JP2003160815A - Method for granulating raw material for sintering - Google Patents

Method for granulating raw material for sintering

Info

Publication number
JP2003160815A
JP2003160815A JP2002040197A JP2002040197A JP2003160815A JP 2003160815 A JP2003160815 A JP 2003160815A JP 2002040197 A JP2002040197 A JP 2002040197A JP 2002040197 A JP2002040197 A JP 2002040197A JP 2003160815 A JP2003160815 A JP 2003160815A
Authority
JP
Japan
Prior art keywords
raw material
solid fuel
sintering
drum mixer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002040197A
Other languages
Japanese (ja)
Other versions
JP3794332B2 (en
Inventor
Nobuyuki Oyama
伸幸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2002040197A priority Critical patent/JP3794332B2/en
Publication of JP2003160815A publication Critical patent/JP2003160815A/en
Application granted granted Critical
Publication of JP3794332B2 publication Critical patent/JP3794332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a raw material for sintering, in which solid fuel powders such as coke are separated from iron ores, SiO<SB>2</SB>- containing raw powders, and limestone raw powders; the iron ores, the SiO<SB>2</SB>- containing raw powders, and the limestone-raw powders are granulated and subsequently making pseudo-grains step by step and coating the pseudo-grains with the solid fuel raw powders. <P>SOLUTION: This granulation method comprises charging the raw materials for sintering except the solid fuel powders, into a mixing drum from a charging hole, granulating them, and adding the solid fuel powders in a region which is set on the way to the downstream, so that the necessary dwell time for the raw materials for sintering except the solid fuel powders to reach a discharge hole of the mixing drum, can be 10-120 seconds, to coat the solid fuel powders onto the outer parts of the raw materials for sintering and form the layer, on the way to the discharge hole. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、下方吸引のドワイ
ドロイド式焼結機を用いて高炉用焼結鉱を製造する際に
用いる焼結原料の造粒方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of granulating a sintering raw material used for producing a sinter for a blast furnace by using a downward suction droidroid type sintering machine.

【0002】[0002]

【従来の技術】高炉用原料として用いられる焼結鉱は、
一般に次のような焼結原料の処理工程を経て製造されて
いる。すなわち図1に示すように、まず、粒径が10mm以
下の鉄鉱石1、珪石,蛇紋岩またはニッケルスラグなど
からなるSiO2含有粉原料2、石灰石などのCaO を含有す
る石灰石系粉原料3、および粉コークスまたは無煙炭な
どの熱源となる固体燃料系粉原料4をドラムミキサー5
に装入して、さらに適当量の水分を添加して混合,造粒
し、擬似粒子と呼ばれる造粒物を形成する。この造粒物
(すなわち擬似粒子)からなる配合原料は、ドワイトロ
イド式焼結機のパレット上に適当な厚さ(たとえば 500
〜700mm )になるように装入して表層部の固体燃料に着
火し、着火後は下方に向けて空気を吸引しながら固体燃
料系粉原料4を燃焼させ、その燃焼熱によって配合した
焼結原料を焼結させて焼結ケーキとする。この焼結ケー
キは破砕,整粒され、粒径が所定の値以上の焼結鉱を得
る。一方、所定の値に満たない粒径を有するものは返鉱
となり、焼結原料として再利用される。
2. Description of the Related Art Sintered ore used as a raw material for blast furnace is
Generally, it is manufactured through the following processing steps of sintering raw materials. That is, as shown in FIG. 1, first, an iron ore 1 having a particle diameter of 10 mm or less 1, a SiO 2 -containing powder raw material 2 made of silica stone, serpentine, nickel slag, or the like, a limestone-based powder raw material 3 containing CaO such as limestone 3, And a solid fuel-based powder raw material 4 serving as a heat source such as powder coke or anthracite, in a drum mixer 5
Then, a proper amount of water is added and mixed and granulated to form a granulated product called pseudo particle. The compounded raw material consisting of this granulated material (that is, pseudo particles) is put on a pallet of a Dwightroid-type sintering machine to an appropriate thickness (for example, 500
~ 700 mm) and ignite the solid fuel in the surface layer, and after ignition, burn the solid fuel powder material 4 while sucking air downward and sinter the mixture by the combustion heat. The raw material is sintered to form a sintered cake. This sinter cake is crushed and sized to obtain a sinter having a particle size not less than a predetermined value. On the other hand, if the grain size is less than the predetermined value, it will be returned ore and reused as a sintering raw material.

【0003】ここで、焼結鉱は、原料中のコークスを層
内を通過する空気によって燃焼させて製造しているの
で、その生産性は、パレット上での擬似粒子の充填層の
通気性(すなわち通過風量)によって決定される。その
結果、図2に示すように、ドラムミキサー5で造粒され
る擬似粒子の粒径が大きくなるほど、通気性が向上し、
焼結鉱の生産率が向上することが良く知られている。そ
のため、これまでに擬似粒子の粒径を大きくしようとす
る多くの試みがなされてきた。
Here, since the sinter is produced by burning the coke in the raw material with the air passing through the bed, its productivity is determined by the air permeability of the packed bed of pseudo particles on the pallet ( That is, it is determined by the passing air volume). As a result, as shown in FIG. 2, the larger the particle size of the pseudo particles granulated by the drum mixer 5, the higher the air permeability,
It is well known that the production rate of sinter is improved. Therefore, many attempts have been made to increase the particle size of the pseudo particles.

【0004】ドラムミキサー5での造粒は、水を架橋に
して擬似粒子を付着させているため、焼結原料の水に対
する濡れ性が大きな影響を及ぼすことが良く知られてい
る。水との濡れ性が良い焼結原料の場合、擬似粒子の粒
径は大きくできる。図3は、各種の鉄鉱石の接触角θと
擬似粒子の充填層の通気性との関係を調査したものであ
る。図3から明らかなように、水との接触角θが大きい
(すなわち水に濡れ難い)ほど、造粒後の擬似粒子の充
填層の通気性が低い(すなわち擬似粒子の粒径が小さ
い)ことが分かる。
It is well known that in the granulation by the drum mixer 5, since the water is cross-linked and the pseudo particles are attached, the wettability of the sintering raw material with water has a great influence. In the case of a sintering raw material having good wettability with water, the particle size of pseudo particles can be increased. FIG. 3 shows the relationship between the contact angle θ of various iron ores and the air permeability of the packed bed of pseudo particles. As is clear from FIG. 3, the larger the contact angle θ with water (that is, the more difficult it is to get wet with water), the lower the air permeability of the packed layer of pseudo particles after granulation (that is, the smaller the particle size of the pseudo particles). I understand.

【0005】発明者は鉄鉱石の他に焼結原料として使用
される各種原料に着目して、水との接触角θを調査し
た。 すなわち図4に示すように、表面を研磨した試料6
に注射器で水滴7を与えて、側面から観察して接触角θ
を測定した。その結果、 コークスの接触角θの平均値は
41°(測定回数:20回),石灰石の接触角θの平均値は
23°(測定回数:13回),鉄鉱石の接触角θの平均値は
16°(測定回数:14回)であり、コークスの濡れ性が最
も劣っている。
The inventor investigated the contact angle θ with water by paying attention to various raw materials used as sintering raw materials in addition to iron ore. That is, as shown in FIG. 4, sample 6 whose surface was polished
Apply a drop of water 7 with a syringe and observe from the side to see the contact angle θ
Was measured. As a result, the average value of the contact angle θ of coke is
41 ° (number of measurements: 20), the average value of the contact angle θ of limestone is
23 ° (number of measurements: 13), the average value of the contact angle θ of iron ore is
It was 16 ° (number of measurements: 14 times), and the wettability of coke was the worst.

