JPH03178714A - End mill - Google Patents

End mill

Info

Publication number
JPH03178714A
JPH03178714A JP31693989A JP31693989A JPH03178714A JP H03178714 A JPH03178714 A JP H03178714A JP 31693989 A JP31693989 A JP 31693989A JP 31693989 A JP31693989 A JP 31693989A JP H03178714 A JPH03178714 A JP H03178714A
Authority
JP
Japan
Prior art keywords
angle
blade
tool
rake
peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31693989A
Other languages
Japanese (ja)
Other versions
JPH084967B2 (en
Inventor
Hiroshi Watanabe
浩志 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISSHIN KOGU SEISAKUSHO KK
Original Assignee
NISSHIN KOGU SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISSHIN KOGU SEISAKUSHO KK filed Critical NISSHIN KOGU SEISAKUSHO KK
Priority to JP1316939A priority Critical patent/JPH084967B2/en
Publication of JPH03178714A publication Critical patent/JPH03178714A/en
Publication of JPH084967B2 publication Critical patent/JPH084967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0407Cutting angles
    • B23C2210/0421Cutting angles negative
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/08Side or top views of the cutting edge
    • B23C2210/084Curved cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/20Number of cutting edges
    • B23C2210/205Number of cutting edges six
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2265/00Details of general geometric configurations
    • B23C2265/08Conical

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Abstract

PURPOSE:To maintain an unchanged edge angle with the varied number of edges and obtain an end mill of excellence in edge strength by setting the rake angle of a rake face and the relief angle of a flank face in cross section perpendicular to the axial line of an edge portion in preset ranges, respectively. CONSTITUTION:The side face 14 of an end mill edge portion 13 is separated into a rake face 15 ranging from an outer periphery edge 17 to the front side in a rotational direction of a tool and a flank face 16 ranging therefrom to the rear side in a rotational direction of the tool, the rake angle theta1 of the rake face 15 being in a range from -30 deg. to -50 deg. and the relief angle theta2 of the flank face 16 being in a range from 20 deg. to 35 deg., respectively. With the edge portion side face 14 separated in this way, the rake angle theta1 and the relief angle theta2 can be set independently of the number of edges and still are set in a above- mentioned range to ensure an unchanged edge angle, and the rake angle theta1, of an outside edge 17 which is not excessively offset to a load side and the relief angle theta2 which is not excessively in short avoids chatter vibration in cutting and abnormal wear of the outer periphery edge 17.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、溝切削や側面切削に用いられる工ンドミル
に係り、詳しくは金型等の高硬度材料の仕上げ加工に用
いて好適なエンドミルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an end mill used for groove cutting and side cutting, and more specifically to an end mill suitable for use in finishing machining of high-hardness materials such as molds. .

[従来の技術] プラスチック金型やゴム金型等を加工する際には、例え
ば第17図に示すように、金型lに深溝2を形成するリ
ブ加工が行われているが、このような溝2の仕上げ加工
は、通常の切削加工では溝壁面3の面粗度の確保が困難
なため、従来から専ら放電加工に頼っていた。
[Prior Art] When processing plastic molds, rubber molds, etc., for example, as shown in FIG. 17, rib processing is performed to form deep grooves 2 in the mold l. Finish machining of the groove 2 has conventionally relied exclusively on electrical discharge machining, since it is difficult to ensure the surface roughness of the groove wall surface 3 using normal cutting.

しかしながら、放電加工は加工時間に長時間を要しかつ
加工コストも極めて高価であるという欠点を有している
。このため、最近では、特にリブ加工時における仕上げ
加工に適したエンドミルが種々提供されている。
However, electric discharge machining has the disadvantages that it requires a long time and the machining cost is extremely high. For this reason, recently, various end mills have been provided that are particularly suitable for finishing work during rib machining.

第18図及び第19図はこのようなリブ加工用として提
案されているエンドミルの一例を示すものである。これ
らの図に示すエンドミル4は、工作機械の主軸(図示時
)と嵌合される略円柱状のンヤンク5を基端部に備えた
工具本体6の先端部に、工具軸線Oと直交する断面が正
多角形状(図示の例では正六角形)をなす刃部7を形成
し、この刃部7の各側面8・・・が交わる稜線部に刃部
7の全長に渡って延びる6つの外周刃9・・・を形成し
てなるもので、各外周刃9は、上記溝2の形状に対応し
て工具軸線Oの回りにテーパ軸状の回転軌跡を描くよう
に、工具軸線Oに対して所定角度傾けて形成されている
FIGS. 18 and 19 show an example of an end mill proposed for such rib machining. The end mill 4 shown in these figures has a cross section orthogonal to the tool axis O at the tip of the tool body 6, which has a substantially cylindrical yank 5 at the base end that is fitted with the main shaft of the machine tool (as shown). forms a blade part 7 having a regular polygonal shape (regular hexagon in the illustrated example), and six peripheral blades extending over the entire length of the blade part 7 are provided at the ridge line where each side surface 8 of this blade part 7 intersects. 9..., and each peripheral cutter 9 is formed with respect to the tool axis O so as to draw a tapered axis-like rotation locus around the tool axis O in accordance with the shape of the groove 2. It is formed at a predetermined angle.

しかして、このようなエンドミルを用いて上記溝2を加
工する場合には、工具本体6が軸線Oを中心として矢印
穴方向へ回転せしめられるとともに、工具本体6と溝2
との間に該溝2の長手方向への相対運動が与えられ、こ
れにより各外周刃9が壁面3を切削して溝2が形成され
てゆく。なお、この場合の切込量は極めて小さく、切削
加工よりもむしろ研削加工の領域に近いものである。ま
た、上記刃部7を断面多角形状に形成する理由は、刃外
周刃9の刃先角を大きくして切削時のびびり振動を排除
し、仕上げ面の面粗度を改善するためである。
When machining the groove 2 using such an end mill, the tool body 6 is rotated about the axis O in the direction of the arrow hole, and the tool body 6 and the groove 2 are rotated.
A relative movement is applied in the longitudinal direction of the groove 2 between the grooves 2 and 2, whereby each peripheral blade 9 cuts the wall surface 3 and the groove 2 is formed. Note that the depth of cut in this case is extremely small, and is closer to the area of grinding than cutting. Further, the reason why the blade portion 7 is formed to have a polygonal cross section is to increase the edge angle of the peripheral blade 9 to eliminate chatter vibration during cutting and improve the surface roughness of the finished surface.

ここで、上記切刃9の枚数は、図示の例では6枚とされ
ているが、これに限らず3枚以上の任意の枚数のものが
種々提供されている。
Here, the number of cutting blades 9 is six in the illustrated example, but is not limited to this, and various types of cutting blades with an arbitrary number of three or more are available.

[発明が解決しようとする課題] ところで、上述した従来のエンドミル4のようなリブ加
工用エンドミルは、いずれも刃部7が断面視正多角形状
をなす角柱状に形成されているので、切刃9のすくい角
θ11すなわち刃部7の軸線0と直交する断面(第19
図)において、工具回転中心POから各切刃9を結ぶ線
分Ctに対して切刃9から工具回転方向前方側に延びる
側面8aのなす角度は、正多角形断面における頂角の半
分となり、切刃9の枚数をn1線分Q、lから切刃9を
中心として反時計方向へ図った角度を正とすれば、 θI= −πX(n−1)/n(rad、)−・・・−
■で定められる。
[Problems to be Solved by the Invention] Incidentally, in all end mills for rib machining such as the conventional end mill 4 described above, the blade portion 7 is formed in a prismatic shape with a regular polygonal shape in cross section. 9, the rake angle θ11, that is, the cross section perpendicular to the axis 0 of the blade part 7 (19th
In the figure), the angle formed by the side surface 8a extending forward in the tool rotation direction from the cutting edge 9 with respect to the line segment Ct connecting each cutting edge 9 from the tool rotation center PO is half the apex angle in the regular polygonal cross section, If the number of cutting blades 9 is n1 line segment Q, and the angle made counterclockwise from l with cutting blade 9 as the center is positive, then θI = -πX(n-1)/n(rad,)-...・−
■It is determined by.

