JP2006051473A - Hydrogen storing/releasing catalyst and hydrogen storing compound material using the same - Google Patents

Hydrogen storing/releasing catalyst and hydrogen storing compound material using the same Download PDF

Info

Publication number
JP2006051473A
JP2006051473A JP2004236657A JP2004236657A JP2006051473A JP 2006051473 A JP2006051473 A JP 2006051473A JP 2004236657 A JP2004236657 A JP 2004236657A JP 2004236657 A JP2004236657 A JP 2004236657A JP 2006051473 A JP2006051473 A JP 2006051473A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
release
catalyst
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004236657A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Kojima
由継 小島
Yasuaki Kawai
泰明 河合
Tetsuya Haga
哲哉 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2004236657A priority Critical patent/JP2006051473A/en
Publication of JP2006051473A publication Critical patent/JP2006051473A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storing/releasing catalyst capable of accelerating the hydrogen storing/releasing speed of a hydrogen storage material and lowering the hydrogen storing/releasing temperature of the hydrogen storage material and to provide a hydrogen storing/releasing compound material capable of storing/releasing a large quantity of hydrogen at a lower temperature. <P>SOLUTION: This hydrogen storing/releasing catalyst is composed of a carrier composed of at least one of an inorganic oxide or a carbon material and a metal particle deposited on the carrier. This hydrogen storing/releasing compound material is obtained by compounding this hydrogen storing/releasing catalyst in the hydrogen storage material in a highly dispersed state. Since this hydrogen storing/releasing catalyst improves the hydrogen storing/releasing characteristic of the hydrogen storage material, the hydrogen storing/releasing catalyst-compounded hydrogen storing/releasing compound material can store/release a large quantity of hydrogen at the lower temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水素吸蔵材料の水素吸蔵放出特性を向上させる水素吸蔵放出触媒、およびそれを用いた水素吸蔵複合材料に関する。   The present invention relates to a hydrogen storage / release catalyst that improves the hydrogen storage / release characteristics of a hydrogen storage material, and a hydrogen storage composite material using the same.

近年、二酸化炭素の排出による地球の温暖化等の環境問題や、石油資源の枯渇等のエネルギー問題から、クリーンな代替エネルギーとして水素エネルギーが注目されている。水素エネルギーの実用化にむけて、水素を安全に貯蔵、輸送する技術の開発が重要となる。水素の貯蔵方法にはいくつかの候補があるが、なかでも水素を可逆的に吸蔵、放出することのできる水素吸蔵材料を用いる方法が有望である。水素吸蔵材料として、活性炭、フラーレン、ナノチューブ等の炭素材料や、種々の金属水素化物が知られている。   In recent years, hydrogen energy has attracted attention as a clean alternative energy due to environmental problems such as global warming caused by carbon dioxide emissions and energy problems such as exhaustion of petroleum resources. For the practical application of hydrogen energy, it is important to develop technology for safely storing and transporting hydrogen. There are several candidates for the hydrogen storage method, and among them, a method using a hydrogen storage material capable of reversibly storing and releasing hydrogen is promising. As hydrogen storage materials, carbon materials such as activated carbon, fullerene, and nanotubes and various metal hydrides are known.

例えば、マグネシウム(Mg)は、水素と反応してMgH2なる水素化物を生成する。マグネシウムは、軽量で、水素吸蔵量が大きいことから、水素吸蔵材料の一つとして注目されている。しかし、水素の吸蔵、放出に300℃程度の高温を必要とし、水素の吸蔵、放出速度も極めて遅いため、実用に適さない。このため、マグネシウムの水素吸蔵放出特性を向上すべく、金属等の触媒を用いる試みがなされている。例えば、非特許文献1には、MgH2にニッケル(Ni)等の遷移金属を添加して、機械的粉砕処理を行う試みが開示されている。また、特許文献1には、Mg粒子の表面および内部にNi等の触媒金属粒子を持つ水素吸蔵合金粒子が開示されている。
G.Liang、他4名、”Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm(Tm=Ti,V,Mn,Fe and Ni)”、「Journal of Alloys and Compounds」、1999年、vol.292、p.247−252 特開2003−166024号公報
For example, magnesium (Mg) reacts with hydrogen to produce a hydride MgH 2 . Magnesium is attracting attention as one of the hydrogen storage materials because it is lightweight and has a large hydrogen storage capacity. However, it requires a high temperature of about 300 ° C. for storage and release of hydrogen, and the storage and release speed of hydrogen is extremely slow. For this reason, attempts have been made to use catalysts such as metals in order to improve the hydrogen storage / release characteristics of magnesium. For example, Non-Patent Document 1 discloses an attempt to perform a mechanical pulverization treatment by adding a transition metal such as nickel (Ni) to MgH 2 . Patent Document 1 discloses hydrogen storage alloy particles having catalytic metal particles such as Ni on the surface and inside of Mg particles.
G. Liang and four others, “Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm = Ti, V, Mn, Fe and Ni)”, “Journal of Alloys and Compounds”, 1999, vol.292, p.247-252 JP 2003-166024 A

上記非特許文献1には、機械的粉砕処理して得られたMgH2−Tm(Tm:Ti、V、Mn、Fe、Ni)の235〜300℃における水素放出特性が示されている。また、同文献によれば、29℃で水素を吸蔵させた場合、Niを添加したMgH2−Niは、MgH2と同様、ほとんど水素を吸蔵しない。一方、特許文献1においても、310℃における水素吸蔵放出特性が示されているにすぎず、水素吸蔵、放出温度の低温化は実現していない。このように、マグネシウム系材料の水素吸蔵放出特性は、実用にはいまだ充分とはいえない。 Non-Patent Document 1 shows hydrogen release characteristics at 235 to 300 ° C. of MgH 2 —Tm (Tm: Ti, V, Mn, Fe, Ni) obtained by mechanical pulverization. According to the same literature, when hydrogen is occluded at 29 ° C., MgH 2 —Ni added with Ni hardly occludes hydrogen like MgH 2 . On the other hand, Patent Document 1 only shows the hydrogen storage / release characteristics at 310 ° C., and the hydrogen storage / release temperature is not lowered. Thus, the hydrogen storage / release characteristics of magnesium-based materials are still not sufficient for practical use.

本発明は、このような実状に鑑みてなされたものであり、水素吸蔵材料の水素吸蔵、放出速度を速め、水素吸蔵、放出温度の低温化を実現することのできる水素吸蔵放出触媒を提供することを課題とする。また、この水素吸蔵放出触媒を用いることで、より低温で多量の水素を吸蔵、放出することのできる水素吸蔵複合材料を提供することを課題とする。   The present invention has been made in view of such a situation, and provides a hydrogen storage / release catalyst capable of increasing the hydrogen storage / release speed of the hydrogen storage material and realizing the reduction of the hydrogen storage / release temperature. This is the issue. Another object of the present invention is to provide a hydrogen storage composite material capable of storing and releasing a large amount of hydrogen at a lower temperature by using this hydrogen storage / release catalyst.

本発明の水素吸蔵放出触媒は、無機酸化物および炭素材料の少なくとも一方からなる担体と、該担体に担持された金属粒子とからなり、水素吸蔵材料の水素吸蔵放出特性を向上させることを特徴とする。   The hydrogen storage / release catalyst of the present invention comprises a carrier composed of at least one of an inorganic oxide and a carbon material and metal particles supported on the carrier, and is characterized by improving the hydrogen storage / release characteristics of the hydrogen storage material. To do.

本発明の水素吸蔵放出触媒は、金属粒子が担体に担持された構造を有する。このような担持構造では、金属粒子は担体ほぼに均一に分散している。よって、担持構造を採用することで、本発明の水素吸蔵放出触媒を水素吸蔵材料と複合化した場合に、水素吸蔵材料に微細な金属粒子をほぼ均一に分散させることができる。本発明の水素吸蔵放出触媒では、主として金属粒子が水素吸蔵、放出速度を速める触媒としての役割を果たす。一方、担体となる無機酸化物、炭素材料も水素吸蔵、放出速度を速める触媒能を持つ。このため、本発明の水素吸蔵放出触媒は、水素吸蔵材料の水素吸蔵、放出速度を速める触媒能が高い。よって、本発明の水素吸蔵放出触媒によれば、水素吸蔵材料の水素吸蔵、放出速度が速くなり、水素吸蔵、放出温度の低温化を実現することができる。   The hydrogen storage / release catalyst of the present invention has a structure in which metal particles are supported on a carrier. In such a support structure, the metal particles are uniformly dispersed in the carrier. Therefore, by adopting the supporting structure, when the hydrogen storage / release catalyst of the present invention is combined with the hydrogen storage material, fine metal particles can be dispersed almost uniformly in the hydrogen storage material. In the hydrogen storage / release catalyst of the present invention, the metal particles mainly serve as a catalyst for increasing the hydrogen storage / release rate. On the other hand, inorganic oxides and carbon materials serving as carriers also have a catalytic ability to increase the rate of hydrogen storage and release. For this reason, the hydrogen storage / release catalyst of the present invention has high catalytic ability to increase the hydrogen storage / release speed of the hydrogen storage material. Therefore, according to the hydrogen storage / release catalyst of the present invention, the hydrogen storage / release speed of the hydrogen storage material is increased, and the hydrogen storage / release temperature can be lowered.

