JP2003162947A - Thermally actuated member and thermal protector - Google Patents

Thermally actuated member and thermal protector

Info

Publication number
JP2003162947A
JP2003162947A JP2001361694A JP2001361694A JP2003162947A JP 2003162947 A JP2003162947 A JP 2003162947A JP 2001361694 A JP2001361694 A JP 2001361694A JP 2001361694 A JP2001361694 A JP 2001361694A JP 2003162947 A JP2003162947 A JP 2003162947A
Authority
JP
Japan
Prior art keywords
thermal
metal layer
expansion metal
thin film
heat responsive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001361694A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yamamoto
潔 山本
Takeshi Nagai
健史 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Precision Engineering Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Furukawa Precision Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Precision Engineering Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2001361694A priority Critical patent/JP2003162947A/en
Publication of JP2003162947A publication Critical patent/JP2003162947A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermally actuated member of low electric resistance which inversely operates repeatedly without degrading an initial operation stroke even if it is worked into a very small thermally actuated element, and to provide a thermal protector which is smaller, with a longer operation life. <P>SOLUTION: The thermally actuated member has a laminate of a high thermal-expansion metal layer and a low thermal-expansion metal layer and a coat of a high conductive thin film of high conductivity, comprising at least one element over the surface of the high thermal-expansion metal layer side and/or low thermal-expansion metal layer side. The thickness of the high conductive thin film is preferred to be 1.5-10 μm. A thermal protector is so configured that a movable contact provided to one end or both ends of the thermally actuated element formed with the thermally actuated member comes away from a fixed contact due to deformation of the thermal actuated element in overheating. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、導電性を有する熱
応動部材及び当該熱応動部材を用いたサーマルプロテク
タに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat responsive member having conductivity and a thermal protector using the heat responsive member.

【0002】[0002]

【従来の技術】導電性を有する熱応動部材は、回路に過
電流が流れた場合や過熱時に回路を遮断するサーマルプ
ロテクタの熱応動素子、その他の熱応動素子として広く
利用されている。サーマルプロテクタは、一般に各種モ
ータ、機器類に用いられている二次電池などの過電流や
過熱に対して、回路を遮断する保護部品として使用され
る。例えば携帯電話機やノート型パソコン等の二次電池
用のサーマルプロテクタ、小型モータ用のサーマルプロ
テクタ、自動車用モータ,充電器保護の直流回路用のサ
ーマルプロテクタ、あるいは、エアコンのファン,電気
洗濯機その他に用いられている汎用モータ保護の交流回
路用のサーマルプロテクタなどである。
2. Description of the Related Art A heat-responsive member having conductivity is widely used as a heat-responsive element of a thermal protector that shuts off a circuit when an overcurrent flows in the circuit or when the circuit overheats, and other heat-responsive elements. The thermal protector is generally used as a protection component that interrupts a circuit against overcurrent or overheat of a secondary battery used in various motors and devices. For example, thermal protectors for secondary batteries such as mobile phones and notebook computers, thermal protectors for small motors, motors for automobiles, thermal protectors for DC circuits for protecting chargers, fans for air conditioners, electric washing machines, etc. It is a thermal protector for AC circuits used for general purpose motor protection.

【0003】導電性を有する熱応動素子を利用したサー
マルプロテクタは、例えば図8で示されているような構
成である。同図はサーマルプロテクタの断面図であり、
本体10を蓋11で密閉したケース1の内底側の一端部
には、ケース1の外部に延び出した端子20aと接続す
る固定接点2aが設置されている。ケース1内には、ほ
ぼ山形状ないし凸球面状に形成され、所定の作動温度で
反転作動する熱応動素子(バイメタル)4が収容されて
いる。この熱応動素子4の先端部には、前記固定接点2
aと接触する可動接点4aが設けられ、当該熱応動素子
4の基端部は、ケース1の他端部側から外部に延び出し
た他方の端子40aと接合されている。図8のサーマル
プロテクタは、端子20a,40aを例えば図示されて
いない電池や電子基板等における他の端子と接続した状
態で所要箇所に設置される。設置状態において、過電流
や過熱により設置部位の温度が上昇し、当該温度が熱応
動素子4の作動温度以上に達すると、当該熱応動素子4
が、そのスナップ作用により各可動接点4aを対応する
固定接点2aから離反させる状態に反転し、当該部分で
回路を遮断するように作動する。
A thermal protector using a heat responsive element having conductivity has a structure as shown in FIG. 8, for example. This figure is a sectional view of the thermal protector.
A fixed contact 2a for connecting to a terminal 20a extending to the outside of the case 1 is installed at one end of the case 1 in which the main body 10 is sealed with a lid 11. In the case 1, a thermo-responsive element (bimetal) 4 which is formed in a substantially mountain shape or a convex spherical shape and which reverses at a predetermined operating temperature is accommodated. The fixed contact 2 is provided at the tip of the thermoresponsive element 4.
A movable contact 4a that is in contact with a is provided, and the base end portion of the thermoresponsive element 4 is joined to the other terminal 40a that extends outward from the other end portion side of the case 1. The thermal protector shown in FIG. 8 is installed at a required position in a state where the terminals 20a and 40a are connected to other terminals such as a battery and an electronic board (not shown). In the installed state, when the temperature of the installation site rises due to overcurrent or overheating and the temperature reaches or exceeds the operating temperature of the thermoresponsive element 4, the thermoresponsive element 4
However, due to the snap action, each movable contact 4a is reversed to the state in which it is separated from the corresponding fixed contact 2a, and the circuit operates at that portion.