また、切刃9の逃げ角θ2、すなわち、切刃9を通過し
かつ上記線分12+と直交する線分a2に対して切刃9
から工具回転方向後方側に延びる側面8bがなす角度は
、90°(yr / 2  rad、)から上記すくい
角θlを差し引いた値に等しく、切刃9の枚数がnであ
れば、 θ2=πX(2−n)/2n (rad、)−−■とな
る。
In addition, the relief angle θ2 of the cutting edge 9, that is, the cutting edge 9
The angle formed by the side surface 8b extending rearward in the tool rotation direction is equal to the value obtained by subtracting the rake angle θl from 90° (yr/2 rad,), and if the number of cutting edges 9 is n, θ2=πX (2-n)/2n (rad,)--■.

このように従来のエンドミルは、刃部7を正多角形状に
形成する限りにおいてすくい角θl及び逸げ角θ2が切
刃9の枚数nで定められてしまうため、選択する刃数n
によっては刃先角(θl+03)が著しく小さくなって
刃先強度が不足し、びびり振動が生じ易くなるとともに
切刃のチヅビングも生じ易いという欠点があった。
In this way, in the conventional end mill, as long as the blade portion 7 is formed into a regular polygonal shape, the rake angle θl and deflection angle θ2 are determined by the number n of cutting blades 9.
In some cases, the cutting edge angle (θl+03) becomes extremely small, resulting in insufficient strength of the cutting edge, which tends to cause chatter vibration and also tends to cause chasing of the cutting edge.

また、特に刃部7の先端に底刃を設けたエンドミルにあ
っては、切削効率を向上すべく工具を軸線方向に送り出
してテーパ溝を一度に形成しようと試みても、外周刃先
端部の強度不足から工具軸線方向の送り量を大きく設定
できないため、結局、被削材を小径の工具で溝切り加工
する等の下加工を行ってからこれをエンドミルで拡径し
てテーパ溝を形成せざるを得ないという問題もあった。
In addition, especially for end mills with a bottom cutter at the tip of the blade 7, even if an attempt is made to feed the tool in the axial direction to form a taper groove at once in order to improve cutting efficiency, the tip of the outer circumferential cutter is Since it is not possible to set a large feed rate in the tool axis direction due to lack of strength, the end result is to perform preliminary machining such as grooving the workpiece with a small diameter tool and then expand the diameter with an end mill to form a tapered groove. There was also the problem of having no choice but to do so.

この発明は、このような背景の下になされたもので、刃
数が変化しても一定の刃先角を維持できて刃先強度に優
れたエンドミルを提供することを目的とする。
The present invention was made against this background, and an object of the present invention is to provide an end mill that can maintain a constant cutting edge angle even when the number of cutting edges changes and has excellent cutting edge strength.

[課題を解決するための手段] 上記課題を解決するための第1の発明は、エンドミルの
刃部側面を外周刃から工具回転方向前方側に連なるすく
い面と工具回転方向後方側に連なる逓げ面とに分割し、
上記すくい面のすくい角を30°〜−50°の範囲に、
逃げ面の逃げ角を20°〜35°の範囲にそれぞれ設定
したものである。
[Means for Solving the Problems] A first invention for solving the problems described above is such that the side surface of the blade portion of the end mill is formed by a rake face that extends from the peripheral cutting edge toward the front side in the tool rotation direction, and a ramp that continues from the outer peripheral edge toward the rear side in the tool rotation direction. Divide into two faces,
The rake angle of the rake face is set in the range of 30° to -50°,
The clearance angles of the flanks are set in the range of 20° to 35°.

また第2の発明は、工具先端面に底刃及びキャッシュか
形成されたエンドミルにおいて、外周刃先端部のすくい
角を一30°〜−50°の範囲に、外周刃先端部の逃げ
角を20°〜35°の範囲に設定したものである。
The second invention is an end mill in which a bottom cutter and a cache are formed on the tool tip surface, in which the rake angle of the peripheral blade tip is in the range of -30° to -50°, and the relief angle of the peripheral blade tip is 20°. The angle is set within the range of 35° to 35°.

1作用コ 上記第1の発明の構成によれば、刃部側面を分割するこ
とによってすくい角及び逃げ角を刃数に関係なく設定で
き、しかもすくい角及び逃げ角を上述の範囲に設定する
ことによって一定の刃先角が確保されるとともに、外周
刃のすくい角が過度に負角側に偏らずかつ逃げ角が過度
に不足しないので、切削時におけるびびり振動や外周刃
の異常摩耗が回避できろ。
1 Effect According to the configuration of the first invention described above, by dividing the side surface of the blade part, the rake angle and clearance angle can be set regardless of the number of blades, and moreover, the rake angle and clearance angle can be set within the above-mentioned ranges. In addition to ensuring a constant cutting edge angle, the rake angle of the peripheral cutting edge does not deviate excessively to the negative angle side and the clearance angle is not excessively insufficient, so chatter vibration and abnormal wear of the peripheral cutting edge can be avoided during cutting. .

また、上記第2の発明の構成によれば、外周刃先端部の
すくい角及び逃げ角を上述の範囲に設定することで、外
周刃先端に一定の刃先角が確保されるとともに、そのす
くい角が負角側に過度に増大せずかつ逃げ角が不足しな
いので、工具軸線方向の送りに対する外周刃先端部のび
びりゃ異常摩耗が回避される。
Further, according to the configuration of the second invention, by setting the rake angle and relief angle of the peripheral blade tip within the above-mentioned range, a constant cutting edge angle is ensured at the peripheral blade tip, and the rake angle is Since the angle does not increase excessively toward the negative angle side and the clearance angle does not become insufficient, abnormal wear due to chattering of the tip of the peripheral blade due to feed in the tool axis direction is avoided.

[第1実施例1 以下、第1図ないし第3図を参照して、第1の発明に係
る第1実施例を説明する。
[First Embodiment 1] Hereinafter, a first embodiment according to the first invention will be described with reference to FIGS. 1 to 3.

第1図に示すように、本実施例のエンドミルは、上述し
た従来のエンドミルと同様に、工具本体11の基端側イ
こ円柱状をなすシャンク12が形成され、このシャンク
12の先端側に断面多角形状をなす刃部13が形成され
てなるものであるが、この刃部13の断面形状が従来の
エンドミルと相違する。
As shown in FIG. 1, the end mill of this embodiment has a cylindrical shank 12 formed on the proximal end of the tool body 11, as in the conventional end mill described above. Although the end mill is formed with a blade portion 13 having a polygonal cross-section, the cross-sectional shape of the blade portion 13 is different from that of conventional end mills.