また、本発明の水素吸蔵複合材料は、水素吸蔵材料に上記本発明の水素吸蔵放出触媒が高分散状態で複合化してなることを特徴とする。上述したように、本発明の水素吸蔵放出触媒は、水素吸蔵材料の水素吸蔵、放出速度を速める触媒能が高い。また、水素吸蔵材料に本発明の水素吸蔵放出触媒を複合化した場合、微細な金属粒子が水素吸蔵材料にほぼ均一な状態、つまり高分散状態で複合化する。これにより、水素吸蔵材料の表面に吸着した水素分子は解離され易く、解離した水素原子は内部に拡散し易くなる。したがって、本発明の水素吸蔵複合材料は、より低温で多量の水素を吸蔵、放出することができる。   Further, the hydrogen storage composite material of the present invention is characterized in that the hydrogen storage / release catalyst of the present invention is combined with a hydrogen storage material in a highly dispersed state. As described above, the hydrogen storage / release catalyst of the present invention has high catalytic ability to increase the hydrogen storage / release speed of the hydrogen storage material. Further, when the hydrogen storage / release catalyst of the present invention is combined with the hydrogen storage material, fine metal particles are combined with the hydrogen storage material in a substantially uniform state, that is, in a highly dispersed state. Thereby, the hydrogen molecules adsorbed on the surface of the hydrogen storage material are easily dissociated, and the dissociated hydrogen atoms are easily diffused inside. Therefore, the hydrogen storage composite material of the present invention can store and release a large amount of hydrogen at a lower temperature.

本発明の水素吸蔵放出触媒は、無機酸化物および炭素材料の少なくとも一方からなる担体と、該担体に担持された金属粒子とからなる。本発明の水素吸蔵放出触媒によれば、水素吸蔵材料の水素吸蔵、放出速度を速め、水素吸蔵、放出温度の低温化を実現することができる。また、本発明の水素吸蔵複合材料は、水素吸蔵材料に本発明の水素吸蔵放出触媒が高分散状態で複合化してなる。本発明の水素吸蔵放出触媒により水素吸蔵、放出速度が速くなり、本発明の水素吸蔵複合材料は、より低温下で、多量の水素を吸蔵、放出することができる。   The hydrogen storage / release catalyst of the present invention comprises a support composed of at least one of an inorganic oxide and a carbon material, and metal particles supported on the support. According to the hydrogen storage / release catalyst of the present invention, the hydrogen storage / release speed of the hydrogen storage material can be increased, and the hydrogen storage / release temperature can be lowered. Further, the hydrogen storage composite material of the present invention is formed by combining the hydrogen storage material with the hydrogen storage / release catalyst of the present invention in a highly dispersed state. The hydrogen storage / release rate is increased by the hydrogen storage / release catalyst of the present invention, and the hydrogen storage composite material of the present invention can store and release a large amount of hydrogen at a lower temperature.

以下、本発明の水素吸蔵放出触媒および水素吸蔵複合材料について詳細に説明する。なお、本発明の水素吸蔵放出触媒および水素吸蔵複合材料は、下記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   Hereinafter, the hydrogen storage / release catalyst and the hydrogen storage composite material of the present invention will be described in detail. The hydrogen storage / release catalyst and the hydrogen storage composite material of the present invention are not limited to the following embodiments, and various modifications and improvements that can be made by those skilled in the art without departing from the scope of the present invention. It can implement with the form of.

〈水素吸蔵放出触媒〉
本発明の水素吸蔵放出触媒は、無機酸化物および炭素材料の少なくとも一方からなる担体と、該担体に担持された金属粒子とからなる。担体は、無機酸化物だけで構成してもよく、炭素材料だけで構成してもよい。また、無機酸化物および炭素材料の両方で構成してもよい。無機酸化物を用いると、金属粒子の分散性が向上する。炭素材料を用いると、金属粒子の凝集が抑制されることに加え、本発明の水素吸蔵放出触媒の製造において、還元処理を比較的低温で行うことができる。よって、担体を無機酸化物および炭素材料の両方で構成すると、担持する金属粒子量を多くすることができ好適である。
<Hydrogen storage and release catalyst>
The hydrogen storage / release catalyst of the present invention comprises a support composed of at least one of an inorganic oxide and a carbon material, and metal particles supported on the support. A support | carrier may be comprised only with an inorganic oxide and may be comprised only with a carbon material. Moreover, you may comprise with both an inorganic oxide and a carbon material. When an inorganic oxide is used, the dispersibility of the metal particles is improved. When a carbon material is used, in addition to suppressing aggregation of metal particles, reduction treatment can be performed at a relatively low temperature in the production of the hydrogen storage / release catalyst of the present invention. Therefore, it is preferable that the carrier is composed of both the inorganic oxide and the carbon material because the amount of the supported metal particles can be increased.

無機酸化物としては、アルミナ、シリカゲル、シリカ・アルミナ、ゼオライト、チタニア、ジルコニア等を用いればよい。なかでも、アルミナは、金属粒子が分散し易く好適である。炭素材料としては、黒鉛、活性炭、カーボンナノチューブ、グラファイトナノファイバー、フラーレン、カーボンブラック等を用いればよい。できるだけ、比表面積が大きいものが望ましい。これら無機酸化物および炭素材料のうち一種類を単独で用いてもよく、二種類以上を混合して用いてもよい。   As the inorganic oxide, alumina, silica gel, silica / alumina, zeolite, titania, zirconia, or the like may be used. Among these, alumina is preferable because the metal particles are easily dispersed. As the carbon material, graphite, activated carbon, carbon nanotube, graphite nanofiber, fullerene, carbon black, or the like may be used. It is desirable that the specific surface area be as large as possible. Among these inorganic oxides and carbon materials, one kind may be used alone, or two or more kinds may be mixed and used.

担体に担持される金属粒子は、水素に対して活性が高いことが望ましく、例えば、周期表の4〜10族元素から選ばれる一種類以上の元素を含むことが望ましい。本明細書では、元素をIUPAC(1989)の周期表に基づいて特定する。すなわち、4族元素はTi、Zr、Hf、5族元素はV、Nb、Ta、6族元素はCr、Mo、W、7族元素はMn、Tc、Re、8族元素はFe、Ru、Os、9族元素はCo、Rh、Ir、10族元素はNi、Pd、Ptである。これらの元素のなかでも、Ni、V、Tiは、水素吸蔵、放出速度を速める触媒能が高い。よって、金属粒子を、Ni、V、Tiから選ばれる一種類以上の元素で構成すると好適である。なお、金属粒子は、一種類でもよく、二種類以上であってもよい。   It is desirable that the metal particles supported on the carrier have high activity with respect to hydrogen. For example, it is desirable that the metal particles include one or more elements selected from Group 4 to 10 elements of the periodic table. In this specification, an element is specified based on the periodic table of IUPAC (1989). That is, Group 4 elements are Ti, Zr, Hf, Group 5 elements are V, Nb, Ta, Group 6 elements are Cr, Mo, W, Group 7 elements are Mn, Tc, Re, Group 8 elements are Fe, Ru, Os, Group 9 elements are Co, Rh, Ir, and Group 10 elements are Ni, Pd, Pt. Among these elements, Ni, V, and Ti have high catalytic ability to increase the hydrogen storage / release rate. Therefore, the metal particles are preferably composed of one or more elements selected from Ni, V, and Ti. The metal particles may be one type or two or more types.

触媒活性を高くするという観点から、金属粒子の粒子径はできるだけ小さいことが望ましい。例えば、金属粒子の平均粒子径を100nm以下とするとよい。50nm以下とするとより好適である。金属粒子の平均粒子径は、例えば、以下に示す粉末X線回折法により求めることができる。   From the viewpoint of increasing the catalytic activity, it is desirable that the particle diameter of the metal particles be as small as possible. For example, the average particle diameter of the metal particles is preferably 100 nm or less. More preferably, it is 50 nm or less. The average particle diameter of the metal particles can be determined, for example, by the powder X-ray diffraction method shown below.