【0006】さらに発明者は、各種原料の粉体を円筒状
(外径25mm,長さ250mm )のガラス管に充填して水の浸
透高さを測定して、それぞれの濡れ性を評価した。 すな
わち図5に示すように、 円筒状のガラス管8下端の開口
部をガーゼ9で覆い、 次いでガラス管8内に各種原料の
粉体9(粒径0.10〜0.25mm)を充填した後、 ガラス管8
の下端から2mmの位置まで水11中に浸漬した。このよう
にして水11が、ガラス管8内に充填された粉体9の間隙
に浸透して上昇する高さ(以下、 浸透高さという)を測
定した。粉体9が水11に濡れ難いほど、浸透高さは低く
なる。
Further, the inventor filled powders of various raw materials in a cylindrical glass tube (outer diameter 25 mm, length 250 mm) and measured the penetration height of water to evaluate the wettability of each. That is, as shown in FIG. 5, the opening at the lower end of the cylindrical glass tube 8 is covered with gauze 9, and then the powder 9 of various raw materials (particle size 0.10 to 0.25 mm) is filled into the glass tube 8 Tube 8
It was immersed in water 11 up to the position of 2 mm from the lower end of. In this way, the height at which the water 11 permeates the gap of the powder 9 filled in the glass tube 8 and rises (hereinafter referred to as the permeation height) was measured. The less the powder 9 gets wet with the water 11, the lower the permeation height becomes.

【0007】浸透高さh(cm)と接触角θ(°)は下記
の (1)式の関係を有するから、浸透高さh(cm)の測定
値を用いて接触角θ(°)を算出した。 h=〔(φRγ× cosθ)/(2η)〕1/2 ×t1/2 ・・・ (1) h:水の浸透高さ(cm) φ:係数(= 0.2) R:粉体の平均粒径(cm) γ:水の表面張力(= 72.25 dyn/cm) θ:水の接触角(°) η:水の粘度(= 0.0089 poise ) t:時間(秒) その結果、 コークスの接触角θの算出値は84°,石灰石
の接触角θの算出値は55°,鉄鉱石の接触角θの算出値
は45°であり、コークスの濡れ性が最も劣っている。
Since the permeation height h (cm) and the contact angle θ (°) have the relationship of the following equation (1), the contact angle θ (°) is calculated using the measured value of the permeation height h (cm). It was calculated. h = [(φRγ × cos θ) / (2η)] 1/2 × t 1/2 ... (1) h: Water penetration height (cm) φ: Coefficient (= 0.2) R: Average of powder Particle size (cm) γ: Surface tension of water (= 72.25 dyn / cm) θ: Contact angle of water (°) η: Viscosity of water (= 0.0089 poise) t: Time (sec) As a result, coke contact angle The calculated value of θ was 84 °, the calculated value of the contact angle θ of limestone was 55 °, and the calculated value of the contact angle θ of iron ore was 45 °, indicating the poorest wettability of coke.

【0008】この結果から、発明者は、擬似粒子の充填
層の通気性を向上する(擬似粒子径を大きくする)のた
めに、焼結原料中から固体燃料系粉原料である粉コーク
スを除いて造粒する必要があることに着目したものであ
る。従来、固体燃料系粉原料である粉コークスを焼結原
料から分離して造粒し、次いで造粒中に粉コークスを添
加する技術としては以下のものがある。
From these results, the inventors of the present invention excluded powder coke, which is a solid fuel type powder raw material, from the sintering raw material in order to improve the air permeability of the pseudo-particle packed bed (to increase the pseudo-particle diameter). It focuses on the need to granulate. Conventionally, there are the following techniques for separating powder coke, which is a solid fuel type powder raw material, from the sintering raw material, granulating the powder, and then adding the powder coke during the granulation.

【0009】まず、焼結原料から固体燃料系粉原料であ
る粉コークスの全量または一部を分離して、造粒後の擬
似粒子に粉コークスを添加する技術として特開昭52−14
1402号公報、特開昭58−11746 号公報があり、特開昭52
−141402号公報では、粉コークスをドラムミキサーの供
給端と排出端から添加する技術が提案され、特開昭58−
11746 号公報では、粉コークスの全量または一部をドラ
ムミミサー排出端から気流搬送によって添加する技術が
提案されている。
First, as a technique of separating all or part of powder coke, which is a solid fuel type powder raw material, from a sintering raw material and adding the powder coke to the pseudo-particles after granulation, JP-A-52-14
JP 1402, JP 58-11746 and JP 52
-141402 proposes a technique for adding powder coke from the supply end and the discharge end of a drum mixer, and Japanese Patent Laid-Open No. 58-
In Japanese Patent No. 11746, there is proposed a technique in which the whole amount or a part of the powder coke is added from the discharge end of the drum mimiser by air flow transfer.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前記特
開昭52−141402号公報では、ドラムミキサーの供給端と
排出端から添加するため、焼結原料の擬似粒子化進行中
に固体燃料系粉原料である粉コークスが内装化され、特
開昭58−11746 号公報に提案された方法では、ドラムミ
キサーの排出端から添加するものの、ドラムミキサー入
口側に粉コークスの微粉部分を、排出端では粉コークス
の粗粒部分が存在するコークス粉の分布形態になるよう
に気流搬送により添加することが行われるため、焼結原
料の擬似粒子化進行中にコークス粉が内装化するという
問題があった。
However, in Japanese Patent Laid-Open No. 52-141402, since the addition is made from the feed end and the discharge end of the drum mixer, the solid fuel type powder raw material is added during the pseudo-particle formation of the sintering raw material. In the method proposed in Japanese Patent Laid-Open No. 58-11746, the fine coke powder is added from the discharge end of the drum mixer, but the fine powder portion of the powder coke is added to the inlet side of the drum mixer and the powder coke is added at the discharge end. Since the coke powder is added by air flow so as to have a distribution form of the coke powder in which the coarse particle portion of the coke exists, there is a problem that the coke powder is internalized during the progress of pseudo-particle formation of the sintering raw material.

