JP2003162156A - Method for simulating transfer mechanism - Google Patents

Method for simulating transfer mechanism

Info

Publication number
JP2003162156A
JP2003162156A JP2001363322A JP2001363322A JP2003162156A JP 2003162156 A JP2003162156 A JP 2003162156A JP 2001363322 A JP2001363322 A JP 2001363322A JP 2001363322 A JP2001363322 A JP 2001363322A JP 2003162156 A JP2003162156 A JP 2003162156A
Authority
JP
Japan
Prior art keywords
toner
transfer
members
calculated
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001363322A
Other languages
Japanese (ja)
Inventor
Atsushi Ochi
淳 越智
Akira Kamikoro
明 神頃
Akio Miyori
明男 見寄
浩司 ▲たに▼
Koji Tani
Yasuto Taniguchi
康人 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Japan Research Institute Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Japan Research Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd, Japan Research Institute Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2001363322A priority Critical patent/JP2003162156A/en
Publication of JP2003162156A publication Critical patent/JP2003162156A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning In Electrography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately analyze various information useful for transfer performance such as transfer efficiency of toner while taking the time wise change of electric fields associated with the movement of members into consideration. <P>SOLUTION: Each member of a toner carrier, the toner, printed matter and a transfer material which are used for the transfer mechanism of an electrophotography system and clearance parts between respective members are approximated with a finite element model divided into many elements by the finite number of nodes. Initial conditions and boundary conditions are set by inputting required data in each element. Electric field distribution between the members is calculated by using the equation of Poisson from the distribution of electric charges at each node when applying voltage between respective members. The moving amount of the electric charges is calculated by using the Ohm's law from electric fields generated between respective members. The toner is assumed to the charged particles, and the moving amount of the toner is calculated according to a potential difference between the toner and the members by using the moving diffusion equation of the particles, then the positions of the nodes are changed following the positional movements of the members. The moving amounts of the electric charges and toner are calculated moment by moment in the same way, and the transfer performance is analyzed by a finite element method. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、転写機構のシミュ
レーション方法に関し、詳しくは、部材の位置移動やト
ナーの帯電を考慮して、実際の転写機構を精度良く予測
・解析するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transfer mechanism simulating method, and more specifically, it accurately predicts and analyzes an actual transfer mechanism in consideration of positional movement of members and toner charging.

【0002】[0002]

【従来の技術】プリンター、複写機、ファクシミリ装置
等の電子写真装置や静電記録装置等で用いられる中間転
写ベルト等の転写機構の開発においては、設計と試作、
実験と評価を行い、改良品をさらに試作するという方法
が繰り返して行われていた。しかし、試作を繰り返す方
法では、試作の費用とコストがかかるため開発効率が悪
かった。
2. Description of the Related Art In developing a transfer mechanism such as an intermediate transfer belt used in an electrophotographic device such as a printer, a copying machine, a facsimile device, an electrostatic recording device, etc., design and trial manufacture,
The method of conducting experiments and evaluations and further making prototypes of improved products was repeated. However, the method of repeating trial manufacture has a low development efficiency because of the cost and cost of trial manufacture.

【0003】従って、試作の費用と時間の節約等のため
に、試作を行わないシミュレーションを用いた製品開発
が提案されており、上記のような電子写真装置の転写機
構においても有限要素法による数値シミュレーションが
導入され、各部材の帯電状況等、ある程度の製品性能の
予測が可能となってきている。
Therefore, in order to save the cost and time of trial production, product development using simulation without trial production has been proposed, and the numerical value by the finite element method is also used in the transfer mechanism of the electrophotographic apparatus as described above. With the introduction of simulations, it has become possible to predict product performance to some extent, such as the charging status of each member.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、シミュ
レーションを行うベルト等の部材の形状や回転に伴う位
置移動、帯電したトナーの移動を考慮することは困難で
あり、シミュレーションにより実使用時の性能を正確に
予測・解析することができないという問題がある。ま
た、モデルの設定条件によっては、転写条件や部材の形
状を変更した場合、モデルを作り直す必要があり汎用性
の高いシミュレーション方法が望まれている。
However, it is difficult to consider the shape movement of a member such as a belt or the like which is to be simulated, the position movement due to rotation, and the movement of charged toner. There is a problem that it cannot be predicted and analyzed. Further, depending on the setting conditions of the model, it is necessary to remake the model when the transfer condition or the shape of the member is changed, and a simulation method having high versatility is desired.

【0005】このように、従来の転写機構のシミュレー
ションでは、中間転写ベルト等を用いた実際の転写機構
におけるトナーの転写効率等については解析ができない
のが現状であった。特に、高画質を達成するには、ベル
ト、トナー、転写条件等の各種パラメータの最適化が重
要であるため、部材間の電界状況やトナーの転写効率等
を予測可能なシミュレーション方法が要求されている。
As described above, in the conventional simulation of the transfer mechanism, it has not been possible to analyze the transfer efficiency of toner in the actual transfer mechanism using the intermediate transfer belt or the like. In particular, in order to achieve high image quality, it is important to optimize various parameters such as belt, toner, transfer conditions, etc. Therefore, a simulation method that can predict the electric field condition between members and the transfer efficiency of toner is required. There is.

【0006】本発明は上記した問題に鑑みてなされたも
のであり、部材の位置移動に伴う電界の時間変化を考慮
し、トナーの転写効率等の転写性能に有用な種々の情報
を精度良く解析できる転写機構のシミュレーション方法
を提供することを課題としている。
The present invention has been made in view of the above problems, and accurately analyzes various information useful for transfer performance such as toner transfer efficiency in consideration of the time change of the electric field due to the position movement of the member. An object of the present invention is to provide a simulation method of a transfer mechanism that can be performed.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、転写機構に用いられるトナー担持体、ト
ナー、被印刷体、転写材の各部材及び各部材間の空隙部
を、有限個の節点により多数の要素に分割した有限要素
モデルで近似し、各要素に所要データを入力することで
初期条件、境界条件を設定し、上記各部材への電圧印加
時の各節点における電荷の分布からポアソンの方程式を
用いて部材及び部材間の電界分布を算出し、上記各部材
及び部材間に生じる電界からオームの法則を用いて電荷
の移動量を算出すると共に、上記トナーを荷電粒子とみ
なし、粒子の移動拡散方程式を用いてトナーと部材との
電位差によりトナーの移動量を算出した後に、上記部材
の位置移動に伴い節点の位置を変更し、上記同様に電荷
及びトナーの移動量を時々刻々繰り返し算出することで
有限要素法により転写性能を解析していることを特徴と
する転写機構のシミュレーション方法を提供している。
In order to solve the above-mentioned problems, the present invention provides a toner carrier, a toner, a material to be printed, each member of a transfer material used in a transfer mechanism, and a finite space between each member. Approximate with a finite element model divided into a large number of elements by each node, set the initial condition and boundary condition by inputting the required data to each element, the charge of each node when applying voltage to each member The electric field distribution between the members and the members is calculated from the distribution using Poisson's equation, and the amount of charge transfer is calculated using Ohm's law from the electric fields generated between the members and the members. Assuming that the movement amount of toner is calculated from the potential difference between the toner and the member using the movement diffusion equation of particles, the position of the node is changed according to the position movement of the member, and the movement amount of the charge and toner is changed in the same manner as above. The finite element method by momentarily repeatedly calculated provides a simulation method of a transfer mechanism, wherein the parsing the transfer performance.

