WO2011004907A1 - Method for producing starting material for sintering - Google Patents

Method for producing starting material for sintering Download PDF

Info

Publication number
WO2011004907A1
WO2011004907A1 PCT/JP2010/061856 JP2010061856W WO2011004907A1 WO 2011004907 A1 WO2011004907 A1 WO 2011004907A1 JP 2010061856 W JP2010061856 W JP 2010061856W WO 2011004907 A1 WO2011004907 A1 WO 2011004907A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
outer layer
drum mixer
solid fuel
sintering
Prior art date
Application number
PCT/JP2010/061856
Other languages
French (fr)
Japanese (ja)
Inventor
樋口隆英
大山伸幸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to AU2010269436A priority Critical patent/AU2010269436B2/en
Priority to CN201080033050.XA priority patent/CN102482729B/en
Priority to BR112012000638-0A priority patent/BR112012000638B1/en
Publication of WO2011004907A1 publication Critical patent/WO2011004907A1/en
Priority to ZA2011/09441A priority patent/ZA201109441B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2413Binding; Briquetting ; Granulating enduration of pellets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic

Definitions

  • the present invention relates to a method for producing a sintering raw material for producing a sintered ore for a blast furnace using a downward suction droidoid type sintering machine.
  • Sinter ore used as a blast furnace raw material is generally manufactured through the following processing method of the sintered raw material. That is, first, iron ore having a particle size of 10 mm or less, and a SiO 2 -containing raw material made of silica, serpentine, or nickel slag, and a limestone-based powder raw material containing CaO such as limestone, and a heat source such as powdered coke or anthracite Using a drum mixer, an appropriate amount of water is added and mixed and granulated to form a granulated product called granulated particles.
  • the blended raw material consisting of this granulated material is charged onto a pallet of a Dwytroid type sintering machine so as to have an appropriate thickness, for example, 500 to 700 mm, and ignites the solid fuel in the surface layer portion.
  • the solid fuel is combusted while sucking air toward the surface, and the sintered raw material blended by the combustion heat is sintered to form a sintered cake.
  • the sintered cake is crushed and sized to obtain a sintered ore having a certain particle size or more.
  • those having a particle size smaller than that are returned to ore and reused as a sintering raw material.
  • the reducibility of the sintered product ore manufactured in this way is a factor that greatly affects the operation of the blast furnace, as pointed out in the past.
  • the reducibility of the sinter has a good negative correlation with the fuel ratio through the gas utilization rate in the blast furnace.
  • the reducibility of the sinter is improved, the fuel ratio in the blast furnace decreases.
  • the cold strength of the manufactured sintered product ore is also an important factor for ensuring the air permeability in the blast furnace, and each blast furnace is operated with a lower limit standard for the cold strength. Therefore, it can be said that the desired sintered ore for the blast furnace is excellent in reducibility and has high cold strength.
  • powder iron ore composed of fine iron ore and coarse iron ore, limestone and quicklime are mixed with a mixer, the mixture is granulated by adding water with a first pelletizer, and the granulated product is granulated.
  • HPS Hybrid Pelletized Sinter
  • Japanese Patent No. 3755452 Japanese Patent No. 3794332 Japanese Patent No. 3656632 Japanese Patent Publication No.2-4658
  • the method for producing a raw material for sintering described in Patent Document 4 uses a disk pelletizer for granulating the raw material for sintering.
  • a disk pelletizer for granulating the raw material for sintering.
  • an iron ore containing pellet feed that is fine powder is used. Stone can be granulated, and by combining this HPS method and the method for producing sintering raw materials described in Patent Documents 1 to 3, it is possible to granulate iron ore containing fine powder such as pellet feed become.
  • Patent Documents 1 to 3 were originally developed for the purpose of expanding the use of pellet feed of fine iron ore (average particle size of 150 ⁇ m or less), which was inexpensive at that time, and improving the quality of sintered ore.
  • the amount used has decreased, and the granulation strength in the pelletizer has decreased. Therefore, if the method for producing a raw material for sintering described in Patent Documents 1 to 3 is used as it is, the granulated particle diameter is kept small, the air permeability is poor, and uneven firing is likely to occur.
  • the present invention has been made paying attention to the above problems, and provides a method for producing a raw material for sintering capable of efficiently producing a good raw material even when a disk pelletizer is used for granulation. It is for the purpose.
  • a method for producing a raw material for sintering comprises preparing a sintered raw material comprising iron ore, a SiO 2 -containing raw material, a limestone powder raw material, and a solid fuel powder raw material, and said iron ore.
  • the SiO 2 -containing raw material and the limestone powder raw material are mixed with a stirring and mixing drum mixer to produce a mixed raw material, and the mixed raw material is granulated with a disk pelletizer to produce granulated particles.
  • the solid fuel system powder raw material is added to the granulated particles supplied to the outer layer formation drum mixer from the discharge port side of the outer layer formation drum mixer, and the solid fuel system is supplied to the outer layer formation drum mixer A solid fuel-based powder raw material layer is formed on the surface of the granulated particles during an external time of 10 seconds or longer from the addition of the powder raw material to the discharge from the outer layer forming drum mixer. It is.
  • the exterior time is set to 40 seconds to 20 seconds. Further, in the method for manufacturing a raw material for sintering, it is more preferable to set the exterior time to 30 seconds to 20 seconds.
  • the limestone powder raw material is supplied to the forming drum mixer, and after the limestone powder raw material is supplied, the solid fuel powder raw material is added to the outer layer forming drum mixer, and the limestone powder raw material layer is formed on the granulated particles. And a solid fuel-based powder raw material layer is formed.
  • the supply of the limestone powder raw material is supplied from the charging side of the outer layer forming drum mixer, and the addition of the solid fuel powder raw material is performed in the outer layer It is preferable to add from the discharge port side of the forming drum mixer.
  • the supply of the limestone powder raw material supplies the limestone powder raw material together with the granulated particles obtained by granulation with the disc pelletizer to the drum mixer for forming the outer layer.
  • it consists of:
  • the addition of the solid fuel-based powder raw material takes 40 seconds or less and 10 seconds or more from the addition of the solid fuel-based powder raw material to the discharge from the drum mixer for forming the outer layer.
  • the solid fuel-based powder raw material is added to the outer layer forming drum mixer.
  • the exterior time is 40 seconds or less and more preferably 20 seconds or more.
  • the supply of the limestone powder raw material has an exterior time of 90 seconds or less from the supply of the limestone powder raw material to the discharge from the drum mixer for outer layer formation
  • the limestone powder raw material is supplied to the outer layer forming drum mixer so as to have an exterior time longer than the time from the addition of the solid fuel powder raw material to the discharge from the outer layer forming drum mixer. Is preferred.
  • Form the raw material layer and set the exterior time from the addition of the solid fuel-based powder raw material to the discharge from the drum mixer for forming the outer layer as shorter as any of the granulated particle diameter, crushing strength, and granulated particle strength decreases. And it is characterized in and.
  • the method for producing a sintered raw material comprises preparing a sintered raw material comprising iron ore, ultrafine ore, SiO 2 containing raw material, limestone powder raw material and solid fuel powder raw material. Ore, SiO 2 -containing raw material and limestone powder raw material are mixed with a drum mixer for stirring and mixing to produce a mixed raw material, the mixed raw material is granulated with a disk pelletizer to produce granulated particles, the granulated particles Is added to the outer layer forming drum mixer, and the solid fuel powder material is added to the granulated particles supplied to the outer layer forming drum mixer from the outlet side of the outer layer forming drum mixer, A solid fuel-based powder material layer is formed on the surface of the granulated particles during an exterior time of 30 seconds or more in 70 seconds or less from the addition of the system powder material to the discharge from the drum mixer for forming the outer layer.
  • the said ultra-fine ore has an average particle diameter of 1 micrometer or more and 10 micrometers or less, and is 10 mass% or more and 60 mass% or less with respect to all iron ores.
  • the method for producing a sintered raw material comprises preparing a sintered raw material consisting of iron ore, pellet feed, SiO 2 -containing raw material, limestone powder raw material and solid fuel powder raw material, the iron ore, pellet feed,
  • the raw material containing SiO 2 and the limestone powder raw material are mixed with a drum mixer for stirring and mixing to produce a mixed raw material, the mixed raw material is granulated with a disk pelletizer to produce granulated particles, and the granulated particles are outer layered.
  • the solid fuel powder is added to the granulated particles supplied to the forming drum mixer, and supplied to the outer layer forming drum mixer from the outlet side of the outer layer forming drum mixer, and the solid fuel powder
  • a solid fuel-based powder raw material layer is formed on the surface of the granulated particles during the exterior time of 30 seconds or longer from the addition of the raw material to the discharge from the drum mixer for forming the outer layer. It is intended to.
  • the said pellet feed has an average particle diameter of -75 micrometers 70% or more, and is 10 mass% or more and 60 mass% or less with respect to all iron ores.
  • the outer layer forming drum mixer preferably has a residence time of 120 seconds or less. The residence time is more preferably 90 to 120 seconds.
  • a limestone powder raw material is first formed on the surface of granulated particles granulated by a disk pelletizer, and then a solid fuel system such as powder coke is used.
  • a solid fuel system such as powder coke is used.
  • the solid fuel-based powder raw material adheres to the outermost layer of the granulated particles for sintering granulated by the disk pelletizer, which ensures the occurrence of uneven burning during sintering. I can stop.
  • the average diameter of the granulated product can be optimized to improve the reducibility, and the yield can be reduced to improve the productivity.
  • the solid fuel-based powder raw material is added from the discharge port side of the outer layer forming drum mixer, and the outer packaging time from the addition of the solid fuel-based powder raw material to the discharge from the outer layer forming drum mixer is determined by the granulated particle diameter, crushing
  • the strength or granulated particle strength is determined by the granulated particle diameter, crushing
  • FIG. 8 (a) is a diagram showing the relationship between the powder coke exterior time and the granulated average diameter
  • FIG. 8 (b) is a diagram showing the relationship between the powder coke exterior time and the production rate
  • 8 (c) is a diagram showing the relationship between the crushing strength and the appropriate exterior time. It is a schematic diagram which shows granulated particle.
  • Fig. 9 (a) is a schematic diagram of granulated particles when pellet feed is used and the powder coke exterior time is 90 seconds, and Fig.
  • FIG. 1 is an explanatory diagram of a manufacturing process with a disk pelletizer to which the method for manufacturing a raw material for sintering of the present embodiment is applied.
  • Examples of the raw material manufacturing process (HPS method) for sintering with a disk pelletizer include those described in Japanese Patent No. 27488782 and Japanese Patent No. 2755036.
  • HPS method raw material manufacturing process
  • FIG. 1 first, a sintering raw material made of iron ore, SiO 2 -containing raw material, limestone-based powder raw material and fixed coke-based powder raw material is prepared.
  • P feed is Pellet feed and B powder is Blending fine.
  • the powdered coke that is the solid fuel-based powder raw material, or the sintered raw material excluding the powdered coke and the limestone that is the limestone-based powder raw material is supplied to the stirring drum mixer 1 and added water. And mixed with stirring to produce a mixed raw material.
  • the mixed raw material is supplied to the disk pelletizer 2 and granulated by the disk pelletizer 2 to generate granulated particles.
  • the produced granulated particles are supplied to the outer layer forming drum mixer 3.
  • an outer layer of limestone or powder coke is formed on the granulated particles granulated by the disk pelletizer 2.
  • the raw material for sintering on which the outer layer is formed by the outer layer forming drum mixer 3 is charged into a downward suction dwytroid type sintering machine 4. In this dwy toroid type sintering machine 4, it is added to the powder coke of the raw material for sintering in the ignition furnace 5, and baking is performed.
  • the outer layer forming drum mixer 3 is provided with, for example, a powder coke projection device 6 that projects powder coke that is a solid fuel powder material from the outer discharge port side, and for example, a limestone powder from the charging side.
  • a limestone projecting device 7 for projecting limestone as a raw material is provided. Both of the projection devices are constituted by, for example, a conveyor or a spray nozzle.
  • the dwytroid sintering machine 4 is fired while conveying the raw materials for sintering by the conveyor while sucking from below with a blower.
  • the sintered sintering raw material becomes a sintered cake.
  • the sintered cake is crushed and sized, for example, a sintered ore having a particle size of 4 mm or more is supplied to a blast furnace, and the rest is returned to the iron ore. Reuse as a raw material for sintering equivalent to stone. Therefore, the iron ore in the sintering raw material described in the present invention will be described as including return ore.
  • FIG. 2 shows a conventional process for producing a raw material for sintering having a disk pelletizer 2 in the same manner as FIG. 1, in which powder coke, which is a solid fuel-based powder raw material, is projected from the charging side of the outer layer forming drum mixer 3. It is a manufacturing method. In this case, limestone, which is a limestone powder raw material, is charged from the stirring and mixing drum mixer 1.