【0004】従来のサーマルプロテクタの熱応動素子4
を構成する熱応動部材は、電気抵抗を小さくするため、
図9で拡大して示すように、高熱膨張金属層40と低熱
膨張金属層41との間に、Cuなどの高電導率の金属元
素からなる高電導層42をサンドイッチ状に挟んで積層
した部材であった。
Thermally responsive element 4 of a conventional thermal protector
The heat-responsive member that constitutes the
As enlarged and shown in FIG. 9, a member in which a high-conductivity layer 42 made of a metal element having a high conductivity such as Cu is sandwiched between a high-thermal-expansion metal layer 40 and a low-thermal-expansion metal layer 41, and laminated. Met.

【0005】[0005]

【発明が解決しようとする課題】近年の電気機器類の小
型,高性能化に伴い、これらに使用されるサーマルプロ
テクタのみならず、サーマルプロテクタの熱応動素子に
ついても一層の小型化が要請されている。発明者らは、
図9のような従来の熱応動部材を、例えば縦4mm,幅
3mm,厚み0.07mm程度の極小型に成形したもの
を凸球面状に加工して熱応動素子を形成し、これをその
作動温度以上に加熱してスナップ作動を含む熱変動の状
態を観察した。その結果、初回はサーマルプロテクタの
作動に必要な(回路を遮断するのに必要な)スナップ作
動(反転作動)が認められたが、二回目からは中間層で
ある銅などの高熱伝導層42が塑性変形し、高熱伝導層
42と高熱膨張金属層40との界面がスリップすること
により、熱応動素子の全体としての凸球面形状が変形し
てサーマルプロテクタの作動に必要なスナップ作動をし
なくなる傾向を示した。
With the recent miniaturization and higher performance of electric devices, not only the thermal protectors used therein but also the thermal responsive elements of the thermal protectors are required to be further miniaturized. There is. The inventors
A conventional thermo-responsive member as shown in FIG. 9 is molded into a convex spherical shape by forming a micro-miniature member having, for example, a length of 4 mm, a width of 3 mm and a thickness of 0.07 mm to form a thermo-responsive element, and the thermo-responsive element is operated. The state of heat fluctuation including snap action was observed by heating above the temperature. As a result, a snap operation (reverse operation) necessary for the operation of the thermal protector (reversal operation) was recognized at the first time, but from the second time, the high thermal conductive layer 42 such as copper, which is the intermediate layer, was detected. Due to plastic deformation and slippage of the interface between the high thermal conductive layer 42 and the high thermal expansion metal layer 40, the overall convex spherical shape of the thermal responsive element is deformed and the snap action necessary for operating the thermal protector tends not to occur. showed that.

【0006】本発明の目的は、電気抵抗が小さくかつ前
述のように非常に小型の熱応動素子に加工した場合で
も、初期の作動ストロークを減ずることなく多数回正確
に繰り返し反転作動する熱応動部材を提供することにあ
る。本発明の他の目的は、小型に製造した場合でも性能
よく繰り返し正確に作動するサーマルプロテクタを提供
することにある。
An object of the present invention is to provide a thermo-responsive member which can be accurately and repeatedly reversed many times without reducing the initial operation stroke even when it is processed into a very small thermo-responsive element having a small electric resistance as described above. To provide. It is another object of the present invention to provide a thermal protector that can operate repeatedly and accurately even when manufactured in a small size.

【0007】[0007]

【課題を解決するための手段】本発明に係る熱応動部材
は、前述の課題を解決するため以下のように構成したも
のである。すなわち、請求項1に記載の熱応動部材は、
高熱膨張金属層と低熱膨張金属層とが積層され、高熱膨
張金属層側又は/及び低熱膨張金属層側の表面に高電導
率の少なくとも一つの元素からなる高電導薄膜が被着さ
れていることを特徴としている。
The heat responsive member according to the present invention is configured as follows in order to solve the above problems. That is, the heat responsive member according to claim 1 is
A high thermal expansion metal layer and a low thermal expansion metal layer are laminated, and a high conductivity thin film made of at least one element having high conductivity is deposited on the surface of the high thermal expansion metal layer side and / or the low thermal expansion metal layer side. Is characterized by.

