JP2011060812A - Substrate processing device - Google Patents

Substrate processing device Download PDF

Info

Publication number
JP2011060812A
JP2011060812A JP2009205667A JP2009205667A JP2011060812A JP 2011060812 A JP2011060812 A JP 2011060812A JP 2009205667 A JP2009205667 A JP 2009205667A JP 2009205667 A JP2009205667 A JP 2009205667A JP 2011060812 A JP2011060812 A JP 2011060812A
Authority
JP
Japan
Prior art keywords
substrate
gas
gas supply
supply unit
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009205667A
Other languages
Japanese (ja)
Inventor
Mitsuaki Tanabe
光朗 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2009205667A priority Critical patent/JP2011060812A/en
Publication of JP2011060812A publication Critical patent/JP2011060812A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate processing device that can uniformly heat a gas supply unit and shorten switching times of operations for gas supply, replacement, and discharge, etc. <P>SOLUTION: The substrate processing device that supplies a processing gas to a substrate 26 to perform predetermined processing on the substrate includes: a reaction container 8 comprising a container body 9 and a lid 11 for closing the container body from above; a substrate mounting part 16 where the substrate is mounted; a heating part 27 for heating the substrate; and the gas supply unit 2 for supplying the processing gas from above the reaction container, wherein a recessed part 17 is formed on an upper surface of the lid, the gas supply unit is stored in the recessed part, and the gas supply unit and lid are united together. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体装置の製造工程の1つであるウェーハ等の被処理基板に酸化膜の生成、エッチング、薄膜の生成等所要の基板処理を行う基板処理装置に関するものである。   The present invention relates to a substrate processing apparatus for performing required substrate processing such as generation of an oxide film, etching, and generation of a thin film on a substrate to be processed such as a wafer, which is one of manufacturing processes of a semiconductor device.

基板処理装置は反応容器、加熱装置等からなる反応炉を具備し、反応容器に基板を収納し、基板を加熱装置で所定温度に加熱し、処理ガスを反応容器内に供給して基板処理を行う。又、基板処理装置には、基板を1枚ずつ処理する枚葉式の基板処理装置と、所要枚数の基板を一度に処理するバッチ式の基板処理装置とがある。   The substrate processing apparatus includes a reaction furnace including a reaction vessel, a heating device, and the like. The substrate is stored in the reaction vessel, the substrate is heated to a predetermined temperature by the heating device, and a processing gas is supplied into the reaction vessel to perform the substrate processing. Do. The substrate processing apparatus includes a single-wafer type substrate processing apparatus that processes substrates one by one and a batch type substrate processing apparatus that processes a required number of substrates at a time.

枚葉式の基板処理装置では、反応容器に形成された搬入搬出口より基板載置部に基板(ウェーハ)が水平に載置され、基板は加熱装置により加熱されると共に、処理ガスが反応容器内に供給されることで、基板は基板載置部に載置された状態で処理がなされる様になっている。   In a single wafer type substrate processing apparatus, a substrate (wafer) is horizontally mounted on a substrate mounting portion from a loading / unloading port formed in a reaction container, the substrate is heated by a heating device, and a processing gas is supplied to the reaction container. By being supplied to the inside, the substrate is processed while being placed on the substrate placing portion.

従来の反応炉では、反応炉から離れた場所で隔離された集積ユニット内にガス供給切替えのバルブを配置し、供給を行っていたが、この場合、前記集積ユニットから前記反応炉迄の距離が長くなり、処理ガスの供給、排気、置換等の繰返し動作に時間が掛ると共に動作が安定しないという問題があった。   In a conventional reactor, a gas supply switching valve is arranged in an integrated unit that is isolated at a location remote from the reactor, and in this case, the distance from the integrated unit to the reactor is There is a problem that the operation is not stable because it takes a long time for repeated operations such as supply, exhaust and replacement of the processing gas.

上記問題を解決する為、近年高集積化が進み、図3に示される様な、反応炉1の近傍にガス供給ユニット2を配置すると共に、該ガス供給ユニット2を供給配管3を介して前記反応炉1に接続し、Metal系の液体原料を気化させ、前記ガス供給ユニット2、前記供給配管3を介して前記反応炉1に供給することが一般に行われている。   In order to solve the above problems, high integration has recently progressed, and a gas supply unit 2 is disposed in the vicinity of the reaction furnace 1 as shown in FIG. It is generally performed to connect to a reaction furnace 1, vaporize a metal-based liquid material, and supply it to the reaction furnace 1 via the gas supply unit 2 and the supply pipe 3.

前記ガス供給ユニット2は、主にエアバルブ4、流量制御器(MFC)5、圧力計等から構成され、前記エアバルブ4と前記MFC5との間は、前記供給配管3によって接続されている。   The gas supply unit 2 mainly includes an air valve 4, a flow rate controller (MFC) 5, a pressure gauge, and the like, and the air valve 4 and the MFC 5 are connected by the supply pipe 3.

