JP2003159610A - Radius end mill - Google Patents

Radius end mill

Info

Publication number
JP2003159610A
JP2003159610A JP2002280769A JP2002280769A JP2003159610A JP 2003159610 A JP2003159610 A JP 2003159610A JP 2002280769 A JP2002280769 A JP 2002280769A JP 2002280769 A JP2002280769 A JP 2002280769A JP 2003159610 A JP2003159610 A JP 2003159610A
Authority
JP
Japan
Prior art keywords
cutting
blade
cutting edge
end mill
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002280769A
Other languages
Japanese (ja)
Inventor
Shigeyasu Yoshitoshi
成恭 吉年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2002280769A priority Critical patent/JP2003159610A/en
Publication of JP2003159610A publication Critical patent/JP2003159610A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0407Cutting angles
    • B23C2210/0421Cutting angles negative
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/40Flutes, i.e. chip conveying grooves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellent multiedged, large helical angle end mill which has improved cutting ability, and is suitable for heavy cutting such as grooving, and has a long tool life, and is applicable to finish cutting by smoothing discharge of chips and by preventing vibration in cutting, though multi-edged, large helical angle end mills tend to cause chip packing. <P>SOLUTION: The radius end mill is characterized in that, in the radius end mill having helical cutting edges 2 on the outside periphery thereof and circular cutting edges at the outside periphery side of end cutting edges 8, the shape of the gash in the cross section perpendicular to the helical cutting edges is formed by the curves including the rake face, the bottom, the back flank, and the tertiary relief flank of the neighboring cutting edge, and approximately forms a U shape, and the rake face of the helical cutting edges is a curved face elongating in the radial direction from the rotational axis of the end mill in the range from the inside more than 5% of the outside diameter of the end mill to the cutting edge, and the rake face of the circular cutting edges is formed as a continuous convex surface along the cutting edge from the end of the cutting edge to the end of the end cutting edge. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願発明は、工作機械で用いる主
として鋼材あるいは金属材料切削用のエンドミルに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an end mill mainly used for machine tools for cutting steel or metal materials.

【0002】[0002]

【従来の技術】荒加工に用いるエンドミルは、切削作用
によって生じる多量の切り屑をスムーズに排出できる切
り屑スペースと、切込み量に比例して大きくなる切削カ
に耐える工具強度を併存している必要があり、一般に刃
数の少ない2枚刃エンドミルが用いられる。また仕上げ
用としては切りくず処理に関するよりも切れ味の維持が
問題であるため4枚刃エンドミルや多刃エンドミルが用
いられるのである。一方、エンドミルは総じて細長形状
であり、工具強度的に弱いものであって、特に荒加工へ
の適用が問題となりがちであるが、これの改善には多く
の工夫がある。例として、特開平7−178612号公
報。
2. Description of the Related Art An end mill used for rough machining must have a chip space capable of smoothly discharging a large amount of chips generated by a cutting action and a tool strength capable of withstanding a cutting force which increases in proportion to the cutting depth. Therefore, a two-flute end mill having a small number of blades is generally used. For finishing, the maintenance of sharpness is more problematic than with regard to chip control, so that a 4-flute end mill or a multi-blade end mill is used. On the other hand, end mills are generally elongated and weak in tool strength, and their application to roughing tends to be a problem, but there are many ways to improve them. As an example, Japanese Patent Laid-Open No. 7-178612.

【0003】[0003]

【発明が解決しようとする問題点】一般にエンドミルの
刃形は、すくい面、刃底、背面、逃げ面を含むランド幅
の各要素で構成されるが、このうち背面はランド幅を補
強する目的から凸円弧状のふくらみをもつようになされ
る。これは刃溝を狭くし、刃底の丸みが小さくなって切
りくずが無理矢理曲げられ、むだな切削抵抗を発生させ
る原因となっていた。特に、荒加工の例として溝切削の
時には、自ら作った両側面が壁となり一層切りくず排出
性が刃形に左右される。溝切削のように大量の切りくず
が生じ、その切り屑排出に制約があるようなときには、
従来の刃溝形状では切りくずづまりを生じて工具寿命が
短かいという問題があった。これと類似のことはステン
レス鋼のような粘い被削材でも生じる。ステンレス鋼で
は切りくずカ−ル半径が炭素鋼などと比べて大きくなる
ためである。上記のように、荒加工用には刃数の少ない
2枚刃エンドミルが用いられる理由の一つであるが、本
来、荒、仕上げ共用が望ましいことは言うまでもない。
Generally, the blade shape of an end mill is composed of each element of land width including a rake face, a blade bottom, a back face, and a flank face, of which the back face is intended to reinforce the land width. It is made to have a convex arc-shaped bulge. This narrows the blade groove, reduces the roundness of the blade bottom, forcibly bends the chips, and causes unnecessary cutting resistance. In particular, when grooving as an example of rough machining, both side surfaces made by themselves become walls, and chip evacuation further depends on the blade shape. When a large amount of chips are generated, such as grooving, and there are restrictions on chip discharge,
The conventional shape of the flute has a problem that chip clogging occurs and tool life is short. Similarities occur with viscous work materials such as stainless steel. This is because the chip curl radius of stainless steel is larger than that of carbon steel. As described above, this is one of the reasons why the two-blade end mill with a small number of blades is used for rough machining, but it goes without saying that it is desirable to use both rough and finish in common.

【0004】これに対し従来品は、3刃以上のねじれた
切れ刃を有するエンドミルで刃溝を浅く、すくい面をレ
−キ状にするとともに軸直角断面視において刃底から隣
接する切れ刃の三番面までをほぼ直線状に結んで、切り
くずの排出方向に障害のない形状とし、小さなすくい角
で切りくずを円滑に排出し、溝切削にも対応できるよう
にしたものである。しかし、刃底から隣接する切れ刃の
三番面までを直線状に結ぶことに固執すると刃底が浅く
なって、切りくずのカ−ルを妨げるという弊害が認めら
れた。
On the other hand, the conventional product has an end mill having three or more twisted cutting edges with a shallow groove and a rake face with a rake face, and the cutting edge adjacent to the blade bottom in a cross-sectional view perpendicular to the axis. By connecting up to the third surface in a substantially straight line, there is no obstruction in the chip discharge direction, the chip is smoothly discharged with a small rake angle, and it is also compatible with groove cutting. However, sticking to a straight line from the blade bottom to the third face of the adjacent cutting edge makes the blade bottom shallower, which has been recognized as a hindrance to the curl of chips.

【0005】[0005]

【本発明の目的】本発明は以上の問題を解決するために
なされたものであり、切り屑排除が問題となりやすい多
刃強ねじれのエンドミルにおいて、切り屑排出を円滑に
し、切削振動等を防止して、切削性を高め、溝切削等の
重切削に適し、かつ工具寿命が長く仕上げ切削にも適用
可能な優れたエンドミルを提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and in a multi-blade heavy-twist end mill where chip removal tends to be a problem, chip discharge is smoothed and cutting vibrations and the like are prevented. In addition, the present invention provides an excellent end mill which has improved machinability, is suitable for heavy cutting such as groove cutting, has a long tool life, and can be applied to finish cutting.

【0006】[0006]

【問題を解決するための手段】本発明は以上の問題を解
決するために、外周にねじれた切れ刃を有し、底刃の外
周側に円弧刃を有するラジアスエンドミルにおいて、該
切れ刃に直角方向断面における刃溝面形状が、すくい面
から刃底、背面を経て隣接する切れ刃の三番面に至る形
状曲線が略U字型をなすし、該切れ刃のすくい面が該切
れ刃から刃径の5%以上内部で、回転中心から放射方向
を向く曲面とし、該円弧刃のすくい面は該切れ刃端から
該底刃端に至るまで切れ刃に沿って連続した凸面とした
ことを特徴とするラジアスエンドミルであり、より詳細
には、該切れ刃が3刃以上で、該ねじれ角が30度〜5
0度、該エンドミルの心厚が刃径の60%〜75%、該
エンドミルの底刃のすかし角を0.5度〜15度とし、
該切れ刃のすくい角を略0度とし、該底刃のすくい角を
軸方向に0度又は0度以上の正角とし、該切れ刃のラン
ド幅が刃直角方向断面視において刃径の10%〜20%
の値であることを特徴とするものである。
In order to solve the above problems, the present invention provides a radius end mill having a twisted cutting edge on the outer periphery and an arcuate blade on the outer peripheral side of the bottom blade, which is perpendicular to the cutting edge. The shape of the groove groove surface in the direction cross section is such that the shape curve from the rake face to the blade bottom and the back surface to the third face of the adjacent cutting edge is substantially U-shaped, and the rake surface of the cutting edge is from the cutting edge. Within 5% or more of the blade diameter, a curved surface that faces the radial direction from the center of rotation, and the rake surface of the circular arc blade is a convex surface that is continuous along the cutting edge from the cutting edge to the bottom edge. A radius end mill having a characteristic, more specifically, the cutting edge is 3 or more and the helix angle is 30 degrees to 5 degrees.
0 degree, the core thickness of the end mill is 60% to 75% of the blade diameter, and the water squeeze angle of the bottom blade of the end mill is 0.5 degree to 15 degrees,
The rake angle of the cutting edge is approximately 0 degree, the rake angle of the bottom edge is 0 degree in the axial direction or a regular angle of 0 degree or more, and the land width of the cutting edge is 10 degrees of the blade diameter in a cross section in a direction perpendicular to the blade. % To 20%
Is a value of.

