JP2003156726A - Method and device for evaluating alignment uniformity - Google Patents

Method and device for evaluating alignment uniformity

Info

Publication number
JP2003156726A
JP2003156726A JP2001355612A JP2001355612A JP2003156726A JP 2003156726 A JP2003156726 A JP 2003156726A JP 2001355612 A JP2001355612 A JP 2001355612A JP 2001355612 A JP2001355612 A JP 2001355612A JP 2003156726 A JP2003156726 A JP 2003156726A
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment
crystal cell
transmission axis
uniformity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001355612A
Other languages
Japanese (ja)
Inventor
Shoichi Ishihara
將市 石原
Shinji Ogawa
慎司 小川
Kazuhiro Nishiyama
和廣 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001355612A priority Critical patent/JP2003156726A/en
Publication of JP2003156726A publication Critical patent/JP2003156726A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive evaluation device which evaluates the uniformity of an alignment layer subjected to alignment processing and makes measurement easy. SOLUTION: A method for evaluating alignment uniformity is characterized in that the uniformity of the alignment is evaluated from variation in the quantity of transmitted light when a voltage is applied to a liquid crystal cell. The liquid crystal cell is constituted by sealing p type nematic liquid crystal (or n type nematic liquid crystal) into a space between two opposite electrode substrates held by two polarizing plates whose transmission axes cross each other at right angles, and horizontally (or vertically) aligning the liquid crystal. The cell has the alignment direction of the liquid crystal nearly in parallel to or nearly at right angles to the polarizing plate transmission axes, and to provide a device for evaluating the alignment uniformity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は液晶配向膜の均一性
を評価する方法、および装置に関するものである。
TECHNICAL FIELD The present invention relates to a method and apparatus for evaluating the uniformity of a liquid crystal alignment film.

【0002】[0002]

【従来の技術】液晶素子を含む光変調装置は薄型、軽量
であり、低消費電力を特徴としており、電卓、パーソナ
ルコンピュータ、テレビ等のディスプレイに広く用いら
れている。また、表示用途以外にも外部電界により制御
可能なレンズ、フィルター、光演算素子としても用いら
れており、今後ますますその需要は増すものと思われ
る。
2. Description of the Related Art An optical modulator including a liquid crystal element is thin and lightweight and has low power consumption, and is widely used for displays such as calculators, personal computers and televisions. In addition to display applications, they are also used as lenses, filters, and optical operation elements that can be controlled by an external electric field, and the demand for them is expected to increase in the future.

【0003】液晶セルにおける配向処理方法としては、
従来よりラビング処理法、斜方蒸着法、イオンビーム
法、単分子膜法、光照射法、スタンプ法、磁界印加法
等、様々な手法が提案されているが、実用的には殆どラ
ビング処理法によって配向処理が行われている。
As a method of aligning a liquid crystal cell,
Various methods such as a rubbing method, an oblique deposition method, an ion beam method, a monomolecular film method, a light irradiation method, a stamp method, and a magnetic field applying method have been proposed so far, but practically, most of them are rubbing processing methods. The alignment process is performed by.

【0004】[0004]

【発明が解決しようとする課題】このラビング処理法
は、配向膜表面をその繊維径が5μm〜20μm程度の
レーヨン製布、ナイロン製布、あるいはコットン製布で
擦ることにより配向処理を行う手法であり、きわめて安
価なプロセスとして多用されている。
This rubbing treatment method is a method of carrying out an orientation treatment by rubbing the surface of the orientation film with a rayon cloth, nylon cloth, or cotton cloth having a fiber diameter of about 5 μm to 20 μm. Yes, it is often used as an extremely inexpensive process.

【0005】しかしながら、本手法による液晶分子の配
向メカニズムはまだ充分解明されておらず、配向処理の
不均一性に基づく表示むらや表示不良が製造上の大きな
問題となる場合も少なくない。
However, the alignment mechanism of liquid crystal molecules by this method has not been sufficiently clarified, and display unevenness and display defects due to non-uniformity of the alignment treatment often cause a serious problem in manufacturing.

【0006】このような状況に鑑み、配向処理された配
向膜の均一性を評価する方法が提案されている。例え
ば、配向膜面内での膜位相差、あるいは複屈折性の分布
を測定する手法が広沢ら(I.Hirosawa,
T.Matsushita, H.Miuyairi,
and S.Saito, Jpn. J. App
l. Phys., 38, 2851 (199
9))より提案されているが、測定に長時間を要するこ
とや、高価なエリプソメータが必要であることなどの課
題を有している。
In view of such a situation, a method for evaluating the uniformity of the alignment film subjected to the alignment treatment has been proposed. For example, a method of measuring the film retardation in the plane of the alignment film or the distribution of birefringence is described by Hirosawa et al.
T. Matushita, H .; Miuiriri,
and S. Saito, Jpn. J. App
l. Phys. , 38, 2851 (199
9)) has been proposed, but it has problems such as requiring a long time for measurement and an expensive ellipsometer.