【0008】このように、本発明では、有限要素モデル
を用い、上記各部材の位置移動に伴い節点の位置を変更
し、電荷及びトナーの移動量を時々刻々繰り返し算出
し、電界の変化及びトナーの転写効率等を有限要素法に
より解析している。このため、部材の位置移動に伴う部
材間の間隙の変化とトナー及び電荷の移動、及びそれに
伴う電界分布の時間変化を動的に表現することが可能と
なる上に、トナーの転写効率等の転写性能に有用な種々
の情報を精度良く得ることができる。また、各時間にお
ける各部材の位置関係を変化させるだけで、部材の速度
条件を変更したシミュレーションを容易に行うことが可
能となり、部材の形状、送りスピード、材質等の最適化
を容易に図ることができる。従って、電子写真装置や静
電記録装置等の転写機構において、試作を行うことな
く、有用な情報が得られるため、開発効率を向上するこ
とができる。
As described above, the present invention uses the finite element model to change the positions of the nodes according to the position movements of the above-mentioned members, calculate the amount of movement of the charge and the toner repeatedly every moment, and change the electric field and the toner. The transfer efficiency, etc. of is analyzed by the finite element method. Therefore, it is possible to dynamically express the change in the gap between the members due to the position movement of the members, the movement of the toner and the electric charge, and the time change of the electric field distribution accompanying the movement. Various information useful for transfer performance can be accurately obtained. In addition, by changing the positional relationship of each member at each time, it is possible to easily perform simulation with changing the speed condition of the member, and to easily optimize the shape, feed speed, material, etc. of the member. You can Therefore, in a transfer mechanism such as an electrophotographic device or an electrostatic recording device, useful information can be obtained without making a prototype, so that development efficiency can be improved.

【0009】本発明では、中間転写ベルト等のトナー担
持体、トナー、紙等の被印刷体、転写ローラ等の転写材
の各部材及び各部材間の空隙部を、有限個の節点により
多数の要素にメッシュ分割した有限要素モデルで近似し
ている。上記有限要素モデルでは、部材数、部材の位置
移動の方向、空隙数を設定し、各部材の移動距離を時々
刻々解析する設定としている。また、有限要素モデルの
形状データでは、各部材の間は2重節点とされ空隙部を
形成しており、空隙部は、電荷が初期形状の2重節点間
を移動するものとしている。初期の節点の位置は、部材
の初期形状と時刻0での部材の移動距離で決められ、各
時刻で、各部材の節点は与えられた移動距離に従って移
動するように設定されており、時刻の間は線形補間され
る。さらに、各部材では、紙等の被印刷体との近傍にお
いて節点の間隔が狭くなるように要素を分割するのが好
ましく、空隙部では、指定された要素数に分割され、部
材の位置移動の距離によらず常に一定とするのが好まし
い。なお、各要素に入力する所要データとしては、各部
材の体積電荷密度q、比誘電率ε’、真空の誘電率ε
等が挙げられ、これらのデータを各部材毎に個別に設定
することができる。
In the present invention, a toner carrier such as an intermediate transfer belt, a material to be printed such as toner and paper, a member of a transfer material such as a transfer roller, and a space between the members are formed by a finite number of nodes. It is approximated by a finite element model that is mesh-divided into elements. In the finite element model, the number of members, the direction of position movement of the members, and the number of voids are set, and the moving distance of each member is analyzed moment by moment. In addition, in the shape data of the finite element model, a double node is formed between each member to form a void portion, and in the void portion, the electric charge moves between the double nodes of the initial shape. The position of the initial node is determined by the initial shape of the member and the moving distance of the member at time 0. At each time, the node of each member is set to move according to the given moving distance. Linear interpolation is performed between them. Further, in each member, it is preferable to divide the element so that the interval between the nodes becomes narrow in the vicinity of the printing object such as paper, and in the void portion, the element is divided into a specified number of elements to prevent the position movement of the member. It is preferable that the distance is always constant regardless of the distance. The required data to be input to each element are the volume charge density q of each member, the relative permittivity ε ′, and the vacuum permittivity ε 0.
Etc., and these data can be set individually for each member.

【0010】上記有限要素モデルは一次元モデルで構成
することが好ましい。これにより、モデリングを容易に
することができると共に、モデル化した各部材の回転に
伴う移動を容易に表現することができる。なお、有限要
素モデルは、二次元モデルとすることもできる。
The finite element model is preferably a one-dimensional model. As a result, modeling can be facilitated, and movement of each modeled member due to rotation can be easily represented. The finite element model may be a two-dimensional model.

【0011】トナー担持体として中間転写ベルト、転写
材として転写ローラを用い、トナー、各種紙・フィルム
等の被印刷体から形成される中間転写ベルトを用いた二
次転写部の転写機構において、本発明のシミュレーショ
ンは特に好適に用いることができる。トナーを荷電粒子
として扱うと共に、トナー担持体の回転に伴う位置移動
を考慮できるため、トナー像が転写された中間転写ベル
トが回転し、中間転写ベルトと転写ローラとの間に供給
された紙等の被印刷体にトナー像が転写され、このトナ
ー像が定着されて、画像が形成される場合のトナーの転
写効率等の解析に有用である。
In the transfer mechanism of the secondary transfer section, the intermediate transfer belt is used as the toner carrier, the transfer roller is used as the transfer material, and the intermediate transfer belt is formed from the material to be printed such as toner and various papers / films. The simulation of the invention can be used particularly preferably. Since the toner is treated as charged particles and the position movement due to the rotation of the toner carrier can be considered, the intermediate transfer belt on which the toner image is transferred rotates, and the paper or the like supplied between the intermediate transfer belt and the transfer roller. It is useful for analyzing the transfer efficiency of toner when an image is formed by transferring a toner image onto a printing medium and fixing the toner image.