【0007】[0007]

【作用】外周切れ刃に直角方向断面の刃溝面形状に着目
したのは、切り屑は刃直角方向に切り取られ流出するの
で、切削性を改善する目的では、ねじれ角を大きくこと
が望ましい。また、ねじれ角を大きくすると切れ刃の間
隔が狭くなり、切り屑処理に支障がある。凸円弧状のふ
くらみを除くことによって刃溝を広くし、大きな刃底丸
みを設けて切り屑を誘導し、切り屑処理を円滑にするこ
とができる。汎用エンドミルにおいて、30度ねじれが
標準的に用いられる。切削性を高める目的で強ねじれが
採用されるが、本発明によれば、強ねじれでも30度ね
じれと同等の刃溝を確保できる。刃溝の大きさは、刃数
と心厚によっても制限を受ける。ねじれがゆるくても刃
数が多い場合は切り屑流出方向の切れ刃間隔が狭くな
る。従って、30度ねじれであっても本発明は意義があ
る。
In view of the shape of the groove surface of the cross section perpendicular to the outer peripheral cutting edge, chips are cut out in the direction perpendicular to the edge and flow out. Therefore, it is desirable to increase the helix angle for the purpose of improving machinability. Further, if the helix angle is increased, the interval between the cutting edges becomes narrow, which hinders chip disposal. By removing the convex arc-shaped bulge, the blade groove can be widened, and a large roundness of the blade bottom can be provided to guide the chips, thereby facilitating the chip disposal. A 30 degree twist is typically used in general purpose end mills. Although a strong twist is adopted for the purpose of improving the machinability, according to the present invention, a blade groove equivalent to a 30-degree twist can be secured even with a strong twist. The size of the flute is also limited by the number of flutes and the core thickness. If the number of blades is large even if the twist is loose, the interval between the cutting edges in the chip outflow direction becomes narrow. Therefore, the present invention is significant even if the twist is 30 degrees.

【0008】すくい角は、切れ味と切れ刃強度に関係す
る。すくい角を略0度としたから、背面凸部がなくて
も、切れ刃強度は保証される。更に、刃溝は任意の位置
における接線が断面形状内を通過する曲率自由の凹状と
したから切れ刃の直下のすくい面がフック状となって切
れ刃近傍の刃物角を大きくして補強効果を得ることがで
きる。刃溝は凹曲面であって、心厚の規定に従えば小さ
な曲率の曲面であるから切り屑は刃溝に滞留することな
くすくい面に沿って速やかに排除される。そのため切削
振動を助長することがない。発生する切削熱もまた切り
屑とともに排除されるから熱損傷が緩和される。尚、す
くい角は略0度とするものの、−5度〜+5度程度の範
囲であれば良い。
The rake angle is related to sharpness and cutting edge strength. Since the rake angle is set to about 0 degree, the cutting edge strength is guaranteed even if there is no convex portion on the back surface. Furthermore, since the tangent line of the blade groove is concave so that the tangent line at any position passes within the cross-sectional shape, the rake face directly below the cutting edge becomes a hook shape and the blade angle near the cutting edge is increased to enhance the reinforcing effect. Obtainable. Since the blade groove is a concave curved surface and is a curved surface having a small curvature according to the regulation of the core thickness, chips are promptly removed along the rake face without staying in the blade groove. Therefore, it does not promote cutting vibration. Since the cutting heat generated is also removed together with the chips, thermal damage is mitigated. The rake angle is about 0 degree, but it may be in the range of about −5 degrees to +5 degrees.

【0009】ラジアス刃部分のすくい面は、外周すくい
面と底刃すくい面とからなり、双方が交差する部分に山
状の突起ができる。ねじれが強いほど、突起がけわしく
なり、局部的に切削抵抗が大きくなって、損傷を生じや
すい。ラジアス刃部分のすくい面を独立した凸状すくい
面として、局部的な抵抗を分散均一にして、損傷を緩和
する。ラジアス刃部分のすくい角が正角に大きくなるこ
とはなく、食い付き時の強度を維持することができる。
底刃のすかし角は、底刃と切削面とが広い範囲で接触し
ないよう設け、通常は0.5度〜3度、円弧刃はスケア
刃に比べると円弧長さだけ切れ刃接触長さが長いからす
かし角を大きくしてバランスさせておく。特に傾斜切削
において、接触を減じ、切り屑排除を助ける作用があ
る。
The rake face of the radius blade portion is composed of an outer peripheral rake face and a bottom blade rake face, and a mountain-shaped projection is formed at a portion where they intersect. The stronger the twist, the harder the protrusions become, and the larger the cutting resistance locally, the more likely damage is. The rake face of the radius blade part is used as an independent convex rake face to disperse the local resistance evenly and reduce damage. The rake angle of the radius blade part does not increase to a regular angle, and the strength at biting can be maintained.
The watermelon angle of the bottom blade is set so that the bottom blade and the cutting surface do not come into contact with each other in a wide range, and is normally 0.5 to 3 degrees. The arc blade has a cutting edge contact length equal to the arc length as compared with the square blade. Since the length is long, make the watermark angle large and keep it balanced. Especially in inclined cutting, it has an effect of reducing contact and helping to remove chips.

【0010】底刃すくい角を0度または正角として、外
周切れ刃のすくい面とは独立して設けたからねじれ角や
心厚の影響を受けることなく底刃の切削性を確保でき
る。該底刃の一部が外周切れ刃の先端にフラット刃を形
成するようにしたから強ねじれ刃の弱点である切れ刃先
端のシャープエッジ部を強化し切れ刃摩耗をフラット刃
の長さに分散して、局部摩耗を避ける。フラット刃の長
さは条件で変化するものの、この部分に生じるクレータ
摩耗の影響を受けないよう0.2〜0.5mm程度の数
値をとればよい。
Since the rake angle of the bottom blade is 0 degree or a regular angle and is provided independently of the rake surface of the outer peripheral cutting edge, the machinability of the bottom blade can be secured without being affected by the helix angle and the core thickness. Since a part of the bottom blade forms a flat blade at the tip of the outer peripheral cutting edge, the sharp edge part of the cutting edge, which is the weak point of the strong twisting edge, is strengthened and the cutting edge wear is distributed over the length of the flat edge. And avoid local wear. Although the length of the flat blade changes depending on the conditions, it may be set to a value of about 0.2 to 0.5 mm so as not to be affected by the crater wear generated in this portion.

【0011】以上の作用によって、溝切削において切り
屑排出性が改善され、3刃以上であっても深溝切削が可
能となった。特に切り屑が変形しにくいステンレス鋼の
切削が容易で、工具寿命が長い。耐熱鋼などの難削材に
も適用できる。また、切り屑が切削作用を阻害すること
がないから、切削振動が少ない。その結果面粗さがよ
く、たおれが少ない高精度な仕上げが可能となり、長い
立て壁等の切削でも奇麗に削れる。更に、外周切れ刃の
先端を補強したから、切り屑が溜りやすい溝切削やポケ
ット加工に適し、切れ刃先端を酷使するコーナ加工や輪
郭加工においても工具寿命が長くなる。すなわち粗切
削、仕上げ切削に共用できる。コーナーR刃では、3次
元切削において切り屑排除が容易で、重切削が可能とな
る。
By the above operation, the chip discharging property in the groove cutting is improved, and the deep groove cutting becomes possible even with three or more blades. Especially, it is easy to cut stainless steel that is not easily deformed by chips and has a long tool life. It can also be applied to difficult-to-cut materials such as heat resistant steel. Further, since the chips do not hinder the cutting action, the cutting vibration is small. As a result, the surface roughness is good, and highly accurate finishing with less run-down is possible, and it can be neatly cut even when cutting long standing walls. Further, since the tip of the outer peripheral cutting edge is reinforced, it is suitable for grooving and pocket processing where chips are likely to accumulate, and the tool life is extended even in corner processing and contour processing where the cutting edge tip is heavily used. That is, it can be used for both rough cutting and finish cutting. With the corner R blade, chips can be easily removed in three-dimensional cutting, and heavy cutting is possible.

【0012】外周切れ刃のランド幅(逃げ面、二番面
等)が刃径の10%〜20%とする。凸状の背面が存在
しないから、通常より大くして、刃と刃溝をバランスさ
せる。一般のエンドミルのランド幅は軸直角断面で刃径
の約10%である。凸状背面があると、ランド幅を一定
値に揃えるため、ヒ−ル段差を要するが、凹曲面のみの
ため、ヒ−ル段差がなくてもランド幅は揃う。
The land width of the outer peripheral cutting edge (flank surface, second surface, etc.) is 10% to 20% of the blade diameter. Since there is no convex back surface, make it larger than usual to balance the blade and groove. The land width of a general end mill is about 10% of the blade diameter in a cross section perpendicular to the axis. If there is a convex back surface, the land width is made uniform so that a heel step is required, but since there is only a concave curved surface, the land width is made even without the heel step.