【0007】配向膜表面の状態を評価する手法として
は、プレチルト角、表面アンカリングエネルギー、ある
いは安息角を評価する手法が確立されているものの、配
向膜特性の面内分布については何ら情報を得ることが出
来ない。
As a method for evaluating the state of the alignment film surface, a method for evaluating the pretilt angle, surface anchoring energy, or repose angle has been established, but no information is obtained on the in-plane distribution of the alignment film characteristics. I can't.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、その第1の解決手段として、その透過軸
方向がお互いに直交する2枚の偏光板間に挟持され、か
つ、対向する2枚の電極基板間にp型ネマティック液晶
が封入され水平配向している液晶セルであり、前記液晶
の配向方位が前記偏光板透過軸方位と略平行、あるいは
略垂直である液晶セルに電圧を印加した時の透過光量の
変化でもって配向の均一性を評価することを特徴とする
配向均一性評価方法を提案するものであり、その第2の
解決手段として、その透過軸方向がお互いに直交する2
枚の偏光板間に挟持され、かつ、対向する2枚の電極基
板間にn型ネマティック液晶が封入され垂直配向してい
る液晶セルであり、前記液晶屈折率楕円体を基板面へ正
射影したときの長軸方向が前記偏光板透過軸方位と略平
行、あるいは略垂直である液晶セルに電圧を印加した時
の透過光量の変化でもって配向の均一性を評価すること
を特徴とする配向均一性評価方法を提案するものであ
り、その第3の解決手段として、その透過軸方向がお互
いに直交する2枚の偏光板間に挟持され、かつ、対向す
る2枚の電極基板間にp型ネマティック液晶が封入され
水平配向している液晶セルであり、前記液晶の配向方位
が前記偏光板透過軸方位と略平行、あるいは略垂直であ
る液晶セルに電圧V1、V2、V3、・・・・、Vnを
印加した時の透過光量の総和でもって配向の均一性を評
価することを特徴とする配向均一性評価方法を提案する
ものであり、その第4の解決手段として、その透過軸方
向がお互いに直交する2枚の偏光板間に挟持され、か
つ、対向する2枚の電極基板間にn型ネマティック液晶
が封入され垂直配向している液晶セルであり、前記液晶
屈折率楕円体を基板面へ正射影したときの長軸方向が前
記偏光板透過軸方位と略平行、あるいは略垂直である液
晶セルに電圧V1、V2、V3、・・・・、Vnを印加
した時の透過光量の総和でもって配向の均一性を評価す
ることを特徴とする配向均一性評価方法を提案するもの
である。
In order to solve the above-mentioned problems, the present invention provides, as a first means for solving the problems, it is sandwiched between two polarizing plates whose transmission axis directions are orthogonal to each other, and they are opposed to each other. A liquid crystal cell in which a p-type nematic liquid crystal is sealed between two electrode substrates and horizontally aligned, and a liquid crystal cell in which the alignment orientation of the liquid crystal is substantially parallel or substantially vertical to the transmission axis orientation of the polarizing plate is applied. The present invention proposes an alignment uniformity evaluation method characterized in that the uniformity of alignment is evaluated by the change in the amount of transmitted light when a voltage is applied. As a second solution, the transmission axis directions are mutually Two orthogonal
A liquid crystal cell sandwiched between a pair of polarizing plates and having an n-type nematic liquid crystal enclosed between two opposing electrode substrates and vertically aligned. The liquid crystal refractive index ellipsoid is orthographically projected onto the substrate surface. Alignment uniformity characterized by evaluating the uniformity of alignment by the change in the amount of transmitted light when a voltage is applied to a liquid crystal cell whose long axis direction is substantially parallel or perpendicular to the transmission axis direction of the polarizing plate. As a third means for solving the problem, a p-type p-type substrate which is sandwiched between two polarizing plates whose transmission axis directions are orthogonal to each other and which is opposed to each other is provided. Voltages V1, V2, V3, ... Are applied to liquid crystal cells in which nematic liquid crystal is enclosed and horizontally aligned, and the liquid crystal cells in which the alignment direction of the liquid crystal is substantially parallel to or perpendicular to the transmission axis direction of the polarizing plate. , Vn when transmitted light The present invention proposes an alignment uniformity evaluation method characterized in that the alignment uniformity is evaluated by the sum of the above, and as a fourth solution thereof, two polarizing plates whose transmission axis directions are orthogonal to each other are proposed. A liquid crystal cell sandwiched between and sandwiching n-type nematic liquid crystal between two opposing electrode substrates, and having a vertical alignment, and a long axis when the liquid crystal refractive index ellipsoid is orthographically projected onto the substrate surface. The uniformity of alignment is evaluated by the total amount of transmitted light when voltages V1, V2, V3, ..., Vn are applied to a liquid crystal cell whose direction is substantially parallel to or perpendicular to the transmission axis direction of the polarizing plate. The present invention proposes an orientation uniformity evaluation method characterized by

【0009】さらに具体的な解決手段としては、その第
1の解決手段として、その透過軸方向がお互いに直交す
る2枚の偏光板間に挟持され、かつ、対向する2枚の電
極基板間にp型ネマティック液晶が封入され水平配向し
ている液晶セルであり、前記液晶の配向方位が前記偏光
板透過軸方位と略平行、あるいは略垂直である液晶セル
に電圧を印加する手段を有する配向均一性評価装置を用
いるものであり、その第2の解決手段として、その透過
軸方向がお互いに直交する2枚の偏光板間に挟持され、
かつ、対向する2枚の電極基板間にn型ネマティック液
晶が封入され垂直配向している液晶セルであり、前記液
晶屈折率楕円体を基板面へ正射影したときの長軸方向が
前記偏光板透過軸方位と略平行、あるいは略垂直である
液晶セルに電圧を印加する手段を有する配向均一性評価
装置を用いるものであり、その第3の解決手段として、
対向する2枚の電極基板間にp型ネマティック液晶が封
入され水平配向している液晶セルであり、前記液晶の配
向方位が入射光側偏光板透過軸方位と略平行、あるいは
略垂直である液晶セルに電圧を印加する手段、および前
記液晶セルの位相差を測定する手段を有する配向均一性
評価装置を用いるものでありその第4の解決手段とし
て、対向する2枚の電極基板間にn型ネマティック液晶
が封入され垂直配向している液晶セルであり、前記液晶
屈折率楕円体を基板面へ正射影したときの長軸方向が入
射光側偏光板透過軸方位と略平行、あるいは略垂直であ
る液晶セルに電圧を印加する手段、および前記液晶セル
の位相差を測定する手段を有する配向均一性評価装置を
用いるものである。
As a more specific means for solving the problem, as a first means for solving the problem, it is sandwiched between two polarizing plates whose transmission axis directions are orthogonal to each other, and between two electrode substrates facing each other. A liquid crystal cell in which a p-type nematic liquid crystal is enclosed and horizontally aligned, wherein the liquid crystal cell has a uniform alignment direction having means for applying a voltage to the liquid crystal cell in which the alignment direction of the liquid crystal is substantially parallel to or perpendicular to the transmission axis direction of the polarizing plate. As a second means for solving the problem, a property evaluation device is sandwiched between two polarizing plates whose transmission axis directions are orthogonal to each other,
A liquid crystal cell in which an n-type nematic liquid crystal is sealed between two electrode substrates facing each other and vertically aligned, and the long axis direction when the liquid crystal refractive index ellipsoid is orthogonally projected onto the substrate surface is the polarizing plate. An alignment uniformity evaluation apparatus having a means for applying a voltage to a liquid crystal cell that is substantially parallel or substantially perpendicular to the transmission axis direction is used.
A liquid crystal cell in which a p-type nematic liquid crystal is sealed between two facing electrode substrates and horizontally aligned, and the alignment direction of the liquid crystal is substantially parallel to or perpendicular to the transmission axis direction of the incident light side polarizing plate. An alignment uniformity evaluation apparatus having a means for applying a voltage to the cell and a means for measuring the phase difference of the liquid crystal cell is used. As a fourth solving means therefor, an n-type between two opposing electrode substrates is used. A liquid crystal cell in which a nematic liquid crystal is enclosed and vertically aligned, and the long axis direction when the liquid crystal refractive index ellipsoid is orthographically projected onto the substrate surface is substantially parallel to or substantially perpendicular to the transmission axis direction of the incident light side polarizing plate. An alignment uniformity evaluation apparatus having means for applying a voltage to a liquid crystal cell and means for measuring the phase difference of the liquid crystal cell is used.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の態様につい
て図面を参照しつつ詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings.

【0011】(実施の形態1)図2は本発明の配向均一
性評価方法および配向均一性評価装置の検証に用いた液
晶セルの構成外観図であり、均一配向を示す液晶セルと
して下記の方法にて液晶セルA(p型ネマチック液晶)
を作製した。
(Embodiment 1) FIG. 2 is an external view of the configuration of a liquid crystal cell used for verification of an alignment uniformity evaluation method and an alignment uniformity evaluation apparatus of the present invention. Liquid crystal cell A (p-type nematic liquid crystal)
Was produced.