【0011】すなわち、焼結原料から粉コークスを分離
して造粒しても固体燃料系粉原料である粉コークスを添
加する際に、焼結原料中に内装化され、内装化により焼
結原料の擬似粒子の成長が進まないという問題である。
また特開昭61-163220 号公報には、粉コークスを配合せ
ずペレットフィードを配合した焼結原料を1次ミキサー
で調湿造粒し、次いでこの調湿造粒物に粉コークスを添
加して2次ミキサーで転動造粒することを特徴とする焼
結原料の事前処理方法が開示されている。この技術によ
ればペレットフィードを配合した焼結原料を調湿造粒す
るに際し、2次ミキサー側で添加することにより従来の
1次ミキサーで全量混合造粒したものに比べて大幅に造
粒性,通気性,生産性が改善できるとしている。しかし
ながら特開昭61-163220 号公報に開示された技術で得ら
れた焼結原料も必ずしも造粒性の向上に結びつかず、い
まだ成功した例はない。
That is, even if the coke powder is separated from the sintering raw material and granulated, when the coke powder, which is a solid fuel type powder raw material, is added, it is internalized in the sintering raw material. The problem is that the growth of pseudo particles does not proceed.
Further, in JP-A-61-163220, a sintering raw material in which powder coke is not mixed and pellet feed is mixed is subjected to humidity conditioning granulation with a primary mixer, and then powder coke is added to this humidity controlled granulated product. The method for pretreating the sintering raw material is characterized by rolling granulation with a secondary mixer. According to this technique, when the sintering raw material mixed with the pellet feed is subjected to the humidity control granulation, the secondary raw material is added on the secondary mixer side, so that the granulation property is significantly improved as compared with the conventional primary mixer. , It is said that breathability and productivity can be improved. However, the sintering raw material obtained by the technique disclosed in Japanese Patent Laid-Open No. 61-163220 does not always lead to improvement in granulation property, and there has been no successful example.

【0012】なお、特開昭52-141402 号公報,特開昭61
-163220 号公報に開示されているように、造粒に際し、
1次ミキサー,2次ミキサーを使用して混合・造粒を行
なう焼結原料の予備処理方法あるいは焼結原料の造粒方
法では、基本的には1次ミキサー側で焼結原料の混合を
主体とする混合・造粒を行ない、その後、 2次ミキサー
側で造粒を主体とする、いわゆる転動造粒が行なわれ
る。このように1次ミキサーと2次ミキサーを有する
(合計2台のミキサーを有する)場合、一般的には、焼
結原料の1次ミキサーにおける混合・造粒時間は 120秒
程度を確保しており、2次ミキサーにおける造粒時間は
180秒程度を確保して造粒することが通常行なわれる。
[0012] Incidentally, Japanese Unexamined Patent Publication Nos. 52-141402 and 61
As disclosed in JP-163220-A, during granulation,
In the pretreatment method of the sintering raw material which mixes and granulates by using the primary mixer and the secondary mixer or the granulation method of the sintering raw material, basically the mixing of the sintering raw material is mainly performed on the side of the primary mixer. The following mixing and granulation is carried out, and then so-called tumbling granulation is carried out mainly on the secondary mixer side. In the case of having a primary mixer and a secondary mixer (having a total of two mixers) as described above, generally, the mixing / granulating time of the sintering raw material in the primary mixer is about 120 seconds. Granulation time in the secondary mixer
It is usual to granulate for about 180 seconds.

【0013】また、特開昭58-11746号公報に開示されて
いるように、造粒に際し、単一のミキサーを使用して混
合・造粒を行なう焼結原料の予備処理方法あるいは焼結
原料の造粒方法では、前記した1次ミキサー,2次ミキ
サーの合計の造粒時間を確保できるミキサー長として造
粒することが通常行なわれる。本発明は、上記のような
問題を解消し、焼結鉱を製造するプロセスの事前処理と
して膨大な設備を必要とせず、固体燃料系粉原料を鉄鉱
石,SiO2含有粉原料,石灰石系粉原料から分離して、鉄
鉱石,SiO2含有粉原料,石灰石系粉原料を造粒し、次い
で固体燃料系粉原料を添加することによって段階的に擬
似粒子にすることにより、焼結用原料の造粒の際、造粒
される擬似粒子の粒径を増加させ、固体燃料系粉原料の
添加に際しては、擬似粒子の表層部に粉コークスなどの
固体燃料系粉原料を適切に外装することができる焼結用
原料の製造方法を提供することを目的とする。
Further, as disclosed in Japanese Patent Laid-Open No. 58-11746, a pretreatment method for a sintering raw material or a sintering raw material in which a single mixer is used for mixing and granulation during granulation. In the granulation method (2), it is usual to carry out granulation with a mixer length that can secure the total granulation time of the above-mentioned primary mixer and secondary mixer. INDUSTRIAL APPLICABILITY The present invention solves the above problems and does not require a huge amount of equipment as a pretreatment for the process of producing a sinter, and the solid fuel powder raw material is iron ore, SiO 2 -containing powder raw material, limestone powder. Separated from the raw material, iron ore, SiO 2 -containing powder raw material, limestone-based powder raw material is granulated, and then solid fuel-based powder raw material is added to form pseudo-particles in a stepwise manner. During granulation, the particle size of the pseudo particles to be granulated is increased, and when adding the solid fuel type powder raw material, it is necessary to properly coat the solid fuel type powder raw material such as powder coke on the surface layer part of the pseudo particles. An object of the present invention is to provide a method for producing a raw material for sintering that can be performed.

【0014】[0014]

【課題を解決するための手段】その目的を達成するため
の本発明は、下方吸引のドワイトロイド式焼結機を用い
て高炉用焼結鉱を製造するプロセスの事前処理として、
鉄鉱石,SiO2含有粉原料,石灰石系粉原料および固体燃
料系粉原料からなる焼結原料をドラムミキサーを用いて
造粒するに際し、ドラムミキサーの装入口から固体燃料
系粉原料を除く焼結原料を装入して造粒すると共に、固
体燃料系粉原料を除く焼結原料がドラムミキサーの排出
口に到達するまでの滞留時間が10〜120 秒を満足する範
囲となる下流側途中に設定した領域で固体燃料系粉原料
を添加し、排出口に至る間に固体燃料系粉原料を焼結原
料の外装部に付着,形成する焼結用原料の製造方法であ
る。
The present invention for achieving the object is to provide a pretreatment of a process for producing a sinter for a blast furnace by using a downward suction Dwightroid sinter.
When granulating a sintering raw material consisting of iron ore, SiO 2 -containing powder raw material, limestone-based powder raw material and solid fuel-based powder raw material using a drum mixer, sintering except for the solid fuel-based powder raw material from the drum mixer inlet The raw material is charged and granulated, and the residence time until the sintering raw material excluding the solid fuel type powder raw material reaches the discharge port of the drum mixer is set to a range that satisfies 10 to 120 seconds in the downstream side. In this method, the solid fuel type powder raw material is added in the region, and the solid fuel type powder raw material is adhered to and formed on the exterior portion of the sintering raw material while reaching the discharge port.

【0015】前記した発明においては、 好適態様とし
て、ドラムミキサーを複数に分割し、複数のドラムミキ
サーのうちの最終のドラムミキサーの長さを、焼結原料
が最終のドラムミキサーの排出口に到達するまでの滞留
時間が10〜120 秒を満足する範囲に設定された長さとし
て、最終のドラムミキサーの装入側で固体燃料系粉原料
を添加することが好ましい。
In the above-mentioned invention, as a preferred embodiment, the drum mixer is divided into a plurality of drum mixers, and the length of the final drum mixer of the plurality of drum mixers is set so that the sintering raw material reaches the discharge port of the final drum mixer. It is preferable to add the solid fuel type powder raw material on the charging side of the final drum mixer with the length set to satisfy the residence time of 10 to 120 seconds.