【0013】本発明を適用することにより、すくい面か
ら刃底を経て隣接する切れ刃の三番面に至る凸円弧状の
ふくらみをもつ背面が存在しなくなるため、切削性を改
善する目的でねじれ角を大きくとることができ、これに
よって刃直角断面における切れ刃の間隔が狭くなるも、
切りくずは刃直角方向に切り取られ流出するのであるか
ら、この間隔が狭くなっても、前記凸円弧状のふくらみ
を除くことによって刃溝を広くし、かつ切りくずを誘導
するように大きな刃底丸みを設けて切りくず処理を円滑
にすることができる。本発明のU字型の丸みは、刃数と
心厚で制限を受ける。刃数が多い場合ほど丸みの半径が
小さくなる。既述のようにねじれ角が大きくて、切りく
ず流出方向の切れ刃間隔が狭い場合、また、心厚が大き
く、刃数が多い場合など、一般のエンドミルにおいて十
分な刃溝の確保がむつかしい場合であっても本発明の効
果は顕著である。
By applying the present invention, a back surface having a convex arc-shaped bulge extending from the rake surface to the third surface of the adjacent cutting edge through the blade bottom is eliminated, and therefore twisting is performed for the purpose of improving machinability. It is possible to take a large angle, which narrows the interval between cutting edges in a cross section perpendicular to the blade,
Since the chips are cut out in the direction perpendicular to the blade and flow out, even if this interval is narrowed, the convex groove is removed to widen the blade groove, and a large rounded bottom to guide the chips. Can be provided to facilitate the chip disposal. The U-shaped roundness of the present invention is limited by the number of blades and the core thickness. The larger the number of blades, the smaller the radius of roundness. As described above, when the helix angle is large and the cutting edge spacing in the chip outflow direction is narrow, or when the core thickness is large and the number of blades is large, it is difficult to secure a sufficient groove in a general end mill. However, the effect of the present invention is remarkable.

【0014】次に外周切れ刃の先端を円弧刃で底刃と結
ぶとともに、該円弧刃のすくい面は外周切れ刃端から底
刃端に至るまで切れ刃に沿って連続した凸面とし、該底
刃のすかし角を0.5度〜15度とすることにより、ラ
ジアス刃部分のすくい面は、外周刃のすくい面と底刃の
すくい面とで構成されるため、両すくい面の交差部が山
状に角張るように現れる。本発明のごとく、ねじれ角が
大きいエンドミルの場合は山状の突起が大きくなるた
め、局部的な切削力を受けて切れ刃損傷が発生しやす
い。これを防止するため、連続した凸面とするのであ
る。なお底刃のすかし角は0.5度〜15度と大きくし
て、底刃における円滑な切りくず処理を行う。以上の作
用によって、まず、溝切削において切りくず排出性が改
善され、3刃以上の切れ刃であっても深い溝切削まで可
能となる。特に切りくずが変形しにくいステンレス鋼の
切削が容易となり、工具寿命が長い。耐熱鋼などの難削
材にも適用できる。また、切りくずが切削作用を阻害す
ることがないから、切削振動が少ない。その結果面粗さ
がよく、たおれが少ない高精度な仕上げが可能となる。
切削形状に関しては、切りくずがたまりやすいポケット
加工が容易となり工具寿命が長くなる。
Next, the tip of the outer peripheral cutting edge is connected to the bottom blade with an arcuate blade, and the rake face of the arcuate blade is a convex surface which is continuous along the cutting edge from the outer peripheral edge to the bottom edge, By setting the rake angle of the blade to 0.5 to 15 degrees, the rake face of the radius blade portion is composed of the rake face of the outer peripheral blade and the rake face of the bottom blade, so that the intersection of both rake faces Appears like a mountain. As in the present invention, in the case of the end mill having a large helix angle, the mountain-shaped protrusions are large, and therefore the cutting edge is likely to be damaged by receiving a local cutting force. In order to prevent this, the convex surface is continuous. The bottom blade has a large water-repellent angle of 0.5 to 15 degrees so that the bottom blade can be smoothly chipped. With the above operation, first, the chip discharging property in the groove cutting is improved, and even the cutting edge having three or more blades can perform deep groove cutting. In particular, stainless steel, which is hard to deform chips, can be easily cut and has a long tool life. It can also be applied to difficult-to-cut materials such as heat resistant steel. Further, since the chips do not hinder the cutting action, the cutting vibration is small. As a result, the surface roughness is good, and highly accurate finishing with less run-down is possible.
With regard to the cutting shape, pocket machining where chips are easily accumulated is facilitated and the tool life is extended.

【0015】次にすくい面は切れ刃におけるすくい角が
略0度とし、かつ少なくとも切れ刃から刃径の5%以上
内部においては回転中心から離れる放射方向を向く凹曲
面としたから、すくい角が正角による切れ刃強度の低下
を防ぐとともに、曲面状のすくい面が切れ刃近傍の刃物
角を大きくして補強効果を得ることができる。また、す
くい角が大きな負角とはならないので切削性の劣化がな
く、生成する切り屑は刃溝に滞留することなくすくい面
に沿って速やかに排除される。そのため切削振動を助長
することがない。発生する切削熱もまた切り屑とともに
排除されるから温度上昇に原因する切れ刃の熱損傷が緩
和される。なお、すくい角は略0度とするものの、−5
度〜+5度の範囲であれば良く、該角度が小さいときは
刃径の5%に満たない部分においてすくい面は放射方向
を向く曲面となる。
Next, since the rake face has a rake angle of approximately 0 degrees at the cutting edge, and is a concave curved surface that faces the radial direction away from the center of rotation at least within 5% of the blade diameter from the cutting edge, the rake angle is It is possible to prevent the strength of the cutting edge from deteriorating due to the conformal angle, and to increase the cutting edge angle in the vicinity of the cutting edge by the curved rake face to obtain a reinforcing effect. Further, since the rake angle does not become a large negative angle, the machinability is not deteriorated, and the generated chips are promptly removed along the rake face without staying in the blade groove. Therefore, it does not promote cutting vibration. Since the cutting heat generated is also removed together with the chips, the thermal damage of the cutting edge caused by the temperature rise is mitigated. The rake angle is about 0 degrees, but -5
If the angle is small, the rake face becomes a curved surface that faces the radial direction in a portion less than 5% of the blade diameter when the angle is small.

【0016】また、該エンドミルの底刃のすくい角は軸
方向に0度あるいは0度以上の正角として、外周切れ刃
のすくい面とは独立して設けてあるから、ねじれ角や心
厚の影響を受けることなく底刃の切削性を確保すること
ができ、一方、該底刃の一部が外周切れ刃の先端に微小
な長さのフラット刃を形成するようにしたことによっ
て、強ねじれ刃の弱点である切れ刃先端のシャープエッ
ジ部を強化するとともに切れ刃摩耗を分散して禍福を転
ずることができるのである。ここで、フラット刃の長さ
はエンドミル直径や使用条件で変化するものの、この部
分に生じるクレータ摩耗の影響を受けないよう0.2〜
0.5mm程度の数値をとればよい。
Further, since the rake angle of the bottom blade of the end mill is set to 0 ° or a regular angle of 0 ° or more in the axial direction and is provided independently of the rake face of the outer peripheral cutting edge, the helix angle and the core thickness It is possible to secure the machinability of the bottom blade without being affected, and on the other hand, a part of the bottom blade forms a flat blade with a minute length at the tip of the outer peripheral cutting edge, which results in a strong twist. It is possible to reinforce the sharp edge part of the cutting edge, which is the weak point of the blade, and disperse the wear of the cutting edge to change the blessing. Here, the length of the flat blade varies depending on the diameter of the end mill and the usage conditions, but is 0.2 to 0.2 so that it is not affected by the crater wear that occurs in this portion.
A numerical value of about 0.5 mm should be taken.

【0017】また、本発明は、外周切れ刃のランド幅が
刃直角方向断面視において刃径の10%〜20%の値と
する。まず、ランド幅は図2のランド5の幅である。切
れ刃から逃げ面とこれに連続する二番面、二番面を構成
し、加工物との間のクリアランスを保つものである。本
発明においては、凸円弧状のふくらみを有する背面が存
在しないから、一般のエンドミルに比べて大きな値とす
ることにより、刃と刃溝をバランスさせるものである。
従来品を含め、一般のエンドミルでは軸直角断面におい
て刃径の約10%の値のランド幅を有している。
Further, according to the present invention, the land width of the outer peripheral cutting edge is set to a value of 10% to 20% of the blade diameter in a sectional view in the direction perpendicular to the blade. First, the land width is the width of the land 5 in FIG. A flank from the cutting edge, a second surface continuous with the flank, and a second surface are formed to maintain the clearance between the work piece and the work piece. In the present invention, since there is no back surface having a convex arc-shaped bulge, the blade and the groove are balanced by setting the value larger than that of a general end mill.
A general end mill including conventional products has a land width of about 10% of the blade diameter in a cross section perpendicular to the axis.