【0012】ここで、p型ネマチック液晶とは、液晶分
子の中における双極子モーメントの方向が、液晶分子の
長軸方向と平行なものをいい、これに対して、双極子モ
ーメントの方向が、液晶分子の短軸方向と平行なものを
n型ネマチック液晶と言う。
Here, the p-type nematic liquid crystal refers to a liquid crystal molecule in which the dipole moment direction is parallel to the long axis direction of the liquid crystal molecule, while the dipole moment direction is Those parallel to the minor axis direction of liquid crystal molecules are called n-type nematic liquid crystals.

【0013】透明電極2、7を有する2枚のガラス基板
1、8上に日産化学工業(株)製ポリイミド配向膜塗料
SE−7792をスピンコート法にて塗布し、恒温槽中
180℃、1時間乾燥硬化させる。その後、レーヨン製
ラビング布を用いて基板の配向処理を行ったのち、対向
する基板上の液晶配向方位が反平行となるよう、積水フ
ァインケミカル(株)製スペーサ5、およびストラクト
ボンド352A(三井東圧化学(株)製シール樹脂の商
品名)を用いて基板間隔が5.0μmとなるように貼り
合わせ、液晶セル9を作製した。
On two glass substrates 1 and 8 having transparent electrodes 2 and 7, a polyimide alignment film paint SE-7792 manufactured by Nissan Chemical Industries, Ltd. was applied by a spin coating method, and 180 ° C. in a constant temperature bath, 1 Let dry and harden for hours. After that, after subjecting the substrate to orientation treatment using a rayon rubbing cloth, Sekisui Fine Chemical Co., Ltd. spacer 5 and Structbond 352A (Mitsui Toatsu Co., Ltd.) are used so that the liquid crystal orientation on the opposing substrate is anti-parallel. A liquid crystal cell 9 was manufactured by using a seal resin (trade name, manufactured by Kagaku Co., Ltd.) and adhering the substrates so that the distance between the substrates was 5.0 μm.

【0014】次に、作製した液晶セルに4’−シアノ−
4−ペンチルビフェニル(メルク社製)を真空注入法に
て注入し、液晶セルAとした。
Next, 4'-cyano-was added to the prepared liquid crystal cell.
Liquid crystal cell A was obtained by injecting 4-pentylbiphenyl (manufactured by Merck & Co., Inc.) by a vacuum injection method.

【0015】また、図2と同様のセル構成を有し、不均
一配向を示す液晶セルとして下記の方法にて液晶セルB
(p型)を作製した。
A liquid crystal cell B having a cell structure similar to that shown in FIG. 2 and exhibiting non-uniform alignment is prepared by the following method.
(P type) was produced.

【0016】透明電極2、7を有する2枚のガラス基板
1、8上に日産化学工業(株)製ポリイミド配向膜塗料
SE−7792をスピンコート法にて塗布し、恒温槽中
180℃、1時間乾燥硬化させる。その後、レーヨン製
ラビング布を用いて基板の配向処理を行ったのち、図3
に示されるマスクを介して波長313nmの紫外線光を
配向膜表面に500mJ/cm2照射した。その後、対
向する基板上の液晶配向方位が反平行となるよう、積水
ファインケミカル(株)製スペーサ5、およびストラク
トボンド352A(三井東圧化学(株)製シール樹脂の
商品名)を用いて基板間隔が5.0μmとなるように貼
り合わせ、液晶セル9を作製した。
On two glass substrates 1 and 8 having transparent electrodes 2 and 7, a polyimide alignment film paint SE-7792 manufactured by Nissan Chemical Industries, Ltd. was applied by a spin coating method, and 180 ° C. in a constant temperature bath, 1 Let dry and harden for hours. After that, after performing a substrate orientation treatment using a rayon rubbing cloth, FIG.
The alignment film surface was irradiated with ultraviolet light having a wavelength of 313 nm at 500 mJ / cm 2 through the mask shown in FIG. Then, using Sekisui Fine Chemical Co., Ltd. spacer 5 and StructBond 352A (trade name of Mitsui Toatsu Chemical Co., Ltd. seal resin) so that the liquid crystal alignment directions on the opposing substrates are anti-parallel. To be 5.0 μm, and a liquid crystal cell 9 was produced.

【0017】次に、作製した液晶セルに4’−シアノ−
4−ペンチルビフェニル(メルク社製)を真空注入法に
て注入し、液晶セルBとした。液晶セルB基板表面にお
いて、紫外線の照射された領域では配向膜高分子鎖が裂
断されており、プレチルト角が紫外線の照射されていな
い領域に比べて低くなっている。この紫外線照射がなさ
れていない領域でのプレチルト角と紫外線照射がなされ
た領域でのプレチルト角は、別途作製した液晶セルでの
測定より、それぞれ10.7度と4.6度であった。
Next, 4'-cyano-was added to the prepared liquid crystal cell.
4-Pentylbiphenyl (manufactured by Merck) was injected by a vacuum injection method to obtain a liquid crystal cell B. On the surface of the substrate of the liquid crystal cell B, the polymer chains of the alignment film are torn in the region irradiated with ultraviolet rays, and the pretilt angle is lower than that in the region not irradiated with ultraviolet rays. The pretilt angle in the region not irradiated with ultraviolet rays and the pretilt angle in the region irradiated with ultraviolet rays were 10.7 degrees and 4.6 degrees, respectively, as measured by a liquid crystal cell prepared separately.

【0018】次に、作製した液晶セルA、あるいは液晶
セルBを、図4に示される本発明の配向均一性評価装置
内に保持し、その電圧−輝度特性を測定した。ここにお
いて、液晶セル9は2枚の偏光板11、12間に挟持さ
れており、その配設角度は図1の通りである。なお、1
0は光源、13は光検知器、14は電源を示している。
また、15、16は各々光源側、観察側基板の配向処理
方向、17、18は各々偏光子、検光子の偏光軸方向を
示している。
Next, the produced liquid crystal cell A or liquid crystal cell B was held in the alignment uniformity evaluation apparatus of the present invention shown in FIG. 4 and its voltage-luminance characteristic was measured. Here, the liquid crystal cell 9 is sandwiched between the two polarizing plates 11 and 12, and the arrangement angle is as shown in FIG. 1
Reference numeral 0 is a light source, 13 is a photodetector, and 14 is a power source.
Further, reference numerals 15 and 16 respectively indicate the alignment treatment directions of the light source side and the observation side substrate, and 17 and 18 respectively indicate the polarization axis directions of the polarizer and the analyzer.

【0019】図5は液晶セルA、Bに30Hz矩形波を
印加した時の電圧−輝度特性を示しており、配向均一性
の高い液晶セル(液晶セルA)では、印加する電圧値を
増加させていっても透過光輝度は殆ど変化しないが、配
向均一性の低い液晶セル(液晶セルB)では低電圧領域
で透過光輝度が増加することが分かる。
FIG. 5 shows the voltage-luminance characteristics when a 30 Hz rectangular wave is applied to the liquid crystal cells A and B. In the liquid crystal cell with high alignment uniformity (liquid crystal cell A), the applied voltage value is increased. Even though the transmitted light brightness hardly changes, the transmitted light brightness increases in the low voltage region in the liquid crystal cell (liquid crystal cell B) having low alignment uniformity.

