JP2003165701A - Hydrogen storage material and method of manufacturing it - Google Patents

Hydrogen storage material and method of manufacturing it

Info

Publication number
JP2003165701A
JP2003165701A JP2001361155A JP2001361155A JP2003165701A JP 2003165701 A JP2003165701 A JP 2003165701A JP 2001361155 A JP2001361155 A JP 2001361155A JP 2001361155 A JP2001361155 A JP 2001361155A JP 2003165701 A JP2003165701 A JP 2003165701A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
storage material
carbon
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001361155A
Other languages
Japanese (ja)
Inventor
Hiroaki Wakayama
博昭 若山
Yoshiaki Fukushima
喜章 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2001361155A priority Critical patent/JP2003165701A/en
Publication of JP2003165701A publication Critical patent/JP2003165701A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage material which releases high-purity hydrogen and in addition, enough quantity of hydrogen at a low temperature. <P>SOLUTION: The hydrogen storage material is characterized by containing at least one kind of catalyst selected from the group consisting of nickel, chromium, molybdenum, cobalt, copper, palladium, platinum, iron, ruthenium, rhodium, iridium, tungsten, titanium, manganese and osmium, and carbon. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵材料及び
その製造方法に関する。
TECHNICAL FIELD The present invention relates to a hydrogen storage material and a method for producing the same.

【0002】[0002]

【従来の技術】現代社会において、水素は合成化学工業
や石油精製などに多量に利用されている重要な化学原料
である。一方、将来におけるエネルギー問題や環境問題
を解決するために、クリーンなエネルギーとしての水素
利用技術は重要な位置を占めると考えられ、水素を貯蔵
し、それを燃料として稼動する燃料電池の開発が進めら
れている。
2. Description of the Related Art In modern society, hydrogen is an important chemical raw material used in large quantities in the synthetic chemical industry and petroleum refining. On the other hand, in order to solve future energy problems and environmental problems, hydrogen utilization technology as clean energy is considered to occupy an important position, and the development of fuel cells that store hydrogen and operate with it as fuel is proceeding. Has been.

【0003】かかる燃料電池はガスで作動する電池であ
り、その際、水素と酸素との反応から得られるエネルギ
ーを直接電気エネルギーに変換する。このような燃料電
池は従来の燃焼エンジンに比べて極めて高い効率を有
し、NOx、SOx、CO等の有毒ガスの放出が全くな
いため、燃料電池を有する自動車はZEV(Zero Emission
Vehicle)と称されている。
Such fuel cells are gas-operated cells, in which the energy obtained from the reaction of hydrogen and oxygen is directly converted into electrical energy. Such a fuel cell has an extremely high efficiency as compared with a conventional combustion engine and emits no toxic gas such as NOx, SOx, CO, etc. Therefore, a vehicle having a fuel cell has a ZEV (Zero Emission).
Vehicle).

【0004】一方、水素の貯蔵法としては、圧縮してボ
ンベに貯蔵する方法、冷却して液体水素とする方法、活
性炭に吸着させる方法、水素吸蔵材料を利用する方法な
どが提案されている。これらの方法の中でも、水素吸蔵
材料を利用する方法は燃料電池自動車などの移動媒体に
おいて主要な役割を果たすと考えられている。
On the other hand, as a method for storing hydrogen, a method of compressing and storing in a cylinder, a method of cooling into liquid hydrogen, a method of adsorbing on activated carbon, a method of utilizing a hydrogen storage material, etc. have been proposed. Among these methods, the method using a hydrogen storage material is considered to play a major role in a moving medium such as a fuel cell vehicle.

【0005】このような背景の下、水素吸蔵材料として
の炭素の使用が提案されている(特表平8−50439
4号公報、特開2000−103612号公報、特開2
001−106516号公報など)。また、特開200
0−87172号公報には、従来より水素吸蔵材料とし
て検討が進められているアルカリ土類金属(Mg、Ca
など)に炭素を混合した水素吸蔵材料が開示されてお
り、かかるアルカリ土類金属と炭素との混合によりアル
カリ土類金属の水素化速度の向上が図られている。さら
に、Mgとグラファイトからなる水素吸蔵材料を製造す
る際に、得られる水素吸蔵材料の特性の向上を目的とし
て、特定の有機化合物(THFなど)の共存下で機械的
粉砕を行う方法が提案されている(J. Alloys. Compd.
293-295 (1999) p564-568、Chem. Commun. (1999) p227
7-2278など)。
Against this background, the use of carbon as a hydrogen storage material has been proposed (Japanese Patent Laid-Open No. 8-50439).
4, JP-A-2000-103612, JP-A-2
001-106516, etc.). In addition, JP-A-200
0-87172 discloses alkaline earth metals (Mg, Ca) that have been studied as hydrogen storage materials.
Etc.) and a hydrogen storage material in which carbon is mixed, and by mixing such an alkaline earth metal with carbon, the hydrogenation rate of the alkaline earth metal is improved. Furthermore, when producing a hydrogen storage material composed of Mg and graphite, a method of mechanically pulverizing in the coexistence of a specific organic compound (THF, etc.) has been proposed for the purpose of improving the characteristics of the obtained hydrogen storage material. (J. Alloys. Compd.
293-295 (1999) p564-568, Chem. Commun. (1999) p227
7-2278 etc.).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の水素吸蔵材料であっても、単位重量当たりの水素吸
蔵量が必ずしも多いものではなく、実用化の点で十分な
水素吸蔵・放出能を有しているとは言い難い。また、水
素吸蔵材料には水素の吸蔵・放出を低温(好ましくは室
温)で可逆的に行えることが望まれるが、上記従来の水
素吸蔵材料から水素を放出させるためには高温(例えば
500℃以上)に加熱する必要があり、かかる加熱によ
り放出される水素中に炭化水素(HC)が混入しやすく
なって水素の純度が不十分となる。
However, even the above-mentioned conventional hydrogen storage materials do not necessarily have a large hydrogen storage amount per unit weight, and have sufficient hydrogen storage / release capacity in terms of practical use. It is hard to say that they are doing it. Further, it is desired that the hydrogen storage material can store and release hydrogen reversibly at a low temperature (preferably room temperature). However, in order to release hydrogen from the above conventional hydrogen storage material, a high temperature (for example, 500 ° C. or higher) is required. ), The hydrocarbon (HC) is easily mixed in the hydrogen released by such heating, and the purity of hydrogen becomes insufficient.