  • FIG. 3 shows a test method.
  • the outer layer forming drum mixer also referred to as a coating mixer 3 3
  • the time required to form the powder coke layer on the surface layer of the granulated particles was determined.
  • the length of the outer layer forming drum mixer 3 was set to 120 seconds or less after the raw material was charged until it was discharged.
  • the drum mixer is a granulator, in which granulation is performed by rotation, but destruction and granulation are substantially repeated, and if the residence time is prolonged, the granulated particles themselves are destroyed. Therefore, the limit is set to 120 seconds or less, preferably 90 seconds or less.
  • the test is, for example, Australian coarse iron ore A ( ⁇ 8 mm), for example South American coarse iron ore B ( ⁇ 8 mm), iron ore B ( ⁇ 1 mm), quartzite powder, quicklime, return mineral, limestone, powder Coke is used as a sintered material, and these are blended at a weight ratio shown in Table 1 below.
  • the test evaluated the relationship between the coke residence time in the drum mixer for forming the outer layer and the productivity, granulation property, and sinter quality.
  • an outer layer forming drum mixer 3 having a preferable residence time of 90 seconds was used, and a method of inserting powdered coke together with the granulated particle raw material from the charging side of the outer layer forming drum mixer 3 was tested as a conventional example.
  • the relationship between the residence time in the drum mixer and the productivity was tested by changing the addition position of the powder coke. Table 2 below shows the residence time (exterior time) of the powder coke and the time for other granulation steps.
  • the production rate in each test, the average diameter of the granulated material, and the result of reducibility are shown in FIG.
  • the productivity improves when the residence time of the powder coke is shortened, and the condition for improving the productivity is when the powder coke residence time, that is, the exterior time is set to a range of 40 seconds or less and 10 seconds or more.
  • the exterior time is preferably in the range of 40 seconds or less and 20 seconds or more, and more preferably, the exterior time is 30 seconds or less close to the peak in productivity and 20 seconds or more. This is because when the powder coke residence time exceeds 40 seconds, the destruction part of the granulated particle surface layer part and the powder coke mixed part are located in the granulated particle surface layer, and the productivity is hindered from the deterioration of the powder coke combustibility. Conceivable.
  • the powdered coke is hydrophobic and poor in granulation as compared with other sintered raw materials.
  • the coke is retained together with the granulated particles in the outer layer forming drum mixer, it is granulated in the outer layer forming drum mixer. It is considered that this is because, in the disintegration process, the powder coke is embedded between the granulated particles, which causes the granulated particles to collapse and the granulated particle diameter tends to decrease.
  • the residence time after adding the powder coke that is, the exterior time is shorter than 20 seconds
  • the collapse of the granulated particle diameter is suppressed, but the powder coke is not uniformly coated on the surface of the granulated particle, and the firing becomes uneven.
  • the productivity is somewhat reduced and the exterior time is shorter than 10 seconds, the powder coke is coated on the surface of the granulated particles, and the productivity is greatly reduced.
  • reducibility it became clear that the granulated particle size is increased and the ventilation is improved by shortening the powder coke exterior time, so that a high reducible calcium ferrite structure is generated by high temperature sintering. .
  • the external time of the powdered coke and limestone was said not to affect the productivity.
  • the external time of the limestone is set to be the same as that of the powdered coke. It turned out that it was necessary to set more than exterior time. That is, in Example 5 in which limestone is granulated by the disk pelletizer 2 and at the same time the outer layer forming drum mixer 3 is charged, as shown in FIG. 6, the firing time is longer than in the conventional example. , Yield and production rate are greatly improved. In Example 6 in which the exterior time of limestone is 60 seconds, the yield is further improved and the production rate reaches a peak.
  • Example 7 when limestone and powder coke are added at the same time, in the case of this embodiment granulated with a disk pelletizer, the yield improves with the exteriorization of limestone, and at the same time the powder coke Although the exterior state is slightly affected by the limestone and the production rate is lowered, the production rate equivalent to that of Example 5 in which the exterior time is 90 seconds can be ensured.
  • iron ore and SiO 2 content are included as pretreatment of the process of manufacturing sintered ore for blast furnace by using the downward suction dwroid type sintering machine 4.
  • Prepare raw material, sintering raw material consisting of limestone powder raw material and solid fuel powder raw material, mix iron ore excluding solid fuel powder raw material and SiO 2 containing raw material with mixer 1 for stirring and mixing to produce mixed raw material Then, the produced mixed raw material is granulated using a disk pelletizer 2 to produce granulated particles, and the produced granulated particles are supplied to the drum mixer 3 for forming the outer layer, and the discharge port of the drum mixer 3 for forming the outer layer
  • the exterior time from the addition of the solid fuel-based powder raw material to the outlet of the drum mixer 3 for forming the outer layer is set in the range of 40 seconds or less and 10 seconds or more.
  • Solid fuel system powder field To adhere and form a layer.
  • the sintered raw materials excluding the limestone powder raw material and the solid fuel-based powder raw material are charged and mixed into the drum mixer 1 for stirring and mixing, and the mixed raw material is supplied to the disk pelletizer 2 for granulation.
  • the granulated particles obtained by granulation are supplied to the drum mixer 3 for forming the outer layer, the limestone powder material is added to the drum mixer 3 for forming the outer layer, and then the solid fuel powder material is added to the outer layer.
  • the granulated particles granulated by the disk pelletizer 2 by adhering and forming a limestone powder raw material layer and a solid fuel powder raw material layer on the outer layer of the granulated particles while reaching the discharge port of the forming drum mixer 3 First, a limestone powder raw material is adhered and formed on the surface, and then a solid fuel-based powder raw material such as powder coke is adhered and formed on the outermost layer of the granulated particles for sintering granulated by the disk pelletizer 2 Solid Will be fuel based flour material is attached, it can be reliably prevented uneven burning occurs during sintering.
  • the granulated particles for sintering are added.
  • the solid fuel-based powder raw material is reliably attached to the outermost layer. Further, by introducing the limestone powder raw material into the outer layer forming drum mixer 3 together with the granulated particles obtained by granulating with the disk pelletizer 2, uneven burning is prevented and the productivity is improved.
  • the outer layer forming drum mixer 3 arranged in the subsequent process of the disk pelletizer 2 has a drum mixer length of 120 seconds or less for the charging raw material, or the outer layer forming drum arranged in the subsequent process of the disk pelletizer 2.
  • the addition of the solid fuel powder material to the drum mixer 3 can improve the reducibility by optimizing the average diameter of the granulated product by setting the residence time to 40 seconds or less, and further reducing the yield. And productivity can be improved.
  • the said embodiment demonstrated the case where it granulated with the disk pelletizer 2 using only a coarse-grained iron ore, it is not limited to this and is averaged in two types of coarse-grained iron ores A and B
  • ultrafine ore with a particle size of 1 ⁇ m or more and 10 ⁇ m or less is added in the range of 10 mass% to 60 mass% of the total iron ore, preferably in the range of 30 mass% or less and 10% or more
  • two kinds of coarse iron ores A and B The same test as described above was performed when a pellet feed containing 70 mass% or more of an average particle size of ⁇ 75 ⁇ m was added in the range of 10 mass% to 60 mass% of the total iron ore, preferably 60 mass%.
  • each brand and weight ratio are blended as shown in Table 4 below, and the test conditions are shown in Table 5 below.
  • test condition No. 1 is an example in which coarse Australian ore and South American iron ore are blended 50% each as iron ore as in the previous example, and the HPS method shown in FIG. 3 is applied as the granulation process. is there.
  • Test condition No. 2 is the above-mentioned No.2. 1 is a conventional example using the same iron ore as in No. 1 and applying the DL method shown in FIG. 7 as a granulation process.
  • test condition No. No. 3 is composed of 45% coarse iron ore and South American iron ore as iron ore, and 10% ultrafine ore with an average particle size of 10 ⁇ m. 3 is an example to which the HPS method shown in FIG. 3 is applied.
  • Test condition No. 4. As iron ore, 20% each of coarse Australian iron ore and South American iron ore was added to each 60%, and the pellet feed containing 70% or more of the average particle size of ⁇ 75 ⁇ m was blended 60%. It is the Example which applied the HPS method shown in FIG. 3 as a process.
  • FIGS. 8A is a diagram showing the relationship between the powder coke exterior time and the granulated particle diameter.
  • the left granulated particle diameter is applied, and test conditions No. 1 to No. 3 are applied.
  • the right granulated particle size is applied.
  • 8B is a diagram showing the relationship between the powder coke exterior time and the production rate
  • FIG. 8C is a diagram showing the relationship between the crushing strength (kg / P) and the appropriate exterior time (s). It is.
  • FIG. No. 2 has the smallest granulated particle size. 1, no. 3 and no.
  • the granulated particle diameter increases in the order of 4.
  • the test condition No. 1 and no. 3 the granulated particle diameter increases as the powder coke exterior time becomes shorter than 90 seconds.
  • the granulated particle size is about 2 to 3 times larger than other test conditions, and there is no increase in the granulated particle size even if the powder coke exterior time is shortened from 90 seconds. .About the same value of around 5 mm.
  • the test condition No. The production rate of No. 4 is the highest in the range where the powder coke exterior time is 90 or less and 30 seconds or more, and when the powder coke exterior time is longer than 90 seconds or shorter than 30 seconds, the production rate decreases.
  • the test condition No. As shown in FIG. 8 (b), the production rate of No. 3 becomes the largest in the range of 30 seconds or more when the powder coke exterior time is 70 seconds or less, and the powder coke exterior time becomes longer than 70 seconds or from 30 seconds. As it gets shorter, the production rate decreases.
  • test conditions No. 2 with the next largest granulated particle size As shown in FIG. 8 (b), the production rate of 4 is the largest in the range of 20 seconds or more when the powder coke exterior time is 40 seconds or less, and the powder coke exterior time is longer than 40 seconds or more than 20 seconds. As it gets shorter, the production rate decreases. From the above results, it was found that the longest time of the powder coke coating time needs to be set shorter as the granulated particle diameter becomes smaller from the larger granulated particle diameter.
  • the proper exterior time is 90 seconds
  • the test condition No. 3 has an appropriate exterior time of 70 seconds
  • the test condition No. In 1 the appropriate exterior time is 30 seconds. From this test result, it was found that it was necessary to set the powder coke exterior time shorter as the crushing strength decreased from a larger value to a smaller value.
  • the granulated particles of iron ore are mixed with the powdered coke in the mixer and grow while repeating adhesion and collapse.
  • Australian iron ore such as pisolite ore is coarser than pellet feed, and the strength of iron ore granulated particles decreases.
  • powder coke is hydrophobic, when mixed inside the granulated particles, the strength of the granulated particles decreases. That is, it is necessary to shorten the powder coke exterior time in order to suppress the penetration and collapse of the powder coke into the particles.
  • the granulated particle strength ⁇ (N) of the granulated particles can be expressed by the following formula (1).
  • 6 ⁇ ⁇ ⁇ S ⁇ ⁇ (1- ⁇ ) / ⁇ ) ⁇ ⁇ ( ⁇ cos ⁇ / d) (1)
  • is the degree of liquid fullness ( ⁇ )
  • S is the surface area of the powder (m 2 )
  • is the porosity of the granulated product ( ⁇ )
  • is the surface tension of water (N / m)
  • is The contact angle (°)
  • d is a specific surface area sphere equivalent diameter (m).
  • the hydrophobic ore coke 23 around the core ore 21 becomes the pisolite ore 24. It becomes a mixed state.
  • the wettability of iron ore, limestone and powder coke was evaluated from the rate of water rise in the powder packed bed by applying a capillary method. In this evaluation test, as shown in FIG.
  • the gauze part was immersed in 32, and the height of the rising water level per unit time was measured.
  • H ⁇ ⁇ ( ⁇ d ⁇ cos ⁇ / 2 ⁇ ) t ⁇ (2)
  • H the rising water level (m)
  • t time (s)
  • the contact angle (°)
  • the viscosity of water
  • the surface tension
  • d the particle size
  • the shape factor
  • 1 is a stirring mixer drum mixer
  • 2 is a disk pelletizer
  • 3 is a drum mixer for outer layer formation
  • 4 is a droidoid sintering machine
  • 5 is an ignition furnace
  • 6 is a powder coke projection device
  • 7 is a limestone projection device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Disclosed is a method for producing a starting material for sintering that allows for the efficient production of an excellent starting material even when using a disk pelletizer for pelletization. Sintering starting materials, other than the limestone-based and the solid fuel-based powder starting materials, are load into a drum mixer (1) for mixing and stirring, where said powder starting materials are mixed, and the resulting mixture is supplied to a disk pelletizer (2) and pelletized. The pellets obtained by pelletization are supplied along with the limestone-based powder starting material to a drum mixer (3) for outer layer formation. Then, the solid fuel-based powder starting material is added so that by the time that the pellets reach the discharge port of the drum mixer (3) for outer layer formation, a limestone-based powder starting material layer and a solid fuel-based powder starting material layer have formed by adhesion to the outer layer of the pellets. In this manner, in the adhering of the solid fuel-based powder starting material to the outermost layer of the pellets for sintering, which have been pelletized by the disc pelletizer (2), making it possible to reliably avoid uneven burning during sintering.