【0020】本発明の配向均一性評価装置により何故配
向均一性が評価出来るかを以下に説明する。
The reason why the alignment uniformity can be evaluated by the alignment uniformity evaluation apparatus of the present invention will be described below.

【0021】従来、対向する2枚の電極基板間にp型ネ
マティック液晶を有し、図1の光学配置を有する液晶セ
ルに外部電界を印加しても、入射した光は透過してこな
いと信じられていた。また、数値計算によっても光透過
は起こり得ないと考えられていた。
Conventionally, it is believed that even if an external electric field is applied to a liquid crystal cell having a p-type nematic liquid crystal between two opposing electrode substrates and having the optical arrangement of FIG. 1, incident light does not pass through. It was being done. It was also considered that light transmission could not occur even by numerical calculation.

【0022】しかしながら、本発明者らは前記構成にお
いて、配向膜面内にプレチルト角、アンカリングエネル
ギー、安息角等の液晶セルの電圧−輝度特性に影響を及
ぼす特性の分布が存在する場合には、低電圧領域で検光
子から光が出射することを発見し、本発明を構築するに
至った。
However, the inventors of the present invention, in the above structure, when there is a distribution of characteristics such as pretilt angle, anchoring energy, and angle of repose that affect the voltage-luminance characteristics of the liquid crystal cell in the plane of the alignment film. The inventors have found that light is emitted from the analyzer in the low voltage region, and have completed the present invention.

【0023】本発明の配向均一性評価装置の検証に用い
た液晶セルB基板上の液晶配向の状態の一例を模式的に
図6に示す。領域Iは相対的にプレチルト角の高い領域
であり、領域IIは相対的にプレチルト角の低い領域を
表している。いま、基板上下方向に外部電界が印加され
た場合には、全ての領域において液晶分子は電界方向に
揃うように立ち上がっていくが、その時の液晶分子の傾
き角は領域によって異なる。即ち、領域Iでの液晶分子
の傾き角は、領域IIでの液晶分子の傾き角よりも大き
くなる。この時、領域Iおよび領域IIにおいては液晶
分子の配向方位と偏光板透過軸方向とは平行になってい
るため検光子によってセル透過光は完全に遮られる。し
かしながら、領域Iと領域IIとの境界領域において
は、図7の如く液晶分子の配向方位が配向処理方向(ラ
ビング処理の方向)から変位するため、その複屈折性の
ためセルに入射した光の一部分は検光子を透過する。
FIG. 6 schematically shows an example of the state of liquid crystal alignment on the liquid crystal cell B substrate used for verification of the alignment uniformity evaluation apparatus of the present invention. Region I is a region with a relatively high pretilt angle, and region II is a region with a relatively low pretilt angle. Now, when an external electric field is applied in the vertical direction of the substrate, the liquid crystal molecules rise so as to be aligned in the electric field direction in all regions, but the tilt angle of the liquid crystal molecules at that time varies depending on the regions. That is, the tilt angle of the liquid crystal molecules in the region I is larger than the tilt angle of the liquid crystal molecules in the region II. At this time, in the regions I and II, the orientation of the liquid crystal molecules is parallel to the transmission axis of the polarizing plate, so the cell transmitted light is completely blocked by the analyzer. However, in the boundary region between the region I and the region II, the alignment direction of the liquid crystal molecules is displaced from the alignment treatment direction (rubbing treatment direction) as shown in FIG. A part passes through the analyzer.

【0024】上記は領域Iと領域IIとの違いを、プレ
チルト角の違いでもって説明したが、必ずしもプレチル
ト角の違いである必要はない。即ち、電圧印加により液
晶分子の立ち上がり方が異なることが重要であり、2つ
の領域においてプレチルト角、表面アンカリングエネル
ギー、安息角、表面エネルギー、配向膜膜厚、あるいは
液晶層厚が異なっていても同様の効果が得られることは
言うまでもない。
Although the difference between the region I and the region II has been described above by the difference in the pretilt angle, the difference in the pretilt angle is not necessarily required. That is, it is important that liquid crystal molecules rise differently depending on voltage application, and even if the pretilt angle, surface anchoring energy, repose angle, surface energy, alignment film thickness, or liquid crystal layer thickness is different in the two regions. It goes without saying that the same effect can be obtained.

【0025】本実施の形態1においては、液晶セルAお
よび液晶セルBの配向均一性の評価方法として、電圧−
輝度特性の比較でもって行ったが、定量化に当たって
は、各印加電圧での輝度値の総和を求めることが好まし
い。また更に簡便な方法としては、特定の印加電圧値で
の輝度、あるいは規格化された輝度でもって評価するこ
とも適格である。
In the first embodiment, as a method for evaluating the alignment uniformity of the liquid crystal cells A and B, the voltage-
Although the comparison was carried out by comparing the brightness characteristics, it is preferable to obtain the sum of the brightness values at each applied voltage in the quantification. As a simpler method, it is appropriate to evaluate the brightness at a specific applied voltage value or the standardized brightness.

【0026】本発明の配向均一性評価方法の妥当性を確
認するため、封入される液晶材料がメルク社製ゲストホ
スト液晶ZLI−3735であること以外は、液晶セル
Aおよび液晶セルBと全く同等仕様の液晶セルGH−A
及び液晶セルGH−Bを作製し、入射光側のみに偏光板
を、その偏向軸が配向膜の配向処理方向に平行になるよ
うに配置し、10.0Vと2.0Vでの輝度比(コント
ラスト比)を求めた。測定の結果は、液晶セルGH−A
のコントラスト比は80:1であり、液晶セルBのコン
トラスト比は12.7:1であり、液晶セルGH−Bの
配向均一性が悪いことが確認された。
In order to confirm the validity of the alignment uniformity evaluation method of the present invention, exactly the same as liquid crystal cell A and liquid crystal cell B except that the liquid crystal material to be enclosed is a guest host liquid crystal ZLI-3735 manufactured by Merck. Specifications liquid crystal cell GH-A
A liquid crystal cell GH-B was prepared, and a polarizing plate was arranged only on the incident light side so that its deflection axis was parallel to the alignment treatment direction of the alignment film, and the luminance ratio at 10.0 V and 2.0 V ( The contrast ratio) was determined. The measurement result is the liquid crystal cell GH-A.
The contrast ratio of the liquid crystal cell B was 80: 1, the contrast ratio of the liquid crystal cell B was 12.7: 1, and it was confirmed that the alignment uniformity of the liquid crystal cell GH-B was poor.

【0027】(実施の形態2)液晶配向方位が異なるこ
と以外は、実施の形態1における液晶セルBと全く同様
にして液晶セルC(p型)を作製した。偏光板の軸方向
及び液晶配向の方向との関係を図8の如く設定し、図4
に示される本発明の配向均一性評価装置にてその電圧−
輝度特性を測定したところ、液晶セルBの場合と同様の
結果が得られた。
(Embodiment 2) A liquid crystal cell C (p-type) was manufactured in exactly the same manner as the liquid crystal cell B in Embodiment 1 except that the liquid crystal orientation was different. The relationship between the axial direction of the polarizing plate and the direction of liquid crystal alignment is set as shown in FIG.
In the orientation uniformity evaluation apparatus of the present invention shown in FIG.
When the luminance characteristics were measured, the same result as in the case of the liquid crystal cell B was obtained.