【0007】本発明は、上記従来技術の有する課題に鑑
みてなされたものであり、高純度且つ十分な量の水素を
低温で放出することができる水素吸蔵材料を提供するこ
とを目的とする。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a hydrogen storage material capable of releasing hydrogen of a high purity and a sufficient amount at a low temperature.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の水素吸蔵材料は、ニッケル、クロム、モリ
ブデン、コバルト、銅、パラジウム、白金、鉄、ルテニ
ウム、ロジウム、イリジウム、タングステン、チタン、
マンガン及びオスミウムからなる群より選ばれる少なく
とも1種の触媒と、炭素とを含有することを特徴とす
る。
In order to solve the above problems, the hydrogen storage material of the present invention comprises nickel, chromium, molybdenum, cobalt, copper, palladium, platinum, iron, ruthenium, rhodium, iridium, tungsten and titanium. ,
It is characterized by containing carbon and at least one catalyst selected from the group consisting of manganese and osmium.

【0009】本発明の水素吸蔵材料では、炭素が本来的
に有する水素吸蔵・放出能と上記特定の触媒による水素
の脱離作用との相乗効果によって、水素の吸蔵・放出の
可逆反応が十分に促進されるので、高純度且つ十分な量
の水素を低温で放出することが可能となる。
In the hydrogen storage material of the present invention, the reversible reaction of storage and release of hydrogen is sufficiently achieved by the synergistic effect of the inherent hydrogen storage / release capacity of carbon and the desorption action of hydrogen by the above-mentioned specific catalyst. Since it is promoted, it becomes possible to release hydrogen of high purity and a sufficient amount at a low temperature.

【0010】また、本発明の水素吸蔵材料は、炭素の原
料として、ラマンスペクトル測定で得られる波数135
0cm-1のラマンピークの半値幅が下記式(1): d<(376/La)+19.0 (1) [式中、dはラマンピークの半値幅(cm-1)を表し、
Laは黒鉛構造のa軸及びb軸を含む面内の結晶粒子サ
イズ(nm)を表す]で表される条件を満たす黒鉛結晶
粒子を配合してなるものであることが好ましい。上記特
定の条件を満たす黒鉛結晶粒子を触媒に配合すると、触
媒と炭素との分散均一性の向上により上記の相乗効果が
より高められるので、より優れた水素吸蔵・放出能を有
する水素吸蔵材料が実現される。
The hydrogen storage material of the present invention has a wave number of 135 obtained by Raman spectrum measurement as a raw material of carbon.
The full width at half maximum of the Raman peak at 0 cm -1 is represented by the following formula (1): d <(376 / La) +19.0 (1) [wherein, d represents the full width at half maximum (cm -1 ) of the Raman peak,
La represents a crystal grain size (nm) in a plane including the a-axis and the b-axis of the graphite structure]. When the graphite crystal particles satisfying the above specific conditions are blended in the catalyst, the above synergistic effect is further enhanced by the improvement of the dispersion uniformity of the catalyst and carbon, so that a hydrogen storage material having a better hydrogen storage / release capacity is obtained. Will be realized.

【0011】また、本発明の水素吸蔵材料においては、
炭素の含有割合が、触媒と炭素との合計量を基準として
40原子%以上であることが好ましい。炭素の含有割合
が40原子%以上であると、水素吸蔵・放出能がより向
上する傾向にある。
Further, in the hydrogen storage material of the present invention,
The carbon content is preferably 40 atomic% or more based on the total amount of the catalyst and carbon. When the carbon content is 40 atomic% or more, the hydrogen storage / release capacity tends to be further improved.

【0012】また、本発明の水素吸蔵材料の製造方法
は、黒鉛の機械的粉砕により黒鉛結晶粒子を得る粉砕工
程と、粉砕工程で得られる黒鉛結晶粒子と、ニッケル、
クロム、モリブデン、コバルト、銅、パラジウム、白
金、鉄、ルテニウム、ロジウム、イリジウム、タングス
テン、チタン、マンガン及びオスミウムからなる群より
選ばれる少なくとも1種の触媒とを混合して、該触媒と
炭素とを含有する水素吸蔵材料を得る混合工程と、を含
むことを特徴とする。
Further, the method for producing a hydrogen storage material of the present invention comprises a pulverization step of obtaining graphite crystal particles by mechanically pulverizing graphite, graphite crystal particles obtained in the pulverization step, nickel,
The catalyst and carbon are mixed with at least one catalyst selected from the group consisting of chromium, molybdenum, cobalt, copper, palladium, platinum, iron, ruthenium, rhodium, iridium, tungsten, titanium, manganese, and osmium. And a mixing step for obtaining a hydrogen storage material to be contained.

【0013】本発明の製造方法によれば、かかる粉砕工
程により粒子径が微細且つ均一な黒鉛結晶粒子が得られ
る。かかる黒鉛結晶粒子を炭素の原料とし、これを上記
特定の触媒と混合することによって、水素吸蔵・放出能
に優れる本発明の水素吸蔵材料を効率よく且つ確実に得
ることができる。
According to the manufacturing method of the present invention, graphite crystal particles having a fine and uniform particle size can be obtained by such a pulverizing step. By using such graphite crystal particles as a raw material of carbon and mixing this with the above-mentioned specific catalyst, the hydrogen storage material of the present invention having excellent hydrogen storage / release capacity can be efficiently and reliably obtained.

【0014】本発明の製造方法は、水素吸蔵材料を水素
と接触させる水素処理工程をさらに含むことが好まし
い。水素吸蔵材料に含まれる炭素が不可逆反応の原因と
なる活性点を有する場合には、一旦吸蔵された水素が低
温で放出されにくくなるおそれがあるが、かかる水素処
理工程を行うことによって、当該活性点が水素で終端さ
れて不活性化されるので、可逆反応(水素の吸蔵・放
出)の促進効果をより高めることができる。
The production method of the present invention preferably further comprises a hydrogen treatment step of bringing the hydrogen storage material into contact with hydrogen. When the carbon contained in the hydrogen storage material has an active site that causes an irreversible reaction, hydrogen once stored may be difficult to be released at a low temperature. Since the points are terminated with hydrogen and deactivated, the effect of promoting the reversible reaction (storage / release of hydrogen) can be further enhanced.