【0018】以上の作用によって、まず、溝切削におい
て切り屑排出性が改善され、3刃以上の切れ刃であって
も深い溝切削まで可能となる。特に切り屑が変形しにく
いステンレス鋼の切削が容易となり、工具寿命が長い。
耐熱鋼などの難削材にも適用できる。また、切り屑が切
削作用を阻害することがないから、切削振動が少ない。
その結果面粗さがよく、たおれが少ない高精度な仕上げ
が可能となる。また外周切れ刃の先端を補強したから、
切り屑が溜りやすい溝切削やボケット加工はもとより、
切れ刃先端を酷使するコーナ加工や輪郭加工においても
工具寿命が長くなる。すなわち粗切削、仕上げ切削に共
用できるエンドミルを得るのである。また、本発明は、
外周切れ刃のランド幅が刃直角方向断面視において刃径
の10%〜20%の値とする。まず、ランド幅は図2の
ランド6の幅である。これは逃げ面とこれに連続する二
番面、三番面等で構成され、加工物との間のクリアラン
スを保つものである。本発明においては、凸円弧状のふ
くらみを有する背面が存在しないから、一般のエンドミ
ルに比べて大きな値とすることにより、刃と刃溝をバラ
ンスさせるものである。従来品を含め、一般のエンドミ
ルでは軸直角断面において刃径の約10%の値のランド
幅を有している。以下、実施例に基づいて詳細に説明す
る。
With the above operation, first, the chip discharge property is improved in groove cutting, and even with three or more cutting edges, deep groove cutting is possible. In particular, stainless steel, which is less likely to deform chips, becomes easier to cut, and the tool life is long.
It can also be applied to difficult-to-cut materials such as heat resistant steel. Further, since the chips do not hinder the cutting action, the cutting vibration is small.
As a result, the surface roughness is good, and highly accurate finishing with less run-down is possible. Also, because the tip of the outer peripheral cutting edge is reinforced,
Not only groove cutting and boquetting where chips easily accumulate,
The tool life is extended even in corner machining and contour machining where the tip of the cutting edge is heavily used. That is, an end mill that can be used for both rough cutting and finish cutting is obtained. Further, the present invention is
The land width of the outer peripheral cutting edge is set to a value of 10% to 20% of the blade diameter in a cross-sectional view in the direction perpendicular to the blade. First, the land width is the width of the land 6 in FIG. This is composed of a flank and a second surface, a third surface, etc. which are continuous with the flank, and maintains the clearance between the work piece and the work piece. In the present invention, since there is no back surface having a convex arc-shaped bulge, the blade and the groove are balanced by setting the value larger than that of a general end mill. A general end mill including conventional products has a land width of about 10% of the blade diameter in a cross section perpendicular to the axis. Hereinafter, a detailed description will be given based on examples.

【0019】[0019]

【実施例】(実施例1)本発明例1、従来例2とも、エ
ンドミル本体1に外周切れ刃2のねじれ角3が43度、
4枚刃、エンドミル材質は超微粒子超硬合金を用い、研
削後TiAlNコ−ティングを施した。本発明例1は図
1に示すA−A線の切れ刃直角断面の形状において、図
2に示すように、すくい面4、刃底5、背面6から隣接
する切れ刃の三番面7までU字型に滑らかに研削したも
のである。従来例2は、同様に図3に示す切れ刃直角断
面の形状において、背面に凸状の隆起がある。上記2試
料を用いて比較切削を行なった。切り込み量を幅、深さ
とも8mmの溝切削とし、送り速度を変数として切削を
行なった。加工物は冷間ダイス鋼SKD11(硬さHB
200)であって切削条件は回転数3200rpm、切
削速度80m/minとし、長さ250mmを切削毎に
順次送り速度を高めて切削状況を観測した。
(Embodiment 1) In both of the present invention 1 and conventional example 2, the end mill body 1 has a helix angle 3 of the outer peripheral cutting edge 2 of 43 degrees,
Ultra fine particle cemented carbide was used as the material of the four blades and end mill, and TiAlN coating was applied after grinding. In the present invention example 1, in the shape of the cross section perpendicular to the cutting edge of the line AA shown in FIG. 1, as shown in FIG. 2, from the rake face 4, the blade bottom 5, the back surface 6 to the third surface 7 of the adjacent cutting edge. Smoothly ground into a U-shape. In Conventional Example 2, similarly, in the shape of the cross section perpendicular to the cutting edge shown in FIG. 3, there is a convex ridge on the back surface. Comparative cutting was performed using the above two samples. The cutting depth was 8 mm in both width and depth, and the feed rate was used as a variable for cutting. The work piece is cold die steel SKD11 (hardness HB
200) and the cutting conditions were a rotation speed of 3200 rpm, a cutting speed of 80 m / min, and a length of 250 mm was sequentially increased for each cutting to observe the cutting condition.

【0020】その結果、本発明例1は、送り速度60
0、800、1000、1200、1400mm/mi
nと切削に耐え、1600mm/minのとき底刃先端
に欠けを発生した。送り速度600mm/minまでの
切削負荷が両者で大きく相違しなかったから、上記の性
能差は切屑排除能力の相違によるものと判断され、すな
わちU字型の滑らかな刃形が奏功したものに他ならな
い。従来例2は送り速度600mm/minのとき切れ
刃へ切屑づまりを生じて刃部が赤熱化し、送り速度80
0mm/minのとき折損した。
As a result, Example 1 of the present invention has a feed rate of 60.
0, 800, 1000, 1200, 1400 mm / mi
n, and it withstood cutting, and a chip occurred at the tip of the bottom blade at 1600 mm / min. Since the cutting loads up to the feed rate of 600 mm / min did not differ significantly between the two, it was judged that the above performance difference was due to the difference in chip removing ability, that is, the U-shaped smooth blade shape was successful. . In the conventional example 2, when the feeding speed is 600 mm / min, the cutting edge is clogged with chips and the blade part becomes red-heated, and the feeding speed is 80
It was broken at 0 mm / min.

【0021】次に、切屑排除にやや便宜がある側面切削
に適用した。切り込みは幅2mm、深さ15mmの側面
切削で構造用炭素鋼S50C(硬さHB180)を切削
した。切削条件は回転数3100rpm、切削速度10
0m/min、送り速度580mm/min一定とし、
切削長さを比較した。本発明例1は10m切削して外周
刃にチッピングが発生したものの、底刃には損傷が認め
られなかった。いうまでもなくエンドミル切削において
はエンドミル底刃の先端から切削が開始されるのであ
り、この部分には各方向からの負荷が1点に集中して作
用する。従来例2をはじめ通常のエンドミルはとりわけ
この部分がシャープになりやすいから、局部損傷の原因
となる。従来例2は切削長さ1mで底刃先端に大きな欠
けが発生してもはや切削を継続することができなかっ
た。このように強ねじれ刃においてすくい面に設けたフ
ラット刃が切れ刃先端の補強におよぼす効果は歴然であ
って、U字型刃溝との相乗効果を得て一層、工具寿命に
与える影響は大きなものがある。
Next, the present invention was applied to side surface cutting, which is slightly convenient for removing chips. The incision was a side cut with a width of 2 mm and a depth of 15 mm to cut structural carbon steel S50C (hardness HB180). The cutting conditions are rotation speed 3100 rpm, cutting speed 10
0 m / min, feed rate 580 mm / min constant,
The cutting lengths were compared. In Example 1 of the present invention, chipping occurred on the outer peripheral edge after cutting 10 m, but no damage was observed on the bottom edge. Needless to say, in the end mill cutting, the cutting is started from the tip of the end mill bottom blade, and the load from each direction concentrates on one point and acts on this portion. In a conventional end mill including Conventional Example 2, this portion is particularly likely to be sharp, which causes local damage. In Conventional Example 2, with a cutting length of 1 m, a large chip was generated at the tip of the bottom blade, and the cutting could no longer be continued. In this way, the effect of the flat blade provided on the rake face of the strong helix blade on the reinforcement of the tip of the cutting edge is clear, and the synergistic effect with the U-shaped groove is exerted, and the influence on the tool life is further great. There is something.

【0022】(実施例2)次に、エンドミルの各構成要
素に基づいて説明する。本発明例3として、図4に、先
端部のすくい角は略0度、ランド幅9は1mm、刃溝深
さ約1.3mmにした刃径8mm、4枚刃のエンドミル
である。すなわちランド幅9は刃径比12%、心厚は同
68%である。刃直角断面形状は図2に示すように、す
くい面4、刃底5、背面6から隣接する切れ刃の三番面
7までU字型に設けてある。すくい面4は曲面で構成さ
れているから、これが回転中心側を向くことがなく、大
きな刃物角を得ている。外周切れ刃の先端は図5に示す
ように底刃の一部が微小な長さのフラット部11を形成
してある。底刃8の軸すくい角は5度であるから、フラ
ット刃と外周刃とは屈曲して接することになる。また、
材質は超微粒子超硬合金を用い、TiAlNコ−ティン
グを施した。比較例4として、図3に示すように背面に
円弧状のふくらみがある刃径8mm、ねじれ角30度、
すくい角10度で刃溝深さ1.8mm、ランド幅1mm
の超硬4枚刃エンドミルを用いた。本発明例3と同様の
TiAlNコ−ティングを施した。
(Embodiment 2) Next, a description will be given based on each component of the end mill. As Example 3 of the present invention, FIG. 4 shows an end mill having a blade diameter of 8 mm and a blade width of 8 mm, in which the rake angle of the tip portion is approximately 0 degrees, the land width 9 is 1 mm, and the groove depth is approximately 1.3 mm. That is, the land width 9 is 12% of the blade diameter ratio, and the core thickness is 68%. As shown in FIG. 2, the cross section of the blade at right angles is U-shaped from the rake face 4, the blade bottom 5, the back face 6 to the third face 7 of the adjacent cutting edge. Since the rake face 4 is formed of a curved surface, it does not face the rotation center side, and a large blade angle is obtained. As shown in FIG. 5, a part of the bottom edge of the outer peripheral cutting edge forms a flat portion 11 having a minute length. Since the axial rake angle of the bottom blade 8 is 5 degrees, the flat blade and the outer peripheral blade are bent and come into contact with each other. Also,
The material used was ultrafine particle cemented carbide and was TiAlN coated. As Comparative Example 4, as shown in FIG. 3, the back surface has an arcuate bulge with a blade diameter of 8 mm, a helix angle of 30 degrees,
With a rake angle of 10 degrees, the groove depth is 1.8 mm, and the land width is 1 mm
Carbide 4-flute end mill of was used. The same TiAlN coating as in Inventive Example 3 was applied.