【0016】なお、焼結原料がドラムミキサーの排出口
に到達するまでの滞留時間とは、焼結原料が排出口に到
達するまでの所要時間を指す。 たとえば滞留時間が60秒
の場合、焼結原料がその位置を通過して60秒後に排出口
に到達する。
The residence time until the sintering raw material reaches the discharge port of the drum mixer means the time required for the sintering raw material to reach the discharge port. For example, when the residence time is 60 seconds, the sintering raw material reaches the discharge port 60 seconds after passing through the position.

【0017】[0017]

【発明の実施の形態】以下に、本発明を完成するに至っ
た経緯および本発明の具体的な実施の概要を図面に基づ
き詳細に説明する。本発明者は、図6に示すように、固
体燃料系粉原料である粉コークスを含む焼結原料の造粒
実験(実験 No.1,2)を行なった。 実験 No.1では、
鉄鉱石,返鉱,石灰石,生石灰およびコークスをドラム
ミキサーに装入して造粒(造粒時間: 360秒)した。そ
の結果、 平均粒径1.52mmの擬似粒子が得られた。実験 N
o.2では、鉄鉱石,返鉱およびコークスをドラムミキサ
ーに装入して造粒(造粒時間: 300秒)した後、石灰
石,生石灰を添加してさらに造粒(造粒時間:60秒)し
た。その結果、 平均粒径1.46mmの擬似粒子が得られた。
BEST MODE FOR CARRYING OUT THE INVENTION The background of the completion of the present invention and the outline of specific embodiments of the present invention will be described in detail below with reference to the drawings. As shown in FIG. 6, the present inventor conducted a granulation experiment (experiment Nos. 1 and 2) of a sintering raw material containing powder coke which is a solid fuel type powder raw material. In Experiment No. 1,
Iron ore, return ore, limestone, quick lime and coke were charged into a drum mixer and granulated (granulation time: 360 seconds). As a result, pseudo particles having an average particle size of 1.52 mm were obtained. Experiment N
In o.2, iron ore, return ore and coke were charged into a drum mixer and granulated (granulation time: 300 seconds), and then limestone and quick lime were added to further granulate (granulation time: 60 seconds )did. As a result, pseudo particles with an average particle size of 1.46 mm were obtained.

【0018】一方、図7に示すように、本発明を適用し
てコークスを分離した焼結原料(すなわち鉄鉱石,返
鉱,石灰石および生石灰)の造粒実験を行ない、造粒開
始後の経過時間と擬似粒子の平均粒径との関係を調査し
た。 その結果は、図8に示す通りである。図8から明ら
かなように、固体燃料系粉原料(たとえば粉コークス)
を除く焼結原料の造粒開始後 180秒以上経過すれば、擬
似粒子の粒径が図6に示した造粒法に比較して十分に大
きくなることが分かった。ただし本発明では、固体燃料
系粉原料を鉄鉱石やSiO2含有粉原料,石灰石系粉原料等
の他の焼結原料から分離して造粒するので、固体燃料系
粉原料を除く焼結原料を造粒して得た擬似粒子に固体燃
料系粉原料を、内装化させることなく添加する必要があ
る。
On the other hand, as shown in FIG. 7, a sintering experiment (that is, iron ore, return ore, limestone and quick lime) from which coke has been separated by applying the present invention was carried out, and the progress after the start of granulation was carried out. The relationship between time and average particle size of pseudo particles was investigated. The result is as shown in FIG. As is clear from FIG. 8, solid fuel type powder raw material (for example, powder coke)
It has been found that the particle size of the pseudo particles becomes sufficiently larger than that of the granulation method shown in FIG. 6 when 180 seconds or more have elapsed after the start of granulation of the sintering raw materials except for. However, in the present invention, the solid fuel-based powder raw material is separated from the other sintering raw materials such as iron ore, SiO 2 -containing powder raw material, and limestone-based powder raw material and granulated. It is necessary to add the solid fuel-based powder raw material to the pseudo particles obtained by granulating, without being internally incorporated.

【0019】そのためには本発明においては、分離した
固体燃料系粉原料を造粒の後半の過程で添加して前半の
過程で造粒した擬似粒子原料とさらに造粒することで、
擬似粒子の外装部分へ固体燃料系粉原料を付着させるこ
とにより、焼結原料の擬似粒子の粒径を増大させ、焼結
層内の通気性を改善し、焼結鉱の生産性を向上すること
を試行した。
To this end, in the present invention, the separated solid fuel-based powder raw material is added in the latter half of the granulation process and further granulated with the pseudo-particle raw material granulated in the first half process.
By adhering the solid fuel powder material to the exterior part of the pseudo particle, the particle size of the pseudo particle of the sintering material is increased, the air permeability in the sintered layer is improved, and the productivity of the sinter is improved. Tried that.

【0020】しかし、固体燃料系粉原料を焼結原料の外
装部に付着,形成するために添加する時間の設定、すな
わち、造粒されつつある焼結原料に固体燃料系粉原料の
みを添加した後、その焼結原料がドラムミキサーの排出
口に到達するまでの添加後の滞留時間、すなわち固体燃
料系粉原料を焼結原料の外装部に付着,形成させるため
に添加した後の造粒時間(以降、単に外装時間と呼ぶ)
の設定に応じて、大きく効果が異なることを見出した。
However, the time for adding the solid fuel type powder raw material to adhere and form the outer portion of the sintering raw material is set, that is, only the solid fuel type powder raw material is added to the granulating sintering raw material. After that, the residence time after the addition of the sintering raw material until it reaches the discharge port of the drum mixer, that is, the granulation time after the addition of the solid fuel system powder raw material in order to adhere and form it on the exterior part of the sintering raw material. (Hereafter, simply called exterior time)
It was found that the effect greatly depends on the setting of.

【0021】次に、図9に示すように、固体燃料系粉原
料(たとえば粉コークス)を除く焼結原料の造粒開始後
300秒経過した後、 粉コークスを添加して、さらに造粒
を行ない、粉コークス添加後の外装時間と擬似粒子の平
均粒径との関係を調査した。その結果は、図10に示す通
りである。図10から明らかなように、外装時間が長くな
るとともに、擬似粒子の粒径が減少することが分かる。
擬似粒子の粒径が減少すると、焼結機に装入する際の原
料層の通気性が低下するので、外装時間は 120秒以下
(好ましくは90秒以下,望ましくは60秒以下)が望まし
い。
Next, as shown in FIG. 9, after starting the granulation of the sintering raw material excluding the solid fuel type powder raw material (for example, powder coke)
After 300 seconds had passed, powder coke was added and further granulation was performed, and the relationship between the exterior time after the addition of powder coke and the average particle size of the pseudo particles was investigated. The result is as shown in FIG. As is apparent from FIG. 10, it is understood that the particle size of the pseudo particles decreases as the coating time increases.
If the particle size of the pseudo particles decreases, the air permeability of the raw material layer at the time of charging into the sintering machine decreases, so the exterior time is preferably 120 seconds or less (preferably 90 seconds or less, more preferably 60 seconds or less).