【0008】請求項2に記載の熱応動部材は、請求項1
の熱応動部材において、高電導薄膜が、Au,Ag,C
u,Al,Ni,Sn,Rh又はRuの中から選ばれる
一又は複数の元素であることを特徴としている。
The heat responsive member according to a second aspect is the first aspect.
In the heat responsive member of, the high-conductivity thin film is Au, Ag, C
It is characterized by being one or more elements selected from u, Al, Ni, Sn, Rh or Ru.

【0009】請求項3に記載の熱応動部材は、請求項1
又は2の熱応動部材において、高熱膨張金属層がMn−
Ni−Cu合金又はNi−Cr−Fe合金であり、低熱
膨張金属層がFe−Ni合金であることを特徴としてい
る。
According to a third aspect of the present invention, there is provided the heat responsive member according to the first aspect.
Alternatively, in the heat responsive member of No. 2, the high thermal expansion metal layer is Mn-
It is a Ni-Cu alloy or a Ni-Cr-Fe alloy, and the low thermal expansion metal layer is a Fe-Ni alloy.

【0010】請求項4に記載の熱応動部材は、請求項1
〜3のいずれかに記載の熱応動部材において、高電導薄
膜の厚みが1.5〜10μmであることを特徴としてい
る。
A heat responsive member according to a fourth aspect is the first aspect.
The heat responsive member according to any one of items 1 to 3 is characterized in that the high-conductivity thin film has a thickness of 1.5 to 10 μm.

【0011】請求項5に記載のサーマルプロテクタは、
前述の課題を解決するため、請求項1〜4のいずれかの
熱応動部材により形成された熱応動素子の一端部又は両
端部に設けられた可動接点が、過熱時に当該熱応動素子
の変形により固定接点から離反するように構成されてい
ることを特徴としている。
The thermal protector according to claim 5 is
In order to solve the above-mentioned problems, the movable contact provided at one end or both ends of the thermoresponsive element formed by the thermoresponsive member according to any one of claims 1 to 4 is deformed by the deformation of the thermoresponsive element when overheated. It is characterized in that it is configured to separate from the fixed contact.

【0012】[0012]

【発明の実施の形態】図1〜図6を参照しながら、本発
明に係る熱応動部材及びサーマルプロテクタの好ましい
実施形態を説明する。 熱応動部材の実施形態 図1はこの実施形態の熱応動部材により加工されたサー
マルプロテクタ用の熱応動素子の平面図、図2は図1の
熱応動素子を構成する熱応動部材の部分拡大断面図であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of a heat responsive member and a thermal protector according to the present invention will be described with reference to FIGS. Embodiment of heat responsive member FIG. 1 is a plan view of a heat responsive element for a thermal protector processed by the heat responsive member of this embodiment, and FIG. 2 is a partially enlarged sectional view of the heat responsive member constituting the heat responsive element of FIG. It is a figure.

【0013】この実施形態の熱応動部材により加工され
た熱応動素子3は、長さL=4.1mm,幅w=1.8
mm,肉厚t=0.07mmに成形されており、80℃
前後で反転作動するように、全体として山形状ないし凸
球面状(又は凸円弧状)に成形されている。熱応動素子
3の長さ方向の両端に張り出した部分の裏面には、例え
ば銀合金からなる可動接点3a,3aが溶接されてい
る。
The heat responsive element 3 processed by the heat responsive member of this embodiment has a length L = 4.1 mm and a width w = 1.8.
mm, wall thickness t = 0.07mm, 80 ℃
It is formed in a mountain shape or a convex spherical shape (or a convex arc shape) as a whole so that it can be reversed in the front-rear direction. Movable contacts 3a, 3a made of, for example, a silver alloy are welded to the back surface of the portion of the thermal responsive element 3 that projects at both ends in the longitudinal direction.