【0028】(実施の形態3)図2は本発明の配向均一
性評価方法および配向均一性評価装置の検証に用いた液
晶セルの構成外観図であり、均一配向を示す液晶セルと
して下記の方法にて液晶セルD(n型)を作製した。
(Embodiment 3) FIG. 2 is an external view of the configuration of a liquid crystal cell used for verification of the alignment uniformity evaluation method and alignment uniformity evaluation apparatus of the present invention. The following method is used as a liquid crystal cell exhibiting uniform alignment. Then, a liquid crystal cell D (n type) was produced.

【0029】透明電極2、7を有する2枚のガラス基板
1、8上にJSR(株)製ポリイミド配向膜塗料JAL
S−650をスピンコート法にて塗布し、恒温槽中18
0℃、1時間乾燥硬化させる。その後、ナイロン製ラビ
ング布を用いて基板の配向処理を行ったのち、対向する
基板上の液晶配向方位が反平行となるよう、積水ファイ
ンケミカル(株)製スペーサ5、およびストラクトボン
ド352A(三井東圧化学(株)製シール樹脂の商品
名)を用いて基板間隔が5.5μmとなるように貼り合
わせ、液晶セル9を作製した。次に、作製した液晶セル
9にMLC−2038(メルク社製)を真空注入法にて
注入し、液晶セルDとした。
On the two glass substrates 1 and 8 having the transparent electrodes 2 and 7, a polyimide alignment film paint JAL manufactured by JSR Co., Ltd.
S-650 was applied by spin coating, and then in a constant temperature bath.
Dry and cure at 0 ° C. for 1 hour. After that, after subjecting the substrate to orientation treatment using a nylon rubbing cloth, the spacer 5 made by Sekisui Fine Chemical Co., Ltd. and the struct bond 352A (Mitsui Toatsu Co., Ltd.) are arranged so that the liquid crystal orientation on the opposing substrate becomes antiparallel. A liquid crystal cell 9 was manufactured by using a seal resin (trade name, manufactured by Kagaku Co., Ltd.) and adhering the substrates so that the distance between the substrates was 5.5 μm. Next, MLC-2038 (manufactured by Merck & Co., Inc.) was injected into the manufactured liquid crystal cell 9 by a vacuum injection method to obtain a liquid crystal cell D.

【0030】また、不均一配向を示す液晶セルとして下
記の方法にて液晶セルEを作製した。
A liquid crystal cell E having a non-uniform orientation was prepared by the following method.

【0031】透明電極2、7を有する2枚のガラス基板
1、8上にJSR(株)製ポリイミド配向膜塗料JAL
S−240をスピンコート法にて塗布し、恒温槽中18
0℃、1時間乾燥硬化させる。その後、ナイロン製ラビ
ング布を用いて基板の配向処理を行ったのち、図3に示
されるマスクを介して波長313nmの紫外光を配向膜
表面に500mJ/cm2照射した。その後、対向する
基板上の液晶配向方位が反平行となるよう、積水ファイ
ンケミカル(株)製スペーサ5、およびストラクトボン
ド352A(三井東圧化学(株)製シール樹脂の商品
名)を用いて基板間隔が5.5μmとなるように貼り合
わせ、液晶セル9を作製した。次に、作製した液晶セル
9にMLC−2038(メルク社製)を真空注入法にて
注入し、液晶セルEとした。
On the two glass substrates 1 and 8 having the transparent electrodes 2 and 7, a polyimide alignment film paint JAL manufactured by JSR Co., Ltd.
S-240 was applied by spin coating method, and kept in a constant temperature bath for 18
Dry and cure at 0 ° C. for 1 hour. After that, the substrate was subjected to the alignment treatment using a nylon rubbing cloth, and then the alignment film surface was irradiated with ultraviolet light having a wavelength of 313 nm through the mask shown in FIG. 3 at 500 mJ / cm 2 . Then, using Sekisui Fine Chemical Co., Ltd. spacer 5 and StructBond 352A (trade name of Mitsui Toatsu Chemical Co., Ltd. seal resin) so that the liquid crystal alignment directions on the opposing substrates are anti-parallel. To be 5.5 μm, and a liquid crystal cell 9 was produced. Next, MLC-2038 (manufactured by Merck & Co., Inc.) was injected into the manufactured liquid crystal cell 9 by a vacuum injection method to obtain a liquid crystal cell E.

【0032】次に、作製した液晶セルD、あるいは液晶
セルEを、図9に示される本発明の配向均一性評価装置
内に保持し、その電圧−位相差特性を測定した。なお、
19は回転検光子を示している。その他については図4
と同様なので説明を省略する。ここにおいて、液晶セル
Dおよび液晶セルEの配向処理方向と入射光側偏光板の
偏向軸方向とは、お互いに平行となるように配置した。
図10は液晶セルD、Eに30Hz矩形波を印加した時
の電圧−位相差特性を示している。
Next, the produced liquid crystal cell D or liquid crystal cell E was held in the alignment uniformity evaluation apparatus of the present invention shown in FIG. 9 and its voltage-phase difference characteristic was measured. In addition,
Reference numeral 19 indicates a rotary analyzer. Others are shown in Figure 4.
The description is omitted because it is the same as. Here, the alignment treatment directions of the liquid crystal cell D and the liquid crystal cell E and the deflection axis direction of the incident light side polarization plate were arranged to be parallel to each other.
FIG. 10 shows voltage-phase difference characteristics when a 30 Hz rectangular wave is applied to the liquid crystal cells D and E.

【0033】これらの実施の形態より明らかなように、
本発明の配向均一性評価装置によれば配向膜表面での配
向均一性を簡便に測定評価することが出来、その実用的
価値は極めて大きい。
As is clear from these embodiments,
According to the alignment uniformity evaluation apparatus of the present invention, the alignment uniformity on the surface of the alignment film can be easily measured and evaluated, and its practical value is extremely large.

【0034】(実施の形態4)図2は本発明の配向均一
性評価方法および配向均一性評価装置の検証に用いた液
晶セルの構成外観図である。
(Embodiment 4) FIG. 2 is an external view of the configuration of a liquid crystal cell used for verification of the alignment uniformity evaluation method and alignment uniformity evaluation apparatus of the present invention.