【0012】上記各部材への電圧印加時の各節点におけ
る電荷の分布から下記のポアソンの方程式(式1)を用
いて各部材及び部材間の電位を算出している。ここで、
yは転写材の下端からの距離、Vは電位としている。 (式1) また、式1により算出した電位から下記の式2を用いて
部材及び部材間の電界分布を算出している。ここで、E
は電界としている。 (式2) このように電界分布を算出することで、各節点における
電荷を動かす力が求められることとなる。
From the distribution of charges at each node when a voltage is applied to each member, the Poisson's equation (Equation 1) below is used to calculate the potential between each member and each member. here,
y is a distance from the lower end of the transfer material, and V is a potential. (Equation 1) Further, the electric field distribution between the members and the members is calculated by using the following Expression 2 from the potential calculated by the Expression 1. Where E
Is the electric field. (Formula 2) By calculating the electric field distribution in this way, the force for moving the electric charge at each node is obtained.

【0013】上記各部材及び部材間に生じる電界からオ
ームの法則(下記の式3)を用いて電荷の移動量を算出
している。ここで、σは電気伝導度、tは時間としてい
る。 (式3) さらに、上記トナーを荷電粒子とみなし、粒子の移動拡
散方程式(下記の式4)を用いて該トナーと部材間(被
印刷体とトナー間、あるいは転写材とトナー間)の電位
差によりトナーの移動量を算出している。ここで、Nは
粒子の種類の数、Niは粒子iの粒子数密度、Ciは粒
子jから粒子iへの遷移を表す係数、viは粒子iの移
動速度、Diは粒子iの拡散係数、Fiは粒子数とその
空間微分及び粒子速度からなる関数としている。 (式4) このように、電界及び電位差から、電荷及びトナーの移
動量を求めることができる。ここで、ベルト等のトナー
担持体、被印刷体、ローラ等の転写材の各節点における
電荷と、トナーとは別の電荷として設定しており、トナ
ーの移動範囲はトナー担持体と被印刷体の間の空間に限
定され、放電現象は起こらないものとしている。また、
トナーはトナー担持体の表面の節点に存在させている。
なお、電圧印加により、転写材の下端において一定電圧
まで電荷が蓄えられた後に各部材に随時電荷が流れる設
定としている。
The amount of charge transfer is calculated from the above-mentioned members and the electric field generated between the members using Ohm's law (Equation 3 below). Here, σ is electric conductivity and t is time. (Formula 3) Further, the toner is regarded as charged particles, and the migration of the toner is caused by the potential difference between the toner and the member (the material to be printed and the toner, or the transfer material and the toner) using the particle diffusion equation (Equation 4 below). The amount is calculated. Here, N is the number of types of particles, Ni is the particle number density of particle i, Ci is a coefficient representing the transition from particle j to particle i, vi is the moving speed of particle i, Di is the diffusion coefficient of particle i, Fi is a function consisting of the number of particles, their spatial differentiation and particle velocity. (Equation 4) In this way, the movement amount of the charge and the toner can be obtained from the electric field and the potential difference. Here, the charge at each node of the toner carrying member such as a belt, the printing target, and the transfer material such as the roller and the charge different from that of the toner are set, and the moving range of the toner is the toner carrying member and the printing target. It is assumed that the discharge phenomenon does not occur because it is limited to the space between them. Also,
The toner is present at the nodes on the surface of the toner carrier.
It should be noted that, by applying a voltage, the electric charge is stored at the lower end of the transfer material up to a constant voltage, and then the electric charge is set to flow to each member as needed.

【0014】上記のように電荷及びトナーの移動量を求
めた後に、再度、上記部材の位置移動に伴い節点の位置
を変更し、上記同様に電荷及びトナーの移動量を時々刻
々繰り返し算出し、電界の変化及びトナーの転写効率等
を有限要素法により解析している。このように、ベルト
等のトナー担持体の回転移動等に伴い部材モデルの接点
の位置及び空隙部を適宜変更し、時々刻々の電荷等の移
動量を算出することで、位置移動後の各節点における電
荷を順次算出することができ、各部材の位置移動を考慮
した解析を行うことができる。従って、ベルト等のトナ
ー担持体と被印刷体やローラ等の転写材との各部材間の
距離や移動速度に応じて、種々のパターンにより転写性
能を算出することができる。
After obtaining the charge and toner movement amounts as described above, the positions of the nodes are changed again with the movement of the member, and the charge and toner movement amounts are repeatedly calculated in the same manner as above. The change in electric field and the transfer efficiency of toner are analyzed by the finite element method. In this way, by appropriately changing the positions of contact points and gaps of the member model in accordance with the rotational movement of the toner carrier such as the belt, and calculating the amount of movement of electric charge and the like moment by moment, each node after the position movement It is possible to sequentially calculate the electric charges in, and it is possible to perform an analysis in consideration of the position movement of each member. Therefore, the transfer performance can be calculated from various patterns according to the distance and the moving speed between the toner carrier such as the belt and the transfer material such as the printing medium and the roller.

【0015】上記各部材間の間隔に対応させて放電が起
こる電圧差を設定し、放電電荷量をパッシェンの法則に
より算出していることが好ましい。具体的には下記の式
5、6に示すように、部材の間隙をg[μm]とした
時、下記電圧差ΔV[V]以上で放電が起こるとしてい
る。 (式5) その時の放電電荷量は、各々の部材の厚みをdi、放電
電極の誘電厚みをD、比誘電率をεi’とし、部材の表
面電位が放電によってV1からV2へと変化した場合、
式6により(i=1、2…)(d=1要素の長さ) (式6) と規定することができる。これにより、電荷がどれだけ
放電されたかを求めることができ、転写ローラ等の転写
材の抵抗値等の変更に伴う電界の変化等の情報を精度良
く得ることができる。なお、本発明のシミュレーション
においては、部材の間隙gは限りなく小さい値となる
が、0とならないような設定としており、転写材をスポ
ンジロールとした場合等も想定することができ、精度良
く解析できる。
It is preferable that the voltage difference causing the discharge is set in correspondence with the interval between the above-mentioned members, and the discharge charge amount is calculated by Paschen's law. Specifically, as shown in the following formulas 5 and 6, when the gap between the members is set to g [μm], discharge occurs at a voltage difference ΔV [V] or more below. (Equation 5) The discharge charge amount at that time is, when the thickness of each member is di, the dielectric thickness of the discharge electrode is D, the relative permittivity is εi ′, and when the surface potential of the member changes from V1 to V2 due to discharge,
From Equation 6, (i = 1, 2 ...) (D = 1 element length) (Equation 6) Can be defined as As a result, it is possible to obtain how much the electric charge has been discharged, and it is possible to accurately obtain information such as a change in the electric field due to a change in the resistance value of the transfer material such as the transfer roller. In addition, in the simulation of the present invention, the gap g between the members is set to a value that is infinitely small, but is set so as not to be 0, and it is possible to assume a case where the transfer material is a sponge roll. it can.