又、前記ガス供給ユニット2には、前記供給配管3内のガスを排気するVENT管6が接続されると共に、前記反応炉1の上面、及び前記ガス供給ユニット2、前記供給配管3、前記VENT管6の全周にはブロックヒータ7が設けられ、前記反応炉1の、前記ガス供給ユニット2、前記供給配管3、前記VENT管6はそれぞれ前記ブロックヒータ7によって加熱される様になっている。   The gas supply unit 2 is connected to a VENT pipe 6 for exhausting the gas in the supply pipe 3, and the upper surface of the reactor 1, the gas supply unit 2, the supply pipe 3, and the VENT. A block heater 7 is provided on the entire circumference of the pipe 6, and the gas supply unit 2, the supply pipe 3 and the VENT pipe 6 of the reaction furnace 1 are heated by the block heater 7, respectively. .

Metal系の液体原料を前記反応炉1に供給する際には、ガスを安定に供給する必要があり、前記ガス供給ユニット2、前記供給配管3、前記VENT管6を均一に加熱することや、成膜処理に於けるALD処理やCVD処理等ガスの供給、置換、排気動作が繰返される処理を行う場合に、ガスの供給、置換、排気動作が安定して切替えられること等が必須条件となっている。   When supplying a metal-based liquid material to the reactor 1, it is necessary to stably supply a gas, and the gas supply unit 2, the supply pipe 3, and the VENT pipe 6 are heated uniformly, When performing gas supply, replacement, and exhaust operations such as ALD processing and CVD processing in a film formation process, it is essential that the gas supply, replacement, and exhaust operations be stably switched. ing.

然し乍ら、前記供給配管3内のガスの供給、置換、排気動作の切替えに要する時間の短縮の為、前記供給配管3を短縮し、前記反応炉1直上の空間に前記ガス供給ユニット2を固定する場合、加熱用の前記ブロックヒータ7が前記反応炉1、前記ガス供給ユニット2、前記供給配管3、前記VENT管6にそれぞれ設けられている為、前記反応炉1加熱用のブロックヒータ7が前記供給配管3に干渉し、供給ガスの温度にばらつきが生じるという問題があった。   However, in order to shorten the time required to switch the gas supply, replacement, and exhaust operation in the supply pipe 3, the supply pipe 3 is shortened and the gas supply unit 2 is fixed in the space immediately above the reactor 1. In this case, since the block heater 7 for heating is provided in the reaction furnace 1, the gas supply unit 2, the supply pipe 3, and the VENT pipe 6, respectively, the block heater 7 for heating the reaction furnace 1 is There was a problem that the supply pipe 3 interferes and the temperature of the supply gas varies.

尚、液体流量調節器と気化器を有し、キャリアガスを反応室に導入する液体材料気化ユニットが反応室の近傍に設けられている半導体装置の製造装置として、特許文献1に示されるものがある。   As a semiconductor device manufacturing apparatus having a liquid flow rate controller and a vaporizer and having a liquid material vaporization unit for introducing a carrier gas into the reaction chamber provided in the vicinity of the reaction chamber, a device disclosed in Patent Document 1 is disclosed. is there.

特開2000−133644号公報JP 2000-133644 A

本発明は斯かる実情に鑑み、ガス供給ユニットを均一に加熱すると共に、ガスの供給、置換、排気等の動作の切替え時間の短縮が可能な基板処理装置を提供するものである。   In view of such circumstances, the present invention provides a substrate processing apparatus capable of uniformly heating a gas supply unit and shortening the switching time of operations such as gas supply, replacement, and exhaust.

本発明は、基板に処理ガスを供給し、基板に所定の処理を行う基板処理装置に於いて、容器本体と該容器本体を上方から閉塞する蓋体とからなる反応容器と、基板を載置する基板載置部と、基板を加熱する発熱部と、前記反応容器の上方から処理ガスを供給するガス供給ユニットとを具備し、前記蓋体の上面には凹部が形成され、該凹部に前記ガス供給ユニットを収納し、該ガス供給ユニットと前記蓋体とを一体化した基板処理装置に係るものである。   The present invention relates to a substrate processing apparatus for supplying a processing gas to a substrate and performing a predetermined process on the substrate, and placing the substrate on the reaction container including a container main body and a lid for closing the container main body from above. A substrate mounting section, a heat generating section for heating the substrate, and a gas supply unit for supplying a processing gas from above the reaction vessel, and a recess is formed on the upper surface of the lid, The present invention relates to a substrate processing apparatus that houses a gas supply unit and integrates the gas supply unit and the lid.

本発明によれば、基板に処理ガスを供給し、基板に所定の処理を行う基板処理装置に於いて、容器本体と該容器本体を上方から閉塞する蓋体とからなる反応容器と、基板を載置する基板載置部と、基板を加熱する発熱部と、前記反応容器の上方から処理ガスを供給するガス供給ユニットとを具備し、前記蓋体の上面には凹部が形成され、該凹部に前記ガス供給ユニットを収納し、該ガス供給ユニットと前記蓋体とを一体化したので、前記ガス供給ユニットから前記反応容器に処理ガスが供給される迄の距離が短縮され、ガスの供給、置換、排気等の動作の切替えに要する時間を短縮でき、更に前記ガス供給ユニット全体を均一に加熱することができるという優れた効果を発揮する。   According to the present invention, in a substrate processing apparatus that supplies a processing gas to a substrate and performs a predetermined process on the substrate, a reaction container including a container body and a lid that closes the container body from above; A substrate mounting section to be mounted; a heat generating section for heating the substrate; and a gas supply unit for supplying a processing gas from above the reaction vessel. A recess is formed on the upper surface of the lid, and the recess The gas supply unit is housed in the unit, and the gas supply unit and the lid are integrated, so that the distance from the gas supply unit until the process gas is supplied to the reaction vessel is shortened. The time required for switching operations such as replacement and exhaust can be shortened, and further, the excellent effect that the entire gas supply unit can be uniformly heated is exhibited.