【0022】すなわち、ドラムミキサー内においては、
原料の造粒とともに、破壊も同時に進行しているため、
外装時間を 120秒(ドラムミキサーの回転数は18回転に
相当)を超えて長くすると、ドラムミキサー内で擬似粒
子が壊れ、粉コークスが擬似粒子内に取り込まれる。そ
の結果、水と濡れ難くしかも造粒し難い粉コークスの内
装化により擬似粒子の粒径が減少して、図6に示した固
体燃料系粉原料(たとえば粉コークス)を含む焼結原料
の造粒実験における擬似粒子の粒径と同等の値になって
いることが確認された。つまり外装時間を長くとりすぎ
ると、ドラムミキサー内では、造粒だけでなく擬似粒子
の破壊も同時に進行しているので、外装のために添加し
た固体燃料系粉原料が破壊された擬似粒子の内部に取り
込まれて、内外装ともに存在することになり、固体燃料
系粉原料を含む焼結原料の混合,造粒と変わらないこと
になるのである。
That is, in the drum mixer,
With the granulation of the raw material, destruction is progressing at the same time,
If the coating time is longer than 120 seconds (the rotation speed of the drum mixer is equivalent to 18 rotations), the pseudo particles are broken in the drum mixer, and the powder coke is taken into the pseudo particles. As a result, the particle size of the pseudo particles is reduced due to the interior of the powder coke that is hard to wet with water and difficult to granulate, and the sintering raw material containing the solid fuel system powder raw material (for example, powder coke) shown in FIG. 6 is produced. It was confirmed that the particle size was the same as the particle size of the pseudo particles in the particle experiment. In other words, if the exterior time is set too long, not only granulation but also the destruction of pseudo particles progresses in the drum mixer at the same time.Therefore, the solid fuel-based powder raw material added for exterior is destroyed inside the pseudo particles. It is taken in by and is present both inside and outside, which is no different from the mixing and granulation of the sintering raw material including the solid fuel powder raw material.

【0023】また別の実験によって、外装時間が10秒
(ドラムミキサーの回転数は 1.5回転に相当)を下回る
と、外装時間が不足して、添加した固体燃料系粉原料が
焼結原料中の一部分に偏析を起こし、焼結の際に均一な
焼結状態が得られないことが分かった。したがって外装
のための固体燃料系粉原料を添加するにあたって、外装
時間は10〜120 秒の範囲内に維持しなければならない。
本発明では前記したような外装時間の適性範囲を満たす
ことにより、固体燃料系粉原料も擬似粒子の内部に取り
込まれることなく、外装化されることになる。
According to another experiment, when the exterior time is less than 10 seconds (the rotation number of the drum mixer is equivalent to 1.5 revolutions), the exterior time is insufficient and the added solid fuel system powder raw material is contained in the sintering raw material. It was found that segregation occurred in a part, and a uniform sintered state could not be obtained during sintering. Therefore, when adding the solid fuel type powder raw material for the exterior, the exterior time must be maintained within the range of 10 to 120 seconds.
In the present invention, by satisfying the appropriate range of the exterior time as described above, the solid fuel powder material is also exteriorized without being taken into the inside of the pseudo particles.

【0024】本発明の外装時間の適性範囲を固体燃料系
粉原料(たとえば粉コークス)の添加に適用する場合、
得られる擬似粒子の外装部は固体燃料系粉原料となった
ものが得られる。したがって、固体燃料系粉原料として
の粉コークスが内装化されないので、造粒し難い粉コー
クスによる擬似粒子の粒径の減少は生じない。 その結
果、 造粒工程で得られる擬似粒子の粒径が増大する効果
が得られ、生産性の向上が期待できる。
When the suitable range of the exterior time of the present invention is applied to the addition of the solid fuel type powder raw material (for example, powder coke),
The external part of the obtained pseudo particles is a solid fuel type powder raw material. Therefore, since the powder coke as the solid fuel powder material is not incorporated, the particle size of the pseudo particles does not decrease due to the powder coke which is difficult to granulate. As a result, the effect of increasing the particle size of the pseudo particles obtained in the granulation step can be obtained, and improvement in productivity can be expected.

【0025】そこで図11に示すように、固体燃料系粉原
料(たとえば粉コークス)を除く焼結原料の造粒実験
(実験 No.3,4,5)を行なった。 実験 No.3では、
鉄鉱石および返鉱をドラムミキサーに装入して造粒(造
粒時間: 300秒)した後、石灰石,生石灰,コークスを
添加してさらに造粒(造粒時間:60秒)した。その結
果、 平均粒径1.75mmの擬似粒子が得られた。実験 No.4
では、鉄鉱石,返鉱および生石灰をドラムミキサーに装
入して造粒(造粒時間: 300秒)した後、石灰石,コー
クスを添加してさらに造粒(造粒時間:60秒)した。そ
の結果、 平均粒径1.81mmの擬似粒子が得られた。実験 N
o.5では、鉄鉱石,返鉱,生石灰および石灰石をドラム
ミキサーに装入して造粒(造粒時間: 300秒)した後、
コークスを添加してさらに造粒(造粒時間:60秒)し
た。その結果、 平均粒径1.74mmの擬似粒子が得られた。
Therefore, as shown in FIG. 11, granulation experiments (Experiment Nos. 3, 4, and 5) of the sintering raw material excluding the solid fuel type powder raw material (for example, powder coke) were conducted. In Experiment No. 3,
After iron ore and return ore were charged into a drum mixer and granulated (granulation time: 300 seconds), limestone, quick lime and coke were added to further granulate (granulation time: 60 seconds). As a result, pseudo particles having an average particle size of 1.75 mm were obtained. Experiment No.4
Then, after iron ore, return ore and quick lime were charged into a drum mixer and granulated (granulation time: 300 seconds), limestone and coke were added to further granulate (granulation time: 60 seconds). As a result, pseudo particles having an average particle size of 1.81 mm were obtained. Experiment N
In o.5, after iron ore, return ore, quick lime and limestone were charged into a drum mixer and granulated (granulation time: 300 seconds),
Coke was added and further granulated (granulation time: 60 seconds). As a result, pseudo particles having an average particle size of 1.74 mm were obtained.

【0026】つまり固体燃料系粉原料(たとえば粉コー
クス)を除く焼結原料の造粒実験によって得られた擬似
粒子の粒径は、図6に示した固体燃料系粉原料を含む焼
結原料の造粒実験における擬似粒子の粒径に比べて、15
%以上増大している。本発明になる固体燃料系粉原料で
ある粉コークスを擬似粒子中に内装化させない造粒フロ
ーの例(方法A)について説明する。
That is, the particle size of the pseudo particles obtained by the granulation experiment of the sintering raw material excluding the solid fuel type powder raw material (for example, powder coke) is the same as that of the sintering raw material containing the solid fuel type powder raw material shown in FIG. Compared with the particle size of the pseudo particles in the granulation experiment, 15
% Or more. An example of the granulation flow (method A) in which the powder coke, which is the solid fuel powder material according to the present invention, is not incorporated in the pseudo particles will be described.

