JP2003151970A - Substrate-processing apparatus - Google Patents

Substrate-processing apparatus

Info

Publication number
JP2003151970A
JP2003151970A JP2001349081A JP2001349081A JP2003151970A JP 2003151970 A JP2003151970 A JP 2003151970A JP 2001349081 A JP2001349081 A JP 2001349081A JP 2001349081 A JP2001349081 A JP 2001349081A JP 2003151970 A JP2003151970 A JP 2003151970A
Authority
JP
Japan
Prior art keywords
substrate
gas
processing
processing gas
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001349081A
Other languages
Japanese (ja)
Inventor
Kenji Shinozaki
賢次 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2001349081A priority Critical patent/JP2003151970A/en
Publication of JP2003151970A publication Critical patent/JP2003151970A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve uniformity of film thickness by keeping the uniformity of temperature distribution within the plane of substrate due to the processing gas introduced in the substrate processing apparatus. SOLUTION: The substrate processing apparatus to perform the predetermined processes to a substrate 7, by supplying the processing gas thereto comprises a substrate-setting unit 4 for setting the substrate, a heat-generating unit 8 for heating the substrate, a processing gas inlet unit 21 for supplying the processing gas to the locations other than the main surface of substrate with the flow in a direction perpendicular to the main surface of substrate from the upper side of the main surface of substrate being set to the substrate setting unit, and a gas venting 15 for venting the introduced processing gas toward the external side of the substrate.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は半導体装置の製造工
程の1つであるウェーハ等の被処理基板に酸化膜の生
成、エッチング、薄膜の生成等所要の基板処理を行う基
板処理装置に関するものである。 【0002】 【従来の技術】図6に於いて、従来の基板処理装置につ
いて説明する。 【0003】図6は基板処理装置の内、一度に一枚或は
数枚を処理する枚葉式の基板処理装置の処理室部分を示
している。 【0004】基板処理容器1は容器本体2と蓋体3によ
って気密に構成され、前記容器本体2には昇降可能な基
板載置部4が収納され、又前記蓋体3には天井面との間
にガス溜5を形成するガス分散板6が、前記基板載置部
4に対向する様に設けられている。前記ガス分散板6と
前記基板載置部4との間の空間は処理空間を形成する。 【0005】前記基板載置部4は上面にウェーハ等処理
される基板7が載置され、前記基板載置部4の内部には
抵抗発熱体等の発熱部8が設けられ、又前記基板載置部
4に対して相対的に昇降する基板押上げ部9が設けら
れ、該基板押上げ部9は前記発熱部8、基板載置部4の
基板載置台11を貫通する押上げピン12を有してい
る。 【0006】前記ガス分散板6は多数のガス分散孔13
が穿設されており、前記ガス溜5にはガス供給系14が
連通し、該ガス供給系14は図示しないガス供給源に接
続され、前記ガス溜5にガスを供給する様になってお
り、供給されたガスは前記ガス溜5から前記ガス分散孔
13より分散され、前記容器本体2内に均等に導入され
る様になっている。 【0007】該容器本体2には排気系15が連通し、該
排気系15は図示しない排気装置に接続されている。 【0008】前記容器本体2には基板搬入出口16が設
けられ、該基板搬入出口16はゲート弁17によって開
閉され、前記基板搬入出口16を通して、図示しない基
板搬送機構が前記基板載置台11に基板7を載置、払出
しする様になっている。尚、前記基板載置部4の支持部
18が前記容器本体2を貫通する部分はベローズ19よ
ってシールされている。 【0009】前記基板7の処理について説明する。 【0010】前記基板処理容器1内が真空状態で、図示
しない基板搬送機構が前記基板搬入出口16を通して前
記基板7を前記基板載置台11に載置する。 【0011】前記基板7の基板載置台11への載置は、
前記基板載置部4が降下することで、前記押上げピン1
2が突出し、前記基板搬送機構は前記押上げピン12に