すなわち、本実施例のエンドミルでは、第2図に示すよ
うに側面I4がすくい而I5と逃げ面I6とに分割され
、これらすくい面15と逃げ面16とが交差する凸稜線
部に、刃部13の先端から基端まで直線状に延在する6
枚の外周刃17・・・が周方向輪環ピッチで形成されて
なるものである。
That is, in the end mill of this embodiment, the side face I4 is divided into a rake face I5 and a flank face I6, as shown in FIG. 6 extending in a straight line from the tip of 13 to the base end
The outer circumferential cutters 17 are formed at circumferential annular pitches.

ここで、第1図ないし第3図に示すように、上記ずくい
面I5は刃部13の先端から基端まで直線状に延びる平
面に形成されている。このすくい而15と、外周刃17
から回転中心poに至る線分Q3とがなす角度、すなわ
ち刃部13の軸線と直交する断面におけるすくい角θl
は、線分(!3と逃げ面16とがなす角θ3よりも小さ
く定められ、具体的には被削材の性質(例えば靭性等)
、あるいは切削条件等に応じて一30゛〜−504の範
囲に定められている。これは、すくい角θ1が30°を
超えて正角側に偏ると刃先角(θI+03)が不足して
切削時におけるびびり振動が誘発されるとともに外周刃
17にチッピングが生じるおそれがあり、他方すくい角
θlが一50°を超えて負角側に大きく偏ると外周刃1
7の切削抵抗が増大して、円滑な切削を妨げるおそれが
生じるからである。
Here, as shown in FIGS. 1 to 3, the cutting surface I5 is formed into a plane extending linearly from the tip to the base end of the blade portion 13. This rake 15 and the outer peripheral blade 17
The angle formed by the line segment Q3 extending from to the rotation center po, that is, the rake angle θl in the cross section perpendicular to the axis of the blade part 13
is determined to be smaller than the angle θ3 between the line segment (!3 and the flank surface 16, and specifically, the properties of the workpiece material (e.g. toughness, etc.)
, or in the range of -504° depending on cutting conditions and the like. This is because if the rake angle θ1 exceeds 30° and deviates to the conformal side, the cutting edge angle (θI+03) will be insufficient, which will induce chatter vibration during cutting and may cause chipping on the peripheral cutting edge 17. If the angle θl exceeds 150° and is largely biased toward the negative angle side, the peripheral edge 1
This is because the cutting resistance of No. 7 increases, which may hinder smooth cutting.

また、上記逃げ面16は、すくい而15に近付くにつれ
て漸次工具回転中心PO側に後退する凸曲面状に形成さ
れており、この逃げ面16の逃げ角02、ずなわち刃部
13の軸線と直交する断面における上記線分Q3と直交
する線分Q、4と、逃げ而16の切刃17に連なる部分
の接線とがなす角θ2は、上述のすくい角θlと同様に
、被削材の性質、切削条件等に応じて20゛〜35°の
範囲に定められている。
Further, the relief surface 16 is formed in a convex curved shape that gradually recedes toward the tool rotation center PO as it approaches the scoop 15, and the relief angle 02 of this relief surface 16 is in agreement with the axis of the blade portion 13. The angle θ2 formed by the line segment Q, 4 perpendicular to the above-mentioned line segment Q3 in the orthogonal cross section and the tangent of the portion of the relief 16 that is continuous with the cutting edge 17 is similar to the rake angle θl described above, The angle is set in the range of 20° to 35° depending on the properties, cutting conditions, etc.

これは、逃げ角θ2が20°を下回ると逃げ而16と被
削材との間に異常摩耗が生じて外周刃17が早期に摩耗
するおそれがあり、他方、逃げ角θ2が35°を超えて
大きくなると外周刃17の刃先角(θ1+03)が不足
して切削時にびびり振動が生じ易くなるおそれがあるか
らである。
This is because if the clearance angle θ2 is less than 20°, abnormal wear may occur between the clearance cutter 16 and the workpiece material, leading to premature wear of the peripheral cutting edge 17, while on the other hand, if the clearance angle θ2 exceeds 35°, This is because if the angle becomes large, the cutting edge angle (θ1+03) of the peripheral cutter 17 becomes insufficient, which may easily cause chatter vibration during cutting.

なお、この逃げ而16については、必ずしも凸曲面状に
形成する必要はなく、平面状に形成する等、逃げ角θ2
の大きさ、加工方法等に応じて適宜変更して良い。
Note that this relief 16 does not necessarily have to be formed in a convex curved shape, but may be formed in a flat shape, etc., so that the relief angle θ2
It may be changed as appropriate depending on the size, processing method, etc.

しかして、以上のように構成されたエンドミルにおいて
は、工具本体11が軸線Oを中心として矢印六方向に回
転せしめられるとともに、刃部13と被削材との間に工
具軸線Oと直交する方向の相対運動が与えられ、これに
より外周刃17が被削材の壁面を切削してゆく。
In the end mill configured as described above, the tool body 11 is rotated about the axis O in the six directions of the arrows, and there is a space between the blade part 13 and the workpiece in a direction perpendicular to the tool axis O. A relative movement of 2 is applied, and as a result of this, the peripheral cutter 17 cuts the wall surface of the workpiece.

ここにおいて、本実施例のエンドミルでは刃部13の側
面14がすくい而15及び逃げ面16に分割されている
ために、すくい面15のすくい角θl及び逃げ面16の
逃げ角θ2を別個独立に設定でき、しかもこれらすくい
角θl及び逃げ角θ2が上述の最適範囲に定められてい
るので、刃数に拘わらず一定の刃先角(θl+θ3)が
維持され、この結果、切削時におけるびびり振動及び外
周刃のチッピング、早期摩耗が確実に抑制されて加工面
の面粗度が向上する。
Here, in the end mill of this embodiment, since the side surface 14 of the blade portion 13 is divided into a rake 15 and a flank 16, the rake angle θl of the rake face 15 and the clearance angle θ2 of the flank 16 are set separately and independently. Moreover, since these rake angle θl and relief angle θ2 are set within the above-mentioned optimal range, a constant cutting edge angle (θl + θ3) is maintained regardless of the number of teeth, and as a result, chatter vibration and outer circumference are reduced during cutting. Chipping and early wear of the blade are reliably suppressed, improving the surface roughness of the machined surface.

また、本実施例では、従来のように刃部13を断面正六
角形状に形成して各側面の稜線を外周刃とする場合(第
2図に二点鎖線で示す)に比してすくい面15のすくい
角θlが減少するので、外周刃17に係る切削抵抗が減
少し、この結果切削時に必要なトルクが減少するととも
に、被削材の加工面とすくい面15との間の隙間Sが大
きくな−て外周刃17で生成される切屑の排出性が向上
するという効果をも奏する。
In addition, in this embodiment, the rake surface is different from the conventional case in which the cutting portion 13 is formed into a regular hexagonal cross section and the ridge line on each side is used as an outer peripheral cutting edge (indicated by a two-dot chain line in FIG. 2). Since the rake angle θl of 15 decreases, the cutting resistance related to the peripheral edge 17 decreases, and as a result, the torque required during cutting decreases, and the gap S between the machined surface of the workpiece and the rake surface 15 decreases. It also has the effect that the discharging of chips generated by the larger outer peripheral cutter 17 is improved.

なお、本実施例では特に金型のリブ加工を例として説明
しているが、本発明のエンドミルの用達はこれに限るも
のではなく、高硬度材料の仕上げ加工や側面切削を行う
通常のエンドミルの代替品として広範囲に用いられるも
のである。
In this embodiment, rib machining of a mold is specifically explained, but the end mill of the present invention can be used not only for this purpose, but also for ordinary end mills that perform finishing machining and side cutting of high-hardness materials. It is widely used as a substitute for

加えて、本実施例では特に切刃17を6枚に設定してい
るが、本発明のエンドミルはこれに限るものではない。
In addition, in this embodiment, the number of cutting blades 17 is set to six, but the end mill of the present invention is not limited to this.