【0014】熱応動部材は、図2のようにMn−Ni−
Cu合金又はNi−Cr−Fe合金からなる高熱膨張金
属層30と、Fe−Ni合金からなる低熱膨張金属層3
1とを例えばクラッドにより積層し、高熱膨張金属層3
0側の表面に、例えばCuその他の高電導率の元素から
なる1.5〜10μm程度の高電導薄膜32を被着して
構成されている。高電導薄膜32は、CuのほかAu,
Ag,Al,Ni,Sn,Rh又はRuを使用すること
ができ、これらの元素は単一でなく複数の元素を選択し
て使用することができる。高電導薄膜32の定着は、例
えば湿式メッキ法,蒸着法及びスパッタ法などにより行
われる。
As shown in FIG. 2, the heat responsive member is Mn-Ni-.
High thermal expansion metal layer 30 made of Cu alloy or Ni-Cr-Fe alloy and low thermal expansion metal layer 3 made of Fe-Ni alloy.
1 is laminated with, for example, a clad to form a high thermal expansion metal layer 3
A high-conductivity thin film 32 made of, for example, Cu or other high-conductivity element and having a thickness of about 1.5 to 10 μm is adhered to the 0-side surface. The high-conductivity thin film 32 is made of Cu, Au,
Ag, Al, Ni, Sn, Rh, or Ru can be used, and a plurality of these elements can be selected and used instead of a single element. The high-conductivity thin film 32 is fixed by, for example, a wet plating method, a vapor deposition method, a sputtering method, or the like.

【0015】高電導薄膜32は、図2のように高熱膨張
金属層30側の表面でなく、図3のように低熱膨張金属
層31側の表面に被着させることができるし、あるい
は、図4のように高熱膨張金属層30側及び低熱膨張金
属層31側の表面に被着させてもよい。
The high-conductivity thin film 32 can be applied to the surface of the low thermal expansion metal layer 31 side as shown in FIG. 3 instead of the surface of the high thermal expansion metal layer 30 side as shown in FIG. As in No. 4, it may be adhered to the surfaces of the high thermal expansion metal layer 30 side and the low thermal expansion metal layer 31 side.

【0016】サーマルプロテクタの実施形態 図5は図1の熱応動素子を利用したサーマルプロテクタ
の断面図、図6は図5のサーマルプロテクタが回路を遮
断した状態の断面図である。ケース1は、例えばポリフ
ェニレンサルファイド(PPS)、液晶ポリマー(LC
P)、ポリブチレンテレフタレート(PBT)その他の
耐熱性に優れた樹脂を材質として成形され、本体10と
当該本体10を密閉した蓋11とにより構成されてい
る。ケース1の本体10には、底部中央に凸状座部12
が形成され、底部の両端部には固定接点2,2が設けら
れ、これらの固定接点2,2はそれぞれケース1の外部
に延び出した各端子20,20へ接続されている。本体
10内には図1のように構成された熱応動素子3が収容
され、当該熱応動素子3の上面中央部は蓋11の内天面
央部部に形成された凸状座部13へ接触しており、その
両端部の可動接点3a,3aはそれぞれ対応する固定接
点2,2へ接触している。本体10は、各固定接点2,
2,各端子20,20などが埋め込み状になるようにこ
れらの部品とともに例えばインサート成形した後、当該
本体10へ超音波溶接法などにより蓋11を接合する。
Embodiment of Thermal Protector FIG. 5 is a sectional view of a thermal protector using the heat responsive element of FIG. 1, and FIG. 6 is a sectional view of the thermal protector of FIG. Case 1 is made of, for example, polyphenylene sulfide (PPS), liquid crystal polymer (LC
P), polybutylene terephthalate (PBT) and other resins having excellent heat resistance are molded and are composed of a main body 10 and a lid 11 sealing the main body 10. The main body 10 of the case 1 includes a convex seat 12 at the center of the bottom.
Is formed, and fixed contacts 2 and 2 are provided at both ends of the bottom, and these fixed contacts 2 and 2 are connected to the respective terminals 20 and 20 extending outside the case 1. A thermoresponsive element 3 configured as shown in FIG. 1 is housed in the main body 10, and a central portion of the upper surface of the thermoresponsive element 3 is connected to a convex seat portion 13 formed in a central portion of an inner top surface of the lid 11. The movable contacts 3a, 3a at both ends thereof are in contact with the corresponding fixed contacts 2, 2, respectively. The main body 10 has fixed contacts 2,
2. After insert molding, for example, with these parts so that the terminals 20, 20 are embedded, the lid 11 is joined to the main body 10 by an ultrasonic welding method or the like.

【0017】図5には、熱応動素子3により可動接点3
a,3aが対応する固定接点2,2へ押し付けられた状
態に接触していて、接点間に正常に電流が流れている状
態が示されている。各接点間に異常な電流が流れるかあ
るいは他の原因によりケース1内の温度が上昇し、ケー
ス1内の温度が熱応動素子3の作動温度以上に達する
と、熱応動素子3がスナップ作用により上方へ凹球面状
を呈するように反転作動する。熱応動素子3は、前記反
転作動により図6で示されているように各可動接点3a
を対応する固定接点2から離反させ、接点間の電流を遮
断する。
In FIG. 5, the movable contact 3 is provided by the thermoresponsive element 3.
It is shown that a and 3a are in contact with the corresponding fixed contacts 2 and 2 pressed against each other, and a current normally flows between the contacts. When an abnormal current flows between the contacts or the temperature in the case 1 rises due to other causes and the temperature in the case 1 reaches the operating temperature of the thermal response element 3 or higher, the thermal response element 3 snaps. The reverse operation is performed so as to present a concave spherical shape upward. The heat responsive element 3 is moved by the reversing operation as shown in FIG.
Are separated from the corresponding fixed contacts 2 to cut off the current between the contacts.