まず、グラファイトモノクロメータで単色化したCuΚα線を線源とし、反射式ディフラクトメータ法により、本発明の水素吸蔵放出触媒の広角X線回折強度曲線を測定する。次に、得られた回折強度曲線から、結晶面(klm)の回折ピークの半価幅βklm(ラジアン)を求める。そして、Scherrerの式[Dklm=Kλ/βklmcosθklm]により、金属粒子の(klm)結晶面に垂直な方向の結晶子径の平均値Dklm(Å)を算出する。ここで、定数Kは0.90、λはX線の波長(Å)、θklmは回折角(゜)である。本明細書では、算出されたDklm(Å)の値を、金属粒子の平均粒子径として採用する。例えば、金属粒子がNi粒子の場合には、(011)結晶面に垂直な方向の結晶子径の平均値D011(Å)が平均粒子径となる。 First, a wide angle X-ray diffraction intensity curve of the hydrogen storage / release catalyst of the present invention is measured by a reflection diffractometer method using CuΚα rays monochromatized by a graphite monochromator. Next, the half-value width β klm (radian) of the diffraction peak on the crystal plane (klm) is obtained from the obtained diffraction intensity curve. Then, an average value D klm (Å) of crystallite diameters in a direction perpendicular to the (klm) crystal plane of the metal particles is calculated by Scherrer's equation [D klm = Kλ / β klm cos θ klm ]. Here, the constant K is 0.90, λ is the X-ray wavelength (Å), and θ klm is the diffraction angle (°). In this specification, the calculated value of D klm (Å) is adopted as the average particle diameter of the metal particles. For example, when the metal particles are Ni particles, the average particle diameter D 011 (Å) in the direction perpendicular to the (011) crystal plane is the average particle diameter.

本発明の水素吸蔵放出触媒における金属粒子の含有量は、同触媒の全体重量を100wt%とした場合の5wt%以上とすることが望ましい。5wt%未満では、充分な触媒効果が得られない。10wt%以上とするとより好適である。一方、金属粒子の粗大化を抑制するという理由から、95wt%以下とすることが望ましい。90wt%以下、さらには50wt%以下とするとより好適である。   The content of the metal particles in the hydrogen storage / release catalyst of the present invention is desirably 5 wt% or more when the total weight of the catalyst is 100 wt%. If it is less than 5 wt%, a sufficient catalytic effect cannot be obtained. More preferably, it is 10 wt% or more. On the other hand, it is desirable to set it to 95 wt% or less for the reason of suppressing the coarsening of the metal particles. More preferably, it is 90 wt% or less, and further 50 wt% or less.

本発明の水素吸蔵放出触媒の製造方法は、特に限定されるものではない。公知の沈殿法、含浸法、イオン交換法等を用いて製造することができる。例えば、金属粒子として用いる金属の硝酸塩、硫酸塩等の無機酸塩や、酢酸塩、シュウ酸塩、ギ酸塩等の有機酸塩の水溶液を用い、担体としての無機酸化物、炭素材料に金属を担持させればよい。そして、所定の温度で焼成した後、必要に応じて還元処理して製造することができる。   The method for producing the hydrogen storage / release catalyst of the present invention is not particularly limited. It can be produced using a known precipitation method, impregnation method, ion exchange method or the like. For example, an inorganic acid salt such as a metal nitrate or sulfate used as a metal particle, or an aqueous solution of an organic acid salt such as acetate, oxalate or formate, and an inorganic oxide or carbon material as a carrier What is necessary is just to carry. And after baking at predetermined | prescribed temperature, it can reduce and process as needed.

焼成は、窒素雰囲気あるいは空気中で、350〜800℃程度の温度で行えばよい。また、焼成時間は1〜10時間程度とするとよい。焼成温度により、金属粒子の粒子径が変化する。例えば、焼成温度が高いと金属粒子の粒子径は大きくなる。反対に、焼成温度が低いと、金属粒子の粒子径は小さくなる。よって、所望の粒子径となるよう、焼成温度を制御することが望ましい。ナノメートルサイズの金属粒子を得るためには、500℃以下で焼成することが望ましい。   Firing may be performed at a temperature of about 350 to 800 ° C. in a nitrogen atmosphere or in air. The firing time is preferably about 1 to 10 hours. The particle diameter of the metal particles varies depending on the firing temperature. For example, when the firing temperature is high, the particle size of the metal particles increases. On the other hand, when the firing temperature is low, the particle size of the metal particles becomes small. Therefore, it is desirable to control the firing temperature so as to obtain a desired particle size. In order to obtain nanometer-sized metal particles, firing at 500 ° C. or lower is desirable.

Pt、Pd、Rh等の貴金属以外の金属を金属粒子として用いた場合には、金属粒子が焼成により酸化される。よって、この場合には、焼成後の水素吸蔵放出触媒を、水素雰囲気にて所定の温度に加熱保持して還元処理することが望ましい。還元処理は、300〜500℃程度の温度で、1〜2時間程度行えばよい。   When metals other than noble metals such as Pt, Pd, and Rh are used as metal particles, the metal particles are oxidized by firing. Therefore, in this case, it is desirable that the hydrogen storage / release catalyst after calcination is subjected to reduction treatment by heating and holding at a predetermined temperature in a hydrogen atmosphere. The reduction treatment may be performed at a temperature of about 300 to 500 ° C. for about 1 to 2 hours.

〈水素吸蔵複合材料〉
本発明の水素吸蔵複合材料は、水素吸蔵材料に、上記本発明の水素吸蔵放出触媒が高分散状態で複合化してなる。水素吸蔵材料には、水素吸蔵、放出速度が遅いイオン結合性水素化物を用いるとよい。例えば、比較的軽量な水素吸蔵材料として、MgH2、Mg(NH22、CaNH、Ca2NH、LiH、NaH、KH、CaH2、NaBH4、NaAlH4、LiBH4、LiAlH4、KBH4、KAlH4、Mg(BH42、CaNH、Ca2NH、Ca(BH42、Ba(BH42、Sr(BH42、Fe(BH42、Mg(AlH42、Mn(AlH42、In(AlH43、Ga(AlH43、Fe(AlH42、CuAlH4、Ce(AlH43、Ca(AlH42、Be(AlH42、AgAlH4、AgBH4、Na3AlH6、Sn(AlH44、Ti(AlH44、Ti(AlH43、Zr(AlH44、Al(BH43、Ba(BH42、Be(BH42、Ca(BH42、Co(BH42、Cs(BH42、CuBH4、Fe(BH42、Hf(BH42、Sn(BH42、TiBH4、Th(BH44、Ti(BH43、Zn(BH42、Zr(BH44、Li2NH、LiNH2、Ca(NH22、Li2Mg(NH22等が挙げられる。これらの一種類を単独で、あるいは二種類以上を混合して用いればよい。なかでも、低コストで、理論水素吸蔵量が7.6wt%と大きいMgH2が好適である。
<Hydrogen storage composite material>
The hydrogen storage composite material of the present invention is formed by combining a hydrogen storage material with the hydrogen storage / release catalyst of the present invention in a highly dispersed state. As the hydrogen storage material, an ion-bonded hydride having a low hydrogen storage / release rate may be used. For example, a relatively lightweight hydrogen storage materials, MgH 2, Mg (NH 2 ) 2, CaNH, Ca 2 NH, LiH, NaH, KH, CaH 2, NaBH 4, NaAlH 4, LiBH 4, LiAlH 4, KBH 4 , KAlH 4 , Mg (BH 4 ) 2 , CaNH, Ca 2 NH, Ca (BH 4 ) 2 , Ba (BH 4 ) 2 , Sr (BH 4 ) 2 , Fe (BH 4 ) 2 , Mg (AlH 4 ) 2 , Mn (AlH 4 ) 2 , In (AlH 4 ) 3 , Ga (AlH 4 ) 3 , Fe (AlH 4 ) 2 , CuAlH 4 , Ce (AlH 4 ) 3 , Ca (AlH 4 ) 2 , Be (AlH 4 ) 2 , AgAlH 4 , AgBH 4 , Na 3 AlH 6 , Sn (AlH 4 ) 4 , Ti (AlH 4 ) 4 , Ti (AlH 4 ) 3 , Zr (AlH 4 ) 4 , Al (BH 4 ) 3 , Ba (BH 4) 2, Be (BH 4) 2, Ca (B 4) 2, Co (BH 4 ) 2, Cs (BH 4) 2, CuBH 4, Fe (BH 4) 2, Hf (BH 4) 2, Sn (BH 4) 2, TiBH 4, Th (BH 4) 4 , Ti (BH 4 ) 3 , Zn (BH 4 ) 2 , Zr (BH 4 ) 4 , Li 2 NH, LiNH 2 , Ca (NH 2 ) 2 , Li 2 Mg (NH 2 ) 2 and the like. One kind of these may be used alone, or two or more kinds may be mixed and used. Among them, MgH 2 having a large theoretical hydrogen storage amount of 7.6 wt% is preferable at low cost.

