947B2 (en) Method for producing silver nanoparticles having a wide particle size distribution and silver nanoparticles
JP2017037761A (en) Metal nanoparticle composition, ink for inkjet and inkjet device and dispersant composition for metal nanoparticle composition
JP2003166006A (en) Dispersion liquid of copper fine-particle
Gao et al. Preparation of highly conductive adhesives by in situ generated and sintered silver nanoparticles during curing process
JP5785024B2 (en) Silver particle dispersion composition, conductive circuit using the same, and method for forming conductive circuit
JP6096143B2 (en) Silver-coated flaky copper powder, method for producing the same, and conductive paste
JP2005281781A (en) Method for producing copper nanoparticle
JP6466758B2 (en) Silver-coated flaky copper powder, method for producing the same, and conductive paste using the silver-coated flaky copper powder
JP4674376B2 (en) Method for producing silver particle powder
WO2018184486A1 (en) Silicone oil-treated fumed silica, manufacturing method and application thereof
TW201143941A (en) Method for preparing copper nanoparticle which is capable of being calcined under atmospheric pressure
JP5906245B2 (en) Dispersant and dispersible metal nanoparticle composition
CN103933973A (en) Preparation method of supported nano palladium/carbon catalyst
JP6118193B2 (en) Method for producing dispersible nickel fine particle slurry
JP2013044016A (en) Method for producing metal composite ultrafine particle
JP7097032B2 (en) Manufacturing method of silver nanoparticles with wide particle size distribution and silver nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A02 Decision of refusal

Effective date: 20071016

Free format text: JAPANESE INTERMEDIATE CODE: A02