基板7を載置する。基板搬送機構が退出した状態で、前
記基板載置部4が上昇し、前記基板7が基板載置台11
に載置される。 【0012】前記ゲート弁17が前記基板搬入出口16
を気密に閉塞し、前記ガス供給系14より窒素ガス等の
不活性ガスが供給され、前記排気系15より排気され
る。基板処理容器1内は図示しない圧力制御機構によ
り、所定の圧力に調整され、前記発熱部8により基板7
が所定温度に加熱される。 【0013】該基板7が所定温度に加熱された状態で、
前記ガス供給系14より酸素等、基板処理に応じた処理
ガスが前記不活性ガスに切替えられて供給される。処理
ガスは前記ガス溜5を経て前記ガス分散孔13から前記
基板7の全面に向って均等に流出し、該基板7の表面に
沿って流れ、前記排気系15より排気される。 【0014】導入されたガスは加熱され、前記基板7と
反応して該基板7に所定の膜、例えば酸化膜等が生成さ
れる。所定時間が経過し、基板処理が完了すると、処理
ガスの供給を停止し、前記排気系15より真空引きし、
更に前記発熱部8による加熱を停止し、前記基板7を所
定温度迄降温させる。 【0015】その後、前記基板載置部4が降下し、前記
基板搬入出口16より前記基板搬送機構が前記基板7を
基板処理容器1外部に払出す。 【0016】一連の作動が繰返され、基板が処理され
る。 【0017】 【発明が解決しようとする課題】上記した従来の基板処
理装置に於いては、導入されたガスは冷たく、又前記基
板7に向って供給され、更に基板の表面に沿って流れる
為、基板を冷却することとなり、基板の面内温度分布を
悪化させることとなる。基板の反応状態は温度に影響さ
れる為、面内温度分布が悪くなると酸化膜等の膜厚の均
一性を悪化させるという問題がある。 【0018】本発明は斯かる実情に鑑み、導入された処
理ガスにより基板の面内温度分布の均一性が損われない
様にして膜厚の均一性を向上させるものである。 【0019】 【課題を解決するための手段】本発明は、基板に処理ガ
スを供給して、基板に所要の処理を行う基板処理装置に
於いて、基板を載置する基板載置部と、基板を加熱する
発熱部と、前記基板載置部に載置された基板の基板主面
の上方側から該基板主面に対し垂直な方向の流れにより
基板主面以外の位置に処理ガスを供給する処理ガス導入
部と、導入された処理ガスを基板の外方に向って流れる
様に排気するガス排気部とを具備した基板処理装置に係
るものである。 【0020】 【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態を説明する。 【0021】図1、図2中、図6中で示したものと同一
のものには同符号を付してある。 【0022】基板処理容器1は容器本体2と蓋体3によ
って気密に構成され、前記容器本体2には昇降可能で且
つ回転可能な基板載置部4が収納され、前記蓋体3と前
記基板載置部4との間の空間は処理空間を形成する。
又、処理状態では基板載置台11と蓋体3とは近接した
状態となる。 【0023】前記基板載置部4は上面にウェーハ等処理
される基板7が載置され、前記基板載置部4の内部には
抵抗発熱体等の発熱部8が設けられ、又前記基板載置部
4に対して相対的に昇降する基板押上げ部9が設けら
れ、該基板押上げ部9は前記発熱部8、基板載置部4の
基板載置台11を貫通する押上げピン12を有してい
る。 【0024】前記蓋体3の下面、即ち前記基板載置台1
1と対峙する面には環状の溝21が形成され、該溝21
には円周所要等分した箇所(本実施の形態では4箇所)
にガス導入孔22が穿設されている。又、前記溝21の
直径は基板7の外径と略同等か若しくは大きくなってい
る。 【0025】前記ガス導入孔22にはガス供給系14が
連通しており、該ガス供給系14は更に処理ガス供給
源、或は窒素ガス等の不活性ガス供給源(いずれも図示
せず)に接続され、前記ガス供給系14に設けられてい
るバルブにより、処理ガス、窒素ガス或は複数のガスが
混合され供給可能となっている。又、前記ガス供給系1
4には流量制御器23が設けられ、前記基板処理容器1
内に導入するガスの流量が制御可能となっている。又、
前記容器本体2の複数箇所(均等な位置)には排気系1
5が接続され、該排気系15は図示しない真空ポンプ等
を具備する排気装置に接続されている。前記排気系15
には圧力検出器24が設けられ、該圧力検出器24は前
記基板処理容器1内の圧力を検出する様になっている。 【0026】前記基板載置部4内には前記基板載置台1
1を介して前記基板7を加熱する前記発熱部8への給電
は発熱制御部25を介して行われる。又、図示しないが
前記基板載置台11の温度を検出する温度検出器が設け
られており、該温度検出器は基板載置台11の温度、即
ち基板7の温度を検出し、前記発熱制御部25に検出結
果を送出する様になっている。 【0027】前記圧力検出器24で検出した基板処理容
器1内の圧力は、制御部26に入力され、該制御部26
は基板処理容器1内の圧力が目標の処理圧力となる様前
記流量制御器23を制御してガスの流量を調整する。
又、前記制御部26は前記発熱制御部25に加熱指令を
発すると共に設定温度を指令し、該発熱制御部25は前
記温度検出器からの温度検出結果に基づき前記発熱部8
への電力を制御し、発熱量を調整する。 【0028】前記容器本体2には基板搬入出口16が設
けられ、該基板搬入出口16はゲート弁17によって開
閉され、前記基板搬入出口16を通して、図示しない基
板搬送機構が前記基板載置台11に基板7を載置、払出
しする様になっている。尚、前記基板載置部4の支持部
18が前記容器本体2を貫通する部分はベローズ19よ
ってシールされている。 【0029】前記基板7の処理について説明する。 【0030】前記基板処理容器1内が真空状態で、図示
しない基板搬送機構が前記基板搬入出口16を通して基
板7を前記基板載置台11に載置する。 【0031】前記基板7の基板載置台11への載置は、
前記基板載置部4が降下することで、前記押上げピン1
2が突出し、前記基板搬送機構は前記押上げピン12に
基板7を載置する。前記基板搬送機構が退出した状態
で、前記基板載置部4が上昇し、前記基板7が基板載置
台11に載置される。前記基板7が載置された状態で、
前記基板載置部4が定速回転される。該基板載置部4の