【0018】前記実施形態の熱応動部材からなる熱応動
素子3は、高熱膨張金属層30と低熱膨張金属層31と
が積層され、高熱膨張金属層30側又は/及び低熱膨張
金属層31側の表面に、高電導率の少なくとも一つの元
素からなる高電導薄膜32が被着されてる。そして、高
電導薄膜32の塑性変形の影響が従来のものに比べて極
めて小さいため、前述のように非常に小型に成形した場
合でも、所定の作動温度以上の温度により初期の作動ス
トロークを減ずることなく正確に反転作動を繰り返すこ
とができる。また、前記実施形態のサーマルプロテクタ
は、非常に小型に製造した場合でも性能よく繰り返し正
確に作動する。
The thermal responsive element 3 comprising the thermal responsive member of the above-described embodiment has the high thermal expansion metal layer 30 and the low thermal expansion metal layer 31 laminated, and the high thermal expansion metal layer 30 side and / or the low thermal expansion metal layer 31 side. A highly conductive thin film 32 made of at least one element having a high conductivity is deposited on the surface. Since the influence of the plastic deformation of the high-conductivity thin film 32 is extremely smaller than that of the conventional one, even if it is formed into a very small size as described above, the initial working stroke should be reduced by the temperature above the predetermined working temperature. It is possible to repeat the reversing operation accurately without. Further, the thermal protector according to the above-described embodiment operates with good performance and repeatability even when manufactured in a very small size.

【0019】熱応動部材の前記実施形態において、高電
導薄膜32の厚みは1.5〜10μmであるのが好まし
い。その理由は、高電導薄膜32の厚みが1.5μm未
満では熱応動部材の電気抵抗が大きくなって好ましくな
く、その厚みが10μmを超えると、電気抵抗は十分小
さいが、作動による高熱電導薄膜32の塑性変形の部材
全体に及ぼす影響が大きくなり、前述のように小型のサ
ーマルプロテクタの熱応動素子として成形して繰り返し
作動させると、反転作動が緩慢になり接点が損傷してそ
の寿命が低下することによる。
In the above embodiment of the heat responsive member, the thickness of the high-conductivity thin film 32 is preferably 1.5 to 10 μm. The reason is that if the thickness of the high-conductivity thin film 32 is less than 1.5 μm, the electric resistance of the heat responsive member becomes large, which is not preferable. The effect of plastic deformation on the entire member becomes large, and when it is molded as a thermal response element of a small thermal protector and repeatedly operated as described above, the reversal operation becomes slow and the contact is damaged and its life is shortened. It depends.

【0020】その他の実施形態 本発明に係るサーマルプロテクタは、ケースの内底部の
一端に固定接点を設けてこの固定接点をケース外に延び
出した端子と接続するとともに、一端部に前記固定接点
へ接触する可動接点を設けた熱応動素子をケース内に収
容し、当該熱応動素子の他端部をケース外に延び出した
他の端子へ接続した、いわゆる図8のような形態に構成
することができる。
Other Embodiments In the thermal protector according to the present invention, a fixed contact is provided at one end of the inner bottom of the case, the fixed contact is connected to a terminal extending outside the case, and one end is connected to the fixed contact. A so-called configuration as shown in FIG. 8 in which a thermoresponsive element provided with a movable contact to be contacted is housed in a case and the other end of the thermoresponsive element is connected to another terminal extending outside the case You can