【0015】[0015]

【発明の実施の形態】以下、本発明の好適な実施形態に
ついて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described in detail below.

【0016】本発明の水素吸蔵材料に含有される触媒
は、前述の通りニッケル(Ni)、クロム(Cr)、モ
リブデン(Mo)、コバルト(Co)、銅(Cu)、パ
ラジウム(Pd)、白金(Pt)、鉄(Fe)、ルテニ
ウム(Ru)、ロジウム(Rh)、イリジウム(I
r)、タングステン(W)、チタン(Ti)、マンガン
(Mn)又はオスミウム(Os)のうちのいずれかであ
る。これらの触媒を用いることによって十分に高い水素
の脱離作用を得ることができる。これらの触媒は、1種
を単独で用いてもよく、2種以上を組み合わせてもよ
い。
As described above, the catalyst contained in the hydrogen storage material of the present invention is nickel (Ni), chromium (Cr), molybdenum (Mo), cobalt (Co), copper (Cu), palladium (Pd), platinum. (Pt), iron (Fe), ruthenium (Ru), rhodium (Rh), iridium (I
r), tungsten (W), titanium (Ti), manganese (Mn), or osmium (Os). By using these catalysts, a sufficiently high hydrogen desorption action can be obtained. These catalysts may be used alone or in combination of two or more.

【0017】当該触媒の形状は特に制限されないが、そ
の平均粒径は10μm以下であることが好ましい。平均
粒径が10μm以下の触媒を用いることによって、当該
触媒と炭素との接触効率が増加するので、炭素が本来的
に有する水素吸蔵放出能と触媒の脱水素作用との相乗効
果をより高めることができる。
The shape of the catalyst is not particularly limited, but its average particle size is preferably 10 μm or less. By using a catalyst having an average particle size of 10 μm or less, the contact efficiency between the catalyst and carbon is increased, so that the synergistic effect of the hydrogen storage / release capacity inherent in carbon and the dehydrogenation action of the catalyst is further enhanced. You can

【0018】本発明の水素吸蔵材料は、上記の触媒と炭
素とを含んで構成される。かかる炭素の原料としては、
純度の高い天然黒鉛や、高配向性熱分解黒鉛(HOP
G)のような黒鉛化度の高い人造黒鉛などの黒鉛(グラ
ファイト)を用いることが好ましい。
The hydrogen storage material of the present invention comprises the above catalyst and carbon. As a raw material of such carbon,
Highly pure natural graphite and highly oriented pyrolytic graphite (HOP
It is preferable to use graphite such as artificial graphite having a high degree of graphitization such as G).

【0019】図1は本発明で用いられる黒鉛結晶粒子の
一例を模式的に示す説明図である。図1において、ほぼ
同じ形状、面積を有する炭素層1がカラム状に積層して
黒鉛構造の結晶粒子が構成されている。また、図1中、
La[nm]は黒鉛構造のa軸及びb軸を含む面内の結
晶粒子サイズ(炭素層1の面に水平な方向における結晶
粒子径)、Lc[nm]は黒鉛構造のc軸方向の結晶粒
子サイズ(炭素層1の積み重なりの厚さ)を表す。
FIG. 1 is an explanatory view schematically showing an example of graphite crystal particles used in the present invention. In FIG. 1, carbon layers 1 having substantially the same shape and area are stacked in a column shape to form crystal particles having a graphite structure. In addition, in FIG.
La [nm] is the crystal grain size in the plane including the a-axis and the b-axis of the graphite structure (crystal grain diameter in the direction horizontal to the surface of the carbon layer 1), and Lc [nm] is the crystal in the c-axis direction of the graphite structure. The particle size (the stacking thickness of the carbon layer 1) is shown.

【0020】当該黒鉛結晶微粒子としては、結晶性及び
結晶粒子径の均一性が高いものを用いることが好まし
く、具体的には、ラマンスペクトル測定で得られる波数
1350cm-1のラマンピークの半値幅dと結晶粒子サ
イズLaとが下記式(1): d<(376/La)+19.0 (1) で表される条件を満たす黒鉛結晶粒子を用いることが好
ましい。上記式(1)で表されるdとLaとの関係は炭
素の結晶性及び結晶粒子径の均一性の指標であり、dと
Laとが上記の条件を満たさない場合には、結晶性及び
結晶粒子径の均一性が低く水素吸蔵・放出能が不十分と
なる傾向にある。また、上記と同様の理由により、半値
幅dと結晶粒子サイズLaとが下記式(2): d<(341/La)+10.5 (2) で表される条件を満たす黒鉛結晶粒子を用いることがよ
り好ましい。
As the graphite crystal fine particles, those having high crystallinity and crystal particle size uniformity are preferably used. Specifically, the half-value width d of the Raman peak at a wave number of 1350 cm −1 obtained by Raman spectrum measurement is used. It is preferable to use graphite crystal particles satisfying the following formula (1): d <(376 / La) +19.0 (1). The relationship between d and La represented by the above formula (1) is an index of the crystallinity of carbon and the uniformity of the crystal grain size, and when d and La do not satisfy the above conditions, the crystallinity and The uniformity of the crystal grain size is low and the hydrogen storage / release capacity tends to be insufficient. For the same reason as above, graphite crystal particles having a half width d and a crystal particle size La satisfying the condition represented by the following formula (2): d <(341 / La) +10.5 (2) are used. Is more preferable.

【0021】また、当該黒鉛結晶粒子においては、結晶
粒子サイズLaが4.0nm以下であることが好まし
い。Laが4.0nm以下であると、結晶粒子間に生ず
る空孔が増加して水素吸蔵・放出能がより高められる傾
向にある。
In the graphite crystal particles, the crystal particle size La is preferably 4.0 nm or less. When La is 4.0 nm or less, the number of vacancies generated between the crystal particles is increased and the hydrogen storage / release capacity tends to be further enhanced.