Description

焼結用原料の製造方法Method for manufacturing raw materials for sintering
 本発明は、下方吸引のドワイトロイド式焼結機を用いて高炉用焼結鉱を製造する焼結用原料の製造方法に関するものである。 The present invention relates to a method for producing a sintering raw material for producing a sintered ore for a blast furnace using a downward suction droidoid type sintering machine.
 高炉用原料として用いられる焼結鉱は、一般的に以下のような焼結原料の処理方法を経て製造されている。即ち、まず粒径が10mm以下の鉄鉱石、及び珪石、蛇紋岩、又はニッケルスラグなどからなるSiO含有原料、及び石灰石などのCaOを含有する石灰石系粉原料、及び粉コークス又は無煙炭などの熱源となる固体燃料系粉原料を、ドラムミキサーを用いて、これに適当量の水分を添加して混合、造粒して造粒粒子と呼ばれる造粒物を形成する。この造粒物からなる配合原料は、ドワイトロイド式焼結機のパレット上に適当な厚さ、例えば500~700mmになるように装入して表層部の固体燃料に着火し、着火後は下方に向けて空気を吸引しながら固体燃料を燃焼させ、その燃焼熱によって配合した焼結原料を焼結させて焼結ケーキとする。この焼結ケーキは、破砕、整粒され、一定の粒径以上の焼結鉱を得る。一方、それ未満の粒径のものは返鉱となり、焼結原料として再利用される。 Sinter ore used as a blast furnace raw material is generally manufactured through the following processing method of the sintered raw material. That is, first, iron ore having a particle size of 10 mm or less, and a SiO 2 -containing raw material made of silica, serpentine, or nickel slag, and a limestone-based powder raw material containing CaO such as limestone, and a heat source such as powdered coke or anthracite Using a drum mixer, an appropriate amount of water is added and mixed and granulated to form a granulated product called granulated particles. The blended raw material consisting of this granulated material is charged onto a pallet of a Dwytroid type sintering machine so as to have an appropriate thickness, for example, 500 to 700 mm, and ignites the solid fuel in the surface layer portion. The solid fuel is combusted while sucking air toward the surface, and the sintered raw material blended by the combustion heat is sintered to form a sintered cake. The sintered cake is crushed and sized to obtain a sintered ore having a certain particle size or more. On the other hand, those having a particle size smaller than that are returned to ore and reused as a sintering raw material.
 このようにして製造された成品焼結鉱の被還元性は、従来から指摘されているように、特に高炉の操業を大きく左右する因子となる。焼結鉱の被還元性は、高炉でのガス利用率を介して燃料比と良好な負の相関があり、焼結鉱の被還元性を向上させると、高炉での燃料比は低下する。更に、製造された成品焼結鉱の冷間強度も高炉での通気性を確保する上で重要な因子であり、各々の高炉では、冷間強度の下限基準を設けて操業を行っている。従って、高炉にとって望ましい焼結鉱とは、被還元性に優れ、冷間強度が高いものであると言える。 The reducibility of the sintered product ore manufactured in this way is a factor that greatly affects the operation of the blast furnace, as pointed out in the past. The reducibility of the sinter has a good negative correlation with the fuel ratio through the gas utilization rate in the blast furnace. When the reducibility of the sinter is improved, the fuel ratio in the blast furnace decreases. Further, the cold strength of the manufactured sintered product ore is also an important factor for ensuring the air permeability in the blast furnace, and each blast furnace is operated with a lower limit standard for the cold strength. Therefore, it can be said that the desired sintered ore for the blast furnace is excellent in reducibility and has high cold strength.
 そこで、焼結鉱を製造するプロセスの事前処理として膨大な設備を必要とせず、鉄鉱石とSiO含有原料を、石灰石系原料と固体燃料系原料から分離して段階的に造粒粒子にすることにより、塊表面には強度の高いカルシウムフェライト(CF)を、一方、塊内部に向かっては被還元性の高いヘマタイト(He)を選択的に生成された構造の焼結鉱を製造し、冷間強度を向上させ、且つ焼結鉱の被還元性を改善することができる焼結用原料の製造方法として、下記特許文献1~3にかかわる技術を完成させた。 Therefore, it does not require enormous facilities as a pretreatment for the process of manufacturing sintered ore, and iron ore and SiO 2 -containing raw materials are separated from limestone-based raw materials and solid fuel-based raw materials into granulated particles in stages. Thus, a sintered ore having a structure in which calcium ferrite (CF) having high strength is selectively formed on the lump surface, and hematite (He) having high reducibility is selectively formed toward the inside of the lump, As a method for producing a raw material for sintering capable of improving the cold strength and improving the reducibility of the sintered ore, the techniques relating to the following Patent Documents 1 to 3 have been completed.
 また、微粉鉄鉱石と粗粒鉄鉱石とからなる粉状鉄鉱石と、石灰石及び生石灰とをミキサーで混合し、混合物を第1ペレタイザーで水を加えて造粒し、造粒した造粒物をスクリーンによって篩い分けられ、篩い上を第2ペレタイザーに装入して、造粒物の表面に粉コークスを被覆するようにした所謂HPS(Hybrid Pelletized Sinter)法と称される焼結用原料の製造方法が提案されている(例えば、特許文献4参照)。 Also, powder iron ore composed of fine iron ore and coarse iron ore, limestone and quicklime are mixed with a mixer, the mixture is granulated by adding water with a first pelletizer, and the granulated product is granulated. Production of a raw material for sintering called the so-called HPS (Hybrid Pelletized Sinter) method, which is sieved by a screen, and the top of the sieve is charged into a second pelletizer so that the surface of the granulated material is coated with powdered coke. A method has been proposed (see, for example, Patent Document 4).
特許第3755452号公報Japanese Patent No. 3755452 特許第3794332号公報Japanese Patent No. 3794332 特許第3656632号公報Japanese Patent No. 3656632 特公平2−4658号公報Japanese Patent Publication No.2-4658
 前記特許文献4に記載される焼結用原料の製造方法は、焼結用原料の造粒にディスクペレタイザーを使用しており、このディスクペレタイザーを使用することにより、微粉であるペレットフィードを含む鉄鉱石を造粒することができ、このHPS法と特許文献1~3に記載される焼結用原料の製造方法とを組み合わせることにより、ペレットフィード等の微粉を含む鉄鉱石の造粒が可能となる。 The method for producing a raw material for sintering described in Patent Document 4 uses a disk pelletizer for granulating the raw material for sintering. By using this disk pelletizer, an iron ore containing pellet feed that is fine powder is used. Stone can be granulated, and by combining this HPS method and the method for producing sintering raw materials described in Patent Documents 1 to 3, it is possible to granulate iron ore containing fine powder such as pellet feed Become.
 しかしながら、近年、鉄鉱石原料の価格が、開発当初と大きく変わってきており、原料の配合構成も大きく変化した。もともと、前記特許文献1~3に記載のプロセスは、当時安価であった微粉鉄鉱石(平均粒径150μm以下)のペレットフィードの使用拡大と焼結鉱の高品質化を目的に開発された。しかし、現在では微粉鉄鉱石の価格が上昇したために使用量が減少し、ペレタイザーにおける造粒強度が低下している。そのため、前記特許文献1~3に記載される焼結用原料の製造方法をそのまま用いると、造粒粒子径が小さいままで操業することになり、通気性が悪く、焼成ムラが発生しやすくなることが判明し、改良の必要のあることが分かった。
 本発明は、上記のような問題点に着目してなされたものであり、造粒にディスクペレタイザーを用いた場合でも、良好な原料を効率よく製造可能な焼結用原料の製造方法を提供することを目的とするものである。
However, in recent years, the price of iron ore raw materials has changed significantly from the beginning of development, and the composition of raw materials has also changed significantly. The processes described in Patent Documents 1 to 3 were originally developed for the purpose of expanding the use of pellet feed of fine iron ore (average particle size of 150 μm or less), which was inexpensive at that time, and improving the quality of sintered ore. However, since the price of fine iron ore has risen at present, the amount used has decreased, and the granulation strength in the pelletizer has decreased. Therefore, if the method for producing a raw material for sintering described in Patent Documents 1 to 3 is used as it is, the granulated particle diameter is kept small, the air permeability is poor, and uneven firing is likely to occur. It turns out that there is a need for improvement.
The present invention has been made paying attention to the above problems, and provides a method for producing a raw material for sintering capable of efficiently producing a good raw material even when a disk pelletizer is used for granulation. It is for the purpose.
 上記課題を解決するために、本発明の焼結用原料の製造方法は、鉄鉱石、SiO含有原料、石灰石系粉原料及び固体燃料系粉原料からなる焼結原料を準備し、前記鉄鉱石、SiO含有原料と石灰石系粉原料を撹拌混合用ドラムミキサーで混合して、混合原料を生成し、前記混合原料をディスクペレタイザーで造粒し、造粒粒子を生成し、前記造粒粒子を外層形成用ドラムミキサーに供給し、前記外層形成用ドラムミキサーに供給された造粒粒子に、前記外層形成用ドラムミキサーの排出口側から、前記固体燃料系粉原料を添加し、前記固体燃料系粉原料の添加から外層形成用ドラムミキサーからの排出までの40秒以下で10秒以上の外装時間の間に前記造粒粒子の表面に固体燃料系粉原料層を形成する
 ことを特徴とするものである。
 また、前記焼結用原料の製造方法において、前記外装時間を40秒乃至20秒間に設定するのが好ましい。
 さらに、前記焼結用原料の製造方法において、前記外装時間を30秒乃至20秒間に設定するのがより好ましい。
In order to solve the above problems, a method for producing a raw material for sintering according to the present invention comprises preparing a sintered raw material comprising iron ore, a SiO 2 -containing raw material, a limestone powder raw material, and a solid fuel powder raw material, and said iron ore. The SiO 2 -containing raw material and the limestone powder raw material are mixed with a stirring and mixing drum mixer to produce a mixed raw material, and the mixed raw material is granulated with a disk pelletizer to produce granulated particles. The solid fuel system powder raw material is added to the granulated particles supplied to the outer layer formation drum mixer from the discharge port side of the outer layer formation drum mixer, and the solid fuel system is supplied to the outer layer formation drum mixer A solid fuel-based powder raw material layer is formed on the surface of the granulated particles during an external time of 10 seconds or longer from the addition of the powder raw material to the discharge from the outer layer forming drum mixer. It is.
In the method for producing a raw material for sintering, it is preferable that the exterior time is set to 40 seconds to 20 seconds.
Further, in the method for manufacturing a raw material for sintering, it is more preferable to set the exterior time to 30 seconds to 20 seconds.
 また、本発明の焼結用原料の製造方法は、鉄鉱石、SiO含有原料、石灰石系粉原料及び固体燃料系粉原料からなる焼結原料を準備し、前記鉄鉱石とSiO含有原料を撹拌混合用ドラムミキサーで混合して、混合原料を生成し、前記混合原料をディスクペレタイザーで造粒し、造粒粒子を生成し、前記造粒粒子を外層形成用ドラムミキサーに供給し、前記外層形成用ドラムミキサーに石灰石系粉原料を供給し、前記石灰石系粉原料の供給後、前記外層形成用ドラムミキサーに前記固体燃料系粉原料を添加し、前記造粒粒子上に石灰石系粉原料層及び固体燃料系粉原料層を形成することを特徴とするものである。 Further, the method of producing a sintered material for the present invention, iron ore, SiO 2 containing feedstock, to prepare a sintering material consisting of limestone-based powder materials and solid fuel-based powder materials, the iron ore and SiO 2 containing feedstock Mixing with a stirring and mixing drum mixer to produce a mixed raw material, granulating the mixed raw material with a disk pelletizer, generating granulated particles, supplying the granulated particles to an outer layer forming drum mixer, and The limestone powder raw material is supplied to the forming drum mixer, and after the limestone powder raw material is supplied, the solid fuel powder raw material is added to the outer layer forming drum mixer, and the limestone powder raw material layer is formed on the granulated particles. And a solid fuel-based powder raw material layer is formed.
 また、前記焼結用原料の製造方法において、前記石灰石系粉原料の供給が、前記外層形成用ドラムミキサーの装入側から供給することからなり、前記固体燃料系粉原料の添加が、前記外層形成用ドラムミキサーの排出口側から添加することからなるのが好ましい。
 また、前記焼結用原料の製造方法において、前記石灰石系粉原料の供給が、前記ディスクペレタイザーで造粒して得られた造粒粒子と共に石灰石系粉原料を、前記外層形成用ドラムミキサーに供給することからなるのが好ましい。
Further, in the method for producing a raw material for sintering, the supply of the limestone powder raw material is supplied from the charging side of the outer layer forming drum mixer, and the addition of the solid fuel powder raw material is performed in the outer layer It is preferable to add from the discharge port side of the forming drum mixer.
In the method for producing a raw material for sintering, the supply of the limestone powder raw material supplies the limestone powder raw material together with the granulated particles obtained by granulation with the disc pelletizer to the drum mixer for forming the outer layer. Preferably it consists of:
 また、前記焼結用原料の製造方法において、前記固体燃料系粉原料の添加が、前記固体燃料系粉原料の添加から外層形成用ドラムミキサーからの排出まで40秒以下で10秒以上の外装時間を有するように、前記外層形成用ドラムミキサーに前記固体燃料系粉原料を添加することからなるのが好ましい。前記外装時間は40秒以下で20秒以上であるのがより好ましい。
 また、前記焼結用原料の製造方法において、前記石灰石系粉原料の供給が、前記前記石灰石系粉原料の供給から外層形成用ドラムミキサーからの排出まで90秒以下の外装時間を有するように、且つ、前記固体燃料系粉原料の添加から外層形成用ドラムミキサーからの排出までの時間以上の外装時間を有するように、前記外層形成用ドラムミキサーに前記石灰石系粉原料を供給することからなるのが好ましい。
Further, in the method for producing a sintering raw material, the addition of the solid fuel-based powder raw material takes 40 seconds or less and 10 seconds or more from the addition of the solid fuel-based powder raw material to the discharge from the drum mixer for forming the outer layer. Preferably, the solid fuel-based powder raw material is added to the outer layer forming drum mixer. The exterior time is 40 seconds or less and more preferably 20 seconds or more.
Further, in the method for producing a raw material for sintering, the supply of the limestone powder raw material has an exterior time of 90 seconds or less from the supply of the limestone powder raw material to the discharge from the drum mixer for outer layer formation, In addition, the limestone powder raw material is supplied to the outer layer forming drum mixer so as to have an exterior time longer than the time from the addition of the solid fuel powder raw material to the discharge from the outer layer forming drum mixer. Is preferred.