以下、外周刃の刃数の変形例について第4図ないし第6
図を参照して説明する。
Below, examples of variations in the number of peripheral blades are shown in Figures 4 to 6.
This will be explained with reference to the figures.

第4図に示すエンドミルは、刃部20の外周に3枚の外
周刃21・・・を形成した例であって、この場合も刃部
20の側面20aはすくい面22及び逃げ面23に分割
して形成されている。
The end mill shown in FIG. 4 is an example in which three peripheral blades 21 are formed on the outer periphery of the blade part 20, and in this case also, the side surface 20a of the blade part 20 is divided into a rake face 22 and a flank face 23. It is formed as follows.

そして、すくい面22のすくい角θIは、−30°〜−
50°の範囲に、また逃げ而23の逃げ角θ2は20°
〜35°の範囲に定められ、より具体的にはすくい角θ
lが一42°30′、逃げ角θ2か25°とされている
The rake angle θI of the rake face 22 is -30° to -
Within the range of 50°, the clearance angle θ2 of the clearance 23 is 20°.
~35°, more specifically the rake angle θ
It is assumed that l is -42°30' and clearance angle θ2 is 25°.

この変形例でも上記第1実施例と同様、刃数に関係なく
刃先角(θ1+03)が決定されるので、刃部20を断
面正三角形状に形成する場合(図に二点鎖線で示す)に
比して刃先強度が高くてびびり振動が生じにくいという
効果がある。また、3枚刃の場合には、従来に比して芯
厚が増大するので、工具剛性が向上するという効果もあ
る。ちなみにすくい角θl及び逃げ角θ2を上記値に定
めた場合、芯厚は67.5%である。
In this modification, as in the first embodiment, the cutting edge angle (θ1+03) is determined regardless of the number of cutting edges. In comparison, the strength of the cutting edge is high and chatter vibration is less likely to occur. In addition, in the case of three-flute tool, the core thickness is increased compared to the conventional one, so there is also the effect that tool rigidity is improved. Incidentally, when the rake angle θl and clearance angle θ2 are set to the above values, the core thickness is 67.5%.

なお、芯厚については、すくい角θIの大小で変化し、
第5図に示すようにずくい角θlをより大きく設定する
ことによって、さらに芯厚を大きくすることができる。
Note that the core thickness changes depending on the rake angle θI,
As shown in FIG. 5, by setting the rake angle θl larger, the core thickness can be further increased.

図示の例では、すくい角θ1を一45’30’、逃げ角
θ2を25°に設定することにより芯厚が72%に増加
した。ただし、このようにすくい角θ1を大きくする場
合には、これに伴って逃げ而23の幅aが増大してすく
い面22と逃げ面23との交差部24と外周刃2Iの回
転軌跡Rとの距離が減少し、ひいては交差部24が回転
軌跡Rと干渉する可能性があるため注意を要する。この
ような場合には、第5図に破線で示すように逃げ角θ2
を大きくとることによって芯厚の減少を防ぎつつ干渉を
防止し得る。
In the illustrated example, the core thickness was increased to 72% by setting the rake angle θ1 to -45'30' and the relief angle θ2 to 25°. However, when increasing the rake angle θ1 in this way, the width a of the relief 23 increases, and the intersection 24 of the rake face 22 and the relief face 23 and the rotation locus R of the peripheral cutter 2I The distance between the intersections 24 and 24 may decrease and the intersection 24 may interfere with the rotation trajectory R, so care must be taken. In such a case, the clearance angle θ2 is changed as shown by the broken line in FIG.
By setting a large value, interference can be prevented while preventing a decrease in core thickness.

また、第6図は刃部30の外周に4枚の外周刃3Iを形
成したエンドミルの例であって、この場合も刃部側面3
0aはすくい面32と逃げ面33とに分割され、すくい
角θlは一48°、逃げ角θ2は25°に設定されてお
り、刃先角(θ1+03)を刃数に関係なく設定し得る
点で上述の第1実施例と同様である。なお、この例では
芯厚dは74.4%であり、外周刃を3枚とする場合に
比してより増大する。
Further, FIG. 6 shows an example of an end mill in which four peripheral blades 3I are formed on the outer periphery of the blade part 30, and in this case also, the blade part side surface 3
0a is divided into a rake face 32 and a flank face 33, the rake angle θl is set to -48° and the relief angle θ2 is set to 25°, and the cutting edge angle (θ1+03) can be set regardless of the number of teeth. This is similar to the first embodiment described above. Note that in this example, the core thickness d is 74.4%, which is greater than that in the case where there are three peripheral blades.

以上の変形例に示すように外周刃の刃数は任意に設定し
得るものであるが、その選定にあたっては、工具径に応
じて適宜選択し、具体的には各外周刃17.21,31
間の距離りが一定範囲に収まるように工具径の増加に応
じて増加させることか好ましい。
As shown in the above modification, the number of peripheral cutting edges can be set arbitrarily, but the number should be selected appropriately according to the tool diameter. Specifically, each peripheral cutting edge 17, 21, 31
It is preferable to increase the distance as the tool diameter increases so that the distance between them falls within a certain range.

また、上記第1実施例では特に外周刃17を工具軸線O
に対して傾斜させて各外周刃17がテーパ輪状の回転軌
跡を描くようにしているが、本発明はこれに限るもので
なく、第7図に示すように、各外周刃I7を工具軸線O
と平行に形成して円柱状の軌跡を描くようにしたもの、
あるいは第8図に示すように、外周刃17を弧状に湾曲
させたもの等種々の変形が考えられる。
In addition, in the first embodiment, the outer peripheral cutter 17 is particularly aligned with the tool axis O.
However, the present invention is not limited to this, and as shown in FIG.
Those formed parallel to the cylindrical locus to draw a cylindrical trajectory,
Alternatively, as shown in FIG. 8, various modifications such as one in which the peripheral blade 17 is curved in an arc shape are possible.

さらに、上記第1実施例では外周刃17の工具軸線Oに
対する捩れ角が0°のいわゆる直刃の場合について説明
したが、第9図に示すように、外周刃17が右捩れの場
合、あるいは、逆に左捩れの場合でも当然に応用し得る
ものである。
Furthermore, in the first embodiment, the case where the peripheral cutter 17 is a so-called straight blade in which the helix angle with respect to the tool axis O is 0° has been explained, but as shown in FIG. , conversely, it can naturally be applied to cases of left-handed twist.

また、上記第1実施例では各外周刃17の周方向のビッ
ヂを同一に定めているが、これに限らず、不等分ピッチ
としても良い。この場合には、各外周刃17が被削材に
切込まれる度に工具に入力される振動エネルギーの周期
が一定でなくなるため、工具の共振が回避され、より一
層切削面の面粗度を向上させることができる。
Further, in the first embodiment, the pitches in the circumferential direction of each outer peripheral cutter 17 are set to be the same, but the pitch is not limited to this, and may be set at unequal pitches. In this case, the cycle of vibration energy input to the tool is not constant each time each peripheral cutting edge 17 cuts into the workpiece, so resonance of the tool is avoided and the surface roughness of the cut surface is further improved. can be improved.