【0023】切削試験は、切り込み量の幅、深さとも8
mmの溝切削とし、送り速度を変数として切削を行なっ
た。加工物は冷間ダイス鋼SKD61(硬さHB20
0)であって切削条件は回転数3200rpm、切削速
度80m/minとし、長さ250mmを切削毎に順次
送り速度を高めて切削状況を観測した。本発明例3は、
送り速度600、800、1000、1200、140
0mm/minと振動が少なくよく切削に耐え、160
0mm/minのとき底刃先端に欠けを発生した。送り
速度1400mm/minにおける切り屑排出量は約9
0cc/minであって、これは同寸法のコ−ティング
エンドミルにおいて商用に推奨される値の10倍を越え
るものである。送り速度600mm/minまでの切削
負荷が両者で大きく相違しなかったから、上記の性能差
は切り屑排除の適否によるものと判断され、すなわちア
ンダーカット部をもたないU字型の滑らかな刃形が奏功
したものに他ならない。これが切れ刃先端が強化された
ことによって高送りにも耐え、また先端部の強化により
特筆に値する顕著な効果を得たのである。従来例4は、
送り速度600mm/minのとき切れ刃へ切り屑づま
りを生じて刃部が赤熱化し、送り速度800mm/mi
nのとき折損した。
In the cutting test, the width and depth of the cutting depth are 8
mm groove cutting was performed with the feed rate being a variable. The work piece is cold die steel SKD61 (hardness HB20
The cutting condition was 0), the rotation speed was 3200 rpm, the cutting speed was 80 m / min, and the cutting condition was observed by sequentially increasing the feed speed for each cutting of 250 mm in length. Inventive Example 3 is
Feed rate 600, 800, 1000, 1200, 140
It has a low vibration of 0 mm / min and withstands cutting well, 160
At 0 mm / min, chipping occurred at the tip of the bottom blade. The amount of chips discharged at a feed rate of 1400 mm / min is about 9
0 cc / min, which is more than 10 times the value commercially recommended for coating end mills of the same size. Since the cutting loads up to a feed rate of 600 mm / min did not differ greatly between the two, it was judged that the above performance difference was due to suitability for chip removal, that is, a U-shaped smooth edge shape without an undercut portion. It has been successful. This is because the tip of the cutting edge has been strengthened to withstand high feed, and the strengthening of the tip has obtained a remarkable effect. Conventional example 4 is
When the feed speed is 600 mm / min, the cutting edge becomes clogged with chips and the blade part becomes red heat, and the feed speed is 800 mm / mi.
It was broken when it was n.

【0024】(実施例3)本発明例5として、フラット
刃の作用を確認するため、本発明例1と同刃形で刃径1
0mmのエンドミルを用いた。刃溝深さ約1.6mm、
ランド幅は1.2mmである。材質は超微粒子超硬合金
を用い、TiAlNコ−ティングを施した。従来例2も
試験を行った。切削試験は、切り込み量幅2mm、深さ
15mmの側面切削で構造用炭素鋼S50C(硬さHB
180)を切削した。切削条件は回転数3100rp
m、切削速度100m/min、送り速度580mm/
min一定とし、切れ刃に損傷を生じるまでの切削長さ
を比較した。
Example 3 As Example 5 of the present invention, in order to confirm the action of the flat blade, the same blade shape as that of Example 1 of the present invention was used, and the blade diameter was 1
A 0 mm end mill was used. Blade groove depth of about 1.6 mm,
The land width is 1.2 mm. The material used was ultrafine particle cemented carbide and was TiAlN coated. Conventional example 2 was also tested. The cutting test is a side cut with a width of cut of 2 mm and a depth of 15 mm, which is structural carbon steel S50C (hardness HB
180) was cut. Cutting conditions are rotation speed 3100 rp
m, cutting speed 100 m / min, feed speed 580 mm /
The cutting length was compared until the cutting edge was damaged while the min was kept constant.

【0025】本発明例5は、10m切削して外周切れ刃
にチッピングが発生したものの、フラット刃を設けた切
れ刃先端部分には目立った損傷が認められなかった。い
うまでもなくエンドミル切削においては外周切れ刃の先
端部分から切削が開始されるのであり、この部分には各
方向からの負荷が1点に集中して作用する。従来例2は
もとより本発明例5のように強ねじれのエンドミルはと
りわけこの部分がシャープになりやすいから切れ刃強度
を低下して、局部損傷の原因となる。しかし、本発明に
おいてフラット刃を設けたから食い付き時における負荷
をフラット長さ12全体で支持することができ、切れ刃
先端の補強してチッピングを防止し、摩耗を分散する効
果は顕著である。この部分の損傷を軽減したことによっ
て、切屑をスムーズに排除して切れ刃摩耗を抑制するU
字型刃溝の効果が有効に作用し、両者の相乗効果を得て
一層長い工具寿命を得るのである。従来例2は、切削長
さ1mで外周切れ刃先端に大きな欠けが発生して切削を
中止せざるを得なかった。
In Example 5 of the present invention, chipping occurred on the outer peripheral cutting edge after cutting 10 m, but no noticeable damage was observed at the tip portion of the cutting edge provided with the flat blade. Needless to say, in the end mill cutting, the cutting is started from the tip portion of the outer peripheral cutting edge, and the load from each direction concentrates on one point and acts on this portion. In the end mill having a strong twist like the example 5 of the present invention as well as the example 2 of the prior art, this part is particularly apt to be sharp, so the strength of the cutting edge is reduced, which causes local damage. However, since the flat blade is provided in the present invention, the load at the time of biting can be supported by the entire flat length 12, and the effect of reinforcing the tip of the cutting edge to prevent chipping and dispersing wear is remarkable. By reducing the damage on this part, U can be eliminated smoothly and cutting edge wear can be suppressed.
The effect of the V-shaped groove works effectively, and the synergistic effect of both is obtained to obtain a longer tool life. In Conventional Example 2, when the cutting length was 1 m, a large chip was generated at the tip of the outer peripheral cutting edge, and the cutting had to be stopped.

【0026】(実施例4)本発明例1を用いて、図6に
示す様なキャビティの彫り込み作業で試験を行なった。
加工物はS50C材(硬さHRC13)、これに直径2
00mm、深さ20mmのキャビティを彫り込むもので
ある。回転数2100rpm、切削速度66m/mi
n、送り速度750mm/min、切り込みは深さ20
mm、幅1mmで内壁のスパイラル切削を行なった。最
終的には直径200mmのキャビティが得られるもの
の、切削開始時は小さなドリル穴から始まるため曲率の
大きい小径円内の切削となって、切屑排除がむつかし
く、ノズルから切削液を噴出させて排出を補助するもな
お極めて作業性が悪い。また切れ刃は切削作用のみでな
く硬化した切屑を噛み込み再度切削することがあって損
傷を早めることがある。本発明例1はこの作業におい
て、切屑の噛み込みはあるものの確実に排除されて切れ
刃に欠けの発生がなく、安定した作業を遂行できた。ま
た、加工面の面粗さが比較品に比べて良好であった。キ
ャビティ加工では長時間切削後の最終加工面が加工仕上
げ面として残るから、この評価は格別の価値がある。チ
ッピング等の突発的な損傷が避けられない従来例に対し
て、本発明例は安定した成果が得られ、信頼性が高いと
いう特徴を有するのである。
Example 4 Using Example 1 of the present invention, a test was conducted by engraving a cavity as shown in FIG.
The workpiece is S50C material (hardness HRC13), and the diameter is 2
A cavity with a depth of 00 mm and a depth of 20 mm is engraved. Rotation speed 2100 rpm, cutting speed 66 m / mi
n, feed rate 750 mm / min, depth of cut is 20
The inner wall was spirally cut to a width of 1 mm and a width of 1 mm. Although a cavity with a diameter of 200 mm is finally obtained, at the start of cutting, it starts from a small drill hole, so cutting is done within a small diameter circle with a large curvature, chip removal is difficult, and the cutting fluid is jetted and discharged. Although it assists, the workability is still extremely poor. Further, the cutting edge not only has a cutting action, but also hardened chips may be caught and cut again, which may accelerate damage. In Example 1 of the present invention, chips were bitten in this work, but they were reliably removed, and the cutting edge was not chipped, and stable work could be performed. The surface roughness of the processed surface was better than that of the comparative product. In the cavity processing, the final machined surface after cutting for a long time remains as the machined surface, so this evaluation is extremely valuable. Compared with the conventional example in which sudden damage such as chipping is unavoidable, the example of the present invention is characterized by stable results and high reliability.

【0027】尚、ねじれ刃エンドミルにおける切削作用
は切れ刃直角方向に切屑が排出されるから刃直角断面に
おける刃形解析が求められ、ねじれ角が大きいほど軸直
角断面との乖離が大きくなる。本発明は刃溝間隔がせま
くなる強ねじれ刃において軸直角断面で見られるのと同
等大の刃溝を得るものである。刃溝形状に限らず、すく
い角、逃げ角においても同様の乖離は生じるが、外周切
れ刃のすくい角に関しては略0度としたから、刃直角方
向、軸直角方向は問わないでよい。フラット刃を設ける
とき、すくい角が正角であると、底刃すくい面が狭くな
るが、略0度とすることによって底刃すくい面を広く
し、十分な補強効果を得るのである。
The cutting action in the twisted blade end mill is such that chips are discharged in the direction perpendicular to the cutting edge, so that the blade shape analysis in the cross section perpendicular to the cutting edge is required. The larger the helix angle, the larger the deviation from the cross section perpendicular to the axis. The present invention is intended to obtain a blade groove of the same size as seen in a cross section perpendicular to the axis in a strong-twist blade in which the blade groove spacing becomes narrow. Similar deviations occur not only in the shape of the flutes but also in the rake angle and the clearance angle, but the rake angle of the outer peripheral cutting edge is set to approximately 0 degrees, so that the right angle direction and the right angle direction may not matter. When the flat blade is provided, if the rake angle is a regular angle, the rake face of the bottom blade becomes narrower, but by setting the rake angle to approximately 0 degrees, the rake face of the bottom blade becomes wide and a sufficient reinforcing effect is obtained.