 また、本発明による焼結原料の製造方法は、鉄鉱石、SiO含有原料、石灰石系粉原料及び固体燃料系粉原料からなる焼結原料を準備し、前記鉄鉱石、SiO含有原料と石灰石系粉原料を撹拌混合用ドラムミキサーで混合して、混合原料を生成し、前記混合原料をディスクペレタイザーで造粒し、造粒粒子を生成し、前記造粒粒子を外層形成用ドラムミキサーに供給し、前記外層形成用ドラムミキサーに供給された造粒粒子に、前記外層形成用ドラムミキサーの排出口側から、前記固体燃料系粉原料を添加し、前記造粒粒子の表面に固体燃料系粉原料層を形成し、前記固体燃料系粉原料の添加から外層形成用ドラムミキサーからの排出までの外装時間を、造粒粒子径、圧壊強度及び造粒粒子強度の何れかが小さくなるほど短く設定することを特徴とするものである。 A method of manufacturing a sintering material according to the present invention, iron ore, SiO 2 containing feedstock, to prepare a sintering material consisting of limestone-based powder materials and solid fuel-based powder materials, the iron ore, SiO 2 containing material and limestone Mixing the raw material powder with a drum mixer for stirring and mixing to produce a mixed raw material, granulating the mixed raw material with a disk pelletizer, generating granulated particles, and supplying the granulated particles to the drum mixer for forming the outer layer Then, the solid fuel powder material is added to the granulated particles supplied to the outer layer forming drum mixer from the outlet side of the outer layer forming drum mixer, and the solid fuel powder is applied to the surface of the granulated particles. Form the raw material layer, and set the exterior time from the addition of the solid fuel-based powder raw material to the discharge from the drum mixer for forming the outer layer as shorter as any of the granulated particle diameter, crushing strength, and granulated particle strength decreases. And it is characterized in and.
 また、本発明による焼結原料の製造方法は、鉄鉱石、超微粉鉱、SiO含有原料、石灰石系粉原料及び固体燃料系粉原料からなる焼結原料を準備し、前記鉄鉱石、超微粉鉱、SiO含有原料と石灰石系粉原料を撹拌混合用ドラムミキサーで混合して、混合原料を生成し、前記混合原料をディスクペレタイザーで造粒し、造粒粒子を生成し、前記造粒粒子を外層形成用ドラムミキサーに供給し、前記外層形成用ドラムミキサーに供給された造粒粒子に、前記外層形成用ドラムミキサーの排出口側から、前記固体燃料系粉原料を添加し、前記固体燃料系粉原料の添加から外層形成用ドラムミキサーからの排出までの70秒以下で30秒以上の外装時間の間に前記造粒粒子の表面に固体燃料系粉原料層を形成することを特徴とするものである。
 また、前記焼結用原料の製造方法において、前記超微粉鉱は、平均粒径が1μm以上で10μm以下であり、全鉄鉱石に対して10mass%以上で60mass%以下であるのが好ましい。
Further, the method for producing a sintered raw material according to the present invention comprises preparing a sintered raw material comprising iron ore, ultrafine ore, SiO 2 containing raw material, limestone powder raw material and solid fuel powder raw material. Ore, SiO 2 -containing raw material and limestone powder raw material are mixed with a drum mixer for stirring and mixing to produce a mixed raw material, the mixed raw material is granulated with a disk pelletizer to produce granulated particles, the granulated particles Is added to the outer layer forming drum mixer, and the solid fuel powder material is added to the granulated particles supplied to the outer layer forming drum mixer from the outlet side of the outer layer forming drum mixer, A solid fuel-based powder material layer is formed on the surface of the granulated particles during an exterior time of 30 seconds or more in 70 seconds or less from the addition of the system powder material to the discharge from the drum mixer for forming the outer layer. Is a thing
Moreover, in the said manufacturing method of the raw material for sintering, it is preferable that the said ultra-fine ore has an average particle diameter of 1 micrometer or more and 10 micrometers or less, and is 10 mass% or more and 60 mass% or less with respect to all iron ores.
 また、本発明による焼結原料の製造方法は、鉄鉱石、ペレットフィード、SiO含有原料、石灰石系粉原料及び固体燃料系粉原料からなる焼結原料を準備し、前記鉄鉱石、ペレットフィード、SiO含有原料と石灰石系粉原料を撹拌混合用ドラムミキサーで混合して、混合原料を生成し、前記混合原料をディスクペレタイザーで造粒し、造粒粒子を生成し、前記造粒粒子を外層形成用ドラムミキサーに供給し、前記外層形成用ドラムミキサーに供給された造粒粒子に、前記外層形成用ドラムミキサーの排出口側から、前記固体燃料系粉原料を添加し、前記固体燃料系粉原料の添加から外層形成用ドラムミキサーからの排出までの90秒以下で30秒以上の外装時間の間に前記造粒粒子の表面に固体燃料系粉原料層を形成することを特徴とするものである。 Moreover, the method for producing a sintered raw material according to the present invention comprises preparing a sintered raw material consisting of iron ore, pellet feed, SiO 2 -containing raw material, limestone powder raw material and solid fuel powder raw material, the iron ore, pellet feed, The raw material containing SiO 2 and the limestone powder raw material are mixed with a drum mixer for stirring and mixing to produce a mixed raw material, the mixed raw material is granulated with a disk pelletizer to produce granulated particles, and the granulated particles are outer layered. The solid fuel powder is added to the granulated particles supplied to the forming drum mixer, and supplied to the outer layer forming drum mixer from the outlet side of the outer layer forming drum mixer, and the solid fuel powder A solid fuel-based powder raw material layer is formed on the surface of the granulated particles during the exterior time of 30 seconds or longer from the addition of the raw material to the discharge from the drum mixer for forming the outer layer. It is intended to.
 また、前記焼結用原料の製造方法において、前記ペレットフィードは、平均粒径−75μmが70%以上であり、全鉄鉱石に対して10mass%以上で60mass%以下であるのが好ましい。
 また、前記焼結用原料の製造方法において、前記外層形成用ドラムミキサーが、120秒以下の滞留時間を有するのが好ましい。前記滞留時間はが、90以上で120秒以下の滞留時間であるのがより好ましい。
Moreover, in the said manufacturing method of the raw material for sintering, it is preferable that the said pellet feed has an average particle diameter of -75 micrometers 70% or more, and is 10 mass% or more and 60 mass% or less with respect to all iron ores.
In the method for producing a sintering raw material, the outer layer forming drum mixer preferably has a residence time of 120 seconds or less. The residence time is more preferably 90 to 120 seconds.
 而して、本発明の焼結用原料の製造方法によれば、ディスクペレタイザーで造粒された造粒粒子の表面にまず石灰石系粉原料が付着形成され、その後、粉コークスなどの固体燃料系粉原料が付着形成されることにより、ディスクペレタイザーによって造粒された焼結用造粒粒子の最外層に固体燃料系粉原料が付着されることになり、焼結時のムラ焼け発生を確実に阻止できる。
 また、造粒物の平均径を適正化して被還元性を高めることができ、更に歩留を低減して生産性を向上することができる。
 また、外層形成用ドラムミキサーの排出口側から前記固体燃料系粉原料を添加し、固体燃料系粉原料の添加から外層形成用ドラムミキサーからの排出までの外装時間を、造粒粒子径、圧壊強度及び造粒粒子強度の何れかが小さくなるほど短く設定することにより、粗粒のみの鉄鉱石、粗粒の鉄鉱石と超微粉鉱との組み合わせ、粗粒の鉄鉱石とペレットフィードとの組み合わせ等の鉄鉱石原料配合に応じた最適な造粒を行うことができる。
Thus, according to the method for producing a raw material for sintering of the present invention, a limestone powder raw material is first formed on the surface of granulated particles granulated by a disk pelletizer, and then a solid fuel system such as powder coke is used. By forming and adhering the powder raw material, the solid fuel-based powder raw material adheres to the outermost layer of the granulated particles for sintering granulated by the disk pelletizer, which ensures the occurrence of uneven burning during sintering. I can stop.
Further, the average diameter of the granulated product can be optimized to improve the reducibility, and the yield can be reduced to improve the productivity.
In addition, the solid fuel-based powder raw material is added from the discharge port side of the outer layer forming drum mixer, and the outer packaging time from the addition of the solid fuel-based powder raw material to the discharge from the outer layer forming drum mixer is determined by the granulated particle diameter, crushing By setting the strength or granulated particle strength to be smaller, the shorter the setting, the coarse iron ore, the combination of coarse iron ore and ultrafine ore, the combination of coarse iron ore and pellet feed, etc. optimum granulation according to the iron ore raw material formulation can be performed.
本発明の焼結用原料の製造方法を適用したディスクペレタイザー付き製造工程の一実施形態の説明図である。It is explanatory drawing of one Embodiment of the manufacturing process with a disk pelletizer to which the manufacturing method of the raw material for sintering of this invention is applied. 従来の焼結用原料の製造方法を適用したディスクペレタイザー付き製造工程の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing process with a disk pelletizer which applied the manufacturing method of the conventional raw material for sintering. 本発明の焼結用原料の製造方法の試験方法の説明図である。It is explanatory drawing of the test method of the manufacturing method of the raw material for sintering of this invention. 図3の試験結果の説明図である。It is explanatory drawing of the test result of FIG. 本発明の焼結用原料の製造方法の試験方法の説明図である。It is explanatory drawing of the test method of the manufacturing method of the raw material for sintering of this invention. 図5の試験結果の説明図である。It is explanatory drawing of the test result of FIG. ディスクペレタイザーを省略した従来の造粒粒子製造工程の一実施形態の説明図である。It is explanatory drawing of one Embodiment of the conventional granulated particle manufacturing process which abbreviate | omitted the disk pelletizer. 本発明の他の実施形態の試験結果を示す説明図である。図8(a)は、粉コークス外装時間と造粒粒平均径との関係を示す図であり、図8(b)は、粉コークス外装時間と生産率との関係を示す図であり、図8(c)は、圧壊強度と適正外装時間との関係を示す図である。It is explanatory drawing which shows the test result of other embodiment of this invention. FIG. 8 (a) is a diagram showing the relationship between the powder coke exterior time and the granulated average diameter, and FIG. 8 (b) is a diagram showing the relationship between the powder coke exterior time and the production rate. 8 (c) is a diagram showing the relationship between the crushing strength and the appropriate exterior time. 造粒粒子を示す模式図である。図9(a)はペレットフィードを使用して粉コークス外装時間を90秒とした場合の造粒粒子の模式図であり、図9(b)は粗粒の鉄鉱石であるピソライト鉱石のみを使用して、粉コークス外装時間を90秒とした場合の造粒粒子の模式図である。It is a schematic diagram which shows granulated particle. Fig. 9 (a) is a schematic diagram of granulated particles when pellet feed is used and the powder coke exterior time is 90 seconds, and Fig. 9 (b) uses only pisolite ore, which is coarse iron ore. And it is a schematic diagram of granulated particles when the powder coke exterior time is 90 seconds. 濡れ性評価試験を示す説明図である。It is explanatory drawing which shows a wettability evaluation test. 濡れ性を評価する時間と上昇水位高さとの関係を示す特性線図である。It is a characteristic diagram which shows the relationship between the time which evaluates wettability, and a rising water level height.
 次に、本発明の焼結用原料の製造方法の一実施形態について図面を参照しながら説明する。
 図1は、本実施形態の焼結用原料の製造方法が適用されたディスクペレタイザー付き製造工程の説明図である。ディスクペレタイザー付き焼結用原料製造工程(HPS法)としては、例えば特許第2748782号公報や、特許第2755036号公報に記載されるものがある。
 この図1において、先ず、鉄鉱石、SiO含有原料、石灰石系粉原料及び固定燃料系粉原料である粉コークスからなる焼結原料を準備する。Pフィードは、Pellet feedであり、B粉は、Blending fineである。この焼結原料のうち固体燃料系粉原料である粉コークスのみ、或いは当該粉コークス及び石灰石系粉原料である石灰石を除く焼結原料を、攪拌用ドラムミキサー1に供給して、添加される水と共に撹拌混合して、混合原料を生成する。
Next, an embodiment of a method for producing a raw material for sintering of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory diagram of a manufacturing process with a disk pelletizer to which the method for manufacturing a raw material for sintering of the present embodiment is applied. Examples of the raw material manufacturing process (HPS method) for sintering with a disk pelletizer include those described in Japanese Patent No. 27488782 and Japanese Patent No. 2755036.
In FIG. 1, first, a sintering raw material made of iron ore, SiO 2 -containing raw material, limestone-based powder raw material and fixed coke-based powder raw material is prepared. P feed is Pellet feed and B powder is Blending fine. Among the sintered raw materials, only the powdered coke that is the solid fuel-based powder raw material, or the sintered raw material excluding the powdered coke and the limestone that is the limestone-based powder raw material is supplied to the stirring drum mixer 1 and added water. And mixed with stirring to produce a mixed raw material.
 この混合原料は、ディスクペレタイザー2に供給され、このディスクペレタイザー2で造粒し、造粒粒子を生成する。生成された造粒粒子は、外層形成用ドラムミキサー3に供給される。外層形成用ドラムミキサー3では、ディスクペレタイザー2で造粒された造粒粒子に対し、石灰石や粉コークスの外層を形成する。この外層形成用ドラムミキサー3で外層が形成された焼結用原料は下方吸引のドワイトロイド式焼結機4に装入される。このドワイトロイド式焼結機4では、点火炉5で焼結用原料の粉コークスに添加されて、焼成が行われる。ここで、外層形成用ドラムミキサー3には、例えば外排出口側から固体燃料系粉原料である粉コークスを投射する粉コークス投射装置6が設けられているとともに、例えば装入側から石灰石系粉原料である石灰石を投射する石灰石投射装置7が設けられている。どちらの投射装置も、例えばコンベヤや噴射ノズルなどで構成される。 The mixed raw material is supplied to the disk pelletizer 2 and granulated by the disk pelletizer 2 to generate granulated particles. The produced granulated particles are supplied to the outer layer forming drum mixer 3. In the outer layer forming drum mixer 3, an outer layer of limestone or powder coke is formed on the granulated particles granulated by the disk pelletizer 2. The raw material for sintering on which the outer layer is formed by the outer layer forming drum mixer 3 is charged into a downward suction dwytroid type sintering machine 4. In this dwy toroid type sintering machine 4, it is added to the powder coke of the raw material for sintering in the ignition furnace 5, and baking is performed. Here, the outer layer forming drum mixer 3 is provided with, for example, a powder coke projection device 6 that projects powder coke that is a solid fuel powder material from the outer discharge port side, and for example, a limestone powder from the charging side. A limestone projecting device 7 for projecting limestone as a raw material is provided. Both of the projection devices are constituted by, for example, a conveyor or a spray nozzle.
 ドワイトロイド焼結機4は、点火炉5で粉コークスに点火した後、ブロワーで下方から吸引しながらコンベヤで焼結用原料を搬送しながら焼成する。焼結された焼結原料は焼結ケーキとなり、この焼結ケーキを破砕、整粒して、例えば4mm以上の粒径の焼結鉱を高炉に供給し、それ以外のものを返鉱として鉄鉱石相当の焼結用原料として再利用する。従って、本発明で説明する焼結原料中の鉄鉱石とは返鉱を含むものとして説明する。
 図2は、図1と同様に、ディスクペレタイザー2を有する焼結用原料の製造工程で、外層形成用ドラムミキサー3の装入側から固体燃料系粉原料である粉コークスを投射する、従来の製造方法である。この場合、石灰石系粉原料である石灰石は、撹拌混合用ドラムミキサー1から装入されている。
After the powder coke is ignited by the ignition furnace 5, the dwytroid sintering machine 4 is fired while conveying the raw materials for sintering by the conveyor while sucking from below with a blower. The sintered sintering raw material becomes a sintered cake. The sintered cake is crushed and sized, for example, a sintered ore having a particle size of 4 mm or more is supplied to a blast furnace, and the rest is returned to the iron ore. Reuse as a raw material for sintering equivalent to stone. Therefore, the iron ore in the sintering raw material described in the present invention will be described as including return ore.