本発明に於ける反応炉の概略立断面図である。1 is a schematic sectional elevation view of a reaction furnace in the present invention. 本発明に於ける集積ユニットの分解斜視図である。It is a disassembled perspective view of the integrated unit in this invention. 従来の反応炉と集積ユニットの配置を示す概略説明図である。It is a schematic explanatory drawing which shows arrangement | positioning of the conventional reactor and integrated unit.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に於いて、本実施例の基板処理装置について説明する。尚、図1中、図3と同等のものには同符号を付し、その説明を省略する。   With reference to FIG. 1, the substrate processing apparatus of this embodiment will be described. In FIG. 1, the same components as those in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted.

図1は、基板処理装置の内、一度に一枚或は数枚の基板を処理する枚葉式の基板処理装置の反応炉1部分を示している。   FIG. 1 shows a reaction furnace 1 portion of a single wafer processing apparatus that processes one or several substrates at a time in the substrate processing apparatus.

反応容器8は、容器本体9と蝶番12を介して連結された蓋体11によって構成され、前記蓋体11は前記蝶番12を中心に上方に回転可能であると共に、前記容器本体9を気密に閉塞する。又、前記蓋体11にはガス分散板14が天井面との間にガス溜り13を形成する様に設けられ、前記ガス分散板14と前記容器本体9との間で処理空間15が形成される。該処理空間15には昇降可能且つ回転可能な基板載置部16が収納され、前記蓋体11の天井面とは反対側の面、即ち該蓋体11の上面には凹部17が形成されている。   The reaction vessel 8 is constituted by a lid body 11 connected to the vessel body 9 via a hinge 12, and the lid body 11 can be rotated upward about the hinge 12 and the vessel body 9 is hermetically sealed. Block. A gas dispersion plate 14 is provided on the lid 11 so as to form a gas reservoir 13 between the ceiling surface and a treatment space 15 is formed between the gas dispersion plate 14 and the container body 9. The The processing space 15 accommodates a substrate placing portion 16 that can be moved up and down and is rotatable. A concave portion 17 is formed on the surface of the lid body 11 opposite to the ceiling surface, that is, the upper surface of the lid body 11. Yes.

該凹部17にはガス供給ユニット2が収納され、該ガス供給ユニット2は複数の供給配管3、複数のエアバルブ4、例えば該複数のエアバルブ4にそれぞれ一体的に組込まれた流量制御器(MFC)5(図3参照)、流路部18、座板19及び図示しないVENT管6を有し、前記流路部18には前記供給配管3と前記エアバルブ4、該エアバルブ4,4を接続する流路が形成されている。   A gas supply unit 2 is housed in the recess 17, and the gas supply unit 2 includes a plurality of supply pipes 3, a plurality of air valves 4, for example, a flow rate controller (MFC) integrated into each of the plurality of air valves 4. 5 (see FIG. 3), a flow path section 18, a seat plate 19 and a VENT pipe 6 (not shown). The flow path section 18 is connected to the supply pipe 3, the air valve 4, and the air valves 4 and 4. A road is formed.

又、前記蓋体11の肉厚部には、前記凹部17に開口すると共に下面に開口するガス導入管21aがL字状に形成され、前記容器本体9の肉厚部にはガス導入管21bが上面及び下面に開口する様に穿設され、前記ガス導入管21aと前記ガス導入管21bは紙面と垂直に複数設けられている。前記ガス導入管21aの前記凹部17側の先端には管継手22が設けられ、前記ガス導入管21bの前記容器本体9の下面側の先端には図示しないガス供給源が接続されており、前記ガス導入管21aと前記ガス導入管21bの接続面は、Oリング等の密閉部材23によって気密にシールされ、前記ガス導入管21aと前記ガス導入管21bは気密な状態で連通する様になっている。   Further, a gas introduction pipe 21a that opens to the concave portion 17 and opens to the lower surface is formed in an L shape in the thick part of the lid body 11, and the gas introduction pipe 21b is formed in the thick part of the container body 9. Are opened in the upper and lower surfaces, and a plurality of the gas introduction pipes 21a and the gas introduction pipes 21b are provided perpendicular to the paper surface. A pipe joint 22 is provided at the tip of the gas introduction pipe 21a on the concave portion 17 side, and a gas supply source (not shown) is connected to the tip of the gas introduction pipe 21b on the lower surface side of the container body 9, The connection surface of the gas introduction pipe 21a and the gas introduction pipe 21b is hermetically sealed by a sealing member 23 such as an O-ring, and the gas introduction pipe 21a and the gas introduction pipe 21b communicate with each other in an airtight state. Yes.