【0016】即ち、同一物質内の電荷の移動をオームの
法則により考慮し、異なる物質間の電荷の移動をパッシ
ェンの法則により考慮している。なお、放電現象が起こ
らず被印刷物が帯電されていない場合でも、トナー担持
体と被転写物が近接すればトナーの移動は起こり得る設
定としている。
That is, the movement of charges in the same substance is considered by Ohm's law, and the movement of charges between different substances is considered by Paschen's law. Even if the discharge phenomenon does not occur and the printing material is not charged, the toner may be moved if the toner carrier and the transfer material come close to each other.

【0017】また、解析対象としは、トナー担持体、ト
ナー、被印刷体、転写材を備えた種々の転写機構が挙げ
られ、一次転写にも二次転写にも適用が可能であるが、
特に、中間転写ベルトを用いた二次転写部の転写機構に
ついて好適に解析することができる。
Further, various objects of analysis include various transfer mechanisms including a toner carrier, toner, a material to be printed, and a transfer material, which can be applied to both primary transfer and secondary transfer.
In particular, the transfer mechanism of the secondary transfer section using the intermediate transfer belt can be preferably analyzed.

【0018】上記転写機構に用いられる中間転写ベルト
等のトナー担持体や転写材の材質としては、導電性を有
する種々のゴム、樹脂、エラストマーが挙げられ、これ
らを充填剤等と共に適宜組み合わせたものでも良い。具
体的には、イオン導電性ポリマー、金属酸化物の粉末や
カーボンブラック等の導電性充填剤等を配合したポリマ
ー等が挙げられる。
Examples of the material of the toner carrier and the transfer material such as the intermediate transfer belt used in the transfer mechanism include various conductive rubbers, resins and elastomers, which are appropriately combined with a filler and the like. But good. Specific examples thereof include an ion conductive polymer, a polymer containing powder of a metal oxide, a conductive filler such as carbon black, and the like.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照して説明する。本発明の転写機構のシミュレーショ
ン方法は、本発明のシミュレーション方法のプログラム
が保存された記憶装置やCPU等を備えたコンピュータ
等から構成されるシミュレーション装置により、シミュ
レーション用プログラムを実行することで行われる。
DETAILED DESCRIPTION OF THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. The simulation method of the transfer mechanism of the present invention is performed by executing the simulation program by a simulation device including a storage device in which the program of the simulation method of the present invention is stored, a computer including a CPU, and the like.

【0020】図1は、本発明の転写機構のシミュレーシ
ョン方法のフローチャートを示す。まず、電子写真方式
の転写機構に用いられるベルト等のトナー担持体、トナ
ー、被印刷体、ローラ等の転写材の各部材及び各部材間
の空隙部を、有限個の節点により多数の要素に分割した
有限要素モデルで近似し、各要素に所要データを入力す
ることで初期条件、境界条件を設定している。
FIG. 1 shows a flow chart of a transfer mechanism simulation method of the present invention. First, each member of the transfer material such as a toner carrier such as a belt used for an electrophotographic transfer mechanism, a toner, an object to be printed, a roller, and the space between each member are formed into a large number of elements by a finite number of nodes. The initial conditions and boundary conditions are set by approximating with the divided finite element model and inputting required data to each element.

【0021】次に、上記各部材への電圧印加時の各節点
における電荷の分布からポアソンの方程式を用いて、有
限要素法を用いたシミュレーションにより各部材及び部
材間の電界分布を算出している。そして、上記各部材及
び部材間に生じる電界からオームの法則を用いて電荷の
移動量を算出すると共に、上記トナーを荷電粒子とみな
し、粒子の移動拡散方程式を用いて該トナーと部材間の
電位差によりトナーの移動量を算出している。その際、
上記各部材間の間隔に対応させて放電が起こる電圧差を
設定し、放電電荷量をパッシェンの法則により算出して
いる。
Next, the electric field distribution between each member is calculated by a simulation using the finite element method using the Poisson's equation from the charge distribution at each node when a voltage is applied to each member. . Then, from the electric field generated between each member and the member, the amount of charge transfer is calculated using Ohm's law, and the toner is regarded as a charged particle, and the potential difference between the toner and the member is calculated using the particle transfer diffusion equation. The toner movement amount is calculated by. that time,
The voltage difference at which discharge occurs is set in correspondence with the interval between the above-mentioned members, and the discharge charge amount is calculated according to Paschen's law.

【0022】その後、再度、上記部材の位置移動に伴い
各節点の位置を変更し、上記同様に電荷及びトナーの移
動量を時々刻々繰り返し算出し、電界の変化及びトナー
の転写効率等を有限要素法により解析している。
After that, the positions of the nodes are changed again with the movement of the member, and the movement amounts of the charge and the toner are repeatedly calculated in the same manner as described above, and the change of the electric field and the transfer efficiency of the toner are finite elements. It is analyzed by the method.

【0023】本実施形態では、図2に示すように、トナ
ー担持体である中間転写ベルト10が装着されたカラー
プリンター用の画像形成装置において、二次転写部の転
写機構のシミュレーションを行っている。この画像形成
装置は、トナー担持体である中間転写ベルト10、帯電
ローラ11、感光体12、転写材である転写ローラ(ス
ポンジローラ)13、定着ローラ14、4色のトナー1
5(15a〜15d)、鏡16、アースローラとしての
金属ローラ19を備えている。
In the present embodiment, as shown in FIG. 2, in the image forming apparatus for the color printer in which the intermediate transfer belt 10 as the toner carrier is mounted, the transfer mechanism of the secondary transfer portion is simulated. . This image forming apparatus includes an intermediate transfer belt 10, which is a toner carrier, a charging roller 11, a photoconductor 12, a transfer roller (sponge roller) 13, which is a transfer material, a fixing roller 14, and four color toners 1.
5 (15a to 15d), a mirror 16, and a metal roller 19 as an earth roller.