回転により基板処理の円周方向の均一性が向上される。 【0032】前記ゲート弁17が前記基板搬入出口16
を気密に閉塞し、前記ガス供給系14より窒素ガス等の
不活性ガスが供給され、前記排気系15より排気され
る。基板処理容器1内は前記制御部26、流量制御器2
3、圧力検出器24等の圧力制御機構により、所定の圧
力(負圧)に調整され、前記発熱部8により基板7が加
熱され、前記温度検出器(図示せず)、発熱制御部25
等の温度制御機構により前記基板7が所定温度に加熱制
御される。 【0033】該基板7が所定温度に加熱された状態で、
前記ガス供給系14より酸素等、基板処理に応じた処理
ガスが前記不活性ガスに切替えられて前記ガス導入孔2
2へ供給される。 【0034】処理ガスは基板処理の内容に応じ、単一ガ
スの場合もあり、又異なる種類のガスが供給される場合
もある。異なる種類のガスが供給される場合の供給方法
としては、予め所定の比率に混合した混合ガスを前記ガ
ス導入孔22へ供給する場合もあり、又所定の流量比に
制御したガスを個々に前記ガス導入孔22へ供給する場
合もある。 【0035】処理ガスとしては、窒素ガス、酸素ガス、
水素ガス、水蒸気、NH3 の単一ガス、或は2種の混合
ガスが用いられる。 【0036】前記ガス導入孔22に導入された処理ガス
は、先ず前記溝21で膨張し、該溝21に沿って流れ、
更に基板処理容器1内全体に拡散していく。又、前記排
気系15により排気されているので、ガス全体の流れと
しては前記溝21から基板主面(処理される基板の表
面)に向って垂直方向に流下し、更に前記排気系15に
向って流れる。又、前記した様に排気系15は容器本体
2の複数箇所に連通しているので、排気は前記基板載置
部4の周囲均等な位置から排気される。この為、前記溝
21から拡散したガスは前記基板7の主面の中心に向か
っては流れず、基板載置台11の周囲に向って流れる。
上記した様に、前記基板処理容器1内は負圧であり、処
理ガスは拡散によって前記基板7の中央にも充分に供給
される。 【0037】処理ガスは前記基板7の外周の前記基板主
面以外の位置から供給され、更に前記基板載置部4の周
囲に向って流れるので、外部から導入された処理ガスが
直接前記基板7に接触することがなく、又導入された後
も前記基板7の表面を流れないので、該基板7が処理ガ
スにより冷却されることがない。 【0038】この為、基板7の面内温度が処理ガスの導
入により影響を受けることがなく、膜厚の均一性が向上
する。 【0039】尚、前記溝21と前記基板7の関係は、前
記発熱部8による基板7の加熱状態、基板の処理内容に
応じて選択すればよい。即ち、前記溝21の直径を基板
7の直径より大きくするか、略同一とするか、或は若干
小さくするか等である。いずれにしても、前記基板7の
周囲の近傍から処理ガスを導入することとなり、反応に
必要な反応種は拡散により基板7の中央部にも充分に供
給される。 【0040】所定時間が経過し、基板処理が完了する
と、処理ガスの供給を停止し、前記排気系15より真空
引きし、更に前記発熱部8による加熱を停止し、前記基
板7を所定温度迄降温させる。 【0041】その後、前記基板載置部4が降下し、前記
基板搬入出口16より前記基板搬送機構が基板7を基板
処理容器1外部に払出す。 【0042】一連の作動が繰返され、基板が処理され
る。 【0043】図3は第2の実施の形態を示すものであ
り、前記蓋体3の内部に環状空間27を形成し、該環状
空間27に連通するシャワー孔28を所要数同一円周
上、等間隔に設け、前記環状空間27には複数箇所でガ
ス供給系14を連通している。 【0044】前記シャワー孔28が設けられている円周
は、前記基板7の直径に略等しいか、或は大きくなって
いる。 【0045】本実施の形態では、前記ガス供給系14か
ら供給された処理ガスが、一旦前記環状空間27に溜め
られ、更に前記シャワー孔28を通して導入される。前
記環状空間27が設けられることで、前記ガス供給系1
4が複数箇所であっても、多数の前記シャワー孔28か
ら処理ガスが均等に導入される。 【0046】該シャワー孔28から導入された処理ガス
は、拡散により基板処理容器1内全体に広がり、而もガ
ス全体の流れとしては基板主面の上方から基板主面に対
し垂直方向に流下し、基板主面以外の位置に供給された
後、前記基板処理容器1の周辺に向って流れる。 【0047】従って、前記基板7を冷却することなく処
理ガスの供給が行える。 【0048】図5は第3の実施の形態を示しており、該
第3の実施の形態では、前記蓋体3の下面、前記基板7
と対向する範囲を突出させ円状の凸部31を形成し、又
該凸部31の周囲にドーナツ状の溝32を形成したもの
である。前記ガス供給系14が接続されるガス導入孔2
2は前記凸部31の外周に沿って均等間隔で複数箇所設
けられる。 【0049】前記凸部31の下面と前記基板載置台11
(図1参照)間は接近しており、前記ガス導入孔22か
ら供給された処理ガスは、前記溝32内で外方に向って
流れ、更に基板処理容器1内全体に拡散していく。本実
施の形態でも、処理ガスは拡散により、前記凸部31と
基板7間の間隙にも回込み、反応に必要な反応種は充分
に供給される。又、導入された処理ガスは直接前記基板
7の表面、特に処理される対象となる基板主面を流れる
ことはないので、前記基板7を冷却することがなく、面
内温度分布に影響を与えることがない。 【0050】 【発明の効果】以上述べた如く本発明によれば、基板に
処理ガスを供給して、基板に所要の処理を行う基板処理
装置に於いて、基板を載置する基板載置部と、基板を加
熱する発熱部と、前記基板載置部に載置された基板の基
板主面の上方側から該基板主面に対し垂直な方向の流れ
により基板主面以外の位置に処理ガスを供給する処理ガ
ス導入部と、導入された処理ガスを基板の外方に向って
流れる様に排気するガス排気部とを具備したので、導入
された処理ガスにより基板の面内温度分布の均一性が損
われることがなく膜厚の均一性が向上し、歩溜り、製品