前記ガス導入管21aは前記管継手22を介して前記供給配管3と接続可能であり、該供給配管3は前記流路部18、前記エアバルブ4に接続され、前記反応炉1の外部の図示しないガス供給源よりガス導入管21、前記供給配管3、前記流路部18を通って前記エアバルブ4にガスが供給される様になっている。該エアバルブ4は後述する制御部24に電気的に接続され、前記エアバルブ4に供給される処理ガスの流量を検知して前記制御部24にフィードバックし、該制御部24からの命令により処理ガスの流量を調節する機能を有している。   The gas introduction pipe 21 a can be connected to the supply pipe 3 through the pipe joint 22, and the supply pipe 3 is connected to the flow path portion 18 and the air valve 4, and is not shown outside the reaction furnace 1. Gas is supplied from the gas supply source to the air valve 4 through the gas introduction pipe 21, the supply pipe 3, and the flow path portion 18. The air valve 4 is electrically connected to a control unit 24, which will be described later, detects the flow rate of the processing gas supplied to the air valve 4, feeds back to the control unit 24, and in response to a command from the control unit 24, Has the function of adjusting the flow rate.

又、前記座板19には前記反応容器8内に処理ガスを供給する前記供給配管3と連通するガス導入孔25が穿設されており、前記蓋体11は前記ガス供給ユニット2を避ける様孔が穿設されたブロックヒータ7によって上面が覆われる様になっている。   The seat plate 19 is provided with a gas introduction hole 25 communicating with the supply pipe 3 for supplying the processing gas into the reaction vessel 8, so that the lid 11 avoids the gas supply unit 2. The upper surface is covered with a block heater 7 in which holes are formed.

前記基板載置部16は上面にウェーハ等の処理される基板26が載置され、前記基板載置部16の内部には抵抗発熱体等の発熱部27が設けられ、又前記基板載置部16に対して相対的に昇降する基板押上げ部28が設けられ、該基板押上げ部28は前記発熱部27、前記基板載置部16の基板載置台29を貫通する押上げピン31を有している。   A substrate 26 to be processed such as a wafer is placed on the upper surface of the substrate platform 16, and a heating unit 27 such as a resistance heating element is provided inside the substrate platform 16. A substrate push-up unit 28 that moves up and down relative to the substrate 16 is provided, and the substrate push-up unit 28 includes the heat generating unit 27 and a push-up pin 31 that passes through the substrate mounting table 29 of the substrate mounting unit 16. is doing.

前記ガス分散板14は多数のガス分散孔32が穿設されており、前記ガス溜り13にはガス供給孔33が連通し、該ガス供給孔33は前記ガス供給ユニット2及び前記ガス導入管21に連通し、図示しないガス供給源よりガスが供給される。供給されたガスは、前記ガス溜り13から前記ガス分散孔32より分散され、前記容器本体9内に均等に導入される様になっている。尚、前記ガス溜り13には図示しない炉内温度検出器が設けられており、該炉内温度検出器は前記反応容器8内に供給される処理ガスの温度を検出し、検出結果を前記制御部24にフィードバックする機能を有している。   The gas dispersion plate 14 is provided with a number of gas dispersion holes 32, and a gas supply hole 33 communicates with the gas reservoir 13, and the gas supply hole 33 is connected to the gas supply unit 2 and the gas introduction pipe 21. The gas is supplied from a gas supply source (not shown). The supplied gas is dispersed from the gas reservoir 13 through the gas dispersion holes 32 and is uniformly introduced into the container body 9. The gas reservoir 13 is provided with an in-furnace temperature detector (not shown). The in-furnace temperature detector detects the temperature of the processing gas supplied into the reaction vessel 8 and controls the detection result to the control. A function of feeding back to the unit 24 is provided.

又、該容器本体9には排気系34が連通し、該排気系34は図示しない真空ポンプ等を具備する排気装置に接続されている。前記排気系34には図示しない圧力検出器が設けられ、該圧力検出器は前記反応容器8内の圧力を検出し、前記制御部24にフィードバックする機能を有している。尚、前記排気系34は、前記ガス導入管21bと干渉しない位置に設けられている。   Further, an exhaust system 34 communicates with the container body 9, and the exhaust system 34 is connected to an exhaust device having a vacuum pump or the like (not shown). The exhaust system 34 is provided with a pressure detector (not shown). The pressure detector has a function of detecting the pressure in the reaction vessel 8 and feeding it back to the control unit 24. The exhaust system 34 is provided at a position where it does not interfere with the gas introduction pipe 21b.

前記基板載置部16には、前記基板載置台29の温度を検出する図示しない基板温度検出器が設けられており、該基板温度検出器は前記基板載置台29の温度、即ち基板26の温度を検出し、検出結果を前記制御部24にフィードバックする機能を有している。   The substrate platform 16 is provided with a substrate temperature detector (not shown) that detects the temperature of the substrate platform 29, and the substrate temperature detector is the temperature of the substrate platform 29, that is, the temperature of the substrate 26. , And a function of feeding back the detection result to the control unit 24.