【0021】実施例 Mn−Ni−Cu合金からなる高熱膨張金属層30と、
Fe−Ni合金からなる低熱膨張金属層31とをクラッ
ドし、高熱膨張金属層30側及び低熱膨張金属層31側
のいずれかの一方の表面に、Cuからなる高電導薄膜3
2を湿式メッキ法により0(被着させないもの)〜15
μmまでの間で被着させた数種の熱応動部材のサンプル
を製造した。これらの各サンプルを用いて図1及び図5
のような形態の熱応動素子3を成形(長さL=4.1m
m,幅w=1.8mm,肉厚t=0.07mm)し、そ
れぞれの両端部にCu合金(Ni:10mass%を含
む合金)の可動接点3a,3aを溶接した。これらの熱
応動素子を図5のような形態のサーマルプロテクタにそ
れぞれ組み込み、各端子20,20間の電気抵抗を四端
子法により測定した。なお、各固定接点2の材質は可動
接点3aと同様な材質とした。その結果を図7に示した
が、同図のように、高電導薄膜32が被着されていない
サンプルでは電気抵抗が30mΩ以上であったが、当該
薄膜32が1.5μm以上のサンプルでは電気抵抗が1
5mΩ以下であった。特に高電導薄膜32が2μm以上
のサンプルでは、10mΩ以下の小さい電気抵抗を示し
た。
EXAMPLE A high thermal expansion metal layer 30 made of an Mn-Ni-Cu alloy,
A high-conductivity thin film 3 made of Cu is clad with a low thermal expansion metal layer 31 made of an Fe-Ni alloy, and is formed on one surface of the high thermal expansion metal layer 30 side and the low thermal expansion metal layer 31 side.
2 by wet plating method 0 (thing not to be adhered) to 15
Samples of several heat responsive members deposited up to μm were manufactured. 1 and 5 using each of these samples.
Mold the thermo-responsive element 3 in the form as shown below (length L = 4.1 m
m, width w = 1.8 mm, wall thickness t = 0.07 mm), and movable contacts 3a, 3a of Cu alloy (Ni: alloy containing 10 mass%) were welded to both ends. Each of these thermal actuators was incorporated into a thermal protector having a configuration as shown in FIG. 5, and the electric resistance between the terminals 20 and 20 was measured by the four-terminal method. The material of each fixed contact 2 was the same as that of the movable contact 3a. The results are shown in FIG. 7. As shown in FIG. 7, the sample in which the high-conductivity thin film 32 was not deposited had an electric resistance of 30 mΩ or more, but the sample in which the thin film 32 had a thickness of 1.5 μm or more showed an electric resistance. Resistance is 1
It was 5 mΩ or less. In particular, the sample in which the high-conductivity thin film 32 had a thickness of 2 μm or more showed a small electric resistance of 10 mΩ or less.

【0022】また、両端子20,20間に電流(直流6
V−5A)を流し、接点寿命を試験するとともに、熱応
動素子の作動状態を透過X線装置を用いて観察した。そ
の結果、高電導薄膜32が1.5〜10μmであるサン
プルによる熱応動素子を用いたサーマルプロテクタで
は、それらの熱応動素子が多数回繰り返し正確に反転作
動し、10,000回以上回路を遮断することができ
た。他方、高電導薄膜32が10μmを超えるサンプル
による熱応動素子を用いたサーマルプロテクタは、各可
動接点3a,3aの固定接点2,2に対する接触離反の
作動が経時的に緩慢になり、接点損傷の激化により接点
寿命の低下が認められた。以上の結果により、サーマル
プロテクタの熱応動素子として使用される熱応動部材に
あっては、電気抵抗値と接点寿命との関係から、高電導
薄膜32の厚みが1.5〜10μmであるのが好まし
い。なお、高熱膨張金属層30側及び低熱膨張金属層3
1側の両面に高電導薄膜を被着させた同様なサンプルに
ついても、前述と同様な試験を行ったところほぼ同様な
結果を得た。
In addition, a current (DC 6
V-5A) was made to flow, the contact life was tested, and the operating state of the thermoresponsive element was observed using a transmission X-ray apparatus. As a result, in the thermal protector using the thermo-responsive element based on the sample in which the high-conductivity thin film 32 has a thickness of 1.5 to 10 μm, those thermo-responsive elements are repeatedly inverted correctly many times to break the circuit 10,000 times or more. We were able to. On the other hand, in the thermal protector using the heat responsive element made of the sample in which the high-conductivity thin film 32 exceeds 10 μm, the contact separation operation of the movable contacts 3a, 3a with respect to the fixed contacts 2, 2 becomes slow with the passage of time, and the contact damage is prevented. The shortening of the contact life was recognized due to intensification. From the above results, in the heat responsive member used as the heat responsive element of the thermal protector, the thickness of the high-conductivity thin film 32 is 1.5 to 10 μm because of the relationship between the electrical resistance value and the contact life. preferable. The high thermal expansion metal layer 30 side and the low thermal expansion metal layer 3
The same test was performed on the same sample with the high-conductivity thin film deposited on both surfaces on the 1 side, and the same result was obtained.

【0023】[0023]

【発明の効果】請求項1〜請求項3の発明に係る熱応動
部材によれば、高熱膨張金属層と低熱膨張金属層とが積
層され、高熱膨張金属層側又は/及び低熱膨張金属層側
の表面に高電導率の少なくとも一つの元素からなる高電
導薄膜が被着されていて、高電導薄膜の塑性変形の影響
が従来のものに比べて極めて小さいため、熱応動素子を
非常に小型に成形した場合でも、所定の作動温度以上の
温度により初期の作動ストロークを減ずることなく反転
作動を正確に多数回繰り返すことができる。
According to the heat responsive member of the present invention, the high thermal expansion metal layer and the low thermal expansion metal layer are laminated, and the high thermal expansion metal layer side and / or the low thermal expansion metal layer side is formed. Since the high-conductivity thin film consisting of at least one element with high conductivity is deposited on the surface of the, and the influence of plastic deformation of the high-conductivity thin film is much smaller than the conventional one, the thermal response element can be made very small. Even in the case of molding, the reversing operation can be accurately repeated many times without reducing the initial operation stroke due to the temperature higher than the predetermined operation temperature.