【0027】図12に示すように、ドラムミキサー5の装
入側からは、固体燃料系粉原料4である粉コークスを除
く焼結原料が装入され、また、外装時間を制御するた
め、粉コークスは、ドラムミキサー5の排出側から添加
される。焼結用原料が排出口に到達するまでの滞留時間
が10〜120 秒範囲となるドラムミキサー5の下流側途中
に設定した外装領域に合わせて、下流側排出口からドラ
ムミキサー5内の長手方向に進退自在に配置したベルト
コンベヤ12の先端位置を、例えば10秒〜120 秒範囲の中
の60秒に相当する外装領域の中間位置に調整する。そし
て、ベルトコンベヤ12を介して固体燃料系粉原料4(た
とえば粉コークス)を所定領域(ここでは外装領域の中
間位置)に添加し、ドラムミキサー5内で外装領域に達
するまでに造粒により形成された擬似粒子の周囲に、固
体燃料系粉原料4を付着,形成させた外装部分を有する
擬似粒子を造粒する。固体燃料系粉原料4は、平均粒径
が 2.0mm以下、好ましくは 1.5mm以下とすることにより
外装部分に付着し易くなり、その外表面を覆うことがで
きる。この方法Aは、単一のドラムミキサー5を使用す
る例である。
As shown in FIG. 12, from the charging side of the drum mixer 5, the sintering raw material other than the powder coke, which is the solid fuel type powder raw material 4, is charged, and the powder is supplied to control the exterior time. Coke is added from the discharge side of the drum mixer 5. In accordance with the exterior region set midway on the downstream side of the drum mixer 5 where the residence time of the sintering raw material reaches the discharge port in the range of 10 to 120 seconds, the longitudinal direction from the downstream discharge port to the inside of the drum mixer 5 The front end position of the belt conveyor 12 arranged so as to move back and forth is adjusted to the intermediate position of the exterior region corresponding to 60 seconds in the range of 10 seconds to 120 seconds, for example. Then, the solid fuel system powder raw material 4 (for example, powder coke) is added to a predetermined area (here, an intermediate position of the exterior area) via the belt conveyor 12 and formed by granulation in the drum mixer 5 until the exterior area is reached. Around the generated pseudo particles, the pseudo particles having an exterior part on which the solid fuel type powder raw material 4 is adhered and formed are granulated. By setting the average particle size of the solid fuel-based powder raw material 4 to 2.0 mm or less, preferably 1.5 mm or less, it becomes easy to adhere to the exterior portion and the outer surface can be covered. This method A is an example in which a single drum mixer 5 is used.

【0028】また図13に、ドラムミキサー5を長手方向
に複数に分割して使用する本発明の造粒フローの例(方
法B)とする。図13にはドラムミキサー5を2分割する
例を示したが、本発明においては、ドラムミキサー5の
分割数は特に限定しない。図13の (a)では、固体燃料系
粉原料4である粉コークスを除く焼結原料が装入して造
粒し擬似粒子を得る第1ドラムミキサー51と、第1ドラ
ムミキサー51で造粒された擬似粒子の周囲に固体燃料系
粉原料4を付着させた外装部分を有する擬似粒子を造粒
する第2ドラムミキサー52とを直列に配置する。第1ド
ラムミキサー51は、擬似粒子が造粒できる長さに設定さ
れ、また第2ドラムミキサー52は、擬似粒子の外周に固
体燃料系粉原料を外装,付着できる長さに設定される。
すなわち第2ドラムミキサー52の長さは、排出口に到達
するまでの擬似粒子の滞留時間が、10〜120 秒を満足す
る範囲になるような外装領域に相当する寸法に設定され
る。
Further, FIG. 13 shows an example (method B) of the granulation flow of the present invention in which the drum mixer 5 is divided into a plurality of pieces in the longitudinal direction and used. Although FIG. 13 shows an example in which the drum mixer 5 is divided into two, the number of divisions of the drum mixer 5 is not particularly limited in the present invention. In (a) of FIG. 13, granulation is performed by the first drum mixer 51 and the first drum mixer 51 in which the sintering raw material other than the powder coke, which is the solid fuel system powder raw material 4, is charged and granulated to obtain pseudo particles. A second drum mixer 52 that granulates the pseudo particles having an exterior part to which the solid fuel type powder raw material 4 is attached is arranged in series around the generated pseudo particles. The first drum mixer 51 is set to a length that allows pseudo particles to be granulated, and the second drum mixer 52 is set to a length that allows the solid fuel system powder raw material to be packaged and attached to the outer periphery of the pseudo particles.
That is, the length of the second drum mixer 52 is set to a dimension corresponding to the exterior region such that the residence time of the pseudo particles before reaching the discharge port is in the range of 10 to 120 seconds.

【0029】図13の (a)において、第1ドラムミキサー
51の装入口から鉄鉱石1とSiO2含有粉原料2(珪石,蛇
紋岩,Niスラグ等のSiO2を比較的に多く含有する原
料)、石灰石系粉原料3とを装入する。第1ドラムミキ
サー51の装入口から排出口に到達するまでの過程で造粒
と崩壊を繰り返しながら粗粒の鉄鉱石1を核として、そ
の周囲に細粒の鉄鉱石,SiO2含有粉原料2および石灰石
系粉原料3を付着させて擬似粒子が造粒される。その
後、擬似粒子が第2ドラムミキサー52の装入口の装入さ
れる時に、固体燃料系粉原料4を、第2ドラムミキサー
52の装入口に供給する。これにより第2ドラムミキサー
52内で擬似粒子の周囲に固体燃料系粉原料4を外装,付
着させる造粒が行われる。 図13の (b)は既存のドラム
ミキサーが2分割タイプである場合の本発明の適用例を
示したもので、後半部分のドラムミキサー52の長さが、
外装時間が 120秒に相当する長さより長い場合は、図12
の例と同じく後半部分のドラムミキサー52の排出側から
ベルトコンベア12によって外装領域に固体燃料系粉原料
4を供給,添加する。
In FIG. 13A, the first drum mixer
Iron ore 1, SiO 2 -containing powder raw material 2 (raw material containing a relatively large amount of SiO 2 such as silica stone, serpentine, and Ni slag) and limestone-based powder raw material 3 are charged from the inlet of 51. Granulation and disintegration are repeated in the process from the charging port to the discharging port of the first drum mixer 51, and the coarse iron ore 1 is used as a nucleus, and the fine iron ore and SiO 2 -containing powder raw material 2 are provided around the core. Then, the limestone-based powder raw material 3 is attached and the pseudo particles are granulated. After that, when the pseudo particles are charged into the charging port of the second drum mixer 52, the solid fuel type powder raw material 4 is fed into the second drum mixer 52.
Supply to 52 loading holes. This allows the second drum mixer
Granulation is performed in which the solid fuel-based powder raw material 4 is externally attached to and attached to the periphery of the pseudo particles in 52. FIG. 13B shows an application example of the present invention in the case where the existing drum mixer is a two-division type. The length of the drum mixer 52 in the latter half is
If the packaging time is longer than 120 seconds, the
Similarly to the above example, the solid fuel type powder raw material 4 is supplied and added to the exterior region by the belt conveyor 12 from the discharge side of the drum mixer 52 in the latter half portion.