【0022】また、当該黒鉛結晶粒子は、層面内方向
(黒鉛構造のa軸及びb軸を含む面に水平な方向)の長
さが十分に長いことが好ましく、具体的には、結晶粒子
サイズの比(La/Lc)が0.15以上であることが
好ましい。さらに、黒鉛粒子の比表面積は100m2
g以上であることが好ましい。これにより、黒鉛微結晶
の表面に生じる空孔を増加させることができる。
Further, it is preferable that the graphite crystal particles have a sufficiently long length in the in-plane direction (the direction horizontal to the plane including the a-axis and the b-axis of the graphite structure). The ratio (La / Lc) is preferably 0.15 or more. Furthermore, the specific surface area of the graphite particles is 100 m 2 /
It is preferably at least g. This makes it possible to increase the number of voids generated on the surface of the graphite crystallite.

【0023】また、当該黒鉛結晶粒子において、炭素と
水素との原子数の比(H/C)は0.05以下であるこ
とが好ましい。H/Cが0.05以下であると、結晶粒
子の末端における水酸基やカルボキシル基などの形成が
抑制される。
Further, in the graphite crystal particles, the ratio of the number of atoms of carbon and hydrogen (H / C) is preferably 0.05 or less. When H / C is 0.05 or less, formation of hydroxyl groups and carboxyl groups at the ends of crystal particles is suppressed.

【0024】本発明の水素吸蔵材料において、触媒と炭
素との接触が十分であればこれらの分散状態は特に制限
されない。例えば、触媒粒子と黒鉛結晶粒子とが微細に
分散している状態、黒鉛結晶粒子の炭素層の層間に触媒
粒子が導入されて層間化合物が形成された状態、あるい
は触媒粒子が黒鉛結晶粒子表面に担持された状態のいず
れであってもよい。また、例えば炭素原料として上記式
(1)で表される条件を満たす黒鉛結晶粒子を用いた場
合、当該黒鉛粒子は水素吸蔵材料中で式(1)で表され
る条件を満たさない状態で分散されていてもよい。
In the hydrogen storage material of the present invention, the dispersion state of the catalyst and carbon is not particularly limited as long as the contact between the catalyst and carbon is sufficient. For example, a state in which the catalyst particles and the graphite crystal particles are finely dispersed, a state in which the catalyst particles are introduced between the carbon layers of the graphite crystal particles to form an intercalation compound, or the catalyst particles are present on the surface of the graphite crystal particles. It may be in any supported state. Further, for example, when graphite crystal particles satisfying the condition represented by the above formula (1) are used as the carbon raw material, the graphite particles are dispersed in the hydrogen storage material in a state not satisfying the condition represented by the formula (1). It may have been done.

【0025】また、触媒及び炭素の含有割合は、十分な
水素吸蔵・放出能が得られる限りにおいて特に制限され
ないが、炭素の含有割合が、触媒と炭素との合計量を基
準として40原子%以上であることが好ましい。炭素の
含有割合が40原子%未満であると水素吸蔵・放出能が
低下する傾向にある。
The content ratio of the catalyst and carbon is not particularly limited as long as sufficient hydrogen storage / release capacity is obtained, but the content ratio of carbon is 40 atomic% or more based on the total amount of the catalyst and carbon. Is preferred. If the carbon content is less than 40 atomic%, the hydrogen storage / release capacity tends to decrease.

【0026】このように本発明の水素吸蔵材料は、上記
特定の触媒と炭素とを含有するものであり、炭素が本来
的に有する水素吸蔵・放出能と触媒による水素の脱離作
用との相乗効果により水素の吸蔵・放出の可逆反応が十
分に促進されるので、十分な量の水素を放出することが
可能となる。また、本発明の水素吸蔵材料は、低温(例
えば室温)での水素の吸蔵・放出が可能なものであり、
かかる低温での水素放出により炭化水素(HC)の混入
が防止されるため、放出される水素の純度を高水準に維
持することができる。このように優れた水素吸蔵・放出
能を有する本発明の水素吸蔵材料は、後述する本発明の
製造方法により効率よく且つ確実に得ることができる。
As described above, the hydrogen storage material of the present invention contains the above-mentioned specific catalyst and carbon, and the synergistic effect of the hydrogen storage / release capacity inherent in carbon and the desorption action of hydrogen by the catalyst. The effect sufficiently promotes the reversible reaction of hydrogen occlusion / desorption, so that a sufficient amount of hydrogen can be released. Further, the hydrogen storage material of the present invention is capable of storing and releasing hydrogen at low temperature (for example, room temperature),
The release of hydrogen at such a low temperature prevents hydrocarbon (HC) from being mixed in, so that the purity of the released hydrogen can be maintained at a high level. The hydrogen storage material of the present invention having such excellent hydrogen storage / release capacity can be efficiently and reliably obtained by the production method of the present invention described later.

【0027】すなわち、本発明の製造方法は、黒鉛の機
械的粉砕により黒鉛結晶粒子を得る粉砕工程、並びに該
黒鉛結晶粒子と上記特定の触媒とを混合する混合工程を
含むものである。なお、当該本発明の製造方法は、粉砕
工程と混合工程とを同時に、すなわち機械的に粉砕され
ていない黒鉛と触媒とを混合して機械的粉砕を行う方法
をも包含するものである。
That is, the production method of the present invention includes a pulverizing step of mechanically pulverizing graphite to obtain graphite crystal particles, and a mixing step of mixing the graphite crystal particles with the above-mentioned specific catalyst. The production method of the present invention also includes a method in which the pulverization step and the mixing step are performed at the same time, that is, the mechanically pulverized graphite and the catalyst are mixed to perform mechanical pulverization.

【0028】粉砕工程は、得られる黒鉛結晶粒子が上記
式(1)で表される条件を満たすように行うことが好ま
しく、このため粉砕加速度を2G以上に設定可能な粉砕
装置(ボールミルなど)が好適に使用される。特に、遊
星ボールミルを用いると、10G以上の高い粉砕加速度
が得られ、粉砕効果がより高められるため好ましい。
The crushing step is preferably carried out so that the obtained graphite crystal particles satisfy the condition represented by the above formula (1). Therefore, a crushing device (ball mill or the like) capable of setting the crushing acceleration to 2 G or more is used. It is preferably used. In particular, it is preferable to use a planetary ball mill because a high crushing acceleration of 10 G or more can be obtained and the crushing effect can be further enhanced.