品質が向上する等、優れた効果を発揮する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for manufacturing an oxide film on a substrate to be processed such as a wafer, which is one of the processes for manufacturing a semiconductor device. The present invention relates to a substrate processing apparatus that performs substrate processing. 2. Description of the Related Art A conventional substrate processing apparatus will be described with reference to FIG. FIG. 6 shows a processing chamber of a single-wafer type substrate processing apparatus for processing one or several substrates at a time. [0004] The substrate processing container 1 is airtightly constituted by a container body 2 and a lid 3. The container body 2 accommodates a vertically movable substrate mounting portion 4, and the lid 3 has a ceiling surface. A gas dispersion plate 6 forming a gas reservoir 5 therebetween is provided so as to face the substrate mounting portion 4. The space between the gas dispersion plate 6 and the substrate mounting part 4 forms a processing space. A substrate 7 to be processed is placed on the upper surface of the substrate mounting portion 4, and a heating portion 8 such as a resistance heating element is provided inside the substrate mounting portion 4. A substrate push-up unit 9 is provided, which rises and lowers relative to the mounting unit 4. The substrate push-up unit 9 includes the heat generating unit 8 and push-up pins 12 that penetrate the substrate mounting table 11 of the substrate mounting unit 4. Have. The gas dispersion plate 6 has a large number of gas dispersion holes 13.
A gas supply system 14 communicates with the gas reservoir 5, and the gas supply system 14 is connected to a gas supply source (not shown) so as to supply gas to the gas reservoir 5. The supplied gas is dispersed from the gas reservoir 5 through the gas dispersion holes 13 and is uniformly introduced into the container body 2. An exhaust system 15 communicates with the container body 2, and the exhaust system 15 is connected to an exhaust device (not shown). The container body 2 is provided with a substrate loading / unloading port 16, which is opened and closed by a gate valve 17, and a substrate transport mechanism (not shown) is mounted on the substrate mounting table 11 through the substrate loading / unloading port 16. 7 is placed and paid out. The portion where the support portion 18 of the substrate mounting portion 4 penetrates the container body 2 is sealed by a bellows 19. The processing of the substrate 7 will be described. While the inside of the substrate processing container 1 is in a vacuum state, a substrate transport mechanism (not shown) places the substrate 7 on the substrate mounting table 11 through the substrate loading / unloading port 16. The mounting of the substrate 7 on the substrate mounting table 11 is as follows.