なお、ここでは水素吸蔵材料として金属水素化物を挙げたが、本発明の水素吸蔵複合材料を構成する水素吸蔵材料は、上記金属水素化物が水素を放出した状態をも含む概念である。例えば、水素吸蔵材料がMgH2である場合、MgH2から水素が放出されるとMgH2→Mgとなる。この時、本発明の水素吸蔵複合材料は、水素を放出した後の材料(Mg)に、本発明の水素吸蔵放出触媒が複合化された状態となる。つまり、本発明の水素吸蔵複合材料を構成する水素吸蔵材料には、水素を吸蔵した状態の金属水素化物と、それから水素が放出された状態の材料と、の両方が含まれる。 In addition, although metal hydride was mentioned here as a hydrogen storage material, the hydrogen storage material which comprises the hydrogen storage composite material of this invention is a concept also including the state from which the said metal hydride discharge | released hydrogen. For example, if the hydrogen storage material is MgH 2, consisting of hydrogen is released from MgH 2 and MgH 2 → Mg. At this time, the hydrogen storage composite material of the present invention is in a state where the hydrogen storage catalyst of the present invention is combined with the material (Mg) after releasing hydrogen. That is, the hydrogen storage material constituting the hydrogen storage composite material of the present invention includes both a metal hydride that has stored hydrogen and a material from which hydrogen has been released.

本発明の水素吸蔵複合材料における本発明の水素吸蔵放出触媒の含有量は、水素吸蔵複合材料の全体重量を100wt%とした場合の0.1wt%以上とすることが望ましい。0.1wt%未満の場合には、水素吸蔵、放出速度を速くするという触媒効果が充分に得られない。2wt%以上とするとより好適である。一方、水素吸蔵量を考慮すると、50wt%以下とすることが望ましい。20wt%以下とするとより好適である。   The content of the hydrogen storage / release catalyst of the present invention in the hydrogen storage composite material of the present invention is preferably 0.1 wt% or more when the total weight of the hydrogen storage composite material is 100 wt%. When the amount is less than 0.1 wt%, the catalytic effect of increasing the hydrogen storage / release rate cannot be obtained sufficiently. More preferably, it is 2 wt% or more. On the other hand, considering the hydrogen storage amount, it is desirable to set it to 50 wt% or less. More preferably, it is 20 wt% or less.

水素吸蔵材料と本発明の水素吸蔵放出触媒とが複合化した態様として、例えば、本発明の水素吸蔵放出触媒の粒子が水素吸蔵材料の粒子表面に付着した態様や、微粉化された水素吸蔵材料と本発明の水素吸蔵放出触媒とが混合された態様が挙げられる。前者の態様は、例えば、金属水素化物と本発明の水素吸蔵放出触媒とを混合した混合物を、機械的粉砕処理して製造することができる。また、後者の態様は、例えば、機械的粉砕処理された金属水素化物の粉末に、本発明の水素吸蔵放出触媒の粉末を混合して製造することができる。いずれの製造方法においても、金属水素化物は機械的粉砕処理され微細化される。このため、水素の拡散距離は短くなり、水素の吸蔵、放出速度の向上に効果的である。また、微細化された金属水素化物の表面に、ナノメートルサイズの本発明の水素吸蔵放出触媒を分散させることで、同触媒の触媒効果を充分に発揮させることができる。なお、上記製造方法では、原料として金属水素化物を用いる。例えば、MgH2は、Mgよりも硬質である。よって、原料としてMgH2等の金属水素化物を用いると、機械的粉砕処理を行い易いという利点がある。 As an aspect in which the hydrogen storage material and the hydrogen storage / release catalyst of the present invention are combined, for example, an aspect in which the particles of the hydrogen storage / release catalyst of the present invention adhere to the particle surface of the hydrogen storage material, or a finely pulverized hydrogen storage material And the hydrogen storage / release catalyst of the present invention may be mixed. In the former embodiment, for example, a mixture obtained by mixing a metal hydride and the hydrogen storage / release catalyst of the present invention can be produced by mechanical pulverization. In the latter embodiment, for example, the metal hydride powder that has been mechanically pulverized can be mixed with the hydrogen storage / release catalyst powder of the present invention. In any production method, the metal hydride is mechanically pulverized and refined. For this reason, the diffusion distance of hydrogen is shortened, which is effective for improving the hydrogen storage / release rate. In addition, by dispersing the nanometer-sized hydrogen storage / release catalyst of the present invention on the surface of the refined metal hydride, the catalytic effect of the catalyst can be sufficiently exerted. In the above production method, a metal hydride is used as a raw material. For example, MgH 2 is harder than Mg. Therefore, when a metal hydride such as MgH 2 is used as a raw material, there is an advantage that mechanical pulverization can be easily performed.

本発明の水素吸蔵放出触媒の粒子は、機械的粉砕処理等により金属水素化物と混合されることにより、粉砕、微細化され小さくなる。よって、本発明の水素吸蔵放出触媒と水素吸蔵材料とが複合化した状態では、同触媒中の金属粒子の平均粒子径は、同触媒が単独で存在する場合と比較して小さくなる。これより、本発明の水素吸蔵複合材料では、本発明の水素吸蔵放出触媒中の金属粒子の平均粒子径が50nm以下であることが望ましい。15nm以下であるとより好適である。   The particles of the hydrogen storage / release catalyst of the present invention are reduced by being pulverized and refined by being mixed with a metal hydride by mechanical pulverization or the like. Therefore, in a state where the hydrogen storage / release catalyst of the present invention and the hydrogen storage material are combined, the average particle diameter of the metal particles in the catalyst is smaller than that in the case where the catalyst exists alone. Thus, in the hydrogen storage composite material of the present invention, it is desirable that the average particle diameter of the metal particles in the hydrogen storage / release catalyst of the present invention is 50 nm or less. It is more preferable that it is 15 nm or less.

機械的粉砕処理は、金属水素化物等の原料を処理装置に収容し、所定の雰囲気にて行えばよい。機械的粉砕処理は、例えば、不活性ガス雰囲気、水素雰囲気、真空雰囲気等、酸素および水分が存在しない雰囲気で行うことが望ましい。また、機械的粉砕処理は、室温、大気圧下で行えばよい。   The mechanical pulverization process may be performed in a predetermined atmosphere by storing a raw material such as a metal hydride in a processing apparatus. The mechanical pulverization treatment is desirably performed in an atmosphere free of oxygen and moisture, such as an inert gas atmosphere, a hydrogen atmosphere, or a vacuum atmosphere. The mechanical pulverization treatment may be performed at room temperature and atmospheric pressure.

機械的粉砕処理の種類は、特に限定されるものではなく、既に公知となっている噴射圧力や衝突力を利用した処理を用いればよい。例えば、メカニカルグライディング処理、メカニカルミリング処理、メカニカルアロイング処理等が挙げられる。特に、メカニカルグライディング処理が好適である。なお、機械的粉砕処理は、乾式で行ううことが望ましい。具体的には、例えば、遊星ボールミル、振動ボールミル、ジェットミル、ハンマーミル等を使用すればよい。原料を収容する容器や、粉砕用ボール等の材質は、特に限定されるものではない。例えば、クロム鋼、ニッケルクロム鋼、ニッケルクロムモリブデン鋼、クロムモリブデン鋼等の構造用合金鋼製の容器、粉砕用ボール等を使用すればよい。   The type of the mechanical pulverization process is not particularly limited, and a process that uses an already known injection pressure or collision force may be used. For example, a mechanical gliding process, a mechanical milling process, a mechanical alloying process, etc. are mentioned. In particular, a mechanical gliding process is suitable. The mechanical pulverization process is desirably performed by a dry method. Specifically, for example, a planetary ball mill, a vibration ball mill, a jet mill, a hammer mill or the like may be used. There are no particular limitations on the materials for the container for containing the raw materials and the balls for grinding. For example, a container made of structural alloy steel such as chrome steel, nickel chrome steel, nickel chrome molybdenum steel, chrome molybdenum steel, a ball for pulverization, or the like may be used.