FIG. 2 shows a conventional process for producing a raw material for sintering having a disk pelletizer 2 in the same manner as FIG. 1, in which powder coke, which is a solid fuel-based powder raw material, is projected from the charging side of the outer layer forming drum mixer 3. It is a manufacturing method. In this case, limestone, which is a limestone powder raw material, is charged from the stirring and mixing drum mixer 1.
 本発明者は、まず固体燃料系粉原料である粉コークスの最適添加ポイントを見つけるべく試験を行った。図3は、試験方法を示すものであり、外層形成用ドラムミキサー(コーティングミキサーともいう)3の中で、粉コークスの層を造粒粒子の表層に形成せしめる時間を求めた。なお、外層形成用ドラムミキサー3の長さは、原料装入後、排出されるまでの滞留時間を120秒以下とした。即ち、ドラムミキサーは造粒装置であり、中では回転による造粒がなされるものの、実質的には破壊と造粒が繰り返されており、滞留時間が長くなると、造粒粒子そのものが破壊されてしまうため、その限界を120秒以下、好ましくは90秒以下とする。
 試験は、例えば豪州産の粗粒鉄鉱石A(−8mm)、例えば南米産の粗粒鉄鉱石B(−8mm)、鉄鉱石B(−1mm)、珪石粉、生石灰、返鉱、石灰石、粉コークスを焼結材料として使用し、これらが下記表1に示す重量比率で配合されている。
The present inventor first conducted a test to find an optimum addition point of the powder coke which is a solid fuel-based powder raw material. FIG. 3 shows a test method. In the outer layer forming drum mixer (also referred to as a coating mixer) 3, the time required to form the powder coke layer on the surface layer of the granulated particles was determined. In addition, the length of the outer layer forming drum mixer 3 was set to 120 seconds or less after the raw material was charged until it was discharged. In other words, the drum mixer is a granulator, in which granulation is performed by rotation, but destruction and granulation are substantially repeated, and if the residence time is prolonged, the granulated particles themselves are destroyed. Therefore, the limit is set to 120 seconds or less, preferably 90 seconds or less.
The test is, for example, Australian coarse iron ore A (−8 mm), for example South American coarse iron ore B (−8 mm), iron ore B (−1 mm), quartzite powder, quicklime, return mineral, limestone, powder Coke is used as a sintered material, and these are blended at a weight ratio shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、試験は、外層形成用ドラムミキサー内の粉コークス滞留時間と生産性、造粒性、焼結鉱品質の関係を評価した。試験水準は、好ましい滞留時間90秒の外層形成用ドラムミキサー3を用い、外層形成用ドラムミキサー3の装入側から造粒粒子原料と共に粉コークスを挿入する方法を従来例として試験した。また、粉コークスの添加位置を変えてドラムミキサー内での滞留時間と生産性の関係を試験した。粉コークスの滞留時間(外装時間)及びその他の造粒工程の時間は、下記表2の通りである。また、各試験における生産率、造粒物の平均径、被還元性の結果を図4に示す。 Also, the test evaluated the relationship between the coke residence time in the drum mixer for forming the outer layer and the productivity, granulation property, and sinter quality. As a test level, an outer layer forming drum mixer 3 having a preferable residence time of 90 seconds was used, and a method of inserting powdered coke together with the granulated particle raw material from the charging side of the outer layer forming drum mixer 3 was tested as a conventional example. In addition, the relationship between the residence time in the drum mixer and the productivity was tested by changing the addition position of the powder coke. Table 2 below shows the residence time (exterior time) of the powder coke and the time for other granulation steps. Moreover, the production rate in each test, the average diameter of the granulated material, and the result of reducibility are shown in FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 これらの結果から、粉コークスの滞留時間を短くすると生産性がよくなり、その生産性がよくなる条件は粉コークス滞留時間すなわち外装時間を40秒以下で10秒以上の範囲としたときである。好ましくは外装時間を40秒以下で20秒以上の範囲とし、より好ましくは外装時間を生産性がピークに近い30秒以下で20秒以上とする。これは、粉コークス滞留時間が40秒を超えると、造粒粒子表層部の破壊部分と粉コークス混在部分が造粒粒子表層に位置し、粉コークス燃焼性の悪化から生産性を阻害するものと考えられる。或いは、粉コークスは、他の焼結原料と比べて、疎水性で造粒性が悪く、外層形成用ドラムミキサー内に造粒粒子と共に滞留させると、外層形成用ドラムミキサー内での造粒・崩壊過程で、粉コークスが造粒粒子の粒子間に内装され、造粒粒子の崩壊を招き、造粒粒子径が小さくなる傾向にあるためであるとも考えられる。 From these results, the productivity improves when the residence time of the powder coke is shortened, and the condition for improving the productivity is when the powder coke residence time, that is, the exterior time is set to a range of 40 seconds or less and 10 seconds or more. The exterior time is preferably in the range of 40 seconds or less and 20 seconds or more, and more preferably, the exterior time is 30 seconds or less close to the peak in productivity and 20 seconds or more. This is because when the powder coke residence time exceeds 40 seconds, the destruction part of the granulated particle surface layer part and the powder coke mixed part are located in the granulated particle surface layer, and the productivity is hindered from the deterioration of the powder coke combustibility. Conceivable. Alternatively, the powdered coke is hydrophobic and poor in granulation as compared with other sintered raw materials. When the coke is retained together with the granulated particles in the outer layer forming drum mixer, it is granulated in the outer layer forming drum mixer. It is considered that this is because, in the disintegration process, the powder coke is embedded between the granulated particles, which causes the granulated particles to collapse and the granulated particle diameter tends to decrease.
 また、粉コークス添加後の滞留時間すなわち外装時間が20秒よりも短いと造粒粒子径の崩壊は抑制されるものの、粉コークスが造粒粒子表層に均一にコーティングされず、焼成が不均一となり、生産性が多少低下し、外装時間が10秒よりも短くなると、粉コークスが造粒粒子表層に斑にコーティングされることになり、生産性が大幅に低下する。被還元性については、粉コークス外装時間の短縮により、造粒粒子径が大きくなり、通気改善されるため、高温焼結により被還元性の高いカルシウムフェライト組織が多く生成することが明らかとなった。 Also, if the residence time after adding the powder coke, that is, the exterior time is shorter than 20 seconds, the collapse of the granulated particle diameter is suppressed, but the powder coke is not uniformly coated on the surface of the granulated particle, and the firing becomes uneven. When the productivity is somewhat reduced and the exterior time is shorter than 10 seconds, the powder coke is coated on the surface of the granulated particles, and the productivity is greatly reduced. Regarding reducibility, it became clear that the granulated particle size is increased and the ventilation is improved by shortening the powder coke exterior time, so that a high reducible calcium ferrite structure is generated by high temperature sintering. .
 次に、この粉コークスの最外層への最適外層時間を用い、図5に示す試験装置によって石灰石系粉原料である石灰石を外層形成用ドラムミキサー3に添加し、生産性を調査した。粉コークスの滞留時間すなわち外装時間はベストモードである30秒一定とし、石灰石の滞留時間すなわち外装時間を種々に変更して試験を行った。従来例、実施例、比較例の夫々の滞留時間は下記表3の通りである。また、図6には、各試験における焼成時間、歩留、生産率の結果を示す。 Next, using the optimum outer layer time for the outermost layer of the powder coke, limestone, which is a limestone powder raw material, was added to the outer layer forming drum mixer 3 using the test apparatus shown in FIG. The residence time of the powder coke, that is, the exterior time, was fixed at 30 seconds, which is the best mode, and the test was conducted by changing the residence time of the limestone, that is, the exterior time, in various ways. Table 3 below shows the residence times of the conventional example, the example, and the comparative example. FIG. 6 shows the results of firing time, yield, and production rate in each test.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 前述の特許文献1~3では、粉コークス、石灰石の外装時間は生産性に影響を及ぼさないとされていたが、ディスクペレタイザーで造粒する本実施形態では、石灰石の外装時間を、粉コークスの外装時間以上に設定する必要があることが判明した。即ち、石灰石をディスクペレタイザー2で造粒された造粒粒子と同時に外層形成用ドラムミキサー3装入する実施例5では、図6に示すように、従来例に比較して焼成時間が長くなるが、歩留及び生産率が大幅に向上する。石灰石の外装時間が60秒となる実施例6ではさらに歩留が向上し、生産率がピークとなる。そして、例えば実施例7のように、石灰石と粉コークスとを同時に添加した場合、ディスクペレタイザーで造粒する本実施形態の場合、石灰石の外装化に伴って歩留が向上し、同時に粉コークスの外装状態が石灰石に影響されて少し悪化して生産率が低下するが、外装時間が90秒の実施例5と同等の生産率を確保することができる。 In Patent Documents 1 to 3 described above, the external time of the powdered coke and limestone was said not to affect the productivity. However, in this embodiment granulated with a disk pelletizer, the external time of the limestone is set to be the same as that of the powdered coke. It turned out that it was necessary to set more than exterior time. That is, in Example 5 in which limestone is granulated by the disk pelletizer 2 and at the same time the outer layer forming drum mixer 3 is charged, as shown in FIG. 6, the firing time is longer than in the conventional example. , Yield and production rate are greatly improved. In Example 6 in which the exterior time of limestone is 60 seconds, the yield is further improved and the production rate reaches a peak. And, for example, as in Example 7, when limestone and powder coke are added at the same time, in the case of this embodiment granulated with a disk pelletizer, the yield improves with the exteriorization of limestone, and at the same time the powder coke Although the exterior state is slightly affected by the limestone and the production rate is lowered, the production rate equivalent to that of Example 5 in which the exterior time is 90 seconds can be ensured.
ところが、比較例2のように、石灰石の外装時間を粉コークスの外装時間30秒より短い10秒に設定すると、焼成不均一となり、焼成時間が増加することになるとともに、歩留も減少傾向となり、さらに生産率が低下して従来例に近づくことになって、石灰石の外装効果を享受できない状態となる。このため、石灰石の外装時間としては90秒から粉コークスの外装時間である30秒の範囲が好適な範囲となる。 However, as in Comparative Example 2, when the exterior time of limestone is set to 10 seconds, which is shorter than the exterior time of powder coke, 30 seconds, the firing becomes uneven, the firing time increases, and the yield tends to decrease. Further, the production rate is further lowered to approach the conventional example, and the exterior effect of limestone cannot be enjoyed. For this reason, the range of 90 seconds, which is the exterior time of powdered coke, is a suitable range for the exterior time of limestone.
 このように、本実施形態の焼結用原料の製造方法では、下方吸引のドワイトロイド式焼結機4を用いて高炉用焼結鉱を製造するプロセスの事前処理として、鉄鉱石、SiO含有原料、石灰石系粉原料及び固体燃料系粉原料からなる焼結原料を準備し、固体燃料系粉原料を除く鉄鉱石、SiO含有原料を攪拌混合用ミキサー1で混合して、混合原料を生成し、生成した混合原料をディスクペレタイザー2を用いて造粒して、造粒粒子を生成し、生成した造粒粒子を外層形成用ドラムミキサー3に供給し、外層形成用ドラムミキサー3の排出口側から固体燃料系粉原料を添加してから外層形成用ドラムミキサー3の排出口に至るまでの外装時間を40秒以下で10秒以上の範囲に設定し、この外装時間で造粒粒子の外層部に固体燃料系粉原料層を付着・形成する。又は焼結原料のうち、石灰石系粉原料及び固体燃料系粉原料を除く焼結原料を撹拌混合用ドラムミキサー1に装入して混合し、当該混合原料をディスクペレタイザー2に供給して造粒すると共に、造粒して得た造粒粒子を外層形成用ドラムミキサー3に供給し、外層形成用ドラムミキサー3に石灰石系粉原料を添加し、その後、固体燃料系粉原料を添加して外層形成用ドラムミキサー3の排出口に至る間に造粒粒子の外層部に石灰石系粉原料層及び固体燃料系粉原料層を付着・形成することにより、ディスクペレタイザー2で造粒された造粒粒子の表面にまず石灰石系粉原料が付着形成され、その後、粉コークスなどの固体燃料系粉原料が付着形成されることにより、ディスクペレタイザー2によって造粒された焼結用造粒粒子の最外層に固体燃料系粉原料が付着されることになり、焼結時のムラ焼け発生を確実に阻止できる。 Thus, in the manufacturing method of the raw material for sintering of this embodiment, iron ore and SiO 2 content are included as pretreatment of the process of manufacturing sintered ore for blast furnace by using the downward suction dwroid type sintering machine 4. Prepare raw material, sintering raw material consisting of limestone powder raw material and solid fuel powder raw material, mix iron ore excluding solid fuel powder raw material and SiO 2 containing raw material with mixer 1 for stirring and mixing to produce mixed raw material Then, the produced mixed raw material is granulated using a disk pelletizer 2 to produce granulated particles, and the produced granulated particles are supplied to the drum mixer 3 for forming the outer layer, and the discharge port of the drum mixer 3 for forming the outer layer The exterior time from the addition of the solid fuel-based powder raw material to the outlet of the drum mixer 3 for forming the outer layer is set in the range of 40 seconds or less and 10 seconds or more. Solid fuel system powder field To adhere and form a layer. Alternatively, among the sintered raw materials, the sintered raw materials excluding the limestone powder raw material and the solid fuel-based powder raw material are charged and mixed into the drum mixer 1 for stirring and mixing, and the mixed raw material is supplied to the disk pelletizer 2 for granulation. At the same time, the granulated particles obtained by granulation are supplied to the drum mixer 3 for forming the outer layer, the limestone powder material is added to the drum mixer 3 for forming the outer layer, and then the solid fuel powder material is added to the outer layer. The granulated particles granulated by the disk pelletizer 2 by adhering and forming a limestone powder raw material layer and a solid fuel powder raw material layer on the outer layer of the granulated particles while reaching the discharge port of the forming drum mixer 3 First, a limestone powder raw material is adhered and formed on the surface, and then a solid fuel-based powder raw material such as powder coke is adhered and formed on the outermost layer of the granulated particles for sintering granulated by the disk pelletizer 2 Solid Will be fuel based flour material is attached, it can be reliably prevented uneven burning occurs during sintering.
 また、石灰石系粉原料を、外層形成用ドラムミキサー3の装入側から添加し、固体燃料系粉原料を外層形成用ドラムミキサー3の排出口側から添加することにより、焼結用造粒粒子の最外層に固体燃料系粉原料が確実に付着される。
 また、石灰石系粉原料を、ディスクペレタイザー2で造粒して得られた造粒粒子と共に外層形成用ドラムミキサー3に装入することにより、ムラ焼けを防止して生産性が向上する。
Further, by adding the limestone powder material from the charging side of the outer layer forming drum mixer 3 and adding the solid fuel powder material from the outlet side of the outer layer forming drum mixer 3, the granulated particles for sintering are added. The solid fuel-based powder raw material is reliably attached to the outermost layer.
Further, by introducing the limestone powder raw material into the outer layer forming drum mixer 3 together with the granulated particles obtained by granulating with the disk pelletizer 2, uneven burning is prevented and the productivity is improved.