【0024】請求項4の発明に係る熱応動部材によれ
ば、前記高電導薄膜の厚みが1.5〜10μmであり、
電気抵抗が小さくかつ10,000回以上安定して正確
に作動を繰り返すため、特にサーマルプロテクタの熱応
動素子として使用するのに適する。
According to the heat responsive member of the invention of claim 4, the high-conductivity thin film has a thickness of 1.5 to 10 μm,
Since it has a small electric resistance and repeats stable and accurate operation 10,000 times or more, it is particularly suitable for use as a thermal response element of a thermal protector.

【0025】請求項5の発明に係るサーマルプロテクタ
によれば、請求項1〜4のいずれかに記載の熱応動部材
により形成された熱応動素子により作動するので、小型
に製造した場合でも性能よく繰り返し正確に作動する。
According to the thermal protector of the fifth aspect of the invention, since it operates by the thermal responsive element formed by the thermal responsive member of any one of the first to fourth aspects, it has good performance even when manufactured in a small size. It works correctly and repeatedly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による実施形態の熱応動部材からなるサ
ーマルプロテクタ用の熱応動素子の平面図である。
FIG. 1 is a plan view of a heat responsive element for a thermal protector including a heat responsive member according to an embodiment of the present invention.

【図2】図1の熱応動素子を構成する熱応動部材の部分
拡大断面図である。
FIG. 2 is a partially enlarged cross-sectional view of a heat responsive member forming the heat responsive element of FIG.

【図3】本発明による熱応動部材の他の実施形態を示す
部分拡大断面図である。
FIG. 3 is a partially enlarged cross-sectional view showing another embodiment of the heat responsive member according to the present invention.

【図4】本発明による熱応動部材のさらに他の実施形態
を示す部分拡大断面図である。
FIG. 4 is a partial enlarged cross-sectional view showing still another embodiment of the heat responsive member according to the present invention.

【図5】本発明による一実施形態のサーマルプロテクタ
の断面図である。
FIG. 5 is a sectional view of a thermal protector according to an embodiment of the present invention.

【図6】図5のサーマルプロテクタの可動接点が固定接
点から離反している状態の断面図である。
6 is a cross-sectional view of a movable contact of the thermal protector of FIG. 5 in a state of being separated from a fixed contact.

【図7】本発明に係る熱応動部材の高電導薄膜の厚みと
電気抵抗との関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the thickness and the electrical resistance of the high-conductivity thin film of the heat responsive member according to the present invention.

【図8】従来の熱応動部材による熱応動素子を利用した
サーマルプロテクタの断面図である。
FIG. 8 is a cross-sectional view of a thermal protector using a conventional thermal response element including a thermal response member.

【図9】図8のサーマルプロテクタで使用された熱応動
素子の部分拡大断面図である。
9 is a partially enlarged cross-sectional view of a heat responsive element used in the thermal protector of FIG.

【符号の説明】[Explanation of symbols]