機械的粉砕処理の諸条件は、使用する装置に応じて、また、処理する原料の量等を考慮して、適宜決定すればよい。例えば、粉砕エネルギーとしては、重力加速度の5倍(5G)以上が望ましい。また、処理の時間は、得られる水素吸蔵複合材料や金属水素化物の粒子径等を考慮して、適宜決定すればよい。例えば、5〜50時間程度処理すればよい。   Various conditions for the mechanical pulverization treatment may be appropriately determined according to the apparatus to be used and in consideration of the amount of raw material to be treated. For example, the grinding energy is desirably 5 times (5G) or more of the gravitational acceleration. The treatment time may be appropriately determined in consideration of the obtained hydrogen storage composite material, the particle size of the metal hydride, and the like. For example, the treatment may be performed for about 5 to 50 hours.

上記実施形態に基づいて、本発明の水素吸蔵放出触媒を2種類製造し、それを用いて本発明の実施例となる水素吸蔵複合材料を8種類製造した。また、触媒等を変更し、比較例となる水素吸蔵複合材料を12種類製造した。製造した各水素吸蔵複合材料に対して水素を放出、吸蔵させ、それらの水素吸蔵放出特性を調べた。以下、水素吸蔵複合材料の製造、および製造した水素吸蔵複合材料の水素吸蔵放出特性について説明する。   Based on the above embodiment, two types of hydrogen storage / release catalysts of the present invention were manufactured, and eight types of hydrogen storage composite materials serving as examples of the present invention were manufactured using them. Moreover, the catalyst etc. were changed and 12 types of hydrogen storage composite materials used as a comparative example were manufactured. Hydrogen was released and stored in each produced hydrogen storage composite material, and their hydrogen storage / release characteristics were investigated. Hereinafter, the manufacture of the hydrogen storage composite material and the hydrogen storage / release characteristics of the manufactured hydrogen storage composite material will be described.

(1)水素吸蔵複合材料の製造
(a)#1〜#4の水素吸蔵複合材料(実施例)
まず、水素吸蔵放出触媒を製造した。硝酸ニッケルと硝酸アルミニウムとを水に溶解させた水溶液に、活性炭(3000m2/g)を添加して攪拌した。この水溶液に炭酸ナトリウム水溶液を滴下して、水酸化ニッケルと水酸化アルミニウムとを活性炭表面に析出させた。この水溶液を乾燥機に入れ、一晩乾燥させた後、空気中450℃で3時間焼成した。焼成後、水素雰囲気、500℃で3時間還元処理を行い、ニッケル粒子がアルミナおよび炭素に担持された水素吸蔵放出触媒(下記表1、3では「Ni/Al23/C」と示す。)を得た。本水素吸蔵放出触媒のNi含有量は46wt%、Al23含有量は8wt%、C含有量は46wt%である。本水素吸蔵放出触媒を実施例1の触媒とした。
(1) Production of hydrogen storage composite material (a) Hydrogen storage composite materials # 1 to # 4 (Examples)
First, a hydrogen storage / release catalyst was produced. Activated carbon (3000 m 2 / g) was added to an aqueous solution in which nickel nitrate and aluminum nitrate were dissolved in water and stirred. A sodium carbonate aqueous solution was dropped into this aqueous solution to deposit nickel hydroxide and aluminum hydroxide on the activated carbon surface. This aqueous solution was put into a dryer, dried overnight, and then calcined in air at 450 ° C. for 3 hours. After calcination, reduction treatment was performed at 500 ° C. in a hydrogen atmosphere for 3 hours, and a hydrogen storage / release catalyst in which nickel particles are supported on alumina and carbon (in Tables 1 and 3 below, indicated as “Ni / Al 2 O 3 / C”). ) The hydrogen storage / release catalyst has a Ni content of 46 wt%, an Al 2 O 3 content of 8 wt%, and a C content of 46 wt%. This hydrogen storage / release catalyst was used as the catalyst of Example 1.

次に、上記実施例1の触媒を用いて、本発明の水素吸蔵複合材料を製造した。金属水素化物には、純度90wt%のMgH2(Aldrich社製)を使用した。MgH2に実施例1の触媒を種々の割合で配合して混合物を調製した。調製した各混合物の5gを、それぞれ40個のクロム鋼製のボール(外径9.5mm)と共にクロム鋼製の容器(容積300ml)に入れ、遊星ボールミルP−5(FRITSCH社製)によりメカニカルグライディング処理(以下「MG処理」と称す。)した。MG処理は、真空雰囲気、室温、0.1MPa下で、粉砕エネルギーを6Gとして24時間行った。得られた水素吸蔵複合材料を、実施例1の触媒の配合割合により、#1〜#4と番号付けした。#1〜#4の水素吸蔵複合材料の構成等については、下記表1にまとめて示す。 Next, the hydrogen storage composite material of the present invention was manufactured using the catalyst of Example 1 above. MgH 2 (manufactured by Aldrich) having a purity of 90 wt% was used as the metal hydride. A mixture was prepared by blending the catalyst of Example 1 in various proportions with MgH 2 . 5 g of each prepared mixture is put into a chrome steel container (volume: 300 ml) together with 40 chrome steel balls (outer diameter 9.5 mm), and mechanical gliding is performed by planetary ball mill P-5 (manufactured by FRITSCH). Processing (hereinafter referred to as “MG processing”). The MG treatment was performed for 24 hours under a vacuum atmosphere, room temperature, and 0.1 MPa with a grinding energy of 6G. The obtained hydrogen storage composite materials were numbered # 1 to # 4 according to the mixing ratio of the catalyst of Example 1. The composition and the like of the # 1 to # 4 hydrogen storage composite materials are summarized in Table 1 below.

(b)#5、#6の水素吸蔵複合材料(実施例)
上記(a)と同様に実施例1の触媒を用いて、本発明の水素吸蔵複合材料を製造した。金属水素化物には、純度90wt%のMgH2(Aldrich社製)を使用した。5gのMgH2を、40個のクロム鋼製のボール(外径9.5mm)と共にクロム鋼製の容器(容積300ml)に入れ、遊星ボールミルP−5(FRITSCH社製)によりMG処理した。MG処理の条件は、上記(a)と同様とした。MG処理したMgH2に、実施例1の触媒を所定の割合で配合し、乳鉢を用いて混合した。得られた水素吸蔵複合材料を、実施例1の触媒の配合割合により、#5、#6と番号付けした。#5、#6の水素吸蔵複合材料の構成等については、下記表1にまとめて示す。
(B) Hydrogen storage composite materials of # 5 and # 6 (Example)
The hydrogen storage composite material of the present invention was produced using the catalyst of Example 1 in the same manner as (a) above. MgH 2 (manufactured by Aldrich) having a purity of 90 wt% was used as the metal hydride. 5 g of MgH 2 was placed in a chrome steel container (volume: 300 ml) together with 40 chrome steel balls (outer diameter 9.5 mm), and subjected to MG treatment with a planetary ball mill P-5 (manufactured by FRITSCH). The conditions for the MG treatment were the same as the above (a). The MG-treated MgH 2 was mixed with the catalyst of Example 1 at a predetermined ratio and mixed using a mortar. The obtained hydrogen storage composite materials were numbered # 5 and # 6 according to the blending ratio of the catalyst of Example 1. The composition and the like of the hydrogen storage composite materials # 5 and # 6 are summarized in Table 1 below.

(c)#7、#8の水素吸蔵複合材料(実施例)
まず、水素吸蔵放出触媒を製造した。硝酸ニッケルと硝酸アルミニウムとを水に溶解させた。この水溶液に炭酸ナトリウム水溶液を滴下して、水酸化ニッケルと水酸化アルミニウムとを析出させた。この水溶液を乾燥機に入れ、一晩乾燥させた後、空気中450℃で3時間焼成した。焼成後、水素雰囲気、500℃で3時間還元処理を行い、ニッケル粒子がアルミナに担持された水素吸蔵放出触媒(下記表1、3では「Ni/Al23」と示す。)を得た。本水素吸蔵放出触媒のNi含有量は85wt%、Al23含有量は15wt%である。本水素吸蔵放出触媒を実施例2の触媒とした。
(C) Hydrogen storage composite materials of # 7 and # 8 (Example)
First, a hydrogen storage / release catalyst was produced. Nickel nitrate and aluminum nitrate were dissolved in water. A sodium carbonate aqueous solution was dropped into this aqueous solution to precipitate nickel hydroxide and aluminum hydroxide. This aqueous solution was put into a dryer, dried overnight, and then calcined in air at 450 ° C. for 3 hours. After firing, reduction treatment was performed at 500 ° C. for 3 hours in a hydrogen atmosphere to obtain a hydrogen storage / release catalyst (shown as “Ni / Al 2 O 3 ” in Tables 1 and 3 below) in which nickel particles were supported on alumina. . The hydrogen storage / release catalyst has a Ni content of 85 wt% and an Al 2 O 3 content of 15 wt%. This hydrogen storage / release catalyst was used as the catalyst of Example 2.