さらにまた、第1実施例では刃部17の先端部を工具軸
線Oと直交する平面に形成しているが、例えば第10図
に示すように半球面状に形成することもでき、この他円
錐面状、あるいは凹面状等種々変形可能である。
Furthermore, in the first embodiment, the tip of the blade part 17 is formed in a plane perpendicular to the tool axis O, but it can also be formed in a hemispherical shape, for example, as shown in FIG. It can be modified into various shapes such as a planar shape or a concave shape.

[第2実施例] 次に第11図ないし第14図を参照して第2の発明に係
る第2実施例を説明する。
[Second Embodiment] Next, a second embodiment according to the second invention will be described with reference to FIGS. 11 to 14.

第11図及び第12図に示すように、本実施例のエンド
ミルは、図示せぬ工具本体の先端部に断面略多角形状を
なずテーパ軸状の刃部40が形成され、この刃部40の
側面4Iの凸稜線部に4枚の外周刃42・・・が形成さ
れるとともに、刃部40の先端に工具基端側へ向けて陥
没するキャッシュ43が形成され、該ギャッンユ43の
凸稜線部に各外周刃42の先端から工具回転中心POに
向かって延びる4枚の底刃44・・・が形成されてなる
ものである。
As shown in FIGS. 11 and 12, the end mill of this embodiment has a blade portion 40 having a substantially polygonal cross section and a tapered shaft shape at the tip of a tool body (not shown). Four outer peripheral blades 42 are formed on the convex ridge line of the side surface 4I, and a cache 43 is formed at the tip of the blade portion 40 to recess toward the tool proximal end. Four bottom cutters 44 extending from the tip of each outer peripheral cutter 42 toward the tool rotation center PO are formed in the section.

上記外周刃42は、いずれも刃部40の正面視において
工具軸線Oの回りに反時計方向方向に捩れるいわゆる左
捩れの外周刃に形成され、その捩れ角α(よ20°とさ
れている。また、外周刃42のテーパ角φは1°30°
に設定されている。なお、これら捩れ角α及びテーパ角
φは切削条件等に応じて適宜定められるもので、具体的
には捩れ角αが0°〜20°、テーパ角φが30°〜5
°の範囲とされる。
Each of the peripheral blades 42 is formed as a so-called left-handed peripheral blade that twists counterclockwise around the tool axis O when the blade portion 40 is viewed from the front, and has a twist angle α (20°). Also, the taper angle φ of the peripheral cutter 42 is 1°30°.
is set to . Note that these torsion angle α and taper angle φ are determined as appropriate depending on the cutting conditions, etc. Specifically, the torsion angle α is 0° to 20°, and the taper angle φ is 30° to 5°.
It is said to be in the range of °.

一方、上記キャッシュ43は、刃部40の正面視におい
て、各底刃44を凸稜線部として工具中心POから各外
周刃42間の側面41に向けて放射状に伸びる溝状に形
成され、上記回転中心POは、各外周刃42の最先端か
ら工具基端側へ向けて所定量Fだけ後退させて設けられ
ている。また、キャッシュ43の壁面は、各底刃44か
ら工具回転方向前方側に連なるすくい面45と、各底刃
44から工具回転方向後方側へ連なる逃げ而46とから
構成されている。
On the other hand, when the blade section 40 is viewed from the front, the cache 43 is formed in a groove shape that extends radially from the tool center PO toward the side surface 41 between the outer peripheral blades 42 with each bottom blade 44 as a convex ridgeline part, and The center PO is provided so as to be retreated by a predetermined amount F from the leading edge of each peripheral cutter 42 toward the tool base end side. The wall surface of the cache 43 is composed of a rake face 45 that extends from each bottom cutter 44 toward the front in the tool rotation direction, and a relief 46 that extends from each bottom cutter 44 toward the rear in the tool rotation direction.

第1I図及び第13図に示すように、上記すくい而45
は、刃部側面41との稜線部が各外周刃42よりも工具
回転方向前方側に一定距離をおいて工具基端側へ延在す
る傾斜面に形成され、これにより刃部側面41の先端部
における外周刃42よりも回転方向前方側の部分には各
外周刃42に対する所定幅りのすくい而47が形成され
ている。
As shown in Figures 1I and 13, the scoop 45
The ridge line with the side surface 41 of the blade is formed into an inclined surface that extends toward the base end of the tool at a certain distance forward in the tool rotation direction from each peripheral cutter 42, so that the tip of the side surface 41 of the blade A scoop 47 having a predetermined width for each outer circumferential cutter 42 is formed in a portion on the forward side of the outer circumferential cutter 42 in the rotational direction.

また、底刃44に対する逃げ面46は、底刃44に対し
て所定の二番逃げ角γl及び二番逃げ角γ2でもって2
段階に傾斜する傾斜面とされ、これにより刃部側面41
の先端部における外周刃42よりも回転方向後方側の部
分には各外周刃42に対する逃げ面48か形成されてい
る。
Further, the clearance surface 46 with respect to the bottom blade 44 has a predetermined second clearance angle γl and a second clearance angle γ2 with respect to the bottom blade 44.
The blade side surface 41
A clearance surface 48 for each outer peripheral cutter 42 is formed in a portion on the rear side of the outer peripheral cutter 42 in the rotational direction at the tip end thereof.

ここで、各外周刃42の先端部に対する上記すくい而4
7のずくい角θ1は、−30°〜−50゜の範囲に設定
されている。これは、すくい角θ1が一30°を超えて
正角側に偏ると外周刃42の先端部における刃先角(θ
1+03)が不足してチッピング等を生じ易くなるおそ
れがあり、他方すくい角θlが一50°を超えて負角側
に偏ると外周刃42の先端部における切削抵抗が過度に
大きくなって円滑な切削が妨げられるおそれが生じるか
らである。
Here, the above-mentioned scoop 4 is applied to the tip of each outer peripheral cutter 42.
The dip angle θ1 of No. 7 is set in the range of −30° to −50°. This is because when the rake angle θ1 exceeds 130° and deviates to the regular side, the cutting edge angle (θ
1+03) may be insufficient and chipping may easily occur. On the other hand, if the rake angle θl exceeds 150° and deviates to the negative angle side, the cutting resistance at the tip of the peripheral cutting edge 42 becomes excessively large, making it difficult to cut smoothly. This is because cutting may be hindered.

また、上記外周刃42の先端部における逃げ角θ2は、
20°〜35°の範囲に設定されている。
Furthermore, the clearance angle θ2 at the tip of the peripheral blade 42 is as follows:
It is set in the range of 20° to 35°.

遥げ角θ2が20°に満たないと逃げ面48と被削材と
の間に異常摩耗が生じて外周刃42の先端部が早期に摩
耗するおそれがあり、他方遥げ角θ2が35°を超える
と外周刃42の先端部における刃先角(θ1+03)が
不足してチッピング等の弊害が生じるおそれがあるから
である。
If the deflection angle θ2 is less than 20°, abnormal wear may occur between the flank surface 48 and the workpiece, and the tip of the peripheral cutter 42 may wear out prematurely.On the other hand, if the deflection angle θ2 is 35°. This is because, if the angle exceeds 1, the cutting edge angle (θ1+03) at the tip of the peripheral blade 42 may become insufficient, which may cause problems such as chipping.

また、第12図ないし第14図に示すように、底刃44
の外周部は、切削時における欠は等を防止するため所定
のチャンファ角Cでもって切り欠かれている。さらに、
底刃44は工具回転中心PO側へ向かって所定幅Hの範
囲で工具基端側へと所定の逃げ角Gでもって傾斜させて
形成されている。
In addition, as shown in FIGS. 12 to 14, the bottom blade 44
The outer periphery of is notched at a predetermined chamfer angle C to prevent chips etc. during cutting. moreover,
The bottom blade 44 is formed so as to be inclined with a predetermined relief angle G toward the tool base end within a predetermined width H toward the tool rotation center PO side.