【0024】この画像形成装置によって画像が形成され
る場合、まず、感光体12が図中の矢印の方向に回転
し、帯電ローラ11によって感光体12が帯電された後
に、鏡16を介してレーザー17が感光体12上に露光
される。その後、4色トナー15がそれぞれ必要に応じ
て感光体12上に供給され、トナー15が現像される。
次に、感光体12と転写ローラ13との間を通過する中
間転写ベルト10にトナー像が一次転写され、中間転写
ベルト10が回転し、中間転写ベルト10上のトナー像
が、中間転写ベルト10と転写ローラ13との間を通過
する紙18に二次転写される。その後、紙18が図中の
矢印の向きに搬送され、定着ローラ14にてトナー像が
紙18に定着される。
When an image is formed by this image forming apparatus, first, the photoconductor 12 rotates in the direction of the arrow in the figure, and the photoconductor 12 is charged by the charging roller 11 and then the laser beam is passed through the mirror 16. 17 is exposed on the photoreceptor 12. Thereafter, the four-color toners 15 are respectively supplied onto the photoconductor 12 as needed, and the toners 15 are developed.
Next, the toner image is primarily transferred onto the intermediate transfer belt 10 passing between the photoconductor 12 and the transfer roller 13, the intermediate transfer belt 10 is rotated, and the toner image on the intermediate transfer belt 10 is transferred to the intermediate transfer belt 10. The secondary transfer is performed on the paper 18 passing between the transfer roller 13 and the transfer roller 13. After that, the paper 18 is conveyed in the direction of the arrow in the figure, and the toner image is fixed on the paper 18 by the fixing roller 14.

【0025】図3に解析対象となる二次転写部の詳細状
態を示す。金属ローラ19はアースされており、転写ロ
ーラ13には電源Eと金属シャフト13Aにより電圧を
印加できる構成としている。金属ローラ19、転写ロー
ラ13が図中の矢印の向きに回転すると共に、トナー1
5を担持した中間転写ベルト10、紙18も併せて移動
し、各部材及び部材間の電界状況に応じて、帯電された
トナー15が紙18に転写されている。
FIG. 3 shows a detailed state of the secondary transfer portion to be analyzed. The metal roller 19 is grounded, and a voltage can be applied to the transfer roller 13 by the power source E and the metal shaft 13A. While the metal roller 19 and the transfer roller 13 rotate in the direction of the arrow in the figure, the toner 1
The intermediate transfer belt 10 carrying 5 and the paper 18 are also moved, and the charged toner 15 is transferred onto the paper 18 according to each member and the electric field state between the members.

【0026】解析を行うにあたり、具体的には、まず、
シミュレーションの解析対象として、初期状態におい
て、図4、5に示すように、中間転写ベルト10(以
下、単にベルト10とも称す)、トナー15、紙18、
転写ローラ13(以下、単にローラ13とも称す)の各
部材及び各部材間の空隙部20(20、20B)を、有
限個の節点Sにより多数の四辺形要素Yにメッシュ分割
した1次元有限要素モデルで近似している。本実施形態
では、ベルトの節点数を42、要素数を20とし、ロー
ラの節点数を324、要素数を161とし、紙の節点数
を22、要素数を10とし、空隙部の節点数を12、要
素数を5としている。なお、図中のモデル右端の数値は
原点からの高さを示している(単位mm)。
In carrying out the analysis, specifically, first,
As an analysis target of the simulation, in the initial state, as shown in FIGS. 4 and 5, the intermediate transfer belt 10 (hereinafter, also simply referred to as the belt 10), the toner 15, the paper 18,
A one-dimensional finite element in which each member of the transfer roller 13 (hereinafter also simply referred to as the roller 13) and the void portion 20 (20, 20B) between each member are divided into a large number of quadrilateral elements Y by a finite number of nodes S. It is approximated by a model. In the present embodiment, the number of nodes of the belt is 42, the number of elements is 20, the number of nodes of the roller is 324, the number of elements is 161, the number of paper nodes is 22, the number of elements is 10, and the number of voids is 12 and the number of elements is 5. The numerical value at the right end of the model in the figure indicates the height from the origin (unit: mm).

【0027】ベルト10、紙18、ローラ13は、四辺
形とした有限要素モデルとされ、上側からベルト10、
ベルト10の紙18側の表面にトナー15、空隙部20
Aを介して紙18、さらに空隙部20Bを介してローラ
13となるように同一線上に配置している。ローラ13
と紙18、及び、紙18とベルト10の間には空隙部2
0が形成され2重節点としている。トナー15はベルト
10の表面の節点に位置するものとしている。また、空
隙部20は5要素に分割しており、各時刻において均等
に配置されており、ベルト10、ローラ13では、紙1
8との近傍において節点Sの間隔が狭くなるように要素
Yを分割している。
The belt 10, the paper 18, and the roller 13 are quadrangular finite element models, and the belt 10,
Toner 15 and voids 20 are formed on the surface of the belt 10 on the side of the paper 18.
They are arranged on the same line so that the paper 18 is provided via A and the roller 13 is provided via the space 20B. Roller 13
And the paper 18, and the space 2 between the paper 18 and the belt 10.
0 is formed and is a double node. The toner 15 is assumed to be located at a node on the surface of the belt 10. Further, the voids 20 are divided into five elements and are evenly arranged at each time.
The element Y is divided so that the interval between the nodes S becomes narrower in the vicinity of the element 8.

【0028】初期の節点Sの位置は、各部材の初期形状
と時刻0での部材の移動距離で決められ、各時刻で、各
部材の節点Sは与えられた移動距離に従って移動するよ
うに設定されており、時刻の間は線形補間される。即
ち、上記有限要素モデルでは、部材数、移動の方向、空
隙数を設定し、各部材の移動距離を時々刻々解析する設
定とし、具体的には、図6に示すように、トナー15を
担持したベルト10、紙18、ローラ13の各部材が、
時間の変化にしたがいその位置が変更されると共に空隙
部20の形状が変更されながら、時々刻々二次転写部の
トナーの転写機構について解析している。
The position of the initial node S is determined by the initial shape of each member and the moving distance of the member at time 0. At each time, the node S of each member is set to move according to the given moving distance. Is performed, and linear interpolation is performed during the time. That is, in the above finite element model, the number of members, the direction of movement, and the number of voids are set, and the moving distance of each member is analyzed moment by moment. Specifically, as shown in FIG. The belt 10, the paper 18, and the roller 13 are
While the position is changed and the shape of the void portion 20 is changed according to the change of time, the toner transfer mechanism of the secondary transfer portion is analyzed every moment.

【0029】上記有限要素モデルにおいては、解析に必
要な材料特性データを入力している。具体的には、本実
施形態では、各部材の物性を下記の表1のように設定し
ている。なお、空隙の誘電率は真空の誘電率を適用して
いる。
In the above finite element model, material characteristic data necessary for analysis are input. Specifically, in this embodiment, the physical properties of each member are set as shown in Table 1 below. The dielectric constant of the voids is the vacuum dielectric constant.