次に、上記実施例2の触媒を用いて、本発明の水素吸蔵複合材料を製造した。金属水素化物には、MgOを10wt%含む純度90wt%のMgH2を使用した。MgH2に実施例2の触媒を所定の割合で配合して混合物を調製した。調製した各混合物の5gを、上記(a)と同様にしてMG処理した。得られた水素吸蔵複合材料を、実施例2の触媒の配合割合により、#7、#8と番号付けした。#7、#8の水素吸蔵複合材料の構成等については、下記表1にまとめて示す。 Next, the hydrogen storage composite material of the present invention was manufactured using the catalyst of Example 2 above. As the metal hydride, MgH 2 having a purity of 90 wt% containing 10 wt% MgO was used. A mixture was prepared by blending the catalyst of Example 2 in a predetermined ratio with MgH 2 . 5 g of each prepared mixture was treated with MG in the same manner as in the above (a). The obtained hydrogen storage composite materials were numbered # 7 and # 8 according to the mixing ratio of the catalyst of Example 2. The composition and the like of the hydrogen storage composite materials # 7 and # 8 are summarized in Table 1 below.

(d)#51〜#54の水素吸蔵複合材料(比較例)
金属水素化物として上記同様のMgH2を使用し、触媒としてNiを使用して比較例の水素吸蔵複合材料を製造した。MgH2にNi粉末(添川理化学株式会社製、平均粒子径0.8μm)を所定の割合で配合して混合物を調製した。調製した各混合物の5gを、上記(a)と同様にしてMG処理した。得られた水素吸蔵複合材料を、Niの配合割合により、#51〜#54と番号付けした。#51〜#54の水素吸蔵複合材料の構成等については、下記表2にまとめて示す。
(D) Hydrogen storage composite material of # 51 to # 54 (comparative example)
A hydrogen storage composite material of a comparative example was manufactured using MgH 2 similar to the above as the metal hydride and Ni as the catalyst. A mixture was prepared by blending Ni powder (manufactured by Soekawa Rikagaku Co., Ltd., average particle size 0.8 μm) at a predetermined ratio with MgH 2 . 5 g of each prepared mixture was treated with MG in the same manner as in the above (a). The obtained hydrogen storage composite materials were numbered as # 51 to # 54 according to the mixing ratio of Ni. The composition and the like of the hydrogen storage composite materials # 51 to # 54 are summarized in Table 2 below.

(e)#55、#56の水素吸蔵複合材料(比較例)
金属水素化物としてMgH2を使用し、触媒としてNiを使用して比較例の水素吸蔵複合材料を製造した。上記(b)と同様に、5gのMgH2をMG処理した。MG処理したMgH2に、Ni粉末(添川理化学株式会社製、平均粒子径0.8μm)を所定の割合で配合し、乳鉢を用いて混合した。得られた水素吸蔵複合材料を、Niの配合割合により、#55、#56と番号付けした。#55、#56の水素吸蔵複合材料の構成等については、下記表2にまとめて示す。
(E) Hydrogen storage composite material of # 55 and # 56 (comparative example)
A comparative hydrogen storage composite material was produced using MgH 2 as the metal hydride and Ni as the catalyst. Similarly to the above (b), 5 g of MgH 2 was treated with MG. Ni powder (manufactured by Soekawa Rikagaku Co., Ltd., average particle size 0.8 μm) was blended in a predetermined ratio to MG-treated MgH 2 and mixed using a mortar. The obtained hydrogen storage composite materials were numbered as # 55 and # 56 according to the mixing ratio of Ni. The composition and the like of the hydrogen storage composite materials of # 55 and # 56 are summarized in Table 2 below.

(f)#57〜#62の水素吸蔵複合材料(比較例)
金属水素化物として上記同様のMgH2を使用し、触媒として種々の金属酸化物、Ti(日本高純度化学株式会社製)、スーパー活性炭(関西熱化学株式会社製)を使用して比較例の水素吸蔵複合材料を製造した。MgH2に各触媒を重量比で95:5の割合で配合して混合物を調製した。調製した各混合物の5gを、上記(a)と同様にしてMG処理した。得られた水素吸蔵複合材料を、触媒の種類により、#57〜#62と番号付けした。#57〜#62の水素吸蔵複合材料の構成等については、下記表2にまとめて示す。
(F) Hydrogen storage composite material of # 57 to # 62 (comparative example)
Hydrogen of the comparative example using MgH 2 similar to the above as the metal hydride and using various metal oxides, Ti (manufactured by Nippon Kogyo Chemical Co., Ltd.), and super activated carbon (manufactured by Kansai Thermal Chemical Co., Ltd.) as the catalyst. An occluded composite material was produced. Each catalyst was blended with MgH 2 at a weight ratio of 95: 5 to prepare a mixture. 5 g of each prepared mixture was treated with MG in the same manner as in the above (a). The obtained hydrogen storage composite materials were numbered # 57 to # 62 depending on the type of catalyst. The composition and the like of the hydrogen storage composite materials # 57 to # 62 are summarized in Table 2 below.

(2)水素吸蔵放出特性
(a)第一の試験として水素放出試験を行った。すなわち、製造した実施例および比較例の各水素吸蔵複合材料を、それぞれ200℃、0.1MPaのアルゴンガス雰囲気にて6時間保持し、各水素吸蔵複合材料から水素を放出させた。そして、各水素吸蔵複合材料の水素放出量を熱脱離法により求めた。表1、2に、各水素吸蔵複合材料の構成、金属水素化物(MgH2)と触媒との配合割合(重量比)、製造方法、金属粒子(Ni)の平均粒子径、および水素放出量を示す。表1は実施例の各水素吸蔵複合材料について、表2は比較例の各水素吸蔵複合材料について示す。
(2) Hydrogen storage / release characteristics (a) A hydrogen release test was conducted as a first test. That is, each produced hydrogen storage composite material of the Example and the comparative example was hold | maintained for 6 hours in the argon gas atmosphere of 200 degreeC and 0.1 Mpa, respectively, and hydrogen was discharge | released from each hydrogen storage composite material. Then, the hydrogen release amount of each hydrogen storage composite material was determined by a thermal desorption method. Tables 1 and 2 show the composition of each hydrogen storage composite material, the mixing ratio (weight ratio) of the metal hydride (MgH 2 ) and the catalyst, the production method, the average particle diameter of the metal particles (Ni), and the hydrogen release amount. Show. Table 1 shows each hydrogen storage composite material of the example, and Table 2 shows each hydrogen storage composite material of the comparative example.

Figure 2006051473
Figure 2006051473

Figure 2006051473
Figure 2006051473

表1に示すように、実施例の水素吸蔵複合材料では、金属粒子(Ni)の平均粒子径は10nm以下であった。また、水素放出量は、4.1〜6.0wt%と大きくなった。つまり、本発明の水素吸蔵放出触媒を用いた本発明の水素吸蔵複合材料は、200℃程度の比較的低温であっても、多量の水素を放出できる。   As shown in Table 1, in the hydrogen storage composite material of the example, the average particle diameter of the metal particles (Ni) was 10 nm or less. Further, the hydrogen release amount was as large as 4.1 to 6.0 wt%. That is, the hydrogen storage composite material of the present invention using the hydrogen storage release catalyst of the present invention can release a large amount of hydrogen even at a relatively low temperature of about 200 ° C.

例えば、#1〜#4の水素吸蔵複合材料を比較すると、触媒の配合割合が2→5、10wt%と大きくなると、水素放出量も増加した。但し、触媒の配合割合が20wt%の#4では、同割合が5、10wt%の#2、#3よりも、水素放出量は僅かに減少した。また、触媒の配合割合が同じで種類が異なる#2と#7、および#4と#8の水素吸蔵複合材料をそれぞれ比較すると、炭素材料を含む#2、#4の水素吸蔵複合材料の方が、水素放出量は大きくなった。また、製造方法のみが異なる#2と#5、および#3と#6の水素吸蔵複合材料をそれぞれ比較すると、MgH2と触媒とを共にMG処理して製造した#2、#3の水素吸蔵複合材料の方が、水素放出量は大きくなった。 For example, when the hydrogen storage composite materials # 1 to # 4 were compared, the hydrogen release amount increased when the blending ratio of the catalyst increased from 2 to 5, and 10 wt%. However, in # 4 where the blending ratio of the catalyst was 20 wt%, the amount of released hydrogen was slightly reduced compared with # 2 and # 3 where the ratio was 5, 10 wt%. In addition, comparing the hydrogen storage composite materials # 2 and # 7, and # 4 and # 8, which have the same catalyst mixing ratio and different types, respectively, the hydrogen storage composite materials # 2 and # 4 containing carbon materials However, the hydrogen release amount has increased. In addition, when comparing the # 2 and # 5 and # 3 and # 6 hydrogen storage composite materials, which differ only in the manufacturing method, respectively, the hydrogen storage of # 2 and # 3 manufactured by MG treatment of both MgH 2 and the catalyst The amount of hydrogen released from the composite material was larger.