そして、上記刃部側面41の先端部よりも工具基端側の
部分は、上記各すくい面47及び逃げ面48の延長面と
され、これにより各外周刃42の中間部及び基端部には
上記先端部と同様のすくい角θI及び逃げ角θ2が付さ
れている。
A portion of the blade side surface 41 closer to the tool base end than the tip end is an extension surface of each rake face 47 and flank face 48, so that the intermediate and base end portions of each peripheral cutter 42 are The same rake angle θI and relief angle θ2 as the above-mentioned tip portion are attached.

しかして、以上のように構成されたエンドミルによれば
、刃部40がその軸線0を中心として矢印B方向(第1
1図及び第12図参照)に回転せしめられるとともに、
刃部40が軸線方向前方側に送り出され、これに伴って
底刃43及び外周刃42の先端部が被削材を穿孔し、続
いて外周刃42の中間部及び基端部が先に穿孔された部
分をテーパ状に拡径する。そして、刃部40が軸線方向
に所定量送り出された後、刃部40が軸線方向と直交す
る方向に送り出され、これによって被削材にテーバ溝が
加工される。
According to the end mill configured as described above, the blade portion 40 moves in the direction of arrow B (the first
1 and 12)), and
The blade portion 40 is sent forward in the axial direction, and the tip portions of the bottom blade 43 and the peripheral blade 42 perforate the workpiece, and then the intermediate portion and the base end portion of the peripheral blade 42 perforate the workpiece first. The diameter of the part that has been removed is expanded into a tapered shape. Then, after the blade portion 40 is fed out by a predetermined amount in the axial direction, the blade portion 40 is fed out in a direction perpendicular to the axial direction, thereby machining a Taber groove in the workpiece.

ここにおいて、本実施例のエンドミルによれば、特に刃
部側面41のうちで特にキャッシュ43と交差する先端
部に、上述した範囲のすくい角θI及び逃げ角θ2で傾
斜するすくい面47及び遥げ面48を設けたため、刃部
40を軸線方向に送って被削材を加工する場合でも刃先
角(θl+03)の不足によるびびり振動の発生や、切
削抵抗の増大、あるいは外周刃42の早期摩耗等の弊害
が生じず、この結果、あらかじめ被削材を下加工する必
要がなくなって、切削効率が向上する。
Here, according to the end mill of the present embodiment, the rake face 47 and the rake face 47 which are inclined at the rake angle θI and clearance angle θ2 in the above-mentioned ranges, and the rake face 47 which is inclined at the rake angle θI and clearance angle θ2 in the above-mentioned ranges, especially at the tip intersecting the cache 43 of the blade side surface 41. Because the surface 48 is provided, even when the blade part 40 is sent in the axial direction to machine the workpiece, chatter vibrations may occur due to insufficient cutting edge angle (θl+03), increase in cutting resistance, or early wear of the peripheral blade 42. As a result, there is no need to pre-process the workpiece material, improving cutting efficiency.

なお、本実施例においては、特に刃部側面41の先端部
以外の部分をも先端部と同様のすくい角θ1及びθ2で
傾斜する傾斜面としているが、本発明のエンドミルはこ
れに限るものではなく、従来の多角形状をなすエンドミ
ルと同様に、外周刃42間を直線的に結ぶ平面状に形成
しても良い。
Note that in this embodiment, in particular, the portion of the blade side surface 41 other than the tip is also formed into an inclined surface that slopes at the same rake angles θ1 and θ2 as the tip, but the end mill of the present invention is not limited to this. Instead, the outer peripheral blades 42 may be formed into a planar shape in which the peripheral blades 42 are linearly connected, similar to a conventional end mill having a polygonal shape.

要するに刃部40の先端部において所定のすくい角θl
及び逃げ角θ2が与えられていれば、これ以外の部分の
形状は問わないものである。
In short, a predetermined rake angle θl at the tip of the blade part 40
As long as the relief angle θ2 and the clearance angle θ2 are given, the shape of the other portions does not matter.

−また、本実施例では特に外周刃42を左ねじれの捩れ
刃としたがこれに限らず、直刃、右ねじれ等適宜変更可
能であり、外周刃42及び底刃44の枚数も4枚に限る
ものではない。
-Also, in this embodiment, the peripheral blade 42 is a left-handed twisted blade, but it is not limited to this; it can be changed to a straight blade, a right-handed screw, etc., and the number of peripheral blades 42 and bottom blades 44 is also four. It is not limited.

[実験例] 次に、第1の発明及び第2の発明の効果を明らかにすべ
く、各発明に係るエンドミルと従来のエンドミルとをそ
れぞれ用いて、以下に述べる2N類の切削試験を行った
[Experimental Example] Next, in order to clarify the effects of the first invention and the second invention, the following 2N cutting test was conducted using the end mills according to each invention and the conventional end mill. .

(第1の切削試験) 第1の発明に係るエンドミルと従来のエンドミルとをそ
れぞれ用いて第15図に示すように被削材の側面仕上げ
加工を行い、それぞれの場合について切削面の面粗度を
測定するとともに切削状況を監視した。
(First cutting test) The end mill according to the first invention and the conventional end mill were used to finish the side surface of the workpiece as shown in FIG. 15, and the surface roughness of the cut surface was measured in each case. was measured and the cutting status was monitored.

なお、このときの加工条件は以下に列挙する通りであり
、面粗度の測定結果は第1表に示す。また、試験に使用
したエンドミルはそれぞれ外周刃が4枚、6枚及び8枚
のものであり、これらの形状、寸法については、刃部の
断面形状が異なるのみで他は同一である。さらに外周刃
はいずれも直刃とした。
The processing conditions at this time are as listed below, and the measurement results of surface roughness are shown in Table 1. The end mills used in the test had four, six, and eight peripheral blades, respectively, and their shapes and dimensions were the same except for the cross-sectional shape of the blade. Furthermore, the outer peripheral blades were all straight blades.

・工具回転径:4mm ・被削材:550G ・切削速度: 50 m/ min。・Tool rotation diameter: 4mm ・Work material: 550G ・Cutting speed: 50 m/min.

・工具送りffl (F )  : 400mm/re
v。
・Tool feed ffl (F): 400mm/re
v.

・切削面の幅(W):4mm ・切込深さ(d):0.05mm (第2の切削試験) 第2の発明に係るエンドミルと従来のエンドミルとを用
いて、第16図に示すようにテーパ溝の仕上げ加工を行
い、このときの切削状況を比較した。なお加工条件は下
記に示す通りであり、結果は第2表に示す。
- Width of cutting surface (W): 4 mm - Depth of cut (d): 0.05 mm (Second cutting test) Using the end mill according to the second invention and the conventional end mill, the results shown in Fig. 16 were obtained. Finish machining of the tapered groove was performed as shown in the figure below, and the cutting conditions at this time were compared. The processing conditions are as shown below, and the results are shown in Table 2.

・被削材:14PM 1 ・溝形状:深さ(L)+14mm :先端幅(W):1mm :テーパ角(θ):1°30゜ なお、切削速度、工具送り量は上記第1の切削試験と同
一である。
・Workpiece material: 14PM 1 ・Groove shape: Depth (L) + 14mm : Tip width (W): 1mm : Taper angle (θ): 1° 30° Note that the cutting speed and tool feed amount are the same as in the first cutting above. Same as the test.