When the substrate mounting portion 4 is lowered, the push-up pins 1 are moved.
2 protrudes, and the substrate transport mechanism places the substrate 7 on the push-up pins 12. With the substrate transport mechanism retracted, the substrate mounting section 4 is raised, and the substrate 7 is moved to the substrate mounting table 11.
Placed on The gate valve 17 is connected to the substrate loading / unloading port 16.
Is hermetically closed, and an inert gas such as nitrogen gas is supplied from the gas supply system 14 and exhausted from the exhaust system 15. The pressure inside the substrate processing vessel 1 is adjusted to a predetermined pressure by a pressure control mechanism (not shown), and
Is heated to a predetermined temperature. With the substrate 7 heated to a predetermined temperature,
A processing gas corresponding to the substrate processing, such as oxygen, is switched from the gas supply system 14 to the inert gas and supplied. The processing gas uniformly flows out from the gas dispersion holes 13 through the gas reservoir 5 toward the entire surface of the substrate 7, flows along the surface of the substrate 7, and is exhausted from the exhaust system 15. The introduced gas is heated and reacts with the substrate 7 to form a predetermined film on the substrate 7, for example, an oxide film. When the predetermined time has elapsed and the substrate processing is completed, the supply of the processing gas is stopped, and the evacuation system 15 is evacuated.
Further, the heating by the heating unit 8 is stopped, and the substrate 7 is cooled to a predetermined temperature. Thereafter, the substrate mounting portion 4 is lowered, and the substrate transport mechanism discharges the substrate 7 from the substrate loading / unloading port 16 to the outside of the substrate processing container 1. A series of operations is repeated to process the substrate. In the above-described conventional substrate processing apparatus, the introduced gas is cold, is supplied toward the substrate 7, and flows along the surface of the substrate. Therefore, the substrate is cooled, and the in-plane temperature distribution of the substrate is deteriorated. Since the reaction state of the substrate is affected by the temperature, there is a problem that if the in-plane temperature distribution is deteriorated, the uniformity of the thickness of the oxide film or the like is deteriorated. In view of such circumstances, the present invention is to improve the uniformity of the film thickness so that the introduced processing gas does not impair the uniformity of the in-plane temperature distribution of the substrate. According to the present invention, there is provided a substrate processing apparatus for supplying a processing gas to a substrate and performing a required processing on the substrate. A heating section for heating the substrate, and a processing gas supplied to a position other than the substrate main surface by a flow in a direction perpendicular to the substrate main surface from above the substrate main surface of the substrate placed on the substrate mounting portion. The present invention relates to a substrate processing apparatus provided with a processing gas introduction unit for performing the process and a gas exhaust unit for exhausting the introduced processing gas so as to flow toward the outside of the substrate. Embodiments of the present invention will be described below with reference to the drawings. 1 and 2, the same components as those shown in FIG. 6 are denoted by the same reference numerals. The substrate processing container 1 is hermetically constituted by a container main body 2 and a lid 3, and the container main body 2 houses a vertically movable and rotatable substrate mounting portion 4. The space between the mounting section 4 and the mounting section 4 forms a processing space.
In the processing state, the substrate mounting table 11 and the lid 3 are in a state of being close to each other. A substrate 7 to be processed is placed on the upper surface of the substrate mounting portion 4, and a heating portion 8 such as a resistance heating element is provided inside the substrate mounting portion 4. A substrate push-up unit 9 is provided, which rises and lowers relative to the mounting unit 4. The substrate push-up unit 9 includes the heat generating unit 8 and push-up pins 12 that penetrate the substrate mounting table 11 of the substrate mounting unit 4. Have. The lower surface of the lid 3, that is, the substrate mounting table 1
An annular groove 21 is formed on the surface facing the first groove 1.
Is a place where the circumference is equally divided (four places in this embodiment)
Is provided with a gas introduction hole 22. The diameter of the groove 21 is substantially equal to or larger than the outer diameter of the substrate 7. A gas supply system 14 communicates with the gas introduction hole 22. The gas supply system 14 is further provided with a processing gas supply source or an inert gas supply source such as nitrogen gas (neither is shown). And a processing gas, a nitrogen gas or a plurality of gases can be mixed and supplied by a valve provided in the gas supply system 14. In addition, the gas supply system 1
4 is provided with a flow controller 23, and the substrate processing vessel 1
The flow rate of the gas introduced into the inside can be controlled. or,
An exhaust system 1 is provided at a plurality of positions (equal positions) of the container body 2.