【0029】粉砕工程を行うに際し、雰囲気中に酸素が
存在すると粉砕中の黒鉛が発火しやすい状態となるた
め、当該粉砕処理はアルゴンなどの不活性ガス雰囲気下
で行うことが好ましい。また、不活性ガス雰囲気下で粉
砕処理を行うと、水素、酸素などの不純物の混入量を低
減することができる。
When oxygen is present in the atmosphere during the crushing step, the graphite being crushed is likely to ignite, so that the crushing process is preferably performed in an atmosphere of an inert gas such as argon. Further, when the pulverization process is performed in an inert gas atmosphere, the amount of impurities such as hydrogen and oxygen mixed can be reduced.

【0030】粉砕工程で得られる黒鉛結晶粒子は上記特
定の触媒と混合され、当該触媒と炭素とが十分に均一に
分散された本発明の水素吸蔵材料が得られる(混合工
程)。
The graphite crystal particles obtained in the pulverizing step are mixed with the above-mentioned specific catalyst to obtain the hydrogen storage material of the present invention in which the catalyst and carbon are sufficiently uniformly dispersed (mixing step).

【0031】混合工程においては、触媒をそのまま黒鉛
結晶粒子と混合してもよく、また、触媒の前駆体である
所定の化合物を黒鉛結晶粒子と混合して触媒を黒鉛結晶
粒子に担持してもよい。例えば黒鉛結晶粒子に白金が担
持された水素吸蔵材料を得る場合には、触媒の前駆体と
して白金アセチルアセトナートを用いることができる。
In the mixing step, the catalyst may be mixed with the graphite crystal particles as it is, or a predetermined compound which is a precursor of the catalyst may be mixed with the graphite crystal particles to support the catalyst on the graphite crystal particles. Good. For example, in the case of obtaining a hydrogen storage material in which graphite crystal particles support platinum, platinum acetylacetonate can be used as a catalyst precursor.

【0032】また、かかる混合工程の際には、溶媒とし
て二酸化炭素(CO2)などの超臨界流体を用いること
が好ましい。超臨界流体中で触媒と炭素とを混合する
と、両者の分散均一性が向上して水素吸蔵・放出能がよ
り高められる傾向にある。このとき、処理条件は超臨界
流体の種類により異なるが、例えば二酸化炭素を用いる
場合の処理温度は40〜200℃、圧力は5〜50MP
a、処理時間は0.1〜10時間がそれぞれ好ましい。
Further, in the mixing step, it is preferable to use a supercritical fluid such as carbon dioxide (CO 2 ) as a solvent. When the catalyst and carbon are mixed in a supercritical fluid, the homogeneity of dispersion of both is improved and the hydrogen storage / release capacity tends to be further enhanced. At this time, the treatment conditions vary depending on the type of supercritical fluid, but for example, when using carbon dioxide, the treatment temperature is 40 to 200 ° C. and the pressure is 5 to 50 MP.
a, the treatment time is preferably 0.1 to 10 hours.

【0033】上記の粉砕工程及び混合工程により、触媒
と炭素とを十分に微細に且つ均一することができ、水素
吸蔵・放出能に優れた本発明の水素吸蔵材料を効率よく
且つ確実に得ることができるが、本発明の製造方法は、
得られる水素吸蔵材料を水素と接触させる水素処理工程
をさらに含むことが好ましい。水素吸蔵材料に含まれる
炭素が不可逆反応の原因となる活性点を有する場合に
は、一旦吸蔵された水素が低温で放出されにくくなるお
それがあるが、かかる水素処理工程を行うことによっ
て、当該活性点が水素で終端されて不活性化されるの
で、可逆反応(水素の吸蔵・放出)の促進効果をより高
めることができる。
By the above pulverizing step and mixing step, the catalyst and carbon can be made sufficiently fine and uniform, and the hydrogen storage material of the present invention excellent in hydrogen storage / release capacity can be efficiently and reliably obtained. However, the manufacturing method of the present invention,
It is preferable to further include a hydrogen treatment step of bringing the obtained hydrogen storage material into contact with hydrogen. When the carbon contained in the hydrogen storage material has an active site that causes an irreversible reaction, hydrogen once stored may be difficult to be released at a low temperature. Since the points are terminated with hydrogen and deactivated, the effect of promoting the reversible reaction (storage / release of hydrogen) can be further enhanced.

【0034】当該水素処理工程を行う際には、処理温度
が20〜300℃、水素圧が0.1〜10MPaである
ことがそれぞれ好ましい。例えば、混合工程後の水素吸
蔵材料を25℃、水素圧5MPaの雰囲気中に保持する
ことにより十分な水素処理が施される。
When carrying out the hydrogen treatment step, the treatment temperature is preferably 20 to 300 ° C. and the hydrogen pressure is preferably 0.1 to 10 MPa. For example, sufficient hydrogen treatment is performed by holding the hydrogen storage material after the mixing step in an atmosphere of 25 ° C. and a hydrogen pressure of 5 MPa.

【0035】また、当該水素処理工程は1回のみ行って
もよいが、これを複数回行うことによって水素吸蔵材料
の水素吸蔵・放出能をより高めることができる。すなわ
ち、1回の水素処理工程後の水素吸蔵材料には所定量の
水素が吸蔵されているが、この水素を減圧等により放出
させた後、再び水素処理工程を行い水素を吸蔵させる操
作を繰り返すことによって、水素吸蔵量(水素放出量)
を増加させることができる。
The hydrogen treatment step may be carried out only once, but by carrying out the hydrogen treatment step a plurality of times, the hydrogen storage / release capacity of the hydrogen storage material can be further enhanced. That is, a predetermined amount of hydrogen is stored in the hydrogen storage material after one hydrogen treatment step, but after releasing this hydrogen by decompression or the like, the hydrogen treatment step is performed again and the operation of storing hydrogen is repeated. By this, hydrogen storage capacity (hydrogen release capacity)
Can be increased.