以下余白 第1表 第2表 第1表からも明らかなように、従来のエンドミルを用い
て側面加工を行う場合、刃数か少ない場合には刃先角が
不足して刃先強度が劣化し、びびり振動が発生して仕上
げ面粗さの劣化が避けられない。また、びびりを避ける
べく刃数を増して刃先角を増加さt!−る場合には、同
時にすくい角が負角側へ増加して切削抵抗が増加し、円
滑な切削を行うことができない。これに対して第1の発
明に係るエンドミルでは、刃数に拘わらず刃先角を一定
範囲に設定できるのでびびり振動が生じず、側面加工に
おける仕上げ面の面粗度が向上する。また、特に刃数が
多い場合には、すくい角が従来より正角側に偏るので、
外周刃の切れ味が向上して円滑な切削を行い得る。
As is clear from Table 1, Table 1, and Table 1 below, when side milling is performed using a conventional end mill, if the number of teeth is small, the edge angle is insufficient and the edge strength deteriorates, resulting in chatter. Vibration occurs and deterioration of the finished surface roughness is unavoidable. Also, in order to avoid chatter, the number of blades has been increased and the cutting edge angle has been increased. -, the rake angle increases toward the negative angle side, cutting resistance increases, and smooth cutting cannot be performed. On the other hand, in the end mill according to the first aspect of the invention, the cutting edge angle can be set within a constant range regardless of the number of teeth, so chatter vibration does not occur, and the surface roughness of the finished surface during side machining is improved. Also, especially when the number of teeth is large, the rake angle tends to be more square than before.
The sharpness of the peripheral blade is improved and smooth cutting can be performed.

一方、第2表から明らかなように、底刃付きのエンドミ
ルでテーパ溝を加工する場合、従来のエンドミルでは、
刃数が多いと外周刃先端部のすくい角か負角側に偏り過
ぎて切削抵抗が過度に増加し、工具軸線方向の送り量を
大きくできない。これに対して第2の発明に係るエンド
ミルでは外周刃先端部のすくい角及び遣げ角が刃数に関
係無く一定範囲に設定されるので、びびり振動及び外周
刃の異常摩耗を回避しつつ工具軸線方向の切込量を従来
の2倍以上増加させることができることが明らかとなっ
た。
On the other hand, as is clear from Table 2, when machining a tapered groove with an end mill with a bottom blade, with a conventional end mill,
If the number of teeth is large, the rake angle at the tip of the peripheral edge will be too biased towards the negative angle side, cutting resistance will increase excessively, and the feed rate in the tool axis direction cannot be increased. On the other hand, in the end mill according to the second invention, the rake angle and stroke angle at the tip of the peripheral blade are set within a certain range regardless of the number of blades, so the tool can be used while avoiding chatter vibration and abnormal wear of the peripheral blade. It has become clear that the depth of cut in the axial direction can be increased by more than twice that of the conventional method.

なお、上記各切削試験においては、加工時間が、放電加
工で同一の加工を行った場合に比しておよそI/10程
度に短縮されることも確認されている。
In addition, in each of the above-mentioned cutting tests, it was also confirmed that the machining time was reduced to approximately I/10 compared to the case where the same machining was performed by electrical discharge machining.

[発明の効果] 以上説明したように、第1の発明によれば、外周刃のす
くい角及び逃げ角が刃数に関係無く決定され、しかもす
くい角が負角側に過度に偏らず、また逃げ角も不足せず
、さらには刃先角が一定jalit保されて刃先強度が
十分に確保されるので、金型等の高硬度材料のff、h
げ加工時においてもびびり振動や外周刃の弔期摩耗が回
避されて仕上げ面の品位が向上する。
[Effects of the Invention] As explained above, according to the first invention, the rake angle and clearance angle of the peripheral cutting edge are determined regardless of the number of teeth, and the rake angle is not excessively biased toward the negative angle side. The clearance angle is not insufficient, and the cutting edge angle is maintained at a constant jalit to ensure sufficient cutting edge strength, so it can be used for ff, h of high hardness materials such as molds.
Even during sharpening, chatter vibration and early wear of the peripheral blade are avoided, improving the quality of the finished surface.

また、第2の発明によれば、第1の発明と同様に、外周
刃先端部のすくい角及び逃げ角が適性範囲に設定されて
刃先強度が十分に確保されるので、工具を軸線方向の送
って切削を行う場合でも、びびり振動の発生や外周刃先
端部の早期摩耗が回避され、この結果、特にテーパ溝を
加工する際に下加工が不要となって切削効率が著しく向
上する。
Further, according to the second invention, similarly to the first invention, the rake angle and clearance angle of the peripheral cutting edge tip are set within appropriate ranges, and sufficient cutting edge strength is ensured, so that the tool can be moved in the axial direction. Even when cutting by feeding, the occurrence of chatter vibration and early wear of the tip of the peripheral blade are avoided, and as a result, there is no need for preliminary machining, especially when machining tapered grooves, and cutting efficiency is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は第1の発明に係る実施例を示すも
ので、第1図は側面図、第2図は第1図の1−1線にお
ける断面図、第3図は第2図における外周刃部分の拡大
図、 第4図ないし第1O図は上記実施例の変形例を示す図で
、第4図及び第5図は外周刃を3枚とした場合を示す図
、第6図は外周刃を4枚とした場合を示す図、第7図は
外周刃を工具軸線と平行に形成した場合を示す図、第8
図は外周刃を工具軸線に対して弧状に湾曲させて形成し
た場合を示す図、第9図は外周刃を捩れ刃とした場合を
示す図、第10図は刃部先端を半球状に形成した場合を
示す図、 第11図ないし第14図は第2の発明に係る実施例を示
す図で、第11図はその側面図、第12図は正面図、第
13図は外周刃先端の正面拡大図、第14図は外周刃先
端の側面拡大図、 第15図は第1の切削試験の加工形態を示す図、第#6
図は第2の切削試験の加工形態を示す図、第17図は被
削材の溝形状を示す図、 そして第18図及び第19図は従来のエンドミルの例を
示す図で、第18図は側面図、第19図は第18図の■
−■線における断面図である。 11・・・・・・工具本体、13・20・30・40・
・・・・・刃部、14・20a・30a・40a・・・
・側面、!5・22・32・47・・・・・・すくい面
、16・23・33・48・・・・・・逃げ面、I7・
21・3142・・・・・・外周刃、43・・・・・・
キャッシュ、44・・・底刃、PO・・・・・・工具回
転中心、0・・・・・・工具軸線。
1 to 3 show an embodiment according to the first invention, in which FIG. 1 is a side view, FIG. 2 is a sectional view taken along line 1-1 in FIG. 4 to 10 are views showing modifications of the above embodiment; FIGS. 4 and 5 are views showing a case where there are three peripheral blades, and FIGS. The figure shows the case where there are four peripheral blades, Figure 7 shows the case where the peripheral blades are formed parallel to the tool axis, and Figure 8 shows the case where the peripheral blades are formed parallel to the tool axis.
The figure shows a case in which the peripheral blade is curved in an arc shape with respect to the tool axis, Figure 9 shows a case in which the peripheral blade is twisted, and Figure 10 shows the blade tip formed in a hemispherical shape. Figures 11 to 14 are diagrams showing an embodiment according to the second invention, in which Figure 11 is a side view, Figure 12 is a front view, and Figure 13 is a view of the tip of the peripheral blade. Front enlarged view, Figure 14 is a side enlarged view of the tip of the peripheral blade, Figure 15 is a diagram showing the machining form of the first cutting test, No. 6
The figure shows the machining form of the second cutting test, Figure 17 shows the groove shape of the workpiece, and Figures 18 and 19 show examples of conventional end mills. is a side view, and Fig. 19 is the ■ of Fig. 18.
It is a sectional view taken along the line -■. 11... Tool body, 13, 20, 30, 40,
...Blade part, 14, 20a, 30a, 40a...
·side,! 5, 22, 32, 47... Rake face, 16, 23, 33, 48... Relief face, I7.
21・3142・・・Peripheral blade, 43・・・・・・
Cash, 44...Bottom blade, PO...Tool rotation center, 0...Tool axis line.