一方、表2に示すように、比較例の水素吸蔵複合材料の水素放出量は、最大でも2.8wt%であった。特に、乳鉢混合により製造した#55、#56の水素吸蔵複合材料や、Ni以外の触媒を用いた#57〜#62の水素吸蔵複合材料は、ほとんど水素を放出しなかった。   On the other hand, as shown in Table 2, the hydrogen release amount of the hydrogen storage composite material of the comparative example was 2.8 wt% at the maximum. In particular, the # 55 and # 56 hydrogen storage composite materials manufactured by mortar mixing and the # 57 to # 62 hydrogen storage composite materials using a catalyst other than Ni released almost no hydrogen.

(b)第二の試験として水素吸蔵試験を行った。はじめに、製造した実施例および比較例の各水素吸蔵複合材料を所定の容器に収容し、容器内を250℃下、0.2Pa以下になるまで真空引きして、各水素吸蔵複合材料から水素を放出させた。また、これとは別に温度を変更し、同水素吸蔵複合材料を、450℃下、0.2Pa以下になるまで真空引きして、各水素吸蔵複合材料から水素を放出させた。次に、各条件で水素を放出した各水素吸蔵複合材料について、室温(23℃)、水素圧力9MPa下で水素を吸蔵させた。そして、水素吸蔵開始から6時間後の水素吸蔵量を、PCT特性測定装置(鈴木商館製)を用いて求めた。表3、4に、各水素吸蔵複合材料の水素吸蔵量を水素の放出温度別に示す。表3は実施例の各水素吸蔵複合材料について、表4は比較例の各水素吸蔵複合材料について示す。   (B) A hydrogen storage test was performed as a second test. First, each produced hydrogen storage composite material of the example and the comparative example is accommodated in a predetermined container, and the inside of the container is evacuated at 250 ° C. to 0.2 Pa or less, so that hydrogen is extracted from each hydrogen storage composite material. Released. Separately from this, the temperature was changed, and the hydrogen storage composite material was evacuated at 450 ° C. to 0.2 Pa or less to release hydrogen from each hydrogen storage composite material. Next, for each hydrogen storage composite material from which hydrogen was released under each condition, hydrogen was stored at room temperature (23 ° C.) under a hydrogen pressure of 9 MPa. And the hydrogen storage amount 6 hours after the hydrogen storage start was calculated | required using the PCT characteristic measuring apparatus (made by Suzuki Shokan). Tables 3 and 4 show the hydrogen storage amount of each hydrogen storage composite material according to the hydrogen release temperature. Table 3 shows each hydrogen storage composite material of the example, and Table 4 shows each hydrogen storage composite material of the comparative example.

Figure 2006051473
Figure 2006051473

Figure 2006051473
Figure 2006051473

表3に示すように、実施例の水素吸蔵複合材料は、水素放出温度により差はあるが、室温においても水素を吸蔵した。特に、250℃で水素を放出させた場合に、水素吸蔵量が大きくなった。これは、水素の放出を低温で行ったことで、Mgの結晶が成長し難く、Mgの結晶の粗大化が抑制されたためと考えられる。また、水素の放出の際と同様に、触媒の配合割合や触媒の種類により、水素吸蔵量が変化した。   As shown in Table 3, the hydrogen storage composite materials of the Examples stored hydrogen even at room temperature, although there were differences depending on the hydrogen release temperature. In particular, when hydrogen was released at 250 ° C., the hydrogen storage amount increased. This is presumably because the release of hydrogen at a low temperature made it difficult for the Mg crystals to grow and the coarsening of the Mg crystals was suppressed. In addition, as with the release of hydrogen, the amount of hydrogen occlusion changed depending on the blending ratio of the catalyst and the type of catalyst.

一方、表4に示すように、比較例の水素吸蔵複合材料の水素吸蔵量は、水素放出温度が250℃の場合でも最大で3.7wt%であった。ここで、金属酸化物やスーパー活性炭のみを触媒とした#57〜#61の水素吸蔵複合材料は、250℃では水素をほとんど放出できなかったため、室温では水素を吸蔵することができなかった。   On the other hand, as shown in Table 4, the hydrogen storage amount of the hydrogen storage composite material of the comparative example was 3.7 wt% at the maximum even when the hydrogen release temperature was 250 ° C. Here, the hydrogen storage composite material of # 57 to # 61 using only metal oxide or super activated carbon as a catalyst could hardly release hydrogen at 250 ° C., and therefore could not store hydrogen at room temperature.

以上まとめると、本発明の水素吸蔵複合材料は、本発明の水素吸蔵放出触媒により水素吸蔵放出速度が大きくなるため、200℃程度の比較的低温で水素を放出でき、かつ室温で水素を吸蔵することができる。   In summary, the hydrogen storage composite material of the present invention has a higher hydrogen storage / release rate due to the hydrogen storage / release catalyst of the present invention, so that it can release hydrogen at a relatively low temperature of about 200 ° C. and store hydrogen at room temperature. be able to.

また、本水素吸蔵試験では、触媒としてNiのみを用いた水素吸蔵複合材料(#51〜#54)の水素吸蔵量が、3.0〜3.7wt%と比較的大きくなっている。これは、本水素吸蔵試験では、9MPaの高圧下で水素を吸蔵させたためである。これまでは、水素の吸蔵を、1MPa程度の水素加圧下で行うことが一般的であった。このような低圧下では、触媒としてNiのみを用いた水素吸蔵複合材料の水素吸蔵量は、0.4wt%程度にすぎない。つまり、本水素吸蔵試験の結果から、より高圧にすることで、水素吸蔵量を増加できることがわかる。最近では、35MPa以上の高圧下で水素を吸蔵させることも可能となった。したがって、水素吸蔵時の水素圧力を35〜70MPaとさらに高圧にすることにより、本発明の水素吸蔵複合材料は、室温下でより短時間に多量の水素を吸蔵できると考えられる。   In this hydrogen storage test, the hydrogen storage amount of the hydrogen storage composite material (# 51 to # 54) using only Ni as a catalyst is relatively large at 3.0 to 3.7 wt%. This is because in this hydrogen storage test, hydrogen was stored under a high pressure of 9 MPa. Until now, it was common to occlude hydrogen under hydrogen pressure of about 1 MPa. Under such a low pressure, the hydrogen storage amount of the hydrogen storage composite material using only Ni as a catalyst is only about 0.4 wt%. That is, it can be seen from the results of this hydrogen storage test that the hydrogen storage amount can be increased by increasing the pressure. Recently, it has become possible to occlude hydrogen under a high pressure of 35 MPa or more. Therefore, it is considered that the hydrogen storage composite material of the present invention can store a large amount of hydrogen in a shorter time at room temperature by increasing the hydrogen pressure during storage of hydrogen to 35 to 70 MPa.

例えば、水素自動車では、水素エンジンからの廃熱を利用することができる。本発明の水素吸蔵複合材料は、200℃程度の温度下4時間保持することで5wt%程度の水素を放出する。したがって、本発明の水素吸蔵複合材料を水素貯蔵源として用いれば、200℃程度の廃熱を利用して、水素エンジンに水素を充分に供給することができる。このように、本発明の水素吸蔵複合材料は、水素エンジン、燃料電池等の水素供給源として有用である。   For example, in a hydrogen vehicle, waste heat from a hydrogen engine can be used. The hydrogen storage composite material of the present invention releases about 5 wt% of hydrogen by holding at a temperature of about 200 ° C. for 4 hours. Therefore, if the hydrogen storage composite material of the present invention is used as a hydrogen storage source, hydrogen can be sufficiently supplied to the hydrogen engine using waste heat of about 200 ° C. Thus, the hydrogen storage composite material of the present invention is useful as a hydrogen supply source for hydrogen engines, fuel cells, and the like.