【0036】[0036]

【実施例】以下、実施例及び比較例に基づいて本発明を
さらに具体的に説明するが、本発明は以下の実施例に何
ら限定されるものではない。
EXAMPLES The present invention will be described in more detail based on the following examples and comparative examples, but the present invention is not limited to the following examples.

【0037】[実施例1]アルゴンガス雰囲気に保たれ
たグローブボックス内で、グラファイト5gをステンレ
ス球(4mmφ)と共にステンレス製容器(内容積:8
0ml)に入れ、遊星ボールミルにて400rpmで1
2時間機械的粉砕処理を行った。これにより、ラマンス
ペクトル測定で得られる波数1350cm-1のラマンピ
ークの半値幅dが61cm-1であり、黒鉛構造のa軸及
びb軸を含む面内の結晶粒子サイズLaが3.7nmで
あり、上記式(1)で表される条件を満たす黒鉛結晶粒
子を得た。
Example 1 In a glove box kept in an argon gas atmosphere, 5 g of graphite and stainless steel balls (4 mmφ) in a stainless steel container (internal volume: 8)
0 ml), and use a planetary ball mill at 400 rpm for 1
The mechanical crushing treatment was performed for 2 hours. Thus, the half-width d of the Raman peak of wavenumber 1350 cm -1 obtained by Raman spectroscopy is the 61cm -1, crystal grain size La in the plane including the a-axis and b-axis of the graphite structure is located at 3.7nm The graphite crystal particles satisfying the conditions represented by the above formula (1) were obtained.

【0038】次に、得られた黒鉛結晶粒子をステンレス
製反応容器(内容積:50ml)に入れ、これに白金ア
セチルアセトナート0.5g及びアセトン5mlを加え
た後、二酸化炭素を封入して容器を密閉した。この反応
容器をオイルバスで150℃に加熱して2時間保持し
た。このときの反応容器内の圧力は30MPaであっ
た。その後、反応容器内を脱気してアセトン及び二酸化
炭素を除去して水素吸蔵材料を得た。得られた水素吸蔵
材料についてICPによる元素分析を行ったところ、白
金の含有割合は11.2重量%であり、白金と炭素との
合計量を基準とした炭素の含有割合は99.2原子%で
あった。
Next, the obtained graphite crystal particles were placed in a stainless steel reaction container (internal volume: 50 ml), 0.5 g of platinum acetylacetonate and 5 ml of acetone were added thereto, and carbon dioxide was sealed therein. Was sealed. This reaction vessel was heated to 150 ° C. in an oil bath and kept for 2 hours. The pressure in the reaction vessel at this time was 30 MPa. Then, the inside of the reaction vessel was degassed to remove acetone and carbon dioxide to obtain a hydrogen storage material. When the obtained hydrogen storage material was subjected to elemental analysis by ICP, the platinum content was 11.2% by weight, and the carbon content based on the total amount of platinum and carbon was 99.2 atomic%. Met.

【0039】内容物を真空且つ高圧に耐え得るステンレ
ス製反応容器に移した。この反応容器を排気装置に接続
し、ロータリーポンプにより反応容器内を0.1Tor
r程度まで減圧した。さらに反応容器内の脱気処理を完
全に行うために、減圧下で200℃に加熱して1時間保
持した。次いで、室温(25℃、以下同様である)に
て、水素(純度:99.999%、以下同様である)を
反応容器内に導入して水素圧5MPaに保持したとこ
ろ、直ちに水素の吸収が認められた。この水素の吸収
(水素圧の低下)が停止したことを確認した後、室温で
反応容器内を減圧して水素を放出させた。
The contents were transferred to a stainless steel reaction vessel that could withstand vacuum and high pressure. This reaction vessel was connected to an exhaust device, and the inside of the reaction vessel was adjusted to 0.1 Torr by a rotary pump.
The pressure was reduced to about r. Furthermore, in order to completely perform the degassing treatment in the reaction vessel, the reaction vessel was heated to 200 ° C. under reduced pressure and kept for 1 hour. Next, at room temperature (25 ° C., the same applies below), hydrogen (purity: 99.999%, apply below) was introduced into the reaction vessel and the hydrogen pressure was maintained at 5 MPa. Admitted. After confirming that the absorption of hydrogen (reduction of hydrogen pressure) had stopped, the pressure inside the reaction vessel was reduced at room temperature to release hydrogen.

【0040】さらに、室温、水素圧5MPaでの水素吸
収と室温、減圧下での水素放出とを繰り返し、水素放出
の際にはその放出量(吸蔵量)を容器内の水素圧に基づ
いて求めた。この水素の吸収・放出を水素放出量が一定
値に達するまで繰り返した。その結果、本実施例の水素
吸蔵材料の水素放出量は最大値5.6重量%を示した。
Further, hydrogen absorption at room temperature and hydrogen pressure of 5 MPa and hydrogen release at room temperature and reduced pressure are repeated, and when hydrogen is released, the release amount (storage amount) is obtained based on the hydrogen pressure in the container. It was This absorption / release of hydrogen was repeated until the amount of released hydrogen reached a certain value. As a result, the maximum hydrogen release amount of the hydrogen storage material of this example was 5.6% by weight.

【0041】[実施例2]白金アセチルアセトナートの
代わりにロジウムアセチルアセトナートを用いたこと以
外は実施例1と同様にして水素吸蔵材料を作製した。得
られた水素吸蔵材料についてICPによる元素分析を行
ったところ、ロジウムの含有割合は13.8重量%であ
り、ロジウムと炭素との合計量を基準とした炭素の含有
割合は98.2原子%であった。
Example 2 A hydrogen storage material was produced in the same manner as in Example 1 except that rhodium acetylacetonate was used instead of platinum acetylacetonate. When the element analysis by ICP was performed on the obtained hydrogen storage material, the content ratio of rhodium was 13.8% by weight, and the content ratio of carbon based on the total amount of rhodium and carbon was 98.2 atomic%. Met.

【0042】次に、得られた水素吸蔵材料を用い、実施
例1と同様にして水素の吸蔵・放出を行った。その結
果、水素放出量の最大値は6.2重量%であった。
Next, using the obtained hydrogen storage material, hydrogen was stored and released in the same manner as in Example 1. As a result, the maximum amount of released hydrogen was 6.2% by weight.