The exhaust system 15 is connected to an exhaust device including a vacuum pump and the like (not shown). The exhaust system 15
Is provided with a pressure detector 24, which detects the pressure in the substrate processing container 1. The substrate mounting table 4 is provided in the substrate mounting section 4.
Power is supplied to the heat generating unit 8 that heats the substrate 7 via the heat generating unit 1 via a heat control unit 25. Although not shown, a temperature detector for detecting the temperature of the substrate mounting table 11 is provided. The temperature detector detects the temperature of the substrate mounting table 11, that is, the temperature of the substrate 7. The detection result is sent to the. The pressure in the substrate processing container 1 detected by the pressure detector 24 is input to a control unit 26, and the control unit 26
Controls the flow rate controller 23 so as to adjust the gas flow rate so that the pressure in the substrate processing vessel 1 becomes a target processing pressure.
The control unit 26 issues a heating command to the heat control unit 25 and commands a set temperature. The heat control unit 25 controls the heat generation unit 8 based on a temperature detection result from the temperature detector.
To control the power to adjust the calorific value. The container body 2 is provided with a substrate loading / unloading port 16, which is opened and closed by a gate valve 17, and a substrate transport mechanism (not shown) is mounted on the substrate mounting table 11 through the substrate loading / unloading port 16. 7 is placed and paid out. The portion where the support portion 18 of the substrate mounting portion 4 penetrates the container body 2 is sealed by a bellows 19. The processing of the substrate 7 will be described. While the inside of the substrate processing container 1 is in a vacuum state, a substrate transport mechanism (not shown) places the substrate 7 on the substrate mounting table 11 through the substrate loading / unloading port 16. The mounting of the substrate 7 on the substrate mounting table 11 is as follows.
When the substrate mounting portion 4 is lowered, the push-up pins 1 are moved.
2 protrudes, and the substrate transport mechanism places the substrate 7 on the push-up pins 12. With the substrate transport mechanism retracted, the substrate mounting section 4 is raised, and the substrate 7 is mounted on the substrate mounting table 11. In a state where the substrate 7 is placed,
The substrate mounting part 4 is rotated at a constant speed. The rotation of the substrate mounting portion 4 improves the uniformity of the substrate processing in the circumferential direction. The gate valve 17 is connected to the substrate loading / unloading port 16.
Is hermetically closed, and an inert gas such as nitrogen gas is supplied from the gas supply system 14 and exhausted from the exhaust system 15. The inside of the substrate processing container 1 includes the control unit 26 and the flow controller 2.
3. The pressure is adjusted to a predetermined pressure (negative pressure) by a pressure control mechanism such as a pressure detector 24, the substrate 7 is heated by the heat generating unit 8, and the temperature detector (not shown) and the heat control unit 25 are controlled.
The substrate 7 is controlled to be heated to a predetermined temperature by a temperature control mechanism such as described above. With the substrate 7 heated to a predetermined temperature,
The processing gas corresponding to the substrate processing, such as oxygen, is switched from the gas supply system 14 to the inert gas and the gas introduction hole 2
2. The processing gas may be a single gas or a different kind of gas may be supplied depending on the contents of the substrate processing. As a supply method when different types of gases are supplied, a mixed gas previously mixed at a predetermined ratio may be supplied to the gas introduction hole 22, or the gas controlled at a predetermined flow ratio may be individually supplied to the gas introduction hole 22. In some cases, the gas is supplied to the gas introduction hole 22. As the processing gas, nitrogen gas, oxygen gas,
A single gas of hydrogen gas, water vapor and NH3, or a mixed gas of two types is used. The processing gas introduced into the gas introduction hole 22 first expands in the groove 21 and flows along the groove 21.
Further, it diffuses throughout the substrate processing vessel 1. Further, since the gas is exhausted by the exhaust system 15, the entire gas flows vertically from the groove 21 toward the main surface of the substrate (the surface of the substrate to be processed), and further flows toward the exhaust system 15. Flowing. Further, as described above, since the exhaust system 15 communicates with a plurality of locations of the container body 2, the exhaust is exhausted from a uniform position around the substrate mounting portion 4. Therefore, the gas diffused from the groove 21 does not flow toward the center of the main surface of the substrate 7 but flows toward the periphery of the substrate mounting table 11.