【0030】[0030]

【表1】 [Table 1]

【0031】有限要素法によりシミュレーションを行う
には、まず、ベルト10上は0Vとし、転写材であるロ
ーラ13の下端の節点において1000Vの電圧が発生
するように初期電荷を与える。初期電荷の付与によりロ
ーラ13、紙18、ベルト10及び部材間の空隙部20
に電界が生じ、この電界によりローラ13の下端の節点
から各部材の各節点位置に、それぞれ電荷が移動する。
そして、各節点における電荷の分布と、各節点の位置か
らポアソンの方程式を用いて部材間の電界分布をさらに
算出している。ここでは、ローラ13の下端で1000
Vの電圧が蓄えられた後に電荷を放出する設定としてい
る。そして、各部材間に生じる電界からオームの法則を
用いて電荷の移動量を算出すると共に、トナー15を紙
18の表面まで移動できる荷電粒子とみなし、粒子の移
動拡散方程式を用いてトナー15と部材間の電位差によ
りトナー15の紙18への移動量を算出している。ここ
で、トナー15の移動範囲はベルト10と紙18の間の
空間に限定している。
In order to perform the simulation by the finite element method, first, the belt 10 is set to 0 V, and the initial charge is applied so that the voltage of 1000 V is generated at the node at the lower end of the roller 13 which is the transfer material. By applying the initial charge, the roller 13, the paper 18, the belt 10, and the gap 20 between the members.
An electric field is generated in the electric field, and the electric field causes electric charges to move from the nodes at the lower end of the roller 13 to the positions of the nodes of each member.
Then, the electric field distribution between the members is further calculated from the charge distribution at each node and the position of each node using Poisson's equation. Here, the lower end of the roller 13 is 1000
The setting is such that the electric charge is discharged after the V voltage is stored. Then, the amount of charge movement is calculated from the electric field generated between the respective members using Ohm's law, and the toner 15 is regarded as charged particles that can move to the surface of the paper 18, and the toner 15 and the toner 15 are calculated using the movement diffusion equation of the particles. The movement amount of the toner 15 onto the paper 18 is calculated from the potential difference between the members. Here, the moving range of the toner 15 is limited to the space between the belt 10 and the paper 18.

【0032】その際、各部材間の間隔に対応させて放電
が起こる電圧差を設定し、放電電荷量をパッシェンの法
則により算出している。具体的には、電位差と誘電率に
より放電電荷量が決定され、放電が起きる条件が整え
ば、ローラ13と紙18、紙18とトナー15間の空間
において、一気に電荷が移動し、放電後の各節点の電荷
量が同じになるように放電が起こるようにしている。即
ち、同一物質内の電荷の移動をオームの法則により考慮
し、異なる物質間の電荷の移動をパッシェンの法則によ
り考慮している。その後、再度、上記部材の移動に伴い
各節点の位置を変更し、上記同様に電荷及びトナーの移
動量を時々刻々繰り返し算出している。
At this time, the voltage difference causing the discharge is set in correspondence with the interval between the respective members, and the discharge charge amount is calculated by Paschen's law. Specifically, if the discharge charge amount is determined by the potential difference and the dielectric constant, and if the conditions for causing the discharge are adjusted, the charges are moved at a stroke in the space between the roller 13 and the paper 18, and the space between the paper 18 and the toner 15, and the discharge Discharge is performed so that the amount of charge at each node is the same. That is, the movement of charges in the same substance is considered by Ohm's law, and the movement of charges between different substances is considered by Paschen's law. After that, the positions of the nodes are changed again with the movement of the member, and the movement amounts of the electric charge and the toner are repeatedly calculated every moment as in the above.

【0033】このように、有限要素モデルを用いてベル
ト10、トナー15、紙18、ローラ13をモデル化
し、上記各部材の移動に伴い各節点Sの位置を変更する
と共に、電荷の流れに伴い電界分布を随時変更し、電荷
及びトナー15の移動量を時々刻々繰り返し算出してい
るため、各部材間の電界分布の時間変化を動的に表現す
ることができる。従って、電界の変化及びトナー15の
転写効率等の転写性能に有用な種々の情報を精度良く得
ることができる。
As described above, the belt 10, the toner 15, the paper 18, and the roller 13 are modeled by using the finite element model, the positions of the nodes S are changed as the above-mentioned members move, and the flow of the electric charge is accompanied. Since the electric field distribution is changed from time to time and the amount of movement of the charge and the toner 15 is repeatedly calculated every moment, it is possible to dynamically express the time change of the electric field distribution between the respective members. Therefore, various information useful for transfer performance such as the change in electric field and the transfer efficiency of the toner 15 can be accurately obtained.

【0034】以下、本発明の転写機構のシミュレーショ
ンの実施例について詳述する。上記第1実施形態と同様
の手法により、中間転写ベルトを用いた二次転写部の転
写機構について解析した。転写ローラの軸印加電圧を1
000Vとし、各部材の電気特性を下記の表2のように
設定した。ローラについては、体積抵抗率をlogΩ=
6、7、8の3パターン用意した。ローラの外径をφ2
0mmとし、100rpmで回転させた。その解析結果
と実測結果を図7、8に示す。使用ソフトは、(株)日
本総合研究所、JMAG−Studio Ver.6使
用コンピュータは、NEC MA80T
An example of the simulation of the transfer mechanism of the present invention will be described in detail below. The transfer mechanism of the secondary transfer section using the intermediate transfer belt was analyzed by the same method as in the first embodiment. The voltage applied to the shaft of the transfer roller is 1
The electrical characteristics of each member were set as shown in Table 2 below. For the roller, the volume resistivity is logΩ =
Three patterns of 6, 7, and 8 were prepared. The outer diameter of the roller is φ2
It was set to 0 mm and rotated at 100 rpm. The analysis result and the actual measurement result are shown in FIGS. The software used is JMAG-Studio Ver. 6 Use computer is NEC MA80T

【0035】[0035]

【表2】 [Table 2]

【0036】図7は、各部材の時間による移動状態を示
し、ベルトの下端、紙の上端及び下端、ローラ上端の各
位置の、回転移動に伴う時間変化を表した。0.015
〜0.02秒の範囲で紙とベルト及びローラとの間隔が
最も小さくなっていた。また、図8は、時間の経過に伴
うトナーの転写割合の変化を、ローラの体積抵抗率毎に
解析したシミュレーション結果を表した。0.015〜
0.02秒経過あたりから、転写効率が急激に向上し、
その後、紙からベルト及びローラが離れるに従ってなだ
らかな曲線となり、ほほ一定の値となった。また、3つ
のローラを用いた場合の各々のトナーの転写割合の実測
値も併せてグラフ上に示した。
FIG. 7 shows the moving state of each member with time, and shows the change with time of each position of the lower end of the belt, the upper and lower ends of the paper, and the upper end of the roller due to the rotational movement. 0.015
The distance between the paper, the belt and the roller was the smallest in the range of 0.02 seconds. Further, FIG. 8 shows a simulation result in which the change of the toner transfer rate with the passage of time is analyzed for each volume resistivity of the roller. 0.015
From about 0.02 seconds, the transfer efficiency is drastically improved.
After that, as the belt and the roller were separated from the paper, the curve became a gentle curve and became a constant value. In addition, the measured values of the transfer ratio of each toner when three rollers are used are also shown on the graph.