【0043】[実施例3]アルゴンガス雰囲気に保たれ
たグローブボックス内で、グラファイト5g及び鉄粉
(20−60mesh)1.0gをステンレス球(4m
mφ)と共にステンレス製容器(内容積:80ml)に
入れ、遊星ボールミルにて400回転で12時間機械的
粉砕処理を行って、水素吸蔵材料(鉄と炭素との合計量
を基準とした炭素の含有割合:96.5原子%)を得
た。
[Example 3] 5 g of graphite and 1.0 g of iron powder (20-60 mesh) were placed in a glove box kept in an argon gas atmosphere and stainless steel balls (4 m) were added.
mφ) and put in a stainless steel container (internal volume: 80 ml) and mechanically pulverized at 400 rpm for 12 hours in a planetary ball mill to contain hydrogen storage material (carbon content based on the total amount of iron and carbon). Ratio: 96.5 atomic%).

【0044】次に、得られた水素吸蔵材料を用い、実施
例1と同様にして水素の吸蔵・放出を行った。その結
果、水素放出量の最大値は5.1重量%であった。
Next, using the obtained hydrogen storage material, hydrogen was stored and released in the same manner as in Example 1. As a result, the maximum amount of released hydrogen was 5.1% by weight.

【0045】[比較例1]鉄粉の代わりにマグネシウム
粉末(20−70mesh)を用いたこと以外は実施例
3と同様にして水素吸蔵材料を作製した。
Comparative Example 1 A hydrogen storage material was prepared in the same manner as in Example 3 except that magnesium powder (20-70 mesh) was used instead of iron powder.

【0046】次に、得られた水素吸蔵材料を用い、実施
例1と同様にして水素の吸蔵・放出を行った。その結
果、水素放出量の最大値は0.3重量%であり、本比較
例の水素吸蔵材料では室温での水素の吸蔵・放出が困難
であることが確認された。
Next, using the obtained hydrogen storage material, hydrogen was stored and released in the same manner as in Example 1. As a result, the maximum amount of released hydrogen was 0.3% by weight, and it was confirmed that it was difficult to store and release hydrogen at room temperature with the hydrogen storage material of this comparative example.

【0047】[0047]

【発明の効果】以上説明した通り、本発明の水素吸蔵材
料では、炭素が本来的に有する水素吸蔵・放出能と上記
特定の触媒による水素の脱離作用との相乗効果によっ
て、水素の吸蔵・放出の可逆反応が十分に促進されるの
で、高純度且つ十分な量の水素を低温で放出することが
可能となる。
As described above, in the hydrogen storage material of the present invention, due to the synergistic effect of the inherent hydrogen storage / release capacity of carbon and the desorption of hydrogen by the above-mentioned specific catalyst, Since the reversible reaction of release is sufficiently promoted, it becomes possible to release hydrogen of high purity and a sufficient amount at low temperature.

【0048】また、本発明の製造方法によれば、所定の
粉砕工程により得られる粒子径が微細且つ均一な黒鉛結
晶粒子を炭素の原料とし、これを上記特定の触媒と混合
することによって、水素吸蔵・放出能に優れる本発明の
水素吸蔵材料を効率よく且つ確実に得ることができる。
Further, according to the production method of the present invention, graphite crystal particles having a fine and uniform particle size obtained by a predetermined pulverizing step are used as a raw material of carbon, and this is mixed with the above-mentioned specific catalyst to produce hydrogen. It is possible to efficiently and surely obtain the hydrogen storage material of the present invention which is excellent in storage / release capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる黒鉛結晶微粒子の一例を模式的
に示す説明図である。
FIG. 1 is an explanatory view schematically showing an example of graphite crystal fine particles according to the present invention.

【符号の説明】[Explanation of symbols]

1…炭素層、La…黒鉛構造のa軸及びb軸を含む面内
の結晶粒子サイズ、Lc…黒鉛構造のc軸方向の結晶粒
子サイズ。
1 ... Carbon layer, La ... In-plane crystal grain size including a-axis and b-axis of graphite structure, Lc ... C-axis crystal grain size of graphite structure.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G040 AA34 AA36 AA42 4G046 EA05 EB13 EC02 EC05 4G066 AA02D AA04B BA38 CA38 FA40 GA14    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G040 AA34 AA36 AA42                 4G046 EA05 EB13 EC02 EC05                 4G066 AA02D AA04B BA38 CA38                       FA40 GA14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル、クロム、モリブデン、コバル
ト、銅、パラジウム、白金、鉄、ルテニウム、ロジウ
ム、イリジウム、タングステン、チタン、マンガン及び
オスミウムからなる群より選ばれる少なくとも1種の触
媒と、炭素とを含有することを特徴とする水素吸蔵材
料。
1. At least one catalyst selected from the group consisting of nickel, chromium, molybdenum, cobalt, copper, palladium, platinum, iron, ruthenium, rhodium, iridium, tungsten, titanium, manganese, and osmium, and carbon. A hydrogen storage material characterized by containing.
【請求項2】 前記炭素の原料として、ラマンスペクト
ル測定で得られる波数1350cm-1のラマンピークの
半値幅が下記式(1): d<(376/La)+19.0 (1) [式中、dはラマンピークの半値幅(cm-1)を表し、
Laは黒鉛構造のa軸及びb軸を含む面内の結晶粒子サ
イズ(nm)を表す]で表される条件を満たす黒鉛結晶
粒子を配合してなるものであることを特徴とする、請求
項1に記載の水素吸蔵材料。
2. A half value width of a Raman peak at a wave number of 1350 cm −1 obtained by Raman spectrum measurement as the carbon raw material is represented by the following formula (1): d <(376 / La) +19.0 (1) [wherein , D represents the half-width of Raman peak (cm −1 ),
La represents a crystal grain size (nm) in a plane that includes the a-axis and the b-axis of the graphite structure], and is mixed with graphite crystal grains that satisfy the condition represented by the following formula. 1. The hydrogen storage material according to 1.
【請求項3】 前記炭素の含有割合が、前記触媒と前記
炭素との合計量を基準として40原子%以上であること
を特徴とする、請求項1又は2に記載の水素吸蔵材料。
3. The hydrogen storage material according to claim 1, wherein a content ratio of the carbon is 40 atomic% or more based on a total amount of the catalyst and the carbon.
【請求項4】 黒鉛の機械的粉砕により黒鉛結晶粒子を
得る粉砕工程と、前記粉砕工程で得られる黒鉛結晶粒子
と、ニッケル、クロム、モリブデン、コバルト、銅、パ
ラジウム、白金、鉄、ルテニウム、ロジウム、イリジウ
ム、タングステン、チタン、マンガン及びオスミウムか
らなる群より選ばれる少なくとも1種の触媒とを混合し
て、該触媒と炭素とを含有する水素吸蔵材料を得る混合
工程と、を含むことを特徴とする水素吸蔵材料の製造方
法。
4. A pulverization step of obtaining graphite crystal particles by mechanically pulverizing graphite, graphite crystal particles obtained in the pulverization step, nickel, chromium, molybdenum, cobalt, copper, palladium, platinum, iron, ruthenium and rhodium. And a mixture of at least one catalyst selected from the group consisting of iridium, tungsten, titanium, manganese, and osmium to obtain a hydrogen storage material containing the catalyst and carbon. A method for producing a hydrogen storage material.
【請求項5】 前記水素吸蔵材料を水素と接触させる水
素処理工程をさらに含むことを特徴とする、請求項4に
記載の水素吸蔵材料の製造方法。
5. The method for producing a hydrogen storage material according to claim 4, further comprising a hydrogen treatment step of bringing the hydrogen storage material into contact with hydrogen.
JP2001361155A 2001-11-27 2001-11-27 Hydrogen storage material and method of manufacturing it Pending JP2003165701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361155A JP2003165701A (en) 2001-11-27 2001-11-27 Hydrogen storage material and method of manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361155A JP2003165701A (en) 2001-11-27 2001-11-27 Hydrogen storage material and method of manufacturing it