As described above, the inside of the substrate processing container 1 has a negative pressure, and the processing gas is sufficiently supplied to the center of the substrate 7 by diffusion. The processing gas is supplied from a position other than the main surface of the substrate on the outer periphery of the substrate 7 and further flows toward the periphery of the substrate mounting portion 4, so that the processing gas introduced from the outside is directly applied to the substrate 7 The substrate 7 does not flow through the surface of the substrate 7 even after being introduced, so that the substrate 7 is not cooled by the processing gas. Therefore, the in-plane temperature of the substrate 7 is not affected by the introduction of the processing gas, and the uniformity of the film thickness is improved. The relationship between the groove 21 and the substrate 7 may be selected in accordance with the heating state of the substrate 7 by the heating section 8 and the processing contents of the substrate. That is, whether the diameter of the groove 21 is larger than the diameter of the substrate 7, substantially the same, or slightly smaller. In any case, the processing gas is introduced from the vicinity of the periphery of the substrate 7, and the reactive species necessary for the reaction are sufficiently supplied to the central portion of the substrate 7 by diffusion. When a predetermined time has elapsed and the substrate processing is completed, the supply of the processing gas is stopped, the evacuation system 15 is evacuated, the heating by the heating unit 8 is stopped, and the substrate 7 is cooled to a predetermined temperature. Let the temperature drop. Thereafter, the substrate mounting section 4 is lowered, and the substrate transport mechanism discharges the substrate 7 from the substrate loading / unloading port 16 to the outside of the substrate processing container 1. A series of operations is repeated to process the substrate. FIG. 3 shows a second embodiment in which an annular space 27 is formed inside the lid 3 and shower holes 28 communicating with the annular space 27 are provided on the same number of circumferences. The gas supply system 14 is provided at equal intervals at a plurality of locations, and is provided at equal intervals. The circumference where the shower holes 28 are provided is substantially equal to or larger than the diameter of the substrate 7. In this embodiment, the processing gas supplied from the gas supply system 14 is temporarily stored in the annular space 27 and is introduced through the shower hole 28. By providing the annular space 27, the gas supply system 1
Even if there are a plurality of holes 4, the processing gas is uniformly introduced from many shower holes 28. The processing gas introduced from the shower hole 28 spreads throughout the substrate processing vessel 1 by diffusion, and the entire gas flows from above the substrate main surface in a direction perpendicular to the substrate main surface. After being supplied to a position other than the substrate main surface, it flows toward the periphery of the substrate processing container 1. Accordingly, the processing gas can be supplied without cooling the substrate 7. FIG. 5 shows a third embodiment. In the third embodiment, the lower surface of the lid 3 and the substrate 7
A circular convex portion 31 is formed by projecting a region opposed to the above, and a donut-shaped groove 32 is formed around the convex portion 31. Gas introduction hole 2 to which the gas supply system 14 is connected
A plurality 2 are provided at equal intervals along the outer periphery of the convex portion 31. The lower surface of the convex portion 31 and the substrate mounting table 11
The processing gas supplied from the gas introduction holes 22 flows outward in the grooves 32 and further diffuses throughout the substrate processing container 1 (see FIG. 1). Also in the present embodiment, the processing gas flows into the gap between the projection 31 and the substrate 7 by diffusion, and the reactive species necessary for the reaction are sufficiently supplied. Further, the introduced processing gas does not flow directly on the surface of the substrate 7, especially on the main surface of the substrate to be processed, so that the substrate 7 is not cooled and affects the in-plane temperature distribution. Nothing. As described above, according to the present invention, in a substrate processing apparatus for supplying a processing gas to a substrate and performing required processing on the substrate, a substrate mounting portion for mounting the substrate thereon A heating unit for heating the substrate; and a processing gas at a position other than the substrate main surface by a flow in a direction perpendicular to the substrate main surface from above the substrate main surface of the substrate mounted on the substrate mounting unit. And a gas exhaust unit for exhausting the introduced processing gas so as to flow toward the outside of the substrate, so that the introduced processing gas makes the in-plane temperature distribution of the substrate uniform. It has excellent effects such as improved uniformity of film thickness, yield, and product quality without loss of properties.