【0028】(実施例5)本発明例6として図7、図8
に示すような、ねじれ角43度、すくい角0度、刃溝深
さ約1.6mmにした刃径10mm、4枚刃のコーナー
部に円弧刃13を設けたエンドミルで試験した。本発明
例6の刃直角断面形状は図2に示すように、すくい面
4、刃底5、背面6から隣接する切れ刃の三番面7まで
をU字型に滑らかに設けてある。外周切れ刃の先端は図
8に示すように半径2mmの円弧刃13で底刃と結んで
あり、該円弧刃13のすくい面14は外周すくい面と底
刃すくい面とが滑らかに連続するよう凸面に研削した。
底刃のすかし角15は7度である。また、材質は超微粒
子超硬合金を用い、TiAlNコ−ティングを施した。
比較のため、比各例7として、すくい角10度、刃溝深
さ2mm、刃径10mmの超硬4枚刃エンドミルを用い
た。本発明例6と同様のTiAlNコ−ティングを施し
た。図3に示すように背面に凸円弧状のふくらみがあ
る。外周切れ刃の先端には半径2mmの円弧刃を設けた
が、すくい面を凸面には研削していない。切削試験は、
切り込み幅、深さとも10mmの溝切削で、工具突出し
量40mmで、送り速度を変数として、被削材をS50
C、SUS304の2つで行なった。被削材S50Cで
は、切削速度50m/min、乾式切削で行い、被削材
SUS304では、切削速度20m/min、油性切削
油を用いて行なった。
(Embodiment 5) As a sixth embodiment of the present invention, FIGS.
The test was carried out with an end mill having a helix angle of 43 degrees, a rake angle of 0 degrees, a blade diameter of 10 mm with a blade groove depth of about 1.6 mm, and a circular blade 13 at the corner of four blades. As shown in FIG. 2, the sectional shape of the cutting edge of Example 6 of the present invention is such that the rake face 4, the blade bottom 5, the back face 6 to the third face 7 of the adjacent cutting edge are smoothly provided in a U shape. As shown in FIG. 8, the tip of the outer peripheral cutting edge is connected to the bottom blade by a circular arc blade 13 having a radius of 2 mm, and the rake face 14 of the circular arc blade 13 is such that the outer peripheral rake face and the bottom blade rake face are smoothly continuous. It was ground to a convex surface.
The water mark angle 15 of the bottom blade is 7 degrees. The material used was ultrafine cemented carbide and was TiAlN coated.
For comparison, as Comparative Example 7, a carbide 4-flute end mill having a rake angle of 10 degrees, a groove depth of 2 mm, and a blade diameter of 10 mm was used. The same TiAlN coating as in Inventive Example 6 was applied. As shown in FIG. 3, there is a convex arc-shaped bulge on the back surface. An arc blade having a radius of 2 mm was provided at the tip of the outer peripheral cutting edge, but the rake surface was not ground to a convex surface. The cutting test
The cutting width and depth are both 10 mm, and the tool protrusion amount is 40 mm, and the feed rate is a variable.
C and SUS304 were used. For the work material S50C, the cutting speed was 50 m / min, and dry cutting was performed. For the work material SUS304, the cutting speed was 20 m / min, and the oil-based cutting oil was used.

【0029】その結果、送り速度を変数として最低値か
ら順次増加させていったところ、S50Cの場合は、本
発明例6は送り速度500、750、1250mm/m
inまで切削して、なお振動が少なく切削を継続できる
状態であった。先端部においてチッピング等の異常損傷
は認められなかった。送り速度1500で折損した。比
較例7は送り速度750mm/minまで上げた時点で
機械振動が激しく折損に至った。従来品には、背面に切
屑擦過傷が大きく、切屑ずまりから折損に至っていた。
従って、切屑排除の適否がこの限界の差となった。本発
明品は送り速度を上げても切屑は刃溝に堆積することな
く、排出できることが確認された。
As a result, when the feed rate was gradually increased from the lowest value as a variable, in the case of S50C, the feed rate was 500, 750, 1250 mm / m in Example 6 of the present invention.
Even after cutting to in, there was little vibration and the cutting could be continued. No abnormal damage such as chipping was observed at the tip. It was broken at a feed rate of 1500. In Comparative Example 7, mechanical vibration was severe at the time when the feed rate was increased to 750 mm / min, and the breakage occurred. Conventional products had large scratches on the back surface, leading to chipping and breaking.
Therefore, the suitability of chip removal is the difference between these limits. It was confirmed that the product of the present invention can be discharged without depositing chips in the blade groove even if the feeding speed is increased.

【0030】SUS304切削では、同様に送り速度を
変数として最低値から順次増加させていったところ、本
発明例6は送り速度100、150、200mm/mi
nまで切削して、なお振動が少なく切削を継続できる状
態であった。送り速度250で折損した。比較例7は、
送り速度50mm/minで切削試験を始めたが、機械
振動が激しく折損に至った。切屑ずまりから折損に至っ
ていた。SUS304切削では、切屑が嵩高になりやす
いため、切屑排出性の一層明らかとなる。
Similarly, in SUS304 cutting, the feed rate was gradually increased from the lowest value using the variable as a variable. In Invention Example 6, the feed rate was 100, 150, 200 mm / mi.
After cutting to n, there was little vibration and the cutting could be continued. It was broken at a feed rate of 250. Comparative Example 7
Although a cutting test was started at a feed rate of 50 mm / min, mechanical vibration was severe and the breakage occurred. It had broken from a pile of chips. In SUS304 cutting, the chips tend to be bulky, so that the chip discharging property becomes more apparent.

【0031】(実施例6)本発明例6、比較例7のエン
ドミルを用いて、パイプ状ハブの端面にキーを削り出す
成形加工に供した。加工物は合金鋼SCr415材で、
切削条件は切り込みが深さ12mm、幅最大4mmであ
って、荒加工では回転数1200rpm、送り速度25
0m/minとし、仕上げ加工では回転数950rp
m、送り速度180m/minとした。薄肉パイプの加
工のためバリの発生が工具寿命を決定するが、本発明品
では2300箇の加工が可能であった。本発明例6は、
バリは発生するものの軽微であり、上記加工後において
もまだ容易に除去することができる程度のものであっ
た。比較例7は1000箇の加工で除去することのでき
ない硬いバリが発生した。本来、同一切削条件であると
刃数の少ない本発明例6は刃当りの切り込み量が多くな
って切れ刃に負荷がかかり、バリが発生しやすい状況に
なるが、この作業では切り込み幅が4mmと大きいから
切屑処理には有利であって、且つ、刃溝および円弧刃の
形状に改良が加えられているから、比較例7に対して数
倍以上という顕著な効果が得られた。
Example 6 Using the end mills of Example 6 of the present invention and Comparative Example 7, a key was cut out from the end face of the pipe-shaped hub and subjected to a forming process. Workpiece is alloy steel SCr415 material,
The cutting conditions are a depth of 12 mm and a maximum width of 4 mm. In rough machining, the rotation speed is 1200 rpm and the feed rate is 25.
0m / min, the finishing process is 950rpm
m, and the feed rate was 180 m / min. The burr generation determines the tool life due to the processing of thin-walled pipes, but with the product of the present invention, it was possible to process 2300 pieces. Inventive Example 6 is
Although burrs were generated, they were slight and could be easily removed even after the above processing. In Comparative Example 7, hard burr that could not be removed was generated after processing 1000 times. Originally, in the case of the same cutting conditions, in the present invention example 6 with a small number of blades, the cutting amount per blade was large and load was applied to the cutting blade, and burrs were easily generated, but in this work, the cutting width was 4 mm. Since it is large, it is advantageous for chip disposal, and since the shapes of the blade groove and the arcuate blade are improved, a remarkable effect of several times or more compared with Comparative Example 7 was obtained.

【0032】(実施例7)本発明例8として、図9に示
すように刃先部分にフラット部11を設け、金型の3次
元仕上げ加工に供した。加工物は硬さHRC40のプリ
ハードン金型用鋼であって、ボールエンドミルで前加工
された傾斜面を走査送りにより往復切削するものであ
る。切り込みは深さ1mm以下、ピック送り2mmであ
って、切削条件は回転数8000rpm、切削速度32
0m/min、送り速度800mm/min一定とし、
水溶性油剤を用いて切削した。本発明例8は、16mを
切削して作業を終ったが、切り込み深さが一定しない加
工にもかかわらず底刃のエッジには摩耗が認められず、
加工精度が極めて良好であった。フラット刃以外では4
0゜以上のねじれ角としてあるから、送りの方向に関係
なく上方へ速やかに切屑を排出することができ切削部位
へ切屑を噛み込むことがない。結果として精度のよい加
工を実現できるのである。上記加工には、従来より30
゜ねじれの4刃、超硬コーティングエンドミルで、すく
い角が10度、刃溝深さ1.6mmで外周刃は底刃側先
端にまで達しているエンドミルが使用されている。
Example 7 As Example 8 of the present invention, as shown in FIG. 9, a flat portion 11 was provided on the cutting edge portion and the mold was subjected to three-dimensional finishing. The work piece is prehardened die steel having a hardness of HRC40 and is used to reciprocally cut an inclined surface preprocessed by a ball end mill by scanning feed. The depth of cut is 1 mm or less, the pick feed is 2 mm, and the cutting conditions are rotation speed 8000 rpm and cutting speed 32.
0m / min, feed rate 800mm / min constant,
It cut using the water-soluble oil agent. Inventive Example 8 finished the work by cutting 16 m, but no wear was observed on the edge of the bottom blade in spite of the processing in which the cutting depth was not constant,
The processing accuracy was extremely good. 4 except for flat blades
Since the twist angle is 0 ° or more, the chips can be promptly discharged upward regardless of the feeding direction, and the chips are not caught in the cutting site. As a result, highly accurate processing can be realized. For the above processing, 30
A 4-twisted, cemented carbide end mill with a 4-degree twist, an end mill with a rake angle of 10 degrees, a groove depth of 1.6 mm, and an outer peripheral blade reaching the tip of the bottom blade.