【0037】図8に示すように、シミュレーションの解
析結果、実測値のいずれにおいても、ローラの体積抵抗
率が高いほど転写割合は低くなっており、ローラの抵抗
値の違いによるトナーの転写割合の相対的な変化を精度
良く解析することができた。また、各ローラの抵抗にお
いて、シミュレーションの解析結果における最終的な転
写割合の値は、実測値とほぼ同程度かやや小さな値とな
っており、転写効率の絶対値についても精度良く予測で
きた。これにより、本発明のシミュレーションを用いる
ことで、トナーの転写割合等、転写性能に関する有用な
情報を予測可能であることが確認できた。
As shown in FIG. 8, in any of the analysis results of the simulation and the actually measured values, the higher the volume resistivity of the roller, the lower the transfer rate. The relative change could be analyzed accurately. Further, regarding the resistance of each roller, the final value of the transfer rate in the analysis result of the simulation is almost the same as or slightly smaller than the actually measured value, and the absolute value of the transfer efficiency can be accurately predicted. From this, it was confirmed that by using the simulation of the present invention, it is possible to predict useful information regarding transfer performance such as a toner transfer ratio.

【0038】[0038]

【発明の効果】以上の説明より明らかなように、本発明
によれば、有限要素モデルを用いてトナー担持体、トナ
ー、被印刷体、転写材の各部材をモデル化し、上記各部
材の移動に伴い節点の位置を変更すると共に、電荷の流
れに伴い電界分布を随時変更し、電荷及びトナーの移動
量を時々刻々繰り返し算出している。このため、各部材
間の電界分布の時間変化を動的に表現することができ、
電界の変化及びトナーの転写効率等の転写性能に有用な
種々の情報を精度良く得ることができる。
As is apparent from the above description, according to the present invention, each member of the toner carrier, the toner, the material to be printed, and the transfer material is modeled using the finite element model, and the movement of each member is performed. Along with this, the positions of the nodes are changed, and the electric field distribution is changed at any time in accordance with the flow of electric charges, and the movement amounts of electric charges and toner are repeatedly calculated every moment. Therefore, the time change of the electric field distribution between each member can be dynamically expressed,
It is possible to accurately obtain various information useful for transfer performance, such as changes in electric field and toner transfer efficiency.

【0039】また、各時間における各部材の位置関係を
変化させるだけで、部材の速度条件を変更したシミュレ
ーションを容易に行うことが可能となり、部材の形状、
送りスピード、材質等の最適化を図ることができる。さ
らに、部材間の放電電荷量を算出することにより、さら
に解析精度を向上することができる。
Further, by changing the positional relationship of each member at each time, it becomes possible to easily carry out a simulation in which the speed condition of the member is changed.
The feed speed and material can be optimized. Further, by calculating the discharge charge amount between the members, the analysis accuracy can be further improved.

【0040】従って、中間転写ベルト等の転写機構にお
いて、試作を行うことなく、有用な情報が得られるた
め、開発効率を向上することができる。特に、中間転写
ベルトを用いた画像形成装置における二次転写部での、
中間転写ベルト上のトナーの被印刷体への転写効率等の
解析に好適に用いることができる。
Therefore, in the transfer mechanism such as the intermediate transfer belt or the like, useful information can be obtained without making a trial, so that the development efficiency can be improved. Especially in the secondary transfer section of the image forming apparatus using the intermediate transfer belt,
It can be suitably used for analysis of the transfer efficiency of toner on the intermediate transfer belt to the printing medium.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の転写機構のシミュレーション方法の
フローチャートを示す図である。
FIG. 1 is a view showing a flowchart of a transfer mechanism simulation method of the present invention.

【図2】 中間転写ベルトを用いたカラープリンター用
の画像形成装置を示す図である。
FIG. 2 is a diagram showing an image forming apparatus for a color printer using an intermediate transfer belt.

【図3】 解析対象となる二次転写部の概略拡大図であ
る。
FIG. 3 is a schematic enlarged view of a secondary transfer portion to be analyzed.

【図4】 シミュレーションを行う各部材の有限要素モ
デルを示す図である。
FIG. 4 is a diagram showing a finite element model of each member to be simulated.

【図5】 各部材の節点と要素の分割状況と各部材の時
間変化を示す図である。
FIG. 5 is a diagram showing a nodal point of each member, a division state of the element, and a temporal change of each member.

【図6】 各部材の移動に伴うトナーの転写状況を示す
図である。
FIG. 6 is a diagram showing a transfer state of toner according to movement of each member.

【図7】 各部材の時間変化とその位置関係を示す図で
ある。
FIG. 7 is a diagram showing a temporal change of each member and a positional relationship thereof.

【図8】 シミュレーションの解析結果を示す図であ
る。
FIG. 8 is a diagram showing an analysis result of simulation.

【符号の説明】[Explanation of symbols]