Publications (1)

Publication Number Publication Date
JP2003165701A true JP2003165701A (en) 2003-06-10

Family

ID=19171862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361155A Pending JP2003165701A (en) 2001-11-27 2001-11-27 Hydrogen storage material and method of manufacturing it

Country Status (1)

Country Link
JP (1) JP2003165701A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067166A1 (en) * 2003-01-31 2004-08-12 Japan Science And Technology Agency Hydrogen storage material and method for producing same
JP2006002063A (en) * 2004-06-18 2006-01-05 Mitsui Chemicals Inc Method for producing polyalkylene carbonate
JP2011213583A (en) * 2010-03-15 2011-10-27 Sekisui Chem Co Ltd Method for producing graphite intercalation compound
US8192897B2 (en) 2008-01-16 2012-06-05 Inha-Industry Partnership Institute Method for preparation of transition metal electroplated porous carbon nanofiber composite for hydrogen storage
JP2012218959A (en) * 2011-04-06 2012-11-12 Toyota Motor Corp Method for producing metal supporting carbon

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067166A1 (en) * 2003-01-31 2004-08-12 Japan Science And Technology Agency Hydrogen storage material and method for producing same
US8178471B2 (en) 2003-01-31 2012-05-15 Japan Science And Technology Agency Hydrogen storage materials and process for the preparation of the same
JP2006002063A (en) * 2004-06-18 2006-01-05 Mitsui Chemicals Inc Method for producing polyalkylene carbonate
US8192897B2 (en) 2008-01-16 2012-06-05 Inha-Industry Partnership Institute Method for preparation of transition metal electroplated porous carbon nanofiber composite for hydrogen storage
JP2011213583A (en) * 2010-03-15 2011-10-27 Sekisui Chem Co Ltd Method for producing graphite intercalation compound
JP2012218959A (en) * 2011-04-06 2012-11-12 Toyota Motor Corp Method for producing metal supporting carbon

Similar Documents

Publication Publication Date Title
Zhang et al. State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage
EP1209119B1 (en) Hydrogen storage using carbon-metal hybrid compositions
JP4490510B2 (en) Leached microcrystalline material, process for its production and its use in the energy field
Au Hydrogen storage properties of magnesium based nanostructured composite materials
Verón et al. Synergetic effect of Co and carbon nanotubes on MgH2 sorption properties
JPH07268403A (en) Method of transportation and storage of nanocrystalline powder and hydrogen
JP5409348B2 (en) Nanocrystalline compounds for hydrogen storage
US7259124B2 (en) Hydrogen storage composite and preparation thereof
JP2007119906A (en) Mg-Ni HYDROGEN STORAGE COMPOSITE HAVING HIGH STORAGE CAPACITY AND EXCELLENT ROOM TEMPERATURE KINETICS
EP0815273A1 (en) NANOCRYSTALLINE Mg-BASED MATERIALS AND USE THEREOF FOR THE TRANSPORTATION AND STORAGE OF HYDROGEN
JP2006205148A (en) Hydrogen storage material and production method thereof, hydrogen storage material of alkali metal-aluminum nitride and production method thereof, and alkali metal-aluminum nitride
Zang et al. In Situ Synthesis of 3D Flower‐Like Nanocrystalline Ni/C and its Effect on Hydrogen Storage Properties of LiAlH4
JP2006152376A (en) Nano transition metal particle, its production method, and hydrogen absorption composite material composited with nano transition metal particle
JP2003165701A (en) Hydrogen storage material and method of manufacturing it
US8258077B2 (en) Hydrogen storage material and method for producing the same
JP2011137207A (en) Hydrogen storage material and method for producing the same
JP3894163B2 (en) Hydrogen storage material and manufacturing method thereof
JP4793900B2 (en) Hydrogen storage material and method for producing the same
JP2006051473A (en) Hydrogen storing/releasing catalyst and hydrogen storing compound material using the same
JP2003193166A (en) Mg HYDROGEN-STORAGE ALLOY AND ITS MANUFACTURING METHOD
JP2007289877A (en) Hydrogen storage material, manufacturing method thereof and hydride compound material
EP1117500B8 (en) Preparation of nanocrystalline alloys by mechanical alloying carried out at elevated temperatures
JP2003210975A (en) Hydrogen storage material and manufacturing method thereof
JP5188317B2 (en) Hydrogen storage material and method for producing the same
JP2003321216A (en) Graphite-based hydrogen-occluding material and method for producing the same