【0033】(実施例8)本発明例6、比較例7のエン
ドミルを用いて、金型入れ子の幅の広い側面切削に適用
した。加工物は硬さHRC33のプリハードン金型用
鋼、高さ約20mmの入れ子の周囲を切り込み幅0.5
mmで切削した。切削条件は回転数1200rpm、切
削速度38m/min、送り速度200mm/minで
ある。エンドミル切れ刃の長さは22mmであるが、加
工物の関係で切れ刃のオ−バ−ハングを45mmとして
切削した。本発明例6は、切削中にチッピングの発生が
なく、したがってビビリや機械振動など加工精度を損な
う現象は生じなかった。8時間連続切削して何等問題が
なく、優れた結果を示した。比較例7は、切削途中にチ
ッピングが発生し、ビビリが大きくなったため、製品を
完成させることができなかった。エンドミル切削におい
てはエンドミル底刃の先端から切削が開始されるのであ
り、この部分には各方向からの負荷が1点に集中して作
用する。エンドミルは一般にこの部分がシャープになり
やすく、局部損傷の原因となる。本発明になるエンドミ
ルは刃先にフラット刃を設けてあるから刃先の負荷が分
散して局部損傷を緩和する。また、ねじれ角が大きくし
てあるから側面切削の場合は複数の切れ刃が同時に切削
面を創成するように働き、細密で平坦な平面を得ること
ができるのである。ねじれ角が大きいと幾何学的に刃溝
は小さくなるが、U字型刃溝としてあるから、ねじれ角
がゆるい場合と同等の切屑スペースを確保することがで
き、一層切削性を高めることができるのである。
Example 8 Using the end mills of the present invention example 6 and the comparative example 7, the invention was applied to wide side cutting of a mold insert. The work piece is a steel for pre-hardened mold with hardness HRC33, and a width of 0.5 is cut around the nest with a height of about 20 mm.
It was cut in mm. The cutting conditions are a rotation speed of 1200 rpm, a cutting speed of 38 m / min, and a feed speed of 200 mm / min. The length of the end mill cutting edge was 22 mm, but the cutting was performed with the overhang of the cutting edge set to 45 mm due to the workpiece. In Invention Example 6, chipping did not occur during cutting, and therefore, phenomena such as chattering and mechanical vibration that impair processing accuracy did not occur. After cutting continuously for 8 hours, there were no problems and excellent results were shown. In Comparative Example 7, chipping occurred during cutting and chattering increased, so that the product could not be completed. In end mill cutting, cutting is started from the tip of the end mill bottom blade, and the load from each direction concentrates on one point and acts on this portion. Endmills are generally prone to sharpening in this area, causing local damage. Since the end mill according to the present invention is provided with a flat blade on the blade edge, the load on the blade edge is dispersed and local damage is mitigated. Further, since the helix angle is large, in the case of side surface cutting, a plurality of cutting edges work to create a cutting surface at the same time, and a fine and flat surface can be obtained. If the helix angle is large, the blade groove will be geometrically small, but since it is a U-shaped blade groove, a chip space equivalent to that when the helix angle is loose can be secured, and the machinability can be further improved. Of.

【0034】(実施例9)本発明例6、比較例7のエン
ドミルを用いて、刃径より大きい直径の円筒穴をヘリカ
ル切削によって加工した。加工物は構造用炭素鋼S50
C焼鈍材である。切削にはマシニングセンタを使用して
ク−ラントに外部からの高圧エアを用いた。加工穴は直
径12〜14mm、深さ20mmである。ヘリカル切削
は穴あけ加工に次ぐ閉鎖領域の加工であるからこの作業
には通常2刃のエンドミルが用いられる。ここでは比較
品として同サイズで、ねじれ角30゜、2刃の本体軸心
にエアホ−ルを備えたヘリカル切削専用の超硬エンドミ
ルを供した。切削条件は工具回転数6000rpm、送
り速度は公転方向にエンドミル中心で1200mm/m
in、1公転毎の軸方向進み量を0.5〜2.0mmに
変化させて切削に所要の電流値を測定したところ、本発
明品が所要電流値が20%以上低いことが確認された。
また加工穴側面の切削仕上げ面は10μmRy以下の良
質な面が得られた。比較のヘリカル切削専用エンドミル
では切削能率を高めることはできても、切れ刃剛性の関
係があって面粗度を良くすることは容易でない。本発明
品が4刃のため1刃当たりの負荷が軽減され、切屑が細
かくなって外部からのエア供給で十分排除がなされたこ
と、また凸状の円弧刃と大きなすかし角が切屑を巻き込
むことなく排出させる作用を現したことによるものであ
る。本発明品はヘリカル切削専用に供するものではな
く、側面、深溝等にも適用できるものであるから、これ
を勘案すれば適用範囲の域において従来にない優れた特
徴を有するものであることがわかる。
Example 9 Using the end mills of Example 6 of the present invention and Comparative Example 7, a cylindrical hole having a diameter larger than the blade diameter was machined by helical cutting. Workpiece is structural carbon steel S50
It is a C-annealed material. A machining center was used for cutting, and high pressure air from the outside was used for the coolant. The processed hole has a diameter of 12 to 14 mm and a depth of 20 mm. Since the helical cutting is the processing of the closed area after the drilling, a two-blade end mill is usually used for this work. Here, as a comparative product, a cemented carbide end mill having the same size, a helix angle of 30 °, and a two-blade main body equipped with an air hole at the center of the main body was provided for helical cutting. Cutting conditions are tool rotation speed of 6000 rpm, and feed rate is 1200 mm / m at the end mill center in the revolution direction.
In, the current value required for cutting was measured by changing the axial advance amount for each revolution of 1 to 0.5 to 2.0 mm, and it was confirmed that the present invention product had a required current value lower by 20% or more. .
Further, the finished surface of the side surface of the machined hole was a good quality surface of 10 μmRy or less. Although the comparative end mill for exclusive use of helical cutting can improve the cutting efficiency, it is not easy to improve the surface roughness due to the relationship of the cutting edge rigidity. Since the product of the present invention has four blades, the load per blade is reduced, the chips are fine and sufficiently removed by the air supply from the outside, and the convex arcuate blade and the large watermelon angle engulf the chips. This is due to the fact that it exerts the action of discharging it without any action. Since the product of the present invention is not intended for exclusive use in helical cutting, but can be applied to side surfaces, deep grooves, etc., it can be seen that in consideration of this, it has excellent features that have not been achieved in the conventional range. .

【0035】[0035]

【発明の効果】本発明によれば、多刃強ねじれのエンド
ミルにおいて、切れ刃形状を改善した結果、切屑排出を
円滑にし、切削振動等を防止して切削性を高めることが
可能となり、溝切削等の重切削に適し、且つ、工具寿命
が長く仕上げ切削にも使用できる優れたエンドミルが得
られた。
As described above, according to the present invention, in an end mill having a multi-blade strong twist, the shape of the cutting edge is improved. As a result, chips can be discharged smoothly, cutting vibration can be prevented, and the cutting performance can be improved. An excellent end mill that is suitable for heavy cutting such as cutting and has a long tool life and can also be used for finish cutting was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明例の実施例の正面図を示す。FIG. 1 shows a front view of an embodiment of the present invention example.

【図2】図2は、図1の刃直角断面を示す。FIG. 2 shows a cross section perpendicular to the blade of FIG.

【図3】図3は、従来例の刃直角断面を示す。FIG. 3 shows a cross section of a conventional example perpendicular to the blade.

【図4】図4は、本発明例の他の実施例の正面図を示
す。
FIG. 4 shows a front view of another embodiment of the present invention.

【図5】図5は、図4の要部拡大図を示す。5 is an enlarged view of a main part of FIG.

【図6】図6は、加工の形態を説明する。FIG. 6 illustrates a processing mode.

【図7】図7は、本発明例の他の実施例の正面図を示
す。
FIG. 7 shows a front view of another embodiment of the present invention.

【図8】図8は、図7の要部拡大図を示す。FIG. 8 is an enlarged view of a main part of FIG.