該制御部24は、前記エアバルブ4、前記ブロックヒータ7、前記発熱部27、前記排気系34と電気的に接続されており、前記エアバルブ4、前記炉内温度検出器、前記基板温度検出器、前記圧力検出器からの検出結果に従って各機構を制御する様になっている。   The control unit 24 is electrically connected to the air valve 4, the block heater 7, the heat generating unit 27, and the exhaust system 34, and the air valve 4, the furnace temperature detector, the substrate temperature detector, Each mechanism is controlled according to the detection result from the pressure detector.

前記容器本体9には基板搬入出口35が設けられ、該基板搬入出口35はゲート弁36によって開閉され、前記基板搬入出口35を通して、図示しない基板搬送機構が前記基板載置台29に基板26を載置、払出しする様になっている。尚、前記基板載置部16の支持部37が前記容器本体9を貫通する部分は、ベローズ38によってシールされている。   The container body 9 is provided with a substrate loading / unloading port 35, which is opened and closed by a gate valve 36, and a substrate transfer mechanism (not shown) places the substrate 26 on the substrate mounting table 29 through the substrate loading / unloading port 35. It is designed to pay out. In addition, the part where the support part 37 of the substrate platform 16 penetrates the container body 9 is sealed by a bellows 38.

次に、図2に於いて、前記ガス供給ユニット2の詳細について説明する。   Next, the details of the gas supply unit 2 will be described with reference to FIG.

該ガス供給ユニット2は、前記エアバルブ4、前記供給配管3、前記エアバルブ4に一体的に組込まれた図示しない前記MFC5、前記VENT管6、前記流路部18、前記座板19によって構成され、該座板19、前記流路部18、前記エアバルブ4を積層することで前記ガス供給ユニット2を集積ユニット化している。   The gas supply unit 2 includes the air valve 4, the supply pipe 3, the MFC 5 (not shown) integrated into the air valve 4, the VENT pipe 6, the flow path portion 18, and the seat plate 19. The gas supply unit 2 is integrated into an integrated unit by stacking the seat plate 19, the flow path portion 18, and the air valve 4.

前記流路部18は複数の流路ブロック39から構成され、該流路ブロック39には流路のみが形成されたもの、或は直管やL字管等形状や長さが異なる前記供給配管3が固着されたもの等、様々な種類のものがあり、複数個の前記流路ブロック39を組合わせることで、所望の流路を有する流路部18が形成できる様になっている。又、前記VENT管6には図示しない真空ポンプ等の排気装置が設けられており、該排気装置を作動させることで流路内のガスを排気することができる。   The flow path portion 18 is composed of a plurality of flow path blocks 39, in which only the flow paths are formed in the flow path block 39, or the supply pipes having different shapes and lengths such as straight pipes and L-shaped pipes. There are various types such as those to which 3 is fixed, and by combining a plurality of flow path blocks 39, the flow path section 18 having a desired flow path can be formed. Further, the VENT pipe 6 is provided with an exhaust device such as a vacuum pump (not shown), and the gas in the flow path can be exhausted by operating the exhaust device.

前記ガス供給ユニット2を組立てる際には、先ず複数(例えば基板処理に使用する処理ガスの数と前記VENT管6に接続されるものを加えた数)の前記エアバルブ4を用意する。   When the gas supply unit 2 is assembled, first, a plurality of air valves 4 (for example, the number of processing gases used for substrate processing and the number connected to the VENT pipe 6) are prepared.

次に、基板処理に使用される各ガス供給源に接続された前記ガス導入管21と前記供給配管3が設けられた前記流路ブロック39を接続する。該供給配管3は、先端に螺子部40が形成され、前記ガス導入管21aの管継手22を前記螺子部40に螺着し、前記管継手22を介して前記供給配管3と前記ガス導入管21が連通される。   Next, the gas introduction pipe 21 connected to each gas supply source used for substrate processing and the flow path block 39 provided with the supply pipe 3 are connected. The supply pipe 3 has a screw portion 40 formed at the tip thereof, and a pipe joint 22 of the gas introduction pipe 21 a is screwed to the screw part 40, and the supply pipe 3 and the gas introduction pipe are connected via the pipe joint 22. 21 is communicated.

その後、前記ガス導入管21と接続された前記流路ブロック39の流路を前記エアバルブ4に接続することで、前記ガス導入管21と前記流路ブロック39の流路が連通すると共に、図示しないガス供給源から供給されるガスの流量が前記エアバルブ4によって制御される。   Thereafter, the flow path of the flow path block 39 connected to the gas introduction pipe 21 is connected to the air valve 4 so that the flow path of the gas introduction pipe 21 and the flow path block 39 communicate with each other and is not shown. The flow rate of the gas supplied from the gas supply source is controlled by the air valve 4.

他の前記ガス導入管21に対しても、上記と同様の作業を行い、基板処理に於いて使用されるガスの流量が全て前記エアバルブ4及び前記MFC5によって制御できる様にする。その後、単一のガスとして使用する場合は他のガスと混合しない様に流路を形成し、混合ガスを使用する場合は複数の流路が合流する様に流路を形成する等、用途に合わせて前記流路ブロック39を組合わせ、所望の流路を形成する。   The same operation as described above is performed for the other gas introduction pipes 21 so that the flow rate of the gas used in the substrate processing can all be controlled by the air valve 4 and the MFC 5. Then, when using it as a single gas, form a flow path so that it does not mix with other gases, and when using a mixed gas, form a flow path so that multiple flow paths merge. In addition, the flow path block 39 is combined to form a desired flow path.