Claims (2)

【特許請求の範囲】[Claims] (1)工具本体(10)の先端部に、該工具軸線(0)
と直交する断面が略多角形状をなす刃部(13)が形成
され、この刃部(13)の各側面(14)が交わる稜線
部に外周刃(17)が形成されてなるエンドミルにおい
て、 上記刃部(13)の各側面(14)を、上記各外周刃(
17よりも工具回転方向前方側に連なるすくい面(15
)と、各外周刃(17)よりも工具回転方向後方側に連
なる逃げ面(16)とに分割し、上記刃部(13)の軸
線(0)と直交する断面における上記すくい面(15)
のすくい角(θ1)を−30°〜−50°の範囲に、上
記断面における上記逃げ面(16)の逃げ角(θ2)を
20°〜35°の範囲に設定したことを特徴とするエン
ドミル。
(1) At the tip of the tool body (10), the tool axis (0)
In an end mill in which a blade part (13) is formed having a substantially polygonal cross section perpendicular to , and a peripheral blade (17) is formed at a ridgeline where each side surface (14) of this blade part (13) intersects, the above-mentioned Each side surface (14) of the blade part (13) is connected to each of the above-mentioned peripheral blades (
The rake face (15
) and a flank face (16) that extends rearward in the tool rotation direction from each peripheral cutter (17), and the rake face (15) in a cross section perpendicular to the axis (0) of the blade part (13).
An end mill characterized in that the rake angle (θ1) of the flank (θ1) is set in the range of -30° to -50°, and the clearance angle (θ2) of the flank face (16) in the cross section is set in the range of 20° to 35°. .
(2)工具本体の先端部に、該工具本体の軸線(0)と
直交する断面が略多角形状をなす刃部(40)が形成さ
れ、この刃部(40)の各側面(40a)が交わる稜線
部に外周刃(42)が形成されるとともに、上記刃部(
40)先端面に、上記外周刃(42)の先端部から工具
中心(P0)側に向かって延在する底刃(44)が形成
され、これら底刃(44)間の工具先端面に、工具基端
側に向けて陥没しかつ上記刃部先端部の側面に開口する
キャッシュ(43)が形成されてなるエンドミルにおい
て、 上記キャッシュ(43)によって分割された刃部側面(
40a)のうち、各外周刃(42)から工具回転方向前
方側に連なる側面(47)の刃部正面視におけるすくい
角(θ1)を−30°〜−50°の範囲に、各外周刃(
42)から工具回転方向後方側に連なる側面(48)の
刃部正面視における逃げ角(θ2)を20°〜35°の
範囲に設定したことを特徴とするエンドミル。
(2) A blade part (40) whose cross section perpendicular to the axis (0) of the tool body has a substantially polygonal shape is formed at the tip of the tool body, and each side surface (40a) of this blade part (40) A peripheral blade (42) is formed at the intersecting ridgeline portion, and the blade portion (
40) A bottom cutter (44) extending from the tip of the peripheral cutter (42) toward the tool center (P0) is formed on the tip surface, and the tool tip surface between these bottom cutters (44) has a In an end mill in which a cache (43) is formed that is depressed toward the base end of the tool and opens on the side surface of the tip of the blade, the side surface of the blade divided by the cache (43) (
40a), the rake angle (θ1) of the side surface (47) extending from each peripheral blade (42) to the front side in the tool rotation direction when viewed from the front of the blade is in the range of -30° to -50°.
An end mill characterized in that a clearance angle (θ2) of the side surface (48) extending from 42) to the rear side in the tool rotation direction when viewed from the front of the blade is set in the range of 20° to 35°.
JP1316939A 1989-12-06 1989-12-06 End mill Expired - Lifetime JPH084967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1316939A JPH084967B2 (en) 1989-12-06 1989-12-06 End mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1316939A JPH084967B2 (en) 1989-12-06 1989-12-06 End mill

Publications (2)

Publication Number Publication Date
JPH03178714A true JPH03178714A (en) 1991-08-02
JPH084967B2 JPH084967B2 (en) 1996-01-24

Family

ID=18082626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1316939A Expired - Lifetime JPH084967B2 (en) 1989-12-06 1989-12-06 End mill

Country Status (1)

Country Link
JP (1) JPH084967B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504959A (en) * 2003-09-11 2007-03-08 マパル・ファブリーク・フューア・プラズィシオンスベルクツォイゲ・ドクトル・クレス・カーゲー Tools and methods for precision machining of workpieces
JP2013158859A (en) * 2012-02-02 2013-08-19 Nisshin Kogu Kk End mill
CN110116234A (en) * 2019-05-31 2019-08-13 江门市中刀精密科技有限公司 A kind of appearance milling cutter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11623286B2 (en) * 2018-06-22 2023-04-11 Osg Corporation Tapered end mill

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310807A (en) * 1988-06-10 1989-12-14 Hitachi Tool Eng Ltd End mill

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310807A (en) * 1988-06-10 1989-12-14 Hitachi Tool Eng Ltd End mill

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504959A (en) * 2003-09-11 2007-03-08 マパル・ファブリーク・フューア・プラズィシオンスベルクツォイゲ・ドクトル・クレス・カーゲー Tools and methods for precision machining of workpieces
JP2013158859A (en) * 2012-02-02 2013-08-19 Nisshin Kogu Kk End mill
CN110116234A (en) * 2019-05-31 2019-08-13 江门市中刀精密科技有限公司 A kind of appearance milling cutter

Also Published As

Publication number Publication date
JPH084967B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
US9352400B2 (en) Shank drill
CA2679762C (en) End mill
US10252354B2 (en) Cutter for electrode graphite and face milling cutter for machining oxide ceramics
CN109641293B (en) Cutting insert and indexable insert type rotary cutting tool
JP2007030074A (en) Radius end mill and cutting method
KR101534120B1 (en) Ball end mill and insert
WO2005102572A1 (en) Ball end mill
CN110167702B (en) End milling cutter for die machining
JP7481617B2 (en) Processing method and mold manufacturing method
JP3581115B2 (en) Ball end mill and processing method using the ball end mill
JP5601464B2 (en) Thread milling machine for hardened materials
US10850335B2 (en) Cutting insert and cutting edge-interchangeable rotary cutting tool
JP2003159610A (en) Radius end mill
JPH03178714A (en) End mill
JPWO2019244711A1 (en) End mill
JP7119933B2 (en) ball end mill
JPH0666910U (en) End mill
JP3754270B2 (en) Taper blade end mill
JP7040039B2 (en) Radius end mill
JPH04289012A (en) End mill
JP2001129715A (en) End mill
WO2022064595A1 (en) End mill
JPH06218611A (en) Ball end mill
WO2022113360A1 (en) End mill
JPH0623374Y2 (en) Vine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080124

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 14

EXPY Cancellation because of completion of term