【0035】透明電極2、7を有する2枚のガラス基板
1、8上に2,3,5−シクロペンチルトリカルボキシ
リックジアンヒドリドと4,4’−ジアミノジフェニル
メタンとの等モル混合物の3.3wt.%N−メチル−
2−ピロリドン溶液をスピンコート法にて塗布し、恒温
槽中180℃、1時間乾燥硬化させる。その後、レーヨ
ン製ラビング布を用いて、お互いに異なった配向処理条
件にて、基板の配向処理を行ったのち、対向する基板上
の液晶配向方位が反平行となるよう、積水ファインケミ
カル(株)製スペーサ5、およびストラクトボンド35
2A(三井東圧化学(株)製シール樹脂の商品名)を用
いて基板間隔が5.0μmとなるように貼り合わせ、p
型の液晶セル9を作製した。
On two glass substrates 1 and 8 having transparent electrodes 2 and 7, 3.3 wt.% Of an equimolar mixture of 2,3,5-cyclopentyltricarboxyl dianhydride and 4,4'-diaminodiphenylmethane. % N-methyl-
A 2-pyrrolidone solution is applied by spin coating and dried and cured at 180 ° C. for 1 hour in a constant temperature bath. After that, using a rayon rubbing cloth, the substrates are subjected to the alignment treatment under mutually different alignment treatment conditions, and then the liquid crystal alignment directions on the opposing substrates are made antiparallel to each other by Sekisui Fine Chemical Co., Ltd. Spacer 5 and struct bond 35
2A (trade name of sealing resin manufactured by Mitsui Toatsu Chemicals, Inc.) was used to bond the substrates so that the distance between the substrates was 5.0 μm.
A mold type liquid crystal cell 9 was produced.

【0036】次に、作製した液晶セルにメルク社製液晶
ZLI−4792を真空注入法にて注入し、液晶セルF
〜液晶セルJとした。この時の配向処理条件と液晶セル
番号との対応を表1に示す。
Next, a liquid crystal ZLI-4792 manufactured by Merck Ltd. was injected into the prepared liquid crystal cell by a vacuum injection method to obtain a liquid crystal cell F.
Liquid crystal cell J was used. Table 1 shows the correspondence between the alignment treatment conditions and the liquid crystal cell numbers at this time.

【0037】[0037]

【表1】 [Table 1]

【0038】その後、実施の形態1と同様にして本発明
の配向均一性評価装置によりその電圧−輝度特性を測定
した。印加した電圧は0.1Vから5.0Vまで0.1
Vごとであり、各印加電圧値における輝度の総和Sでも
って配向均一性の指標とした。表2に測定結果を示す。
Then, the voltage-luminance characteristic was measured by the alignment uniformity evaluation apparatus of the present invention in the same manner as in the first embodiment. The applied voltage is 0.1V to 5.0V, 0.1
It is for each V, and the sum of brightness S at each applied voltage value was used as an index of orientation uniformity. Table 2 shows the measurement results.

【0039】[0039]

【表2】 [Table 2]

【0040】表1および表2より、ラビング処理時の押
し込み量が小さい時には、ラビング布の配向膜面に対す
る接触の程度が不均一なため、配向均一性が不充分とな
ることが分かる。ここにおいて、液晶セルFのS値が液
晶セルGのS値よりも小さくなっているのは、液晶セル
Fのプレチルト角が大きくなっており、配向膜面内の不
均一性が低減されていることによるものと思われる。
It can be seen from Tables 1 and 2 that when the amount of pushing in the rubbing treatment is small, the degree of contact of the rubbing cloth with the surface of the alignment film is not uniform, resulting in insufficient alignment uniformity. Here, the S value of the liquid crystal cell F is smaller than the S value of the liquid crystal cell G because the pretilt angle of the liquid crystal cell F is large and the nonuniformity in the alignment film plane is reduced. It seems that it is due to a thing.

【0041】以上の如く、本発明の配向均一性評価方法
および配向均一性評価装置は、配向膜の配向処理の状態
を容易に知ることができ、その実用的価値は大きい。
As described above, the alignment uniformity evaluation method and the alignment uniformity evaluation apparatus of the present invention can easily know the state of the alignment treatment of the alignment film and have great practical value.

【0042】[0042]

【発明の効果】以上のように、本発明は、その透過軸方
向がお互いに直交する2枚の偏光板間に挟持され、か
つ、対向する2枚の電極基板間にp型ネマティック液晶
(あるいは、n型ネマティック液晶)が封入され水平配
向(あるいは、垂直配向)している液晶セルであり、前
記液晶の配向方位が前記偏光板透過軸方位と略平行、あ
るいは略垂直である液晶セルに電圧を印加した時の透過
光量の変化でもって配向の均一性を評価することを特徴
とする配向均一性評価方法、およびその装置を提供する
ものであり、その構成からも明らかなように安価で簡便
な配向均一性評価装置を提供することが出来る。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, a p-type nematic liquid crystal (or a p-type nematic liquid crystal is sandwiched between two electrode substrates which are sandwiched between two polarizing plates whose transmission axis directions are orthogonal to each other. , N-type nematic liquid crystal) is enclosed and horizontally aligned (or vertically aligned), and a voltage is applied to the liquid crystal cell in which the alignment direction of the liquid crystal is substantially parallel to or perpendicular to the transmission axis direction of the polarizing plate. The present invention provides an alignment uniformity evaluation method characterized by evaluating the uniformity of alignment by the change in the amount of transmitted light when a voltage is applied, and an apparatus therefor. It is possible to provide a good alignment uniformity evaluation apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる配向均一性評価装置の第1の実
施形態に用いた液晶セルAおよび液晶セルBの各要素の
光学配置を説明するための図
FIG. 1 is a diagram for explaining an optical arrangement of each element of a liquid crystal cell A and a liquid crystal cell B used in a first embodiment of an alignment uniformity evaluation apparatus according to the present invention.

【図2】本発明に係わる配向均一性評価装置の第1の実
施形態に用いた液晶セルAの断面構成を概念的に示す図
FIG. 2 is a diagram conceptually showing a cross-sectional structure of a liquid crystal cell A used in the first embodiment of the alignment uniformity evaluation apparatus according to the present invention.

【図3】本発明に係わる配向均一性評価装置の第1の実
施形態に用いた液晶セルB作製で使用したフォトマスク
パターンを説明するための図
FIG. 3 is a diagram for explaining a photomask pattern used in manufacturing the liquid crystal cell B used in the first embodiment of the alignment uniformity evaluation apparatus according to the present invention.

【図4】本発明に係わる配向均一性評価装置の一構成例
を説明するための図
FIG. 4 is a diagram for explaining a configuration example of an alignment uniformity evaluation apparatus according to the present invention.

【図5】本発明に係わる配向均一性評価装置で測定され
た液晶セルAおよび液晶セルBの電圧−輝度特性を説明
するための図
FIG. 5 is a diagram for explaining voltage-luminance characteristics of the liquid crystal cell A and the liquid crystal cell B measured by the alignment uniformity evaluation apparatus according to the present invention.

【図6】本発明に係わる配向均一性評価装置の第1の実
施形態に用いた液晶セルB基板上の液晶配向の状態を説
明するための図
FIG. 6 is a diagram for explaining the state of liquid crystal alignment on the liquid crystal cell B substrate used in the first embodiment of the alignment uniformity evaluation apparatus according to the present invention.

【図7】本発明において、配向均一性評価が可能となる
原理を説明するための図
FIG. 7 is a diagram for explaining the principle that enables orientation uniformity evaluation in the present invention.