尚、前記ガス導入孔25に対応する部位に載置される前記流路ブロック39は下向きに開口した流路を有し、該流路と前記ガス導入孔25が連通する様、前記座板19上に前記流路部18と前記エアバルブ4を載置することで、前記ガス供給ユニット2の組立が完了する。   The flow path block 39 placed at a position corresponding to the gas introduction hole 25 has a flow path opened downward, and the seat plate 19 is connected so that the flow path and the gas introduction hole 25 communicate with each other. The assembly of the gas supply unit 2 is completed by placing the flow path portion 18 and the air valve 4 thereon.

該ガス供給ユニット2の組立完了後は、該ガス供給ユニット2を前記凹部17に収納し、前記ガス導入孔25と前記蓋体11に形成された前記ガス供給孔33が連通する様に位置決めし、位置決め後に前記座板19の四隅に穿設された螺子孔41を介して、ボルト等の固着具により前記座板19と前記蓋体11を固定する。   After the assembly of the gas supply unit 2 is completed, the gas supply unit 2 is accommodated in the recess 17 and positioned so that the gas introduction hole 25 and the gas supply hole 33 formed in the lid body 11 communicate with each other. After the positioning, the seat plate 19 and the lid body 11 are fixed by fixing tools such as bolts through screw holes 41 formed in the four corners of the seat plate 19.

尚、前記ガス導入孔25と前記ガス供給孔33の周縁部には図示しないOリング等の密閉部材が設けられており、前記座板19に前記流路部18を載置し、前記ガス供給ユニット2を前記凹部17に収納することで、前記流路部18の流路と前記ガス導入孔25と前記ガス供給孔33が気密に連通する様になっている。   In addition, a sealing member such as an O-ring (not shown) is provided at the periphery of the gas introduction hole 25 and the gas supply hole 33, and the flow path portion 18 is placed on the seat plate 19 to supply the gas. By housing the unit 2 in the recess 17, the flow path of the flow path section 18, the gas introduction hole 25, and the gas supply hole 33 communicate with each other in an airtight manner.

尚、前記ガス供給ユニット2は、前記ガス導入孔25と前記ガス供給孔33の周縁部に密閉部材を設け、集積することで前記ガス溜り13と前記ガス供給ユニット2を連通させるのではなく、前記流路ブロック39に前記座板19と前記蓋体11の厚さよりも長い前記供給配管3を接続し、該供給配管3が前記ガス導入孔25と前記ガス供給孔33を貫通する様にしてもよい。   Note that the gas supply unit 2 does not connect the gas reservoir 13 and the gas supply unit 2 by providing a sealing member at the peripheral portions of the gas introduction hole 25 and the gas supply hole 33 and integrating them. The supply pipe 3 longer than the thickness of the seat plate 19 and the lid 11 is connected to the flow path block 39 so that the supply pipe 3 penetrates the gas introduction hole 25 and the gas supply hole 33. Also good.

次に、基板26の処理について説明する。   Next, processing of the substrate 26 will be described.

前記反応容器8内が真空状態で、図示しない基板搬送機構が前記基板搬入出口35を通して基板26を前記基板載置台29に載置する。   The inside of the reaction vessel 8 is in a vacuum state, and a substrate transport mechanism (not shown) places the substrate 26 on the substrate platform 29 through the substrate carry-in / out port 35.

基板26の前記基板載置台29への載置は、前記基板載置部16が降下することで、前記押上げピン31が突出し、前記基板搬送機構は前記押上げピン31に基板26を載置する。前記基板搬送機構が退出した状態で、前記基板載置部16が上昇し、基板26が前記基板載置台29に載置される。基板26が載置された状態で、前記基板載置部16が低速回転され、該基板載置部16の回転により基板処理の円周方向の均一性が向上する。   When the substrate 26 is mounted on the substrate mounting table 29, the substrate mounting unit 16 is lowered so that the push-up pin 31 protrudes, and the substrate transport mechanism mounts the substrate 26 on the push-up pin 31. To do. With the substrate transport mechanism retracted, the substrate platform 16 is raised and the substrate 26 is placed on the substrate platform 29. While the substrate 26 is placed, the substrate platform 16 is rotated at a low speed, and the rotation of the substrate platform 16 improves the uniformity of the substrate processing in the circumferential direction.

前記ゲート弁36が前記基板搬入出口35を気密に閉塞し、図示しないガス供給源より、前記ガス供給ユニット2を介して前記ガス供給孔33から窒素ガス等の不活性ガスが供給され、前記反応炉1内をパージし、前記排気系34より排気される。該反応炉1内は前記制御部24が前記エアバルブ4及び前記排気系34を制御することで所定の圧力に調整され、又前記発熱部27を制御することで基板26が所定温度に加熱される。   The gate valve 36 hermetically closes the substrate loading / unloading port 35, and an inert gas such as nitrogen gas is supplied from the gas supply hole 33 through the gas supply unit 2 from a gas supply source (not shown). The inside of the furnace 1 is purged and exhausted from the exhaust system 34. In the reactor 1, the control unit 24 controls the air valve 4 and the exhaust system 34 to adjust to a predetermined pressure, and the heating unit 27 controls the substrate 26 to a predetermined temperature. .