10 中間転写ベルト 13 転写ローラ 15 トナー 18 紙 S 節点 Y 要素 10 Intermediate transfer belt 13 Transfer roller 15 toner 18 paper S node Y element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神頃 明 兵庫県神戸市中央区脇浜町3丁目6番9号 住友ゴム工業株式会社内 (72)発明者 見寄 明男 兵庫県神戸市中央区脇浜町3丁目6番9号 住友ゴム工業株式会社内 (72)発明者 ▲たに▼ 浩司 大阪府大阪市西区新町1丁目5番8号 株 式会社日本総合研究所内 (72)発明者 谷口 康人 大阪府大阪市西区新町1丁目5番8号 株 式会社日本総合研究所内 Fターム(参考) 2H134 QA01 2H200 FA16 GB50 JB10 JC04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akira Kadoro             3-6-9 Wakihama-cho, Chuo-ku, Kobe-shi, Hyogo               Sumitomo Rubber Industries, Ltd. (72) Inventor Akio Miyoro             3-6-9 Wakihama-cho, Chuo-ku, Kobe-shi, Hyogo               Sumitomo Rubber Industries, Ltd. (72) Inventor ▲ Tani ▼ Koji             1-5-8 Shinmachi, Nishi-ku, Osaka-shi, Osaka             Inside the Japan Research Institute (72) Inventor Yasuhito Taniguchi             1-5-8 Shinmachi, Nishi-ku, Osaka-shi, Osaka             Inside the Japan Research Institute F-term (reference) 2H134 QA01                 2H200 FA16 GB50 JB10 JC04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 転写機構に用いられるトナー担持体、ト
ナー、被印刷体、転写材の各部材及び各部材間の空隙部
を、有限個の節点により多数の要素に分割した有限要素
モデルで近似し、各要素に所要データを入力することで
初期条件、境界条件を設定し、 上記各部材への電圧印加時の各節点における電荷の分布
からポアソンの方程式を用いて部材及び部材間の電界分
布を算出し、 上記各部材及び部材間に生じる電界からオームの法則を
用いて電荷の移動量を算出すると共に、上記トナーを荷
電粒子とみなし、粒子の移動拡散方程式を用いてトナー
と部材との電位差によりトナーの移動量を算出した後
に、 上記部材の位置移動に伴い節点の位置を変更し、上記同
様に電荷及びトナーの移動量を時々刻々繰り返し算出す
ることで有限要素法により転写性能を解析していること
を特徴とする転写機構のシミュレーション方法。
1. A finite element model in which each member of a toner carrier, a toner, an object to be printed, and a transfer material used in a transfer mechanism and a space between each member are divided into a large number of elements by a finite number of nodes. Then, the initial conditions and boundary conditions are set by inputting the required data to each element, and the electric field distribution between the members and the members using the Poisson's equation from the charge distribution at each node when voltage is applied to the above members. Is calculated, and the amount of charge transfer is calculated from each member and the electric field generated between the members using Ohm's law.At the same time, the toner is regarded as charged particles, and the transfer diffusion equation of particles is used to calculate the difference between the toner and the member. After calculating the toner movement amount from the potential difference, the position of the node is changed according to the position movement of the above member, and the movement amount of the charge and toner is repeatedly calculated in the same manner as above. A method for simulating a transfer mechanism, which is characterized by analyzing transfer performance.
【請求項2】 上記各部材間の間隔に対応させて放電が
起こる電圧差を設定し、放電電荷量をパッシェンの法則
により算出している請求項1に記載の転写機構のシミュ
レーション方法。
2. The transfer mechanism simulation method according to claim 1, wherein a voltage difference at which discharge occurs is set corresponding to an interval between the respective members, and the discharge charge amount is calculated by Paschen's law.
【請求項3】 上記トナー担持体は中間転写ベルトと
し、上記転写材は転写ローラとし、一次元有限要素モデ
ルで中間転写ベルト上のトナーの被印刷体への転写効率
を解析している請求項1または請求項2に記載の転写機
構のシミュレーション方法。
3. The toner carrier is an intermediate transfer belt, the transfer material is a transfer roller, and the transfer efficiency of the toner on the intermediate transfer belt to the printing medium is analyzed by a one-dimensional finite element model. The method of simulating a transfer mechanism according to claim 1 or 2.
JP2001363322A 2001-11-28 2001-11-28 Method for simulating transfer mechanism Pending JP2003162156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001363322A JP2003162156A (en) 2001-11-28 2001-11-28 Method for simulating transfer mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001363322A JP2003162156A (en) 2001-11-28 2001-11-28 Method for simulating transfer mechanism

Publications (1)

Publication Number Publication Date
JP2003162156A true JP2003162156A (en) 2003-06-06

Family

ID=19173683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001363322A Pending JP2003162156A (en) 2001-11-28 2001-11-28 Method for simulating transfer mechanism

Country Status (1)

Country Link
JP (1) JP2003162156A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345119A (en) * 2004-05-31 2005-12-15 Canon Inc Analytical method, and program and information processor for executing analytical method
JP2006276472A (en) * 2005-03-29 2006-10-12 Canon Inc Information processor and control method thereof
JP2007178830A (en) * 2005-12-28 2007-07-12 Fuji Xerox Co Ltd Simulation device and method, image forming apparatus and method, and computer program
JP2009104046A (en) * 2007-10-25 2009-05-14 Canon Inc Analyzer and analysis method
JP2014122994A (en) * 2012-12-20 2014-07-03 Fuji Xerox Co Ltd Transfer determination device and transfer determination program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345119A (en) * 2004-05-31 2005-12-15 Canon Inc Analytical method, and program and information processor for executing analytical method
JP2006276472A (en) * 2005-03-29 2006-10-12 Canon Inc Information processor and control method thereof
JP2007178830A (en) * 2005-12-28 2007-07-12 Fuji Xerox Co Ltd Simulation device and method, image forming apparatus and method, and computer program
JP2009104046A (en) * 2007-10-25 2009-05-14 Canon Inc Analyzer and analysis method
JP2014122994A (en) * 2012-12-20 2014-07-03 Fuji Xerox Co Ltd Transfer determination device and transfer determination program

Similar Documents

Publication Publication Date Title
US7624001B2 (en) Analysis method, program for performing the method, and information processing apparatus
JP2003162156A (en) Method for simulating transfer mechanism
JP2007017380A (en) Particle simulation device, particle simulation method and computer program
JP4725189B2 (en) Particle behavior analysis apparatus, particle behavior analysis method, and computer program
JP4152129B2 (en) Potential distribution analysis method
Benning et al. Proof of concept of a novel combined consolidation and transfer mechanism for electrophotographic 3D printing
US8463146B2 (en) Resonant-frequency measurement of electrophotographic developer density
JP5159017B2 (en) Analysis method, program for executing the analysis method, and information processing apparatus
JP4343766B2 (en) Analysis method, program for executing the analysis method, and information processing apparatus
JP4725320B2 (en) Simulation apparatus and simulation method, image forming apparatus and image forming method, and computer program
JP4920899B2 (en) Information processing apparatus and control method thereof
JP2001034036A (en) Electrifying device
US8369717B2 (en) Determining developer toner concentration in electrophotographic printer
US8358942B2 (en) Electrophotographic developer toner concentration measurement
JP4692031B2 (en) Powder behavior analysis apparatus, powder behavior analysis method, and computer program
JP4739391B2 (en) Analysis method, program for executing the analysis method, and information processing apparatus
JP4298590B2 (en) Analysis method, program for executing the analysis method, and information processing apparatus
US20120027432A1 (en) Electrophotographic developer flow rate measurement
KADONAGA Recent Progress of Electrophotograpy Simulations
JP2009251467A (en) Electrical condition calculating apparatus, method of calculating electrical condition, method of manufacturing image forming apparatus, information processing program and recording medium
Chen et al. On modeling and simulation of digital laser printing: an integrated model from binary image to toner image
JP4574231B2 (en) Development process simulation method and simulation apparatus
Hoffmann DEM simulations of toner particles with an O (N log N) hierarchical tree code algorithm
JP4692074B2 (en) Powder behavior analysis apparatus, powder behavior analysis method, and computer program
Severens DEM simulations of toner behavior in the development nip of the Océ Direct Imaging print process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080527