【0030】本発明の方法Aまたは方法Bによれば、粗
粒の鉄鉱石1を核として、その周囲に細粒の鉄鉱石、Si
O2含有粉原料2および石灰石系粉原料3が付着し、さら
にその周囲の外装部に固体燃料系粉原料4(たとえば粉
コークス)を付着,形成させることができる。これによ
り、本発明の焼結用原料の製造方法では、熱源となる固
体燃料系粉原料4を外装部に付着,形成させることがで
き、したがって、固体燃料系粉原料4としての粉コーク
スが内装化されないため、造粒し難い粉コークスによる
造粒性悪化の影響がなく、造粒過程で得られる擬似粒子
の粒径が増加する効果が得られる。その結果、生産性の
向上が期待でき、さらに添加した固体燃料系粉原料4の
燃焼性の向上を図ることができる。
According to the method A or the method B of the present invention, the coarse iron ore 1 is used as the nucleus, and the fine iron ore, Si, is provided around the core.
The O 2 -containing powder raw material 2 and the limestone-based powder raw material 3 can be attached, and further the solid fuel-based powder raw material 4 (for example, powder coke) can be attached and formed on the outer peripheral portion thereof. As a result, in the method for producing a sintering raw material according to the present invention, the solid fuel-based powder raw material 4 serving as a heat source can be adhered to and formed on the exterior portion, so that the powder coke as the solid fuel-based powder raw material 4 is internally provided. Since it is not converted, it is possible to obtain the effect of increasing the particle size of the pseudo particles obtained in the granulation process without the influence of the deterioration of the granulation property due to the coke that is difficult to granulate. As a result, the productivity can be expected to be improved, and the combustibility of the added solid fuel type powder raw material 4 can be improved.

【0031】[0031]

【実施例】表1に示す配合割合の焼結原料を用いて、図
11に示す実験No.5の方法で造粒した擬似粒子をドワイト
ロイド焼結機に輸送し、パレット上に装入した。これを
発明例とする。比較のため鉄鉱石、SiO2含有粉原料、石
灰石系粉原料、粉コークスを同時に混合する処理方法に
て造粒した擬似粒子をドワイトロイド焼結機に輸送し、
パレット上に装入した。これを比較例とする。
[Examples] Figures using sintering raw materials having the mixing ratios shown in Table 1
The pseudo particles granulated by the method of Experiment No. 5 shown in 11 were transported to a Dwightroid sintering machine and loaded on a pallet. This is an invention example. For comparison, iron ore, SiO 2 -containing powder raw material, limestone-based powder raw material, pseudo particles granulated by a treatment method of simultaneously mixing powder coke are transported to a Dwightroid sintering machine,
Loaded on a pallet. This is a comparative example.

【0032】発明例と比較例について、焼結機の生産率
( ton/hr・m2 )と焼結鉱の歩留り(%)を調査し
た。 その結果を表2に示す。
With respect to the invention example and the comparative example, the production rate (ton / hr · m 2 ) of the sintering machine and the yield (%) of the sintered ore were investigated. The results are shown in Table 2.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】その結果、擬似粒子の粒径が増加し、歩留
を低下させることなく、生産率を大幅に増加することが
できた。なお、通常は、焼結時間が短くなる(生産率が
増加する)と、溶融時間が短くなるので、焼結鉱の強度
が低下し、歩留の低下を生じる。しかし本発明ではコー
クスを外装化しているので、焼結鉱の歩留低下の割合は
小さくてすんだ。
As a result, the particle size of the pseudo particles increased, and the production rate could be greatly increased without lowering the yield. Usually, when the sintering time is shortened (the production rate is increased), the melting time is shortened, so that the strength of the sintered ore is reduced and the yield is reduced. However, in the present invention, since the coke is externally coated, the rate of yield reduction of the sinter is small.

【0036】[0036]

【発明の効果】以上説明したように本発明の焼結原料の
製造方法によれば、擬似粒子がドラムミキサーの排出口
に到達するまでの下流側途中に設定した外装領域で熱源
となる固体燃料系粉原料を添加し、固体燃料系粉原料を
焼結原料から分離させ、外装領域で添加することによっ
て、粒径を大きくした擬似粒子の外装部分に固体燃料系
粉原料を付着,形成した焼結用擬似粒子原料を製造する
ことができ、焼結を鉱製造する際の生産性を大きく向上
することができる。
As described above, according to the method for producing a sintering raw material of the present invention, the solid fuel serving as a heat source in the exterior region set on the downstream side until the pseudo particles reach the discharge port of the drum mixer. A solid fuel-based powder raw material is added to the exterior region of the pseudo-particles whose particle size is increased by adding the powder-based raw material, separating the solid fuel-based powder raw material from the sintering raw material, and adding it in the exterior region. It is possible to produce a pseudo-particle raw material for binding, and it is possible to greatly improve the productivity when ores are produced by sintering.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の焼結原料の混合,造粒工程を示す系統図
である。
FIG. 1 is a system diagram showing a conventional mixing and granulating process of sintering raw materials.

【図2】擬似粒子の平均粒径と焼結機の生産率との関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the average particle size of pseudo particles and the production rate of a sintering machine.

【図3】鉱石の接触角と擬似粒子充填層の通気性との関
係を示すグラフである。
FIG. 3 is a graph showing the relationship between the contact angle of ore and the air permeability of the pseudo particle packed bed.

【図4】試料,水滴および接触角の関係を模式的に示す
側面図である。
FIG. 4 is a side view schematically showing the relationship among a sample, a water droplet, and a contact angle.

【図5】水の浸透高さを測定する装置を模式的に示す断
面図である。
FIG. 5 is a cross-sectional view schematically showing an apparatus for measuring a water penetration height.

【図6】造粒実験の工程を示す系統図である。FIG. 6 is a system diagram showing steps of a granulation experiment.

【図7】造粒実験の工程を示す系統図である。FIG. 7 is a system diagram showing steps of a granulation experiment.

【図8】造粒開始後の経過時間と擬似粒子の平均粒径と
の関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the elapsed time after the start of granulation and the average particle size of pseudo particles.

【図9】造粒実験の工程を示す系統図である。FIG. 9 is a system diagram showing the steps of a granulation experiment.

【図10】コークス添加後の外装時間と擬似粒子の平均粒
径との関係を示すグラフである。
FIG. 10 is a graph showing the relationship between the exterior time after addition of coke and the average particle size of pseudo particles.

【図11】造粒実験の工程を示す系統図である。FIG. 11 is a system diagram showing the steps of a granulation experiment.

【図12】本発明の造粒フロー(方法A)を示す系統図で
ある。
FIG. 12 is a system diagram showing a granulation flow (method A) of the present invention.

【図13】本発明の造粒フロー(方法B)を示す系統図で
ある。
FIG. 13 is a system diagram showing a granulation flow (method B) of the present invention.