Claims (9)

無機酸化物および炭素材料の少なくとも一方からなる担体と、該担体に担持された金属粒子とからなり、水素吸蔵材料の水素吸蔵放出特性を向上させる水素吸蔵放出触媒。   A hydrogen storage / release catalyst comprising a support made of at least one of an inorganic oxide and a carbon material and metal particles supported on the support, and improving the hydrogen storage / release characteristics of the hydrogen storage material. 前記金属粒子の平均粒子径は100nm以下である請求項1に記載の水素吸蔵放出触媒。   The hydrogen storage / release catalyst according to claim 1, wherein an average particle diameter of the metal particles is 100 nm or less. 前記金属粒子は4〜10族元素から選ばれる一種類以上の元素を含む請求項1に記載の水素吸蔵放出触媒。   The hydrogen storage / release catalyst according to claim 1, wherein the metal particles include one or more elements selected from Group 4 to 10 elements. 前記金属粒子の含有量は、当該水素吸蔵放出触媒の全体重量を100wt%とした場合の5wt%以上95wt%以下である請求項1に記載の水素吸蔵放出触媒。   2. The hydrogen storage / release catalyst according to claim 1, wherein the content of the metal particles is 5 wt% or more and 95 wt% or less when the total weight of the hydrogen storage / release catalyst is 100 wt%. 水素吸蔵材料に請求項1に記載の水素吸蔵放出触媒が高分散状態で複合化してなる水素吸蔵複合材料。   A hydrogen storage composite material obtained by combining the hydrogen storage material according to claim 1 in a highly dispersed state with a hydrogen storage material. 前記水素吸蔵放出触媒の含有量は、当該水素吸蔵複合材料の全体重量を100wt%とした場合の0.1wt%以上50wt%以下である請求項5に記載の水素吸蔵複合材料。   6. The hydrogen storage composite material according to claim 5, wherein the content of the hydrogen storage / release catalyst is 0.1 wt% or more and 50 wt% or less when the total weight of the hydrogen storage composite material is 100 wt%. 前記水素吸蔵放出触媒中の金属粒子の平均粒子径は50nm以下である請求項5に記載の水素吸蔵複合材料。   The hydrogen storage composite material according to claim 5, wherein an average particle diameter of the metal particles in the hydrogen storage / release catalyst is 50 nm or less. 金属水素化物と、請求項1に記載の水素吸蔵放出触媒と、を混合した混合物を機械的粉砕処理して製造された請求項5に記載の水素吸蔵複合材料。   The hydrogen storage composite material according to claim 5, which is produced by mechanically pulverizing a mixture obtained by mixing a metal hydride and the hydrogen storage / release catalyst according to claim 1. 機械的粉砕処理された金属水素化物に、請求項1に記載の水素吸蔵放出触媒を混合して製造された請求項5に記載の水素吸蔵複合材料。   The hydrogen storage composite material according to claim 5, which is produced by mixing the metal hydride subjected to mechanical grinding with the hydrogen storage / release catalyst according to claim 1.
JP2004236657A 2004-08-16 2004-08-16 Hydrogen storing/releasing catalyst and hydrogen storing compound material using the same Pending JP2006051473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004236657A JP2006051473A (en) 2004-08-16 2004-08-16 Hydrogen storing/releasing catalyst and hydrogen storing compound material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004236657A JP2006051473A (en) 2004-08-16 2004-08-16 Hydrogen storing/releasing catalyst and hydrogen storing compound material using the same

Publications (1)

Publication Number Publication Date
JP2006051473A true JP2006051473A (en) 2006-02-23

Family

ID=36029269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004236657A Pending JP2006051473A (en) 2004-08-16 2004-08-16 Hydrogen storing/releasing catalyst and hydrogen storing compound material using the same

Country Status (1)

Country Link
JP (1) JP2006051473A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047833A (en) * 2008-08-25 2010-03-04 Ind Technol Res Inst Method of nanosizing magnesium-based hydrogen storage material
JP2010215487A (en) * 2009-03-13 2010-09-30 Ind Technol Res Inst Solid-state hydrogen fuel with polymer matrix and fabrication method thereof
JP2012038697A (en) * 2010-07-15 2012-02-23 Toyota Motor Corp Anode material, metal secondary battery, and method for producing anode material
WO2016088896A1 (en) * 2014-12-05 2016-06-09 国立大学法人東京工業大学 Composite body, method for producing composite body, ammonia synthesis catalyst, and ammonia synthesis method
CN111569901A (en) * 2020-05-14 2020-08-25 上海簇睿低碳能源技术有限公司 Preparation method and application of non-noble metal and noble metal bimetallic catalyst for hydrogenation and dehydrogenation of organic hydrogen storage material
CN115403008A (en) * 2022-09-16 2022-11-29 重庆大学 MgH 2 -Co 3 V 2 O 8 Composite hydrogen storage material and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047833A (en) * 2008-08-25 2010-03-04 Ind Technol Res Inst Method of nanosizing magnesium-based hydrogen storage material
JP2010215487A (en) * 2009-03-13 2010-09-30 Ind Technol Res Inst Solid-state hydrogen fuel with polymer matrix and fabrication method thereof
US8658055B2 (en) 2009-03-13 2014-02-25 Industrial Technology Research Institute Solid-state hydrogen fuel with polymer matrix and fabrication methods thereof
JP2012038697A (en) * 2010-07-15 2012-02-23 Toyota Motor Corp Anode material, metal secondary battery, and method for producing anode material
WO2016088896A1 (en) * 2014-12-05 2016-06-09 国立大学法人東京工業大学 Composite body, method for producing composite body, ammonia synthesis catalyst, and ammonia synthesis method
US20170355607A1 (en) * 2014-12-05 2017-12-14 Japan Science And Technology Agency Composite, method for producing composite, ammonia synthesis catalyst, and ammonia synthesis method
US10322940B2 (en) 2014-12-05 2019-06-18 Japan Science And Technology Agency Composite, method for producing composite, ammonia synthesis catalyst, and ammonia synthesis method
CN111569901A (en) * 2020-05-14 2020-08-25 上海簇睿低碳能源技术有限公司 Preparation method and application of non-noble metal and noble metal bimetallic catalyst for hydrogenation and dehydrogenation of organic hydrogen storage material
CN111569901B (en) * 2020-05-14 2023-08-29 上海簇睿低碳能源技术有限公司 Preparation method and application of non-noble metal and noble metal bimetallic catalyst for hydrogenation and dehydrogenation of organic hydrogen storage material
CN115403008A (en) * 2022-09-16 2022-11-29 重庆大学 MgH 2 -Co 3 V 2 O 8 Composite hydrogen storage material and preparation method thereof

Similar Documents

Publication Publication Date Title
Hitam et al. Magnesium-based alloys for solid-state hydrogen storage applications: a review
Zhang et al. Recent advances on the thermal destabilization of Mg-based hydrogen storage materials
Zhang et al. Recent progress in magnesium hydride modified through catalysis and nanoconfinement
Ma et al. Improving hydrogen sorption performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold
Luo et al. Enhanced hydrogen storage/sensing of metal hydrides by nanomodification
CN103298551B (en) The catalyst produced for hydrogen
Yao et al. Facile synthesis of graphene-supported Ni-CeO x nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane
Ding et al. Tailoring MgH2 for hydrogen storage through nanoengineering and catalysis
Zhang et al. Recent advances in improving performances of the lightweight complex hydrides Li-Mg-NH system
Wang et al. Core–shell Co@ C catalyzed MgH 2: enhanced dehydrogenation properties and its catalytic mechanism
Jia et al. Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage
Luo et al. Improved hydrogen storage of LiBH 4 and NH 3 BH 3 by catalysts
Gross et al. Fabrication and hydrogen sorption behaviour of nanoparticulate MgH2 incorporated in a porous carbon host
Sakintuna et al. Metal hydride materials for solid hydrogen storage: a review
Lan et al. In situ incorporation of highly dispersed nickel and vanadium trioxide nanoparticles in nanoporous carbon for the hydrogen storage performance enhancement of magnesium hydride
Wu et al. Effects of carbon on hydrogen storage performances of hydrides
Hou et al. Review on hydrogen storage performance of MgH2: development and trends
Zhao et al. Enhancing hydrogen storage properties of MgH2 by core-shell CoNi@ C
Ismail et al. Hydrogen storage properties of a destabilized MgH2Sn system with TiF3 addition
Liu et al. Enhancement of hydrogen desorption in magnesium hydride catalyzed by graphene nanosheets supported Ni-CeOx hybrid nanocatalyst
Fu et al. Catalytic effect of bamboo-like carbon nanotubes loaded with NiFe nanoparticles on hydrogen storage properties of MgH2
CN105734323A (en) Nanometer magnesium base reversible hydrogen storage composite material and preparation method thereof
Duan et al. Novel core–shell structured MgH 2/AlH 3@ CNT nanocomposites with extremely high dehydriding–rehydriding properties derived from nanoconfinement
Salman et al. Catalysis in solid hydrogen storage: Recent advances, challenges, and perspectives
Feng et al. Copper oxide hollow spheres: synthesis and catalytic application in hydrolytic dehydrogenation of ammonia borane