 また、ディスクペレタイザー2の後工程に配置される外層形成用ドラムミキサー3を、装入原料の滞留時間が120秒以下のドラムミキサー長さとしたり、ディスクペレタイザー2の後工程に配置される外層形成用ドラムミキサー3への固体燃料系粉原料の添加は、滞留時間を40秒以下としたりすることにより、造粒物の平均径を適正化して被還元性を高めることができ、更に歩留を低減して生産性を向上することができる。 In addition, the outer layer forming drum mixer 3 arranged in the subsequent process of the disk pelletizer 2 has a drum mixer length of 120 seconds or less for the charging raw material, or the outer layer forming drum arranged in the subsequent process of the disk pelletizer 2. The addition of the solid fuel powder material to the drum mixer 3 can improve the reducibility by optimizing the average diameter of the granulated product by setting the residence time to 40 seconds or less, and further reducing the yield. And productivity can be improved.
また、上記実施形態では、粗粒鉄鉱石のみを使用してディスクペレタイザー2で造粒する場合について説明したが、これに限定されるものではなく、2種類の粗粒鉄鉱石A,Bに平均粒径が1μm以上で10μm以下の超微粉鉱を全鉄鉱石の10mass%~60mass%の範囲好ましくは30mass%以下で10%以上の範囲で加えた場合、2種類の粗粒鉄鉱石A,Bに平均粒径−75μmを70mass%以上含むペレットフィードを全鉄鉱石の10mass%以上60mass%以下の範囲好ましくは60mass%で加えた場合について上記と同様の試験を行った。
 このときの、試験は各銘柄及び重量比率は下記表4に示すように配合し、試験条件は下記表5に示す。
Moreover, although the said embodiment demonstrated the case where it granulated with the disk pelletizer 2 using only a coarse-grained iron ore, it is not limited to this and is averaged in two types of coarse-grained iron ores A and B When ultrafine ore with a particle size of 1 μm or more and 10 μm or less is added in the range of 10 mass% to 60 mass% of the total iron ore, preferably in the range of 30 mass% or less and 10% or more, two kinds of coarse iron ores A and B The same test as described above was performed when a pellet feed containing 70 mass% or more of an average particle size of −75 μm was added in the range of 10 mass% to 60 mass% of the total iron ore, preferably 60 mass%.
In this test, each brand and weight ratio are blended as shown in Table 4 below, and the test conditions are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
ここで、試験条件No.1は前述した実施例と同様に鉄鉱石として、粗粒の豪州産の鉄鉱石及び南米産の鉄鉱石を50%ずつ配合し、造粒プロセスとして図3に示すHPS法を適用した実施例である。試験条件No.2は、上記No.1と同様の鉄鉱石を使用し、造粒プロセスとして図7に示すDL法を適用した従来例である。 Here, the test condition No. 1 is an example in which coarse Australian ore and South American iron ore are blended 50% each as iron ore as in the previous example, and the HPS method shown in FIG. 3 is applied as the granulation process. is there. Test condition No. 2 is the above-mentioned No.2. 1 is a conventional example using the same iron ore as in No. 1 and applying the DL method shown in FIG. 7 as a granulation process.
 また、試験条件No.3は、鉄鉱石として、粗粒の豪州産の鉄鉱石及び南米産の鉄鉱石をそれぞれ45%ずつとし、これらに平均粒径が10μmの超微粉鉱を10%配合し、造粒プロセスとして図3に示すHPS法を適用した実施例である。試験条件No.4は、鉄鉱石として、粗粒の豪州産の鉄鉱石及び南米産の鉄鉱石をそれぞれ20%ずつとし、これらに平均粒径−75μmが70%以上含むペレットフィードを60%配合し、造粒プロセスとして図3に示すHPS法を適用した実施例である。 Also, test condition No. No. 3 is composed of 45% coarse iron ore and South American iron ore as iron ore, and 10% ultrafine ore with an average particle size of 10μm. 3 is an example to which the HPS method shown in FIG. 3 is applied. Test condition No. 4. As iron ore, 20% each of coarse Australian iron ore and South American iron ore was added to each 60%, and the pellet feed containing 70% or more of the average particle size of −75 μm was blended 60%. It is the Example which applied the HPS method shown in FIG. 3 as a process.
 これら試験条件No.1~No.4について試験結果を図8(a)~(c)に示す。ここで、図8(a)は粉コークス外装時間と造粒粒子径との関係を示す図であり、試験条件No.1~No3については左側の造粒粒子径を適用し、試験条件No.4については右側の造粒粒子径を適用する。また、図8(b)は粉コークス外装時間と生産率との関係を示す図であり、図8(c)は圧壊強度(kg/P)と適正外装時間(s)との関係を示す図である。 These test conditions No. 1-No. The test results for 4 are shown in FIGS. 8A is a diagram showing the relationship between the powder coke exterior time and the granulated particle diameter. For No. 1 to No. 3, the left granulated particle diameter is applied, and test conditions No. 1 to No. 3 are applied. For No. 4, the right granulated particle size is applied. 8B is a diagram showing the relationship between the powder coke exterior time and the production rate, and FIG. 8C is a diagram showing the relationship between the crushing strength (kg / P) and the appropriate exterior time (s). It is.
 この実験結果から、図8(a)に示すように、従来例である試験条件No.2の造粒粒子径が一番小さく、試験条件No.1、No.3及びNo.4の順で造粒粒子径が増加している。ここで、試験条件No.1及びNo.3では、粉コークス外装時間が90秒より短くなるに従って造粒粒子径が増加しているが、試験条件No.4については造粒粒子径が他の試験条件に比較して2~3倍程度の大きさとなっており、粉コークス外装時間が90秒から短くなっても造粒粒子径の増加はなく、4.5mm前後の略同じ値となっている。 From this experimental result, as shown in FIG. No. 2 has the smallest granulated particle size. 1, no. 3 and no. The granulated particle diameter increases in the order of 4. Here, the test condition No. 1 and no. 3, the granulated particle diameter increases as the powder coke exterior time becomes shorter than 90 seconds. For No. 4, the granulated particle size is about 2 to 3 times larger than other test conditions, and there is no increase in the granulated particle size even if the powder coke exterior time is shortened from 90 seconds. .About the same value of around 5 mm.
 そして、粉コークス外装時間と生産率との関係を表す図8(b)で明らかなように、造粒粒子径が最も大きい試験条件No.4の生産率は、粉コークス外装時間が90以下で30秒以上の範囲で最も高くなり、粉コークス外装時間が90秒より長くなるか又は30秒より短くなると生産率が低下している。
 また、次に造粒粒子径が大きい試験条件No.3の生産率は、図8(b)に示すように、粉コークス外装時間が70秒以下で30秒以上の範囲で最も大きくなり、粉コークス外装時間が70秒より長くなるか又は30秒より短くなると生産率が低下している。
And as apparent in FIG. 8 (b) showing the relationship between the powder coke exterior time and the production rate, the test condition No. The production rate of No. 4 is the highest in the range where the powder coke exterior time is 90 or less and 30 seconds or more, and when the powder coke exterior time is longer than 90 seconds or shorter than 30 seconds, the production rate decreases.
In addition, the test condition No. As shown in FIG. 8 (b), the production rate of No. 3 becomes the largest in the range of 30 seconds or more when the powder coke exterior time is 70 seconds or less, and the powder coke exterior time becomes longer than 70 seconds or from 30 seconds. As it gets shorter, the production rate decreases.
 さらに、次に造粒粒子径が大きい試験条件No.4の生産率は、図8(b)に示すように、粉コークス外装時間が40秒以下で20秒以上の範囲で最も大きくなり、粉コークス外装時間が40秒より長くなるか又は20秒より短くなると生産率が低下している。
 以上結果から、造粒粒子径が大きい場合から造粒粒子径が小さくなるに従って粉コークス外装時間の最長時間を短く設定する必要があることが分かった。
Furthermore, test conditions No. 2 with the next largest granulated particle size. As shown in FIG. 8 (b), the production rate of 4 is the largest in the range of 20 seconds or more when the powder coke exterior time is 40 seconds or less, and the powder coke exterior time is longer than 40 seconds or more than 20 seconds. As it gets shorter, the production rate decreases.
From the above results, it was found that the longest time of the powder coke coating time needs to be set shorter as the granulated particle diameter becomes smaller from the larger granulated particle diameter.
 また、圧壊強度(kg/P)と粉コークスの適正外装時間(s)との関係では、図8(c)に示すように、圧壊強度が最も高い試験条件No.4では、適正外装時間が90秒となっており、次に圧壊強度が大きい試験条件No.3では、適正外装時間が70秒となっており、次に圧壊強度が大きい試験条件No.1では、適正外装時間が30秒となっている。
 この試験結果から、圧壊強度が大きい値から小さい値になるに従って粉コークス外装時間を短く設定する必要があることが分かった。
Further, in the relationship between the crushing strength (kg / P) and the appropriate exterior time (s) of the powder coke, as shown in FIG. In No. 4, the proper exterior time is 90 seconds, and the test condition No. 3 has an appropriate exterior time of 70 seconds, and the test condition No. In 1, the appropriate exterior time is 30 seconds.
From this test result, it was found that it was necessary to set the powder coke exterior time shorter as the crushing strength decreased from a larger value to a smaller value.
 鉄鉱石の造粒粒子は、前述したように、ミキサー内で、粉コークスと混合され、付着と崩壊を繰り返しながら成長している。ピソライト鉱石などの豪州産鉄鉱石では、ペレットフィードに比べて粗粒のため、鉄鉱石造粒粒子の強度が低下する。また、粉コークスは疎水性のため、造粒粒子の内部に混合すると、造粒粒子の強度が低下する。すなわち、粉コークスの粒子内部への侵入・崩壊を抑制するために粉コークス外装時間の短縮が必要となる。 As described above, the granulated particles of iron ore are mixed with the powdered coke in the mixer and grow while repeating adhesion and collapse. Australian iron ore such as pisolite ore is coarser than pellet feed, and the strength of iron ore granulated particles decreases. Moreover, since powder coke is hydrophobic, when mixed inside the granulated particles, the strength of the granulated particles decreases. That is, it is necessary to shorten the powder coke exterior time in order to suppress the penetration and collapse of the powder coke into the particles.
 造粒粒子の造粒粒子強度σ(N)は、下記(1)式で表すことができる。
 σ=6・ψ・S・{(1−ε)/ε)}・(γcosθ/d)  …………(1)
ここで、ψは液体の充満度(−)、Sは粉体の表面積(m)、εは造粒物の空隙率(−)、γは水の表面張力(N/m)、θは接触角(°)、dは比表面積球相当径(m)である。
 そして、ペレットフィードを使用して粉コークス外装時間を90秒とした場合には、図9(a)で模式的に示すように、中心の核鉱石21の回りがペレットフィードと石灰石の混合物22で覆われ、この混合物22の外層に疎水性の粉コークス23が付着する粒子構造となる。この場合の造粒粒子強度σはσ=6.8×10−3Nとなる。
The granulated particle strength σ (N) of the granulated particles can be expressed by the following formula (1).
σ = 6 · ψ · S · {(1-ε) / ε)} · (γcos θ / d) (1)
Where ψ is the degree of liquid fullness (−), S is the surface area of the powder (m 2 ), ε is the porosity of the granulated product (−), γ is the surface tension of water (N / m), and θ is The contact angle (°), d is a specific surface area sphere equivalent diameter (m).
When the pellet coke exterior time is 90 seconds using pellet feed, the mixture of pellet feed and limestone is around the core ore 21 as schematically shown in FIG. 9 (a). The particle structure is covered and the hydrophobic powder coke 23 adheres to the outer layer of the mixture 22. The granulated particle strength σ in this case is σ = 6.8 × 10 −3 N.
 これに対して、粗粒の鉄鉱石であるピソライト鉱石のみを使用して、粉コークス外装時間を90秒とした場合には、核鉱石21の回りをピソライト鉱石24に疎水性の粉コークス23が混在した状態となる。この場合の造粒粒子強度σはσ=8.4×10−4Nとなり、ペレットフィードを使用した場合より1桁小さい値となる。
 また、鉄鉱石、石灰石及び粉コークスの濡れ性を、毛細管法を適用して粉体充填層中の水の上昇速度から評価した。この評価試験では、図10に示すように、下端にガーゼ30をあてがった直径25φのガラス管31に、夫々粉コークス、石灰石(ライムストーン)、鉄鉱石を詰めた状態で、水を張った容器32にガーゼ部分を浸して単位時間当たりの上昇水位高さを測定した。
On the other hand, when only the pisolite ore, which is a coarse iron ore, is used and the powder coke exterior time is 90 seconds, the hydrophobic ore coke 23 around the core ore 21 becomes the pisolite ore 24. It becomes a mixed state. The granulated particle strength σ in this case is σ = 8.4 × 10 −4 N, which is one order of magnitude smaller than when pellet feed is used.
In addition, the wettability of iron ore, limestone and powder coke was evaluated from the rate of water rise in the powder packed bed by applying a capillary method. In this evaluation test, as shown in FIG. 10, a container filled with water in a state where a glass tube 31 having a diameter of 25φ with a gauze 30 at the lower end is filled with powdered coke, limestone, and iron ore, respectively. The gauze part was immersed in 32, and the height of the rising water level per unit time was measured.
 その測定結果となる時間√t(s1/2)に対する上昇水位高さ(mm)との関係は、図11に示すように、鉄鉱石(接触角θ=45°)と石灰石(接触角θ=55°)とは時間√tの増加に略比例して上昇水位高さが増加するが、粉コークス(接触角θ=84°)については鉄鉱石及び石灰石の上昇水位高さの半分程度であり、鉄鉱石や石灰石に比較して濡れ性が悪い。このため、擬似粒子内に粉コークスが侵入すると、粒子強度が低下し、造粒粒子径が減少することになる。 As shown in FIG. 11, the relationship between time √t (s 1/2 ) and the rising water level height (mm) as a result of the measurement is as follows. Iron ore (contact angle θ = 45 °) and limestone (contact angle θ = 55 °), the rising water level increases approximately in proportion to the increase of time √t, but the powder coke (contact angle θ = 84 °) is about half the rising water level of iron ore and limestone. Yes, wettability is poor compared to iron ore and limestone. For this reason, when the powder coke penetrates into the pseudo particles, the particle strength decreases and the granulated particle diameter decreases.
 なお、濡れ性の評価式としては、下記(2)式のハーゲンポワズイユ(Hagen−Poiseuille)の式がある。
 H=√{(φdγcosθ/2η)t}  …………(2)
ここで、Hは上昇水位(m)、tは時間(s)、θは接触角(°)、ηは水の粘性(N・s/m)、γは表面張力(N/m)、dは粒径(m)、φは形状係数(−)である。
In addition, as an evaluation formula of wettability, there is a Hagen-Poiseille equation of the following equation (2).
H = √ {(φdγcosθ / 2η) t} (2)
Here, H is the rising water level (m), t is time (s), θ is the contact angle (°), η is the viscosity of water (N · s / m 2 ), γ is the surface tension (N / m), d is the particle size (m), and φ is the shape factor (−).
 したがって、造粒粒子径を大きくして粒子強度を確保するためには、造粒粒子内に粉コークスが侵入することを抑制する必要があり、粗粒の鉄鉱石に超微粉又はペレットフィードを混入して造粒粒子強度を高めた場合に比較して粗粒の鉄鉱石のみで造粒粒子強度が低い場合には、粉コークスの外装時間を短縮する必要があり、造粒粒子強度が低くなるにつれて粉コークスの外装時間を短く設定する。 Therefore, in order to increase the granulated particle size and ensure the particle strength, it is necessary to suppress the intrusion of powder coke into the granulated particles, and ultrafine powder or pellet feed is mixed into coarse iron ore. When the granulated particle strength is low with only coarse iron ore compared to the case where the granulated particle strength is increased, it is necessary to reduce the external packaging time of the powdered coke, and the granulated particle strength is reduced. As a result, the powder coke exterior time is set shorter.
 1は撹拌混合用ドラムミキサー、2はディスクペレタイザー、3は外層形成用ドラムミキサー、4はドワイトロイド式焼結機、5は点火炉、6は粉コークス投射装置、7は石灰石投射装置 1 is a stirring mixer drum mixer, 2 is a disk pelletizer, 3 is a drum mixer for outer layer formation, 4 is a droidoid sintering machine, 5 is an ignition furnace, 6 is a powder coke projection device, and 7 is a limestone projection device