【図8】本発明に係わる配向均一性評価装置の第2の実
施形態に用いた液晶セルCの各要素の光学配置を説明す
るための図
FIG. 8 is a diagram for explaining the optical arrangement of each element of the liquid crystal cell C used in the second embodiment of the alignment uniformity evaluation apparatus according to the present invention.

【図9】本発明に係わる配向均一性評価装置の一構成例
を説明するための図
FIG. 9 is a diagram for explaining an example of the configuration of an alignment uniformity evaluation apparatus according to the present invention.

【図10】本発明に係わる配向均一性評価装置で測定さ
れた液晶セルDおよび液晶セルEの電圧−位相差特性を
説明するための図
FIG. 10 is a diagram for explaining the voltage-phase difference characteristics of the liquid crystal cell D and the liquid crystal cell E measured by the alignment uniformity evaluation apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1,8 ガラス基板 2,7 透明電極 3,6 配向膜 4 液晶層 5 スペーサ 9 液晶セル 10 光源 11,12 偏光板 13 光検知器 14 電源 15 光源側基板の配向処理方向 16 観察者側基板の配向処理方向 17 偏光子の偏光軸方向 18 検光子の偏光軸方向 19 回転検光子 1,8 glass substrate 2,7 transparent electrode 3,6 Alignment film 4 Liquid crystal layer 5 spacers 9 Liquid crystal cell 10 light sources 11,12 Polarizer 13 Photodetector 14 power supply 15 Orientation direction of light source side substrate 16 Observer-side substrate orientation processing direction 17 Polarizer polarization direction 18 Direction of polarization axis of analyzer 19 Rotation analyzer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西山 和廣 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2G086 EE10 2H049 BA02 BB03 BC23 2H088 FA11 FA30 HA01 HA18 HA28 JA06 MA20 2H090 HB08Y JB02 KA06 LA02 LA09 LA16 MA01 MA02 MA16 MB01 MB03 MB06 MB09 MB12 2H091 FA08X FA08Z FA41Z GA01 GA08 LA30    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kazuhiro Nishiyama             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 2G086 EE10                 2H049 BA02 BB03 BC23                 2H088 FA11 FA30 HA01 HA18 HA28                       JA06 MA20                 2H090 HB08Y JB02 KA06 LA02                       LA09 LA16 MA01 MA02 MA16                       MB01 MB03 MB06 MB09 MB12                 2H091 FA08X FA08Z FA41Z GA01                       GA08 LA30

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 その透過軸方向がお互いに直交する2枚
の偏光板間に挟持され、かつ、対向する2枚の電極基板
間にp型ネマティック液晶が封入され水平配向している
液晶セルであり、前記液晶の配向方位が前記偏光板透過
軸方位と略平行、あるいは略垂直である液晶セルに電圧
を印加した時の透過光量の変化でもって配向の均一性を
評価することを特徴とする配向均一性評価方法。
1. A liquid crystal cell which is sandwiched between two polarizing plates whose transmission axis directions are orthogonal to each other, and in which a p-type nematic liquid crystal is sealed between two electrode substrates facing each other and which is horizontally aligned. And the uniformity of alignment is evaluated by the change in the amount of transmitted light when a voltage is applied to a liquid crystal cell in which the alignment direction of the liquid crystal is substantially parallel or substantially perpendicular to the polarizing plate transmission axis direction. Orientation uniformity evaluation method.
【請求項2】 その透過軸方向がお互いに直交する2枚
の偏光板間に挟持され、かつ、対向する2枚の電極基板
間にn型ネマティック液晶が封入され垂直配向している
液晶セルであり、前記n型ネマチック液晶を基板面へ正
射影したときの長軸方向が前記偏光板透過軸方位と略平
行、あるいは略垂直である液晶セルに電圧を印加した時
の透過光量の変化でもって配向の均一性を評価すること
を特徴とする配向均一性評価方法。
2. A liquid crystal cell which is sandwiched between two polarizing plates whose transmission axis directions are orthogonal to each other, and in which n-type nematic liquid crystal is sealed between two electrode substrates facing each other, and which is vertically aligned. And the change in the amount of transmitted light when a voltage is applied to a liquid crystal cell whose major axis direction when the n-type nematic liquid crystal is orthographically projected onto the substrate surface is substantially parallel or substantially perpendicular to the transmission axis direction of the polarizing plate. A method for evaluating alignment uniformity, which comprises evaluating the uniformity of alignment.
【請求項3】 その透過軸方向がお互いに直交する2枚
の偏光板間に挟持され、かつ、対向する2枚の電極基板
間にp型ネマティック液晶が封入され水平配向している
液晶セルであり、前記液晶の配向方位が前記偏光板透過
軸方位と略平行、あるいは略垂直である液晶セルに電圧
V1、V2、V3、・・・・、Vnを印加した時の透過
光量の総和でもって配向の均一性を評価することを特徴
とする配向均一性評価方法。
3. A liquid crystal cell which is sandwiched between two polarizing plates whose transmission axis directions are orthogonal to each other, and in which a p-type nematic liquid crystal is sealed between two electrode substrates facing each other and which is horizontally aligned. The total amount of transmitted light when voltages V1, V2, V3, ..., Vn are applied to a liquid crystal cell in which the orientation of the liquid crystal is substantially parallel or substantially perpendicular to the transmission axis orientation of the polarizing plate. A method for evaluating alignment uniformity, which comprises evaluating the uniformity of alignment.
【請求項4】 その透過軸方向がお互いに直交する2枚
の偏光板間に挟持され、かつ、対向する2枚の電極基板
間にn型ネマティック液晶が封入され垂直配向している
液晶セルであり、前記n型ネマチック液晶を基板面へ正
射影したときの長軸方向が前記偏光板透過軸方位と略平
行、あるいは略垂直である液晶セルに電圧V1、V2、
V3、・・・・、Vnを印加した時の透過光量の総和で
もって配向の均一性を評価することを特徴とする配向均
一性評価方法。
4. A liquid crystal cell which is sandwiched between two polarizing plates whose transmission axis directions are orthogonal to each other, and in which n-type nematic liquid crystal is sealed between two electrode substrates facing each other, and which is vertically aligned. The voltage V1, V2 is applied to the liquid crystal cell whose major axis direction when the n-type nematic liquid crystal is orthographically projected onto the substrate surface is substantially parallel or substantially perpendicular to the polarizing plate transmission axis direction.
An alignment uniformity evaluation method characterized in that the alignment uniformity is evaluated by the total amount of transmitted light when V3, ..., Vn is applied.
【請求項5】 その透過軸方向がお互いに直交する2枚
の偏光板間に挟持され、かつ、対向する2枚の電極基板
間にp型ネマティック液晶が封入され水平配向している
液晶セルであり、前記液晶の配向方位が前記偏光板透過
軸方位と略平行、あるいは略垂直である液晶セルに電圧
を印加する手段を有する配向均一性評価装置。
5. A liquid crystal cell which is sandwiched between two polarizing plates whose transmission axis directions are orthogonal to each other, and in which a p-type nematic liquid crystal is sealed between two electrode substrates facing each other and which is horizontally aligned. An alignment uniformity evaluation apparatus having means for applying a voltage to a liquid crystal cell in which the alignment direction of the liquid crystal is substantially parallel or substantially perpendicular to the transmission axis direction of the polarizing plate.
【請求項6】 その透過軸方向がお互いに直交する2枚
の偏光板間に挟持され、かつ、対向する2枚の電極基板
間にn型ネマティック液晶が封入され垂直配向している
液晶セルであり、前記液晶屈折率楕円体を基板面へ正射
影したときの長軸方向が前記偏光板透過軸方位と略平
行、あるいは略垂直である液晶セルに電圧を印加する手
段を有する配向均一性評価装置。
6. A liquid crystal cell which is sandwiched between two polarizing plates whose transmission axis directions are orthogonal to each other, and in which n-type nematic liquid crystal is sealed between two electrode substrates facing each other, and which is vertically aligned. Alignment uniformity evaluation having means for applying a voltage to a liquid crystal cell whose major axis direction when the liquid crystal refractive index ellipsoid is orthographically projected onto a substrate surface is substantially parallel or substantially perpendicular to the transmission axis direction of the polarizing plate apparatus.
【請求項7】 光検知器を有することを特徴とする請求
項5または請求項6のいずれかに記載の配向均一性評価
装置。
7. The alignment uniformity evaluation apparatus according to claim 5, further comprising a photodetector.
【請求項8】 対向する2枚の電極基板間にp型ネマテ
ィック液晶が封入され水平配向している液晶セルであ
り、前記液晶の配向方位が入射光側偏光板透過軸方位と
略平行、あるいは略垂直である液晶セルに電圧を印加す
る手段、および前記液晶セルの位相差を測定する手段を
有する配向均一性評価装置。
8. A liquid crystal cell in which a p-type nematic liquid crystal is enclosed between two opposing electrode substrates and horizontally aligned, and the alignment orientation of the liquid crystal is substantially parallel to the transmission axis orientation of the incident light side polarizing plate, or An alignment uniformity evaluation apparatus having means for applying a voltage to a liquid crystal cell which is substantially vertical, and means for measuring a phase difference of the liquid crystal cell.
【請求項9】 対向する2枚の電極基板間にn型ネマテ
ィック液晶が封入され垂直配向している液晶セルであ
り、前記液晶屈折率楕円体を基板面へ正射影したときの
長軸方向が入射光側偏光板透過軸方位と略平行、あるい
は略垂直である液晶セルに電圧を印加する手段、および
前記液晶セルの位相差を測定する手段を有する配向均一
性評価装置。
9. A liquid crystal cell in which an n-type nematic liquid crystal is enclosed between two electrode substrates facing each other and vertically aligned, and the major axis direction when the liquid crystal refractive index ellipsoid is orthographically projected onto the substrate surface. An alignment uniformity evaluation apparatus having means for applying a voltage to a liquid crystal cell that is substantially parallel or substantially perpendicular to the transmission axis direction of the incident light side polarizing plate, and means for measuring the phase difference of the liquid crystal cell.
【請求項10】 前記液晶セルが、アンチパラレル配向
セルであることを特徴とする請求項1〜請求項6、請求
項8、または請求項9のいずれかに記載の配向均一性評
価装置。
10. The alignment uniformity evaluation apparatus according to claim 1, wherein the liquid crystal cell is an anti-parallel alignment cell.
【請求項11】 前記液晶セルが、パラレル配向セルで
あることを特徴とする請求項1〜請求項6、請求項8、
または請求項9のいずれかに記載の配向均一性評価装
置。
11. The liquid crystal cell is a parallel alignment cell, wherein the liquid crystal cell is a parallel alignment cell.
Alternatively, the alignment uniformity evaluation apparatus according to claim 9.
JP2001355612A 2001-11-21 2001-11-21 Method and device for evaluating alignment uniformity Pending JP2003156726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001355612A JP2003156726A (en) 2001-11-21 2001-11-21 Method and device for evaluating alignment uniformity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001355612A JP2003156726A (en) 2001-11-21 2001-11-21 Method and device for evaluating alignment uniformity