1 ケース 10 本体 11 蓋 12,13 凸状座部 2,2a 固定接点 20,20a,40a 端子 3,4 熱応動素子 3a,4a 可動接点 30,40 高熱膨張金属層 31,41 低熱膨張金属層 32 高電導薄膜 42 高電導層 1 case 10 body 11 lid 12, 13 convex seat 2,2a fixed contact 20, 20a, 40a terminals 3,4 Thermal response element 3a, 4a movable contact 30,40 High thermal expansion metal layer 31,41 Low thermal expansion metal layer 32 High conductivity thin film 42 High conductivity layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永井 健史 栃木県日光市清滝新細尾528−5 古河精 密金属工業株式会社 Fターム(参考) 5G041 AA03 AA13 BB06 BB08 CA07 CA13 CC01 CD10 DA02 DB01 DC03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takeshi Nagai             528-5 Kiyotaki Shinhosoo, Nikko City, Tochigi Prefecture             Misaki Metal Industry Co., Ltd. F term (reference) 5G041 AA03 AA13 BB06 BB08 CA07                       CA13 CC01 CD10 DA02 DB01                       DC03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高熱膨張金属層と低熱膨張金属層とが積
層され、高熱膨張金属層側又は/及び低熱膨張金属層側
の表面に高電導率の少なくとも一つの元素からなる高電
導薄膜が被着されていることを特徴とする、熱応動部
材。
1. A high-thermal-expansion metal layer and a low-thermal-expansion metal layer are laminated, and a high-conductivity thin film made of at least one element having high conductivity is coated on the surface of the high-heat expansion metal layer side and / or the low-heat expansion metal layer side. A heat responsive member characterized by being worn.
【請求項2】 高電導薄膜が、Au,Ag,Cu,A
l,Ni,Sn,Rh又はRuの中から選ばれる一又は
複数の元素であることを特徴とする、請求項1に記載の
熱応動部材。
2. The high-conductivity thin film is Au, Ag, Cu, A
The heat responsive member according to claim 1, wherein the heat responsive member is one or more elements selected from 1, Ni, Sn, Rh, or Ru.
【請求項3】 高熱膨張金属層がMn−Ni−Cu合金
又はNi−Cr−Fe合金であり、低熱膨張金属層がF
e−Ni合金であることを特徴とする、請求項1又は2
に記載の熱応動部材。
3. The high thermal expansion metal layer is a Mn—Ni—Cu alloy or a Ni—Cr—Fe alloy, and the low thermal expansion metal layer is F.
It is an e-Ni alloy, It is characterized by the above-mentioned.
The heat responsive member according to.
【請求項4】 高電導薄膜の厚みが1.5〜10μmで
あることを特徴とする、請求項1〜3のいずれかに記載
の熱応動部材。
4. The heat responsive member according to claim 1, wherein the high-conductivity thin film has a thickness of 1.5 to 10 μm.
【請求項5】 請求項1〜4のいずれかに記載の熱応動
部材により形成された熱応動素子の一端部又は両端部に
設けられた可動接点が、過熱時に当該熱応動素子の変形
により固定接点から離反するように構成されていること
を特徴とするサーマルプロテクタ。
5. A movable contact provided at one end or both ends of a thermoresponsive element formed of the thermoresponsive member according to claim 1, is fixed by deformation of the thermoresponsive element when overheated. A thermal protector characterized by being configured to separate from a contact.
JP2001361694A 2001-11-27 2001-11-27 Thermally actuated member and thermal protector Pending JP2003162947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361694A JP2003162947A (en) 2001-11-27 2001-11-27 Thermally actuated member and thermal protector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361694A JP2003162947A (en) 2001-11-27 2001-11-27 Thermally actuated member and thermal protector

Publications (1)

Publication Number Publication Date
JP2003162947A true JP2003162947A (en) 2003-06-06

Family

ID=19172305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361694A Pending JP2003162947A (en) 2001-11-27 2001-11-27 Thermally actuated member and thermal protector

Country Status (1)

Country Link
JP (1) JP2003162947A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103280378A (en) * 2013-05-30 2013-09-04 苏州华旃航天电器有限公司 Hand-reset thermal protector
JP2014534629A (en) * 2011-10-12 2014-12-18 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブCommissariat Al’Energie Atomique Et Aux Energiesalternatives Safe thermoelectric device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014534629A (en) * 2011-10-12 2014-12-18 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブCommissariat Al’Energie Atomique Et Aux Energiesalternatives Safe thermoelectric device
CN103280378A (en) * 2013-05-30 2013-09-04 苏州华旃航天电器有限公司 Hand-reset thermal protector

Similar Documents

Publication Publication Date Title
CN103460327A (en) Thermal protector and battery using same
JP3779865B2 (en) Battery breaker
JP2005129471A (en) Thermal protector
JP2012160317A (en) Breaker
US20030122650A1 (en) Thermal protector
JP2003297204A (en) Thermal protector
JP2018206732A (en) breaker
JP6457810B2 (en) Breaker, safety circuit including the same, and secondary battery circuit.
JP2003162947A (en) Thermally actuated member and thermal protector
JP6997689B2 (en) Breaker, safety circuit and rechargeable battery pack
JP6592299B2 (en) Breaker, safety circuit including the same, and secondary battery circuit.
JP2005267932A (en) Thermal protector
JP2004220944A (en) Thermal protector
JP6560548B2 (en) Breaker and safety circuit equipped with it.
KR20040032057A (en) Thermally reactive switch
JP2013020864A (en) Thermal protector
JP2003115246A (en) Thermal protector
JP2017016997A (en) Temperature sensible electronic component
JP2003178659A (en) Thermal protector
JP2005183094A (en) Heat-responsive member and thermal protector equipped with conductive thin film and metal layer
JP2001118479A (en) Current breaker
JP2006031955A (en) Thermal switch
JP3632754B2 (en) Battery breaker
JP2002289077A (en) Thermal protector
JP6979127B2 (en) Breaker, safety circuit and rechargeable battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040914

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20061228

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070206

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605