該基板26が所定温度に加熱された状態で、前記ガス供給ユニット2により不活性ガスから酸素等、基板処理に応じた処理ガスに切替えられ、前記ブロックヒータ7により所定の温度に加熱された上で前記ガス供給ユニット2より前記ガス供給孔33に供給される。   In a state where the substrate 26 is heated to a predetermined temperature, the gas supply unit 2 switches from an inert gas to a processing gas corresponding to the substrate processing, such as oxygen, and is heated to a predetermined temperature by the block heater 7. Then, the gas is supplied from the gas supply unit 2 to the gas supply hole 33.

処理ガスは、基板処理の内容に応じ、単一ガスの場合もあり、又異なる種類のガスが供給される場合もある。異なる種類のガスが供給される場合の供給方法としては、予め前記ガス供給ユニット2内で所定の比率に混合した混合ガスを前記ガス供給孔33に供給する方法や、所定の流量比に制御したガスを個々に前記ガス供給孔33へ供給する方法等がある。   Depending on the contents of the substrate processing, the processing gas may be a single gas or a different type of gas may be supplied. As a supply method when different kinds of gases are supplied, a mixed gas mixed in advance at a predetermined ratio in the gas supply unit 2 is supplied to the gas supply hole 33 or controlled to a predetermined flow rate ratio. There is a method of supplying gas individually to the gas supply holes 33.

この時、処理ガスとしては、窒素ガス、酸素ガス、水素ガス、水蒸気、NH3 の単一ガス、或は2種の混合ガスが用いられる。   At this time, nitrogen gas, oxygen gas, hydrogen gas, water vapor, NH3 single gas, or two kinds of mixed gases are used as the processing gas.

所定時間が経過し、基板処理が完了すると、処理ガスの供給を停止し、前記排気系34より排気することで前記反応容器8内を真空引し、更に前記ブロックヒータ7及び前記発熱部27による加熱を停止し、基板26を所定温度迄降温させる。   When a predetermined time has elapsed and the substrate processing is completed, the supply of the processing gas is stopped, the inside of the reaction vessel 8 is evacuated by exhausting from the exhaust system 34, and further, the block heater 7 and the heating unit 27 are used. The heating is stopped and the temperature of the substrate 26 is lowered to a predetermined temperature.

その後、前記基板載置部16が降下し、前記基板搬入出口35より図示しない基板搬送機構が基板26を前記反応炉1の外部へ払出す。   Thereafter, the substrate platform 16 is lowered, and a substrate transport mechanism (not shown) delivers the substrate 26 to the outside of the reactor 1 through the substrate loading / unloading port 35.

上記の処理が繰返されることで、基板26が処理される。   The substrate 26 is processed by repeating the above processing.

上述の様に、前記ガス供給ユニット2を前記凹部17に埋込み、前記蓋体11と一体化させたので、前記供給配管3の長さを短縮することによる省スペース化を図ると共に、処理ガスの流量を調節する前記エアバルブ4から前記反応炉1に処理ガスを供給する前記ガス供給孔33迄の距離を短縮することにより前記供給配管3内の容積を減少させ、ガス供給、置換、排気等の繰返し動作の切替えに要する時間の短縮を図ることができ、更に安定した繰返し動作を行うことができる。   As described above, since the gas supply unit 2 is embedded in the concave portion 17 and integrated with the lid 11, space is saved by shortening the length of the supply pipe 3, and the processing gas flow is reduced. By reducing the distance from the air valve 4 for adjusting the flow rate to the gas supply hole 33 for supplying the processing gas to the reaction furnace 1, the volume in the supply pipe 3 is reduced, and gas supply, replacement, exhaust, etc. The time required for switching the repetitive operation can be reduced, and a stable repetitive operation can be performed.

又、前記ブロックヒータ7を前記蓋体11上に設けるだけで、前記ガス供給ユニット2全体を加熱することができるので、前記反応炉1、前記ガス供給ユニット2、前記供給配管3、前記VENT管6のそれぞれに前記ブロックヒータ7を設ける必要がなく、コストの削減が図れると共に、複雑なゾーン分割による温度制御を行うことなく前記反応炉1に供給される処理ガスの均一加熱を実行することができる。   Further, since the entire gas supply unit 2 can be heated only by providing the block heater 7 on the lid 11, the reactor 1, the gas supply unit 2, the supply pipe 3, the VENT pipe It is not necessary to provide the block heater 7 in each of the 6, reducing costs and performing uniform heating of the processing gas supplied to the reaction furnace 1 without performing temperature control by complicated zone division. it can.

(付記)
又、本発明は以下の実施の態様を含む。
(Appendix)
The present invention includes the following embodiments.