Claims (16)

  1.  鉄鉱石、SiO含有原料、石灰石系粉原料及び固体燃料系粉原料からなる焼結原料を準備し、
     前記鉄鉱石、SiO含有原料と石灰石系粉原料を撹拌混合用ドラムミキサーで混合して、混合原料を生成し、
     前記混合原料をディスクペレタイザーで造粒し、造粒粒子を生成し、
     前記造粒粒子を外層形成用ドラムミキサーに供給し、
     前記外層形成用ドラムミキサーに供給された造粒粒子に、前記外層形成用ドラムミキサーの排出口側から、前記固体燃料系粉原料を添加し、前記固体燃料系粉原料の添加から外層形成用ドラムミキサーからの排出までの40秒以下で10秒以上の外装時間の間に前記造粒粒子の表面に固体燃料系粉原料層を形成する
     ことを特徴とする焼結用原料の製造方法。
    Prepare a sintering raw material consisting of iron ore, SiO 2 containing raw material, limestone powder raw material and solid fuel powder raw material,
    The iron ore, SiO 2 containing raw material and limestone powder raw material are mixed with a drum mixer for stirring and mixing to produce a mixed raw material,
    The mixed raw material is granulated with a disk pelletizer to produce granulated particles,
    Supplying the granulated particles to a drum mixer for outer layer formation;
    The solid fuel powder material is added to the granulated particles supplied to the outer layer formation drum mixer from the outlet side of the outer layer formation drum mixer, and the outer layer formation drum is added from the addition of the solid fuel powder material. A method for producing a raw material for sintering, comprising: forming a solid fuel-based powder raw material layer on the surface of the granulated particles during an exterior time of 10 seconds or longer and 40 seconds or less until discharging from the mixer.
  2.  前記外装時間が、40秒以下で20秒以上であることを特徴とする請求項1に記載の焼結用原料の製造方法。 The method for manufacturing a raw material for sintering according to claim 1, wherein the exterior time is 40 seconds or less and 20 seconds or more.
  3.  前記外装時間が、30秒以下で20秒以上であることを特徴とする請求項2に記載の焼結用原料の製造方法。 The method for producing a sintering raw material according to claim 2, wherein the exterior time is 30 seconds or less and 20 seconds or more.
  4.  鉄鉱石、SiO含有原料、石灰石系粉原料及び固体燃料系粉原料からなる焼結原料を準備し、
     前記鉄鉱石とSiO含有原料を撹拌混合用ドラムミキサーで混合して、混合原料を生成し、
     前記混合原料をディスクペレタイザーで造粒し、造粒粒子を生成し、
     前記造粒粒子を外層形成用ドラムミキサーに供給し、
     前記外層形成用ドラムミキサーに石灰石系粉原料を供給し、前記石灰石系粉原料の供給後、前記外層形成用ドラムミキサーに前記固体燃料系粉原料を添加し、前記造粒粒子上に石灰石系粉原料層及び固体燃料系粉原料層を形成する
     ことを特徴とする焼結用原料の製造方法。
    Prepare a sintering raw material consisting of iron ore, SiO 2 containing raw material, limestone powder raw material and solid fuel powder raw material,
    Mixing the iron ore and the SiO 2 -containing material with a drum mixer for stirring and mixing to produce a mixed material,
    The mixed raw material is granulated with a disk pelletizer to produce granulated particles,
    Supplying the granulated particles to a drum mixer for outer layer formation;
    The limestone powder raw material is supplied to the outer layer forming drum mixer, and after the supply of the limestone powder raw material, the solid fuel powder raw material is added to the outer layer forming drum mixer, and the limestone powder is formed on the granulated particles. A method for producing a raw material for sintering, comprising forming a raw material layer and a solid fuel-based powder raw material layer.
  5.  前記石灰石系粉原料の供給が、前記外層形成用ドラムミキサーの装入側から供給することからなり、
     前記固体燃料系粉原料の添加が、前記外層形成用ドラムミキサーの排出口側から添加することからなる
     ことを特徴とする請求項4に記載の焼結用原料の製造方法。
    The supply of the limestone powder raw material consists of supplying from the charging side of the drum mixer for forming the outer layer,
    The method for producing a raw material for sintering according to claim 4, wherein the addition of the solid fuel-based powder raw material is performed from the discharge port side of the outer layer forming drum mixer.
  6.  前記石灰石系粉原料の供給が、前記ディスクペレタイザーで造粒して得られた造粒粒子と共に石灰石系粉原料を、前記外層形成用ドラムミキサーに供給することからなることを特徴とする請求項4に記載の焼結用原料の製造方法。 5. The supply of the limestone powder raw material comprises supplying the limestone powder raw material together with the granulated particles obtained by granulation with the disk pelletizer to the drum mixer for forming the outer layer. The manufacturing method of the raw material for sintering as described in 2.
  7.  前記固体燃料系粉原料の添加が、前記固体燃料系粉原料の添加から外層形成用ドラムミキサーからの排出まで40秒以下で10秒以上の外装時間を有するように、前記外層形成用ドラムミキサーに前記固体燃料系粉原料を添加することからなること特徴とする請求項4に記載の焼結用原料の製造方法。 In the outer layer forming drum mixer, the addition of the solid fuel-based powder raw material has an exterior time of 10 seconds or more in 40 seconds or less from the addition of the solid fuel-based powder raw material to the discharge from the outer layer forming drum mixer. The method for producing a sintering raw material according to claim 4, comprising adding the solid fuel-based powder raw material.
  8.  前記外装時間が、40秒以下で20秒以上であることを特徴とする請求項7に記載の焼結用原料の製造方法。 The method for producing a raw material for sintering according to claim 7, wherein the exterior time is 40 seconds or less and 20 seconds or more.
  9.  前記石灰石系粉原料の供給が、前記石灰石系粉原料の供給から外層形成用ドラムミキサーからの排出まで90秒以下の外装時間を有するように、且つ、前記固体燃料系粉原料の添加から外層形成用ドラムミキサーからの排出までの時間以上の外装時間を有するように、前記外層形成用ドラムミキサーに前記石灰石系粉原料を供給することからなることを特徴とする請求項4に記載の焼結用原料の製造方法。 The supply of the limestone powder raw material has an exterior time of 90 seconds or less from the supply of the limestone powder raw material to the discharge from the drum mixer for forming the outer layer, and the outer layer formation from the addition of the solid fuel powder raw material. The limestone powder raw material is supplied to the outer layer forming drum mixer so as to have an exterior time equal to or longer than the time until discharge from the drum mixer for use in sintering. Raw material manufacturing method.
  10.  鉄鉱石、SiO含有原料、石灰石系粉原料及び固体燃料系粉原料からなる焼結原料を準備し、
     前記鉄鉱石、SiO含有原料と石灰石系粉原料を撹拌混合用ドラムミキサーで混合して、混合原料を生成し、
     前記混合原料をディスクペレタイザーで造粒し、造粒粒子を生成し、
     前記造粒粒子を外層形成用ドラムミキサーに供給し、
     前記外層形成用ドラムミキサーに供給された造粒粒子に、前記外層形成用ドラムミキサーの排出口側から、前記固体燃料系粉原料を添加し、前記造粒粒子の表面に固体燃料系粉原料層を形成し、
     前記固体燃料系粉原料の添加から外層形成用ドラムミキサーからの排出までの外装時間を、造粒粒子径、圧壊強度及び造粒粒子強度の何れかが小さくなるほど短く設定する
     ことを特徴とする焼結用原料の製造方法。
    Prepare a sintering raw material consisting of iron ore, SiO 2 containing raw material, limestone powder raw material and solid fuel powder raw material,
    The iron ore, SiO 2 containing raw material and limestone powder raw material are mixed with a drum mixer for stirring and mixing to produce a mixed raw material,
    The mixed raw material is granulated with a disk pelletizer to produce granulated particles,
    Supplying the granulated particles to a drum mixer for outer layer formation;
    The solid fuel powder raw material layer is added to the granulated particles supplied to the outer layer forming drum mixer from the outlet side of the outer layer forming drum mixer, and the solid fuel powder raw material layer is formed on the surface of the granulated particles. Form the
    The firing time from the addition of the solid fuel-based powder raw material to the discharge from the outer layer forming drum mixer is set to be shorter as any one of the granulated particle diameter, crushing strength, and granulated particle strength decreases. A method for producing a ligation raw material.
  11.  鉄鉱石、超微粉鉱、SiO含有原料、石灰石系粉原料及び固体燃料系粉原料からなる焼結原料を準備し、
     前記鉄鉱石、超微粉鉱、SiO含有原料と石灰石系粉原料を撹拌混合用ドラムミキサーで混合して、混合原料を生成し、
     前記混合原料をディスクペレタイザーで造粒し、造粒粒子を生成し、
     前記造粒粒子を外層形成用ドラムミキサーに供給し、
     前記外層形成用ドラムミキサーに供給された造粒粒子に、前記外層形成用ドラムミキサーの排出口側から、前記固体燃料系粉原料を添加し、前記固体燃料系粉原料の添加から外層形成用ドラムミキサーからの排出までの70秒以下で30秒以上の外装時間の間に前記造粒粒子の表面に固体燃料系粉原料層を形成する
     ことを特徴とする焼結用原料の製造方法。
    Prepare a sintered raw material consisting of iron ore, ultrafine ore, SiO 2 containing raw material, limestone powder raw material and solid fuel powder raw material,
    The iron ore, ultrafine ore, SiO 2 containing raw material and limestone powder raw material are mixed with a stirring and mixing drum mixer to produce a mixed raw material,
    The mixed raw material is granulated with a disk pelletizer to produce granulated particles,
    Supplying the granulated particles to a drum mixer for outer layer formation;
    The solid fuel powder material is added to the granulated particles supplied to the outer layer formation drum mixer from the outlet side of the outer layer formation drum mixer, and the outer layer formation drum is added from the addition of the solid fuel powder material. A method for producing a raw material for sintering, comprising forming a solid fuel-based powder raw material layer on the surface of the granulated particles during an exterior time of 70 seconds or less until discharge from the mixer and 30 seconds or more.
  12.  前記超微粉鉱は、平均粒径が1μm以上で10μm以下であり、全鉄鉱石に対して10mass%以上で60mass%以下であることを特徴とする請求項11に記載の焼結用原料の製造方法。 The raw material for sintering according to claim 11, wherein the ultrafine ore has an average particle size of 1 µm or more and 10 µm or less, and 10 mass% or more and 60 mass% or less with respect to the total iron ore. Method.
  13.  鉄鉱石、ペレットフィード、SiO含有原料、石灰石系粉原料及び固体燃料系粉原料からなる焼結原料を準備し、
     前記鉄鉱石、ペレットフィード、SiO含有原料と石灰石系粉原料を撹拌混合用ドラムミキサーで混合して、混合原料を生成し、
     前記混合原料をディスクペレタイザーで造粒し、造粒粒子を生成し、
     前記造粒粒子を外層形成用ドラムミキサーに供給し、
     前記外層形成用ドラムミキサーに供給された造粒粒子に、前記外層形成用ドラムミキサーの排出口側から、前記固体燃料系粉原料を添加し、前記固体燃料系粉原料の添加から外層形成用ドラムミキサーからの排出までの90秒以下で30秒以上の外装時間の間に前記造粒粒子の表面に固体燃料系粉原料層を形成する
     ことを特徴とする焼結用原料の製造方法。
    Prepare a sintered raw material consisting of iron ore, pellet feed, SiO 2 containing raw material, limestone powder raw material and solid fuel powder raw material,
    The iron ore, pellet feed, SiO 2 containing raw material and limestone powder raw material are mixed with a stirring and mixing drum mixer to produce a mixed raw material,
    The mixed raw material is granulated with a disk pelletizer to produce granulated particles,
    Supplying the granulated particles to a drum mixer for outer layer formation;
    The solid fuel powder material is added to the granulated particles supplied to the outer layer formation drum mixer from the outlet side of the outer layer formation drum mixer, and the outer layer formation drum is added from the addition of the solid fuel powder material. A method for producing a raw material for sintering, characterized in that a solid fuel-based powder raw material layer is formed on the surface of the granulated particles during an exterior time of 90 seconds or less until discharge from the mixer and 30 seconds or more.
  14.  前記ペレットフィードは、平均粒径−75μmが70%以上であり、全鉄鉱石に対して10mass%以上で60mass%以下であることを特徴とする請求項11に記載の焼結用原料の製造方法。 The method for producing a raw material for sintering according to claim 11, wherein the pellet feed has an average particle diameter of −75 μm of 70% or more and 10 mass% or more and 60 mass% or less with respect to the total iron ore. .
  15.  前記外層形成用ドラムミキサーが、120秒以下の滞留時間を有することを特徴とする請求項1乃至14の何れか一項に記載の焼結用原料の製造方法。 The method for producing a raw material for sintering according to any one of claims 1 to 14, wherein the drum mixer for forming an outer layer has a residence time of 120 seconds or less.
  16.  前記滞留時間が、90秒以上で120秒以下の滞留時間であることを特徴とする請求項15に記載の焼結用原料の製造方法。 The method for producing a raw material for sintering according to claim 15, wherein the residence time is 90 seconds or more and 120 seconds or less.
PCT/JP2010/061856 2009-07-10 2010-07-07 Method for producing starting material for sintering WO2011004907A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2010269436A AU2010269436B2 (en) 2009-07-10 2010-07-07 Method for producing material for use in sintering
CN201080033050.XA CN102482729B (en) 2009-07-10 2010-07-07 Method For Producing Starting Material For Sintering
BR112012000638-0A BR112012000638B1 (en) 2009-07-10 2010-07-07 method for producing material for use in sintering
ZA2011/09441A ZA201109441B (en) 2009-07-10 2011-12-21 Method for producing material for use in sintering