【図面の簡単な説明】 【図1】本発明の実施の形態を示す概略断面図である。 【図2】図1のA−A矢視図である。 【図3】本発明の第2実施の形態の要部を示す概略断面
図である。 【図4】図3のB−B矢視図である。 【図5】本発明の第3実施の形態の要部を示す概略断面
図である。 【図6】従来例を示す概略断面図である。 【符号の説明】 1 基板処理容器 2 容器本体 3 蓋体 4 基板載置部 7 基板 8 発熱部 9 基板押上げ部 11 基板載置台 14 ガス供給系 15 排気系 21 溝 22 ガス導入孔 27 環状空間 28 シャワー孔 31 凸部 32 溝
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view showing an embodiment of the present invention. FIG. 2 is a view as viewed in the direction of arrows AA in FIG. 1; FIG. 3 is a schematic sectional view showing a main part of a second embodiment of the present invention. FIG. 4 is a view taken in the direction of arrows BB in FIG. 3; FIG. 5 is a schematic sectional view showing a main part of a third embodiment of the present invention. FIG. 6 is a schematic sectional view showing a conventional example. DESCRIPTION OF SYMBOLS 1 Substrate processing container 2 Container main body 3 Lid 4 Substrate mounting part 7 Substrate 8 Heat generation part 9 Substrate lifting part 11 Substrate mounting base 14 Gas supply system 15 Exhaust system 21 Groove 22 Gas introduction hole 27 Annular space 28 shower hole 31 convex part 32 groove

Claims (1)

【特許請求の範囲】 【請求項1】 基板に処理ガスを供給して、基板に所要
の処理を行う基板処理装置に於いて、基板を載置する基
板載置部と、基板を加熱する発熱部と、前記基板載置部
に載置された基板の基板主面の上方側から該基板主面に
対し垂直な方向の流れにより基板主面以外の位置に処理
ガスを供給する処理ガス導入部と、導入された処理ガス
を基板の外方に向って流れる様に排気するガス排気部と
を具備したことを特徴とする基板処理装置。
Claims: 1. A substrate processing apparatus for supplying a processing gas to a substrate and performing a required processing on the substrate, wherein a substrate mounting portion on which the substrate is mounted and a heat generator for heating the substrate. And a processing gas introduction unit for supplying a processing gas to a position other than the substrate main surface by a flow in a direction perpendicular to the substrate main surface from above the substrate main surface of the substrate mounted on the substrate mounting unit. And a gas exhaust unit for exhausting the introduced processing gas so as to flow outward of the substrate.
JP2001349081A 2001-11-14 2001-11-14 Substrate-processing apparatus Pending JP2003151970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001349081A JP2003151970A (en) 2001-11-14 2001-11-14 Substrate-processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001349081A JP2003151970A (en) 2001-11-14 2001-11-14 Substrate-processing apparatus

Publications (1)

Publication Number Publication Date
JP2003151970A true JP2003151970A (en) 2003-05-23

Family

ID=19161805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001349081A Pending JP2003151970A (en) 2001-11-14 2001-11-14 Substrate-processing apparatus

Country Status (1)

Country Link
JP (1) JP2003151970A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273913A (en) * 2006-03-31 2007-10-18 Shimadzu Corp Surface wave excitation plasma treatment device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273913A (en) * 2006-03-31 2007-10-18 Shimadzu Corp Surface wave excitation plasma treatment device
JP4683334B2 (en) * 2006-03-31 2011-05-18 株式会社島津製作所 Surface wave excitation plasma processing equipment

Similar Documents

Publication Publication Date Title
KR100628888B1 (en) Apparatus for controlling temperature of a showerhead and apparatus for forming a layer having the same
KR100676979B1 (en) Film forming device
JPH11204442A (en) Single wafer heat treatment device
KR20010014782A (en) Single-substrate-treating apparatus for semiconductor processing system
WO2002059955A1 (en) Method and device for heat treatment
JP2000208439A (en) Deposition apparatus
WO2012153591A1 (en) Film-forming apparatus
US11236423B2 (en) Film-forming apparatus
JP2002155366A (en) Method and device of leaf type heat treatment
WO2015114977A1 (en) Substrate processing device
WO2015111329A1 (en) Substrate treatment device, shower plate, and substrate treatment method
JP2003151970A (en) Substrate-processing apparatus
JPH11204443A (en) Single wafer heat treatment device
JPH01283391A (en) Etching device
JPH1092754A (en) Method and device for single wafer heat treatment
JP2008078505A (en) Substrate treating equipment
US20050223981A1 (en) Processing device using shower head structure and processing method
WO2021186562A1 (en) Substrate treatment device, manufacturing method for semiconductor device, and program
JPH0461325A (en) Treating device
JP2002170774A (en) Substrate treating device
JP2011060812A (en) Substrate processing device
JP2013201333A (en) Substrate processing apparatus, manufacturing method of semiconductor device, and substrate processing method
JPH01279783A (en) Etching device
JPH07278816A (en) Treatment of body to be treated
JPH07283150A (en) Single wafer semiconductor manufacturing method and device