【符号の説明】[Explanation of symbols]

1 鉄鉱石 2 SiO2含有粉原料 3 石灰石系粉原料 4 固体燃料系粉原料 5 ドラムミキサー 6 試料 7 水滴 8 ガラス管 9 ガーゼ 10 粉体 11 水 12 ベルトコンベア 51 第1ドラムミキサー 52 第2ドラムミキサー1 Iron Ore 2 SiO 2 Containing Powder Raw Material 3 Limestone Powder Raw Material 4 Solid Fuel Powder Raw Material 5 Drum Mixer 6 Sample 7 Water Drop 8 Glass Tube 9 Gauze 10 Powder 11 Water 12 Belt Conveyor 51 1st Drum Mixer 52 2nd Drum Mixer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下方吸引のドワイトロイド式焼結機を用
いて高炉用焼結鉱を製造するプロセスの事前処理とし
て、鉄鉱石、SiO2含有粉原料、石灰石系粉原料および固
体燃料系粉原料からなる焼結原料をドラムミキサーを用
いて造粒するに際し、前記ドラムミキサーの装入口から
前記固体燃料系粉原料を除く焼結原料を装入して造粒す
ると共に、前記固体燃料系粉原料を除く焼結原料が前記
ドラムミキサーの排出口に到達するまでの滞留時間が10
〜120 秒を満足する範囲となる下流側途中に設定した領
域で前記固体燃料系粉原料を添加し、前記排出口に至る
間に前記固体燃料系粉原料を前記焼結原料の外装部に付
着、形成することを特徴とする焼結用原料の製造方法。
1. Iron ore, SiO 2 -containing powder raw material, limestone-based powder raw material, and solid fuel-based powder raw material as a pretreatment of a process for producing a sinter for blast furnace using a downward suction Dwightroid-type sintering machine. When granulating a sintering raw material consisting of a drum mixer using a drum mixer, the sintering raw material excluding the solid fuel type powder raw material is charged from the charging port of the drum mixer to granulate the solid fuel type powder raw material. The residence time until the sintering raw materials except the above reaches the discharge port of the drum mixer is 10
The solid fuel system powder raw material is added in an area set in the middle of the downstream side within a range of satisfying ~ 120 seconds, and the solid fuel system powder raw material is attached to the exterior part of the sintering raw material while reaching the discharge port. And a method for producing a sintering raw material, which comprises:
【請求項2】 前記ドラムミキサーを複数に分割し、前
記複数のドラムミキサーのうちの最終のドラムミキサー
の長さを、前記焼結原料が前記最終のドラムミキサーの
排出口に到達するまでの滞留時間が10〜120 秒を満足す
る範囲に設定された長さとして、前記最終のドラムミキ
サーの装入側で前記固体燃料系粉原料を添加することを
特徴とする請求項1に記載の焼結用原料の製造方法。
2. The drum mixer is divided into a plurality of drum mixers, and the length of the final drum mixer among the plurality of drum mixers is set to a value until the sintering raw material reaches the discharge port of the final drum mixer. The sintering according to claim 1, wherein the solid fuel system powder raw material is added on the charging side of the final drum mixer with a length set to satisfy a time of 10 to 120 seconds. Method for manufacturing raw materials.
JP2002040197A 2001-09-12 2002-02-18 Granulation method of sintering raw material Expired - Lifetime JP3794332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002040197A JP3794332B2 (en) 2001-09-12 2002-02-18 Granulation method of sintering raw material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-276070 2001-09-12
JP2001276070 2001-09-12
JP2002040197A JP3794332B2 (en) 2001-09-12 2002-02-18 Granulation method of sintering raw material

Publications (2)

Publication Number Publication Date
JP2003160815A true JP2003160815A (en) 2003-06-06
JP3794332B2 JP3794332B2 (en) 2006-07-05

Family

ID=26622045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002040197A Expired - Lifetime JP3794332B2 (en) 2001-09-12 2002-02-18 Granulation method of sintering raw material

Country Status (1)

Country Link
JP (1) JP3794332B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004907A1 (en) * 2009-07-10 2011-01-13 Jfeスチール株式会社 Method for producing starting material for sintering
CN103052724A (en) * 2010-07-30 2013-04-17 杰富意钢铁株式会社 Method for producing starting material for sintering
JP2018044222A (en) * 2016-09-16 2018-03-22 新日鐵住金株式会社 Granulator of sintering raw material and granulating method
JP2018178148A (en) * 2017-04-04 2018-11-15 新日鐵住金株式会社 Method of producing sintered ore
JP2020084204A (en) * 2018-11-15 2020-06-04 日本製鉄株式会社 Manufacturing method of sintered ore
CN111944993A (en) * 2020-09-11 2020-11-17 攀钢集团研究院有限公司 Method for improving sintering yield of titanium concentrate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004907A1 (en) * 2009-07-10 2011-01-13 Jfeスチール株式会社 Method for producing starting material for sintering
JP2011032577A (en) * 2009-07-10 2011-02-17 Jfe Steel Corp Method for producing starting material for sintering
CN102482729A (en) * 2009-07-10 2012-05-30 Jfe钢铁株式会社 Method For Producing Starting Material For Sintering
AU2010269436B2 (en) * 2009-07-10 2014-06-26 Jfe Steel Corporation Method for producing material for use in sintering
CN102482729B (en) * 2009-07-10 2015-01-07 Jfe钢铁株式会社 Method For Producing Starting Material For Sintering
CN103052724A (en) * 2010-07-30 2013-04-17 杰富意钢铁株式会社 Method for producing starting material for sintering
JP2018044222A (en) * 2016-09-16 2018-03-22 新日鐵住金株式会社 Granulator of sintering raw material and granulating method
JP2018178148A (en) * 2017-04-04 2018-11-15 新日鐵住金株式会社 Method of producing sintered ore
JP2020084204A (en) * 2018-11-15 2020-06-04 日本製鉄株式会社 Manufacturing method of sintered ore
JP7095561B2 (en) 2018-11-15 2022-07-05 日本製鉄株式会社 Sintered ore manufacturing method
CN111944993A (en) * 2020-09-11 2020-11-17 攀钢集团研究院有限公司 Method for improving sintering yield of titanium concentrate

Also Published As

Publication number Publication date
JP3794332B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
JP4840524B2 (en) Method for manufacturing raw materials for sintering
AU2020203209B2 (en) Oxide ore smelting method
JP2003160815A (en) Method for granulating raw material for sintering
JP4228694B2 (en) Method for manufacturing raw materials for sintering
JP2003138319A (en) Method for manufacturing raw material for sintering
WO2012015063A1 (en) Method for producing starting material for sintering
KR20180030596A (en) Method for producing sintered ore
WO2012015067A1 (en) Method for producing starting material for sintering
JP4228678B2 (en) Method for manufacturing raw materials for sintering
JP2006063375A (en) Method for manufacturing raw material to be sintered
JP4261672B2 (en) Granulation method of sintering raw material
JP2000256756A (en) Method for granulating sintering raw material
CN107674971B (en) Raw material treatment method
JP3675105B2 (en) Sintering raw material processing method
JP2003277838A (en) High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method
JP4045897B2 (en) Raw material charging method for bell-less blast furnace
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JPH05339654A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP2746030B2 (en) Pre-processing method for sintering raw materials
US3235372A (en) Hard burned agglomerate and process for making same
JPH09279259A (en) Production of sintered ore
JPH0711348A (en) Operation of sintering
JP2003113425A (en) Method for manufacturing sintered raw material
JPS62214138A (en) Manufacture of sintered ore
JP5292845B2 (en) Raw material charging method to sintering machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3794332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term