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-163903 2009-07-10
JP2009163903 2009-07-10
JP2010-152444 2010-07-02
JP2010152444A JP4840524B2 (en) 2009-07-10 2010-07-02 Method for manufacturing raw materials for sintering

Publications (1)

Publication Number Publication Date
WO2011004907A1 true WO2011004907A1 (en) 2011-01-13

Family

ID=43429328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061856 WO2011004907A1 (en) 2009-07-10 2010-07-07 Method for producing starting material for sintering

Country Status (6)

Country Link
JP (1) JP4840524B2 (en)
CN (1) CN102482729B (en)
AU (1) AU2010269436B2 (en)
BR (1) BR112012000638B1 (en)
WO (1) WO2011004907A1 (en)
ZA (1) ZA201109441B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137484A1 (en) * 2018-12-26 2020-07-02 Jfeスチール株式会社 Sintered ore production method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2848299B1 (en) 2013-09-11 2019-08-14 Primetals Technologies Austria GmbH Method and device for producing granulates
US9580769B2 (en) * 2013-10-22 2017-02-28 Vale S.A. Device for the improvement of crude pellets and pelletizing process
KR101834217B1 (en) 2016-10-11 2018-03-05 주식회사 포스코 Raw material processing apparatus and processing method
JP6939842B2 (en) * 2018-12-26 2021-09-22 Jfeスチール株式会社 Sintered ore manufacturing method
CN114540614A (en) * 2022-01-19 2022-05-27 中南大学 Method for sintering limonite type laterite-nickel ore pellets
CN114574694B (en) * 2022-01-19 2023-08-22 中南大学 Novel method for sintering iron concentrate powder balls
CN114574695B (en) * 2022-01-19 2023-08-22 中南大学 Sintering method of iron-manganese ore pellets

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633151A (en) * 1992-07-14 1994-02-08 Nkk Corp Production of burned agglomerate
JP2003138319A (en) * 2001-08-23 2003-05-14 Kawasaki Steel Corp Method for manufacturing raw material for sintering
JP2003160815A (en) * 2001-09-12 2003-06-06 Kawasaki Steel Corp Method for granulating raw material for sintering
JP2005154822A (en) * 2003-11-25 2005-06-16 Nippon Steel Corp Method of producing sintered ore
WO2007063603A1 (en) * 2005-12-02 2007-06-07 Kyouzai Kogyo Co., Ltd. Method of granulating sintering raw material and process for producing sintered ore

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3635256B2 (en) * 2001-09-14 2005-04-06 新日本製鐵株式会社 Reduction method of iron oxide
JP5464317B2 (en) * 2007-11-22 2014-04-09 Jfeスチール株式会社 Manufacturing method of forming raw material for sinter production
CN100595296C (en) * 2008-03-31 2010-03-24 重庆钢铁(集团)有限责任公司 Technique of dedusting gray for sintered mine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633151A (en) * 1992-07-14 1994-02-08 Nkk Corp Production of burned agglomerate
JP2003138319A (en) * 2001-08-23 2003-05-14 Kawasaki Steel Corp Method for manufacturing raw material for sintering
JP2003160815A (en) * 2001-09-12 2003-06-06 Kawasaki Steel Corp Method for granulating raw material for sintering
JP2005154822A (en) * 2003-11-25 2005-06-16 Nippon Steel Corp Method of producing sintered ore
WO2007063603A1 (en) * 2005-12-02 2007-06-07 Kyouzai Kogyo Co., Ltd. Method of granulating sintering raw material and process for producing sintered ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137484A1 (en) * 2018-12-26 2020-07-02 Jfeスチール株式会社 Sintered ore production method

Also Published As

Publication number Publication date
AU2010269436B2 (en) 2014-06-26
JP2011032577A (en) 2011-02-17
AU2010269436A1 (en) 2012-01-19
JP4840524B2 (en) 2011-12-21
BR112012000638A2 (en) 2020-08-11
BR112012000638B1 (en) 2021-05-25
ZA201109441B (en) 2013-02-27
CN102482729B (en) 2015-01-07
CN102482729A (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4840524B2 (en) Method for manufacturing raw materials for sintering
JP6686974B2 (en) Sintered ore manufacturing method
WO2012015063A1 (en) Method for producing starting material for sintering
JP3755452B2 (en) Method for manufacturing raw materials for sintering
WO2012015065A1 (en) Method for producing starting material for sintering
JP5935979B2 (en) Method for producing pseudo-particles for producing sinter and method for producing sinter
JP5821362B2 (en) Method for manufacturing raw materials for sintering
WO2012015066A1 (en) Method for producing starting material for sintering
JP2000290732A (en) Method for granulating raw material for sintering, excellent in combustibility
JP2003160815A (en) Method for granulating raw material for sintering
JP2003277838A (en) High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method
JP2755042B2 (en) Method for producing calcined agglomerate
JP7148030B2 (en) Method for producing sintered ore and sintered ore
JP6885386B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JP5008859B2 (en) Method for drying raw material granulated product and method for producing sintered ore
JP5167641B2 (en) Method for producing sintered ore
JP2006241575A (en) Method for pretreating raw material for sintering
JP2004285398A (en) Method of producing sintered ore
JP2001303142A (en) Method for producing sintered ore excellent in characteristic at high temperature
JPS62214138A (en) Manufacture of sintered ore
JP2004027245A (en) Method for pelletizing sintering material
JP5831397B2 (en) Method for producing sintered ore
JP2019112704A (en) Manufacturing method of carbonaceous material interior particle, and manufacturing method of carbonaceous material interior sintered ore
JP2003113424A (en) Method and apparatus for granulating sintering raw material
JP2017171982A (en) Granule for sinter raw material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033050.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797215

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010269436

Country of ref document: AU

Ref document number: 2754/MUMNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010269436

Country of ref document: AU

Date of ref document: 20100707

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012000638

Country of ref document: BR

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 10797215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112012000638

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120110