Publications (1)

Publication Number Publication Date
JP2003156726A true JP2003156726A (en) 2003-05-30

Family

ID=19167291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001355612A Pending JP2003156726A (en) 2001-11-21 2001-11-21 Method and device for evaluating alignment uniformity

Country Status (1)

Country Link
JP (1) JP2003156726A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104460062A (en) * 2014-12-12 2015-03-25 深圳市华星光电技术有限公司 Optical alignment characteristic detection method, device and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104460062A (en) * 2014-12-12 2015-03-25 深圳市华星光电技术有限公司 Optical alignment characteristic detection method, device and system
WO2016090653A1 (en) * 2014-12-12 2016-06-16 深圳市华星光电技术有限公司 Optical alignment characteristic detection method, apparatus and system
CN104460062B (en) * 2014-12-12 2018-09-18 深圳市华星光电技术有限公司 A kind of smooth orientation characteristic detecting method, apparatus and system

Similar Documents

Publication Publication Date Title
KR970000356B1 (en) Light polymer alignment film forming method of liquid crystal display element
KR0182876B1 (en) Method for controlling pretilt direction for lcd cell
JP2016194700A (en) Liquid crystal display and manufacturing method of the same
TWI559057B (en) A liquid crystal display device, and a liquid crystal display device
US20050260334A1 (en) Method of achieving high pretilt angles in a lilquid crystal cell
KR101258263B1 (en) Alignment axis measuring sample for liquid crystal display, and manufacturing method thereof
JP2567404B2 (en) Liquid crystal device and its manufacturing method
KR100357214B1 (en) Liquid crystal display device
US9581869B2 (en) In-plane switching mode liquid crystal display device and fabrication method thereof
US5946064A (en) Alignment layer, method for forming alignment layer and LCD having the same
JP4546586B2 (en) Liquid crystal display element and manufacturing method thereof
US6184958B1 (en) Method of aligning an optically active compound contained in a polymer film on a substrate
JP3471591B2 (en) Reflective liquid crystal device and method of manufacturing the same
KR100254857B1 (en) Method for aligning high molecular thin film and method for aligning liquid crystal using the same
KR20020017047A (en) liquid crystal display device and manufacturing method thereof
JP2003156726A (en) Method and device for evaluating alignment uniformity
JP2003156745A (en) Optical modulator
JP2000206532A (en) Manufacture of liquid crystal display element and liquid crystal display element
KR100268031B1 (en) Fabrication method for photosensitive alignment layer of lcd
KR100255072B1 (en) Method of forming an optical alignment film of a liquid crystal display device
JPH06337405A (en) Liquid crystal electro-optical device and manufacture thereof
KR101045174B1 (en) Fabrication method for Liquid Crystal Display device
JPH06337418A (en) Liquid crystal electro-optical device
KR100200390B1 (en) The method of controlling pretilt of liquid crystal molecules in liquid crystal cell
JP4202619B2 (en) Pretilt angle measuring method and pretilt angle measuring apparatus