(付記1)基板に処理ガスを供給し、基板に所定の処理を行う基板処理装置に於いて、容器本体と該容器本体を上方から閉塞する蓋体とからなる反応容器と、基板を載置する基板載置部と、基板を加熱する発熱部と、前記反応容器の上方から処理ガスを供給するガス供給ユニットとを具備し、前記蓋体の上面には凹部が形成され、該凹部に前記ガス供給ユニットを収納し、該ガス供給ユニットと前記蓋体とを一体化したことを特徴とする基板処理装置。   (Supplementary note 1) In a substrate processing apparatus for supplying a processing gas to a substrate and performing a predetermined process on the substrate, a reaction container including a container main body and a lid for closing the container main body from above, and the substrate are placed. A substrate mounting section, a heat generating section for heating the substrate, and a gas supply unit for supplying a processing gas from above the reaction vessel, and a recess is formed on the upper surface of the lid, A substrate processing apparatus, wherein a gas supply unit is accommodated, and the gas supply unit and the lid are integrated.

(付記2)前記ガス供給ユニットは流路部を有し、該流路部は複数の流路ブロックにより構成される付記1の基板処理装置。   (Supplementary note 2) The substrate processing apparatus according to supplementary note 1, wherein the gas supply unit includes a flow path section, and the flow path section includes a plurality of flow path blocks.

1 反応炉
2 ガス供給ユニット
3 供給配管
4 エアバルブ
6 VENT管
7 ブロックヒータ
8 反応容器
9 容器本体
11 蓋体
17 凹部
18 流路部
19 座板
21 ガス導入管
26 基板
39 流路ブロック
DESCRIPTION OF SYMBOLS 1 Reaction furnace 2 Gas supply unit 3 Supply piping 4 Air valve 6 VENT pipe 7 Block heater 8 Reaction container 9 Container main body 11 Lid body 17 Recessed part 18 Channel part 19 Seat plate 21 Gas introduction pipe 26 Substrate 39 Channel block

Claims (1)

基板に処理ガスを供給し、基板に所定の処理を行う基板処理装置に於いて、容器本体と該容器本体を上方から閉塞する蓋体とからなる反応容器と、基板を載置する基板載置部と、基板を加熱する発熱部と、前記反応容器の上方から処理ガスを供給するガス供給ユニットとを具備し、前記蓋体の上面には凹部が形成され、該凹部に前記ガス供給ユニットを収納し、該ガス供給ユニットと前記蓋体とを一体化したことを特徴とする基板処理装置。   In a substrate processing apparatus for supplying a processing gas to a substrate and performing a predetermined process on the substrate, a reaction container comprising a container body and a lid body that closes the container body from above, and a substrate mounting for mounting the substrate And a heating unit for heating the substrate, and a gas supply unit for supplying a processing gas from above the reaction vessel. A recess is formed on the upper surface of the lid, and the gas supply unit is provided in the recess. A substrate processing apparatus which is housed and the gas supply unit and the lid are integrated.
JP2009205667A 2009-09-07 2009-09-07 Substrate processing device Pending JP2011060812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009205667A JP2011060812A (en) 2009-09-07 2009-09-07 Substrate processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009205667A JP2011060812A (en) 2009-09-07 2009-09-07 Substrate processing device

Publications (1)

Publication Number Publication Date
JP2011060812A true JP2011060812A (en) 2011-03-24

Family

ID=43948156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009205667A Pending JP2011060812A (en) 2009-09-07 2009-09-07 Substrate processing device

Country Status (1)

Country Link
JP (1) JP2011060812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195820A1 (en) * 2019-03-25 2020-10-01 東京エレクトロン株式会社 Substrate-processing device and production method for substrate-processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195820A1 (en) * 2019-03-25 2020-10-01 東京エレクトロン株式会社 Substrate-processing device and production method for substrate-processing device

Similar Documents

Publication Publication Date Title
CN104250728B (en) Chemical deposition chamber with gas seal
TWI645487B (en) Substrate processing apparatus and substrate processing method
KR101089977B1 (en) Film forming apparatus and method, gas supply device and storage medium
US9938620B2 (en) Gas supply mechanism, gas supplying method, film forming apparatus and film forming method using the same
KR102029538B1 (en) Film forming apparatus and film forming mehtod
TWI737868B (en) Film formation device and film formation method
JP2014208883A (en) Semiconductor device manufacturing method, substrate processing device, and program
KR101210456B1 (en) Method of manufacturing semiconductor device, method of processing substrate and substrate processing apparatus
US20150113826A1 (en) Substrate placing table and substrate processing apparatus
US20100064972A1 (en) Cvd film forming apparatus
US20120247391A1 (en) Vertical batch-type film forming apparatus
WO2012153591A1 (en) Film-forming apparatus
TW201920754A (en) Gas supply apparatus and film forming apparatus
WO2011033918A1 (en) Film forming device, film forming method and storage medium
KR20200141935A (en) Substrate processing method and substrate processing apparatus
JP2021015947A (en) FORMING METHOD OF RuSi FILM AND SUBSTRATE PROCESSING SYSTEM
JP5337482B2 (en) Thin film manufacturing equipment
KR101755335B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
US20170053781A1 (en) Multi-Station Chamber Having Symmetric Grounding Plate
KR20210128914A (en) Raw material supply apparatus and film forming apparatus
CN108878324B (en) Substrate processing apparatus
JP2011060812A (en) Substrate processing device
JP4878830B2 (en) Substrate processing equipment
CN111058015B (en) Substrate processing apparatus, substrate input method, and substrate processing method
JP7325261B2 (en) Substrate processing method and substrate processing apparatus