【図9】図9は、本発明例の他の実施例の正面図を示
す。
FIG. 9 shows a front view of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 本体 2 外周切れ刃 3 ねじれ角 4 すくい面 5 刃底 6 背面 7 三番面 8 底刃 9 ランド幅 10 溝幅 11 フラット部 12 フラット部の長さ 13 円弧刃 14 円弧刃のすくい面 15 底刃のすかし角 1 body 2 Outer peripheral cutting edge 3 helix angle 4 rake face 5 blade bottom 6 back 7 Third side 8 bottom blade 9 land width 10 Groove width 11 Flat part 12 Flat length 13 arc blade 14 Rake face of arc blade 15 Watermelon angle of the bottom blade

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 外周にねじれた切れ刃を有し、底刃の外
周側に円弧刃を有するラジアスエンドミルにおいて、該
切れ刃に直角方向断面における刃溝面形状が、すくい面
から刃底、背面を経て隣接する切れ刃の三番面に至る形
状曲線が略U字型をなすし、該切れ刃のすくい面が該切
れ刃から刃径の5%以上内部で、回転中心から放射方向
を向く曲面とし、該円弧刃のすくい面は該切れ刃端から
該底刃端に至るまで切れ刃に沿って連続した凸面とした
ことを特徴とするラジアスエンドミル。
1. A radius end mill having a twisted cutting edge on the outer circumference and an arcuate blade on the outer circumferential side of the bottom blade, wherein the shape of the groove groove in a cross section in the direction perpendicular to the cutting edge is from the rake face to the blade bottom, the back face. The shape curve from the cutting edge to the third surface of the adjacent cutting edge is substantially U-shaped, and the rake surface of the cutting edge faces the radial direction from the center of rotation within 5% or more of the blade diameter from the cutting edge. A radius end mill having a curved surface, and the rake face of the arcuate blade is a convex surface that is continuous along the cutting edge from the cutting edge to the bottom edge.
【請求項2】 請求項1記載のラジアスエンドミルにお
いて、該切れ刃が3刃以上で、該ねじれ角が30度〜5
0度、該エンドミルの心厚が刃径の60%〜75%、該
エンドミルの底刃のすかし角を0.5度〜15度とした
ことを特徴とするラジアスエンドミル。
2. The radius end mill according to claim 1, wherein the cutting edge is 3 or more and the helix angle is 30 to 5 degrees.
Radius end mill, wherein the end mill has a core thickness of 0% to 60% to 75% of the blade diameter, and a bottom blade of the end mill has a water squeeze angle of 0.5 to 15 degrees.
【請求項3】 請求項1又は2記載のラジアスエンドミ
ルにおいて、該切れ刃のすくい角を略0度としたことを
特徴とするラジアスエンドミル。
3. The radius end mill according to claim 1 or 2, wherein the cutting edge has a rake angle of approximately 0 degrees.
【請求項4】 請求項1乃至3いずれかに記載のラジア
スエンドミルにおいて、該底刃のすくい角を軸方向に0
度又は0度以上の正角としたことを特徴とするラジアス
エンドミル。
4. The radius end mill according to claim 1, wherein the rake angle of the bottom blade is 0 in the axial direction.
Radius end mills characterized by a regular angle of 0 degrees or more.
【請求項5】 請求項1乃至4いずれかに記載のラジア
スエンドミルにおいて、該切れ刃のランド幅が刃直角方
向断面視において刃径の10%〜20%の値であること
を特徴とするラジアスエンドミル。
5. The radius end mill according to any one of claims 1 to 4, wherein the land width of the cutting edge is 10% to 20% of the blade diameter in a cross-sectional view in a direction perpendicular to the blade. End mill.
JP2002280769A 1998-06-03 2002-09-26 Radius end mill Withdrawn JP2003159610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002280769A JP2003159610A (en) 1998-06-03 2002-09-26 Radius end mill

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-154652 1998-06-03
JP15465298 1998-06-03
JP2002280769A JP2003159610A (en) 1998-06-03 2002-09-26 Radius end mill

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10372007A Division JP2000052127A (en) 1998-06-03 1998-12-28 End mill

Publications (1)

Publication Number Publication Date
JP2003159610A true JP2003159610A (en) 2003-06-03

Family

ID=26482884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002280769A Withdrawn JP2003159610A (en) 1998-06-03 2002-09-26 Radius end mill

Country Status (1)

Country Link
JP (1) JP2003159610A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005297169A (en) * 2004-04-16 2005-10-27 Nachi Fujikoshi Corp Shank type boring tool
JP2005297107A (en) * 2004-04-09 2005-10-27 Nachi Fujikoshi Corp Radius end mill
JP2006026839A (en) * 2004-07-20 2006-02-02 Nachi Fujikoshi Corp Radius end mill
JP2006255793A (en) * 2005-03-15 2006-09-28 Hitachi Tool Engineering Ltd End mill for cutting heat-resisting alloy
JP2010167520A (en) * 2009-01-21 2010-08-05 Mitsubishi Materials Corp Radius end mill
JP2011020193A (en) * 2009-07-14 2011-02-03 Sumitomo Electric Hardmetal Corp Vibration-proof end mill
CN102259207A (en) * 2010-05-31 2011-11-30 贵州西南工具(集团)有限公司 Method for enhancing strength of end mill cutting edge and damping edge line end mill
WO2012172710A1 (en) 2011-06-17 2012-12-20 日立ツール株式会社 Multi-edge endmill
US20170144234A1 (en) * 2015-11-23 2017-05-25 Iscar, Ltd. Cemented Carbide Corner Radius End Mill with Continuously Curved Rake Ridge and Helical Flute Design
CN110102809A (en) * 2019-05-31 2019-08-09 江门市中刀精密科技有限公司 A kind of milling cutter
CN112427710A (en) * 2020-10-27 2021-03-02 上海航天精密机械研究所 Anti-flutter cutter for machining thin-wall frame ring part, machining method and medium
JP7374297B2 (en) 2020-03-25 2023-11-06 日東電工株式会社 Method for manufacturing optical laminate with adhesive layer having through holes and through hole forming device used in the manufacturing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005297107A (en) * 2004-04-09 2005-10-27 Nachi Fujikoshi Corp Radius end mill
JP2005297169A (en) * 2004-04-16 2005-10-27 Nachi Fujikoshi Corp Shank type boring tool
JP2006026839A (en) * 2004-07-20 2006-02-02 Nachi Fujikoshi Corp Radius end mill
JP2006255793A (en) * 2005-03-15 2006-09-28 Hitachi Tool Engineering Ltd End mill for cutting heat-resisting alloy
JP2010167520A (en) * 2009-01-21 2010-08-05 Mitsubishi Materials Corp Radius end mill
KR101625700B1 (en) 2009-01-21 2016-05-30 미츠비시 마테리알 가부시키가이샤 Radius end mill
JP2011020193A (en) * 2009-07-14 2011-02-03 Sumitomo Electric Hardmetal Corp Vibration-proof end mill
CN102259207A (en) * 2010-05-31 2011-11-30 贵州西南工具(集团)有限公司 Method for enhancing strength of end mill cutting edge and damping edge line end mill
CN103764326A (en) * 2011-06-17 2014-04-30 日立工具股份有限公司 Multi-edge endmill
WO2012172710A1 (en) 2011-06-17 2012-12-20 日立ツール株式会社 Multi-edge endmill
US9579734B2 (en) 2011-06-17 2017-02-28 Mitsubishi Hitachi Tool Engineering, Ltd. Multi-flute endmill
US20170144234A1 (en) * 2015-11-23 2017-05-25 Iscar, Ltd. Cemented Carbide Corner Radius End Mill with Continuously Curved Rake Ridge and Helical Flute Design
US10131003B2 (en) * 2015-11-23 2018-11-20 Iscar, Ltd. Cemented carbide corner radius end mill with continuously curved rake ridge and helical flute design
CN110102809A (en) * 2019-05-31 2019-08-09 江门市中刀精密科技有限公司 A kind of milling cutter
JP7374297B2 (en) 2020-03-25 2023-11-06 日東電工株式会社 Method for manufacturing optical laminate with adhesive layer having through holes and through hole forming device used in the manufacturing method
CN112427710A (en) * 2020-10-27 2021-03-02 上海航天精密机械研究所 Anti-flutter cutter for machining thin-wall frame ring part, machining method and medium
CN112427710B (en) * 2020-10-27 2022-08-12 上海航天精密机械研究所 Anti-flutter cutter for machining thin-wall frame ring part, machining method and medium

Similar Documents

Publication Publication Date Title
EP2012958B1 (en) Face milling cutter
JP5013435B2 (en) Ball end mill
JP5719938B2 (en) drill
US9028179B2 (en) Drilling tool
JP2007030074A (en) Radius end mill and cutting method
JP5816364B2 (en) 3-flute drill
JP4704495B2 (en) Turbine blade connecting groove cutting method and Christmas cutter used therefor
US20060067797A1 (en) End mill
JP2010194712A (en) Drill tool for making hole in metal workpiece
JP2003300110A (en) Drill and manufacturing method therefor
JP2003159610A (en) Radius end mill
WO2017138170A1 (en) Replaceable tool edge rotary cutting tool and insert
JP2000052127A (en) End mill
JP2003071626A (en) Radius end mill
JP6704132B2 (en) Ball end mill
JP2003165016A (en) Formed cutter for machining turbine blade mounting part
JP6902284B2 (en) Cutting tools
JP7314418B2 (en) Drill
CN220943317U (en) Double-spiral toothed strong chip breaking type flanging pagoda twist drill
CN218799395U (en) High-efficient six sword milling cutters
JPH03178714A (en) End mill
CN117206575A (en) Double-spiral toothed strong chip breaking type flanging pagoda twist drill
JP2000107925A (en) High-performance end mill
JPH07178612A (en) End mill
JP3833975B2 (en) Radius end mill for high feed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050815

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20080701

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080814