JP2003149392A - X-ray intensifying reflecting plate and x-ray inspection device - Google Patents

X-ray intensifying reflecting plate and x-ray inspection device

Info

Publication number
JP2003149392A
JP2003149392A JP2001345280A JP2001345280A JP2003149392A JP 2003149392 A JP2003149392 A JP 2003149392A JP 2001345280 A JP2001345280 A JP 2001345280A JP 2001345280 A JP2001345280 A JP 2001345280A JP 2003149392 A JP2003149392 A JP 2003149392A
Authority
JP
Japan
Prior art keywords
ray
rays
reflector
reflection plate
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001345280A
Other languages
Japanese (ja)
Inventor
Keiji Yada
慶治 矢田
Hitoshi Tanaka
田中  均
Yasushi Saito
泰 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohken Co Ltd
Original Assignee
Tohken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohken Co Ltd filed Critical Tohken Co Ltd
Priority to JP2001345280A priority Critical patent/JP2003149392A/en
Publication of JP2003149392A publication Critical patent/JP2003149392A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray intensifying reflecting plate and an X-ray inspection device capable of remarkably intensifying a signal amount of the X-ray inspection device using a linear detector. SOLUTION: An extremely flat metal plate is disposed as an X-ray reflecting plate so as to form a two-dimensional elliptic surface, an X-ray emitted from an X-ray source disposed at one focal position of the ellipse is totally reflected by the elliptic surface and linearly converged on the other focal position, and thus the intensity of the X-ray entered into the linear detector is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、線状検出器を有す
るX線検査装置に関し、特にX線源からのX線を多層の
反射板を用いて線状に集束し、信号強度を増幅するデバ
イスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray inspection apparatus having a linear detector, and in particular, X-rays from an X-ray source are linearly focused by using a multilayer reflector to amplify the signal intensity. Regarding the device.

【0002】[0002]

【従来の技術】従来、X線の全反射を利用する装置とし
てはX線顕微鏡の対物レンズ、X線天体望遠鏡のレンズ
など主として学術的用途のものが考案され、その原理は
知られていたが、検査装置などの産業機器に応用された
ものはほとんどなかった。一般的に、医療や産業検査装
置に用いられるX線は、電子線を対陰極に当てて発生さ
せる方法が採用されているが、そのX線発生効率が極め
て小さいため、在来、X線管のパワーアップ、イメージ
インテンシファイヤー(像増強装置)の改良などによっ
て対応してきた。X線源からのX線が対象物に照射され
るまでの間にX線を増強するようにしたX線増強装置と
しては、多数の微小中空管を束ね、その内面でX線を全
反射させて所望の焦点、もしくはラインに集束させるも
のが考案された程度であり、実用化されたものはなかっ
た。
2. Description of the Related Art Conventionally, as an apparatus utilizing the total reflection of X-rays, an objective lens for an X-ray microscope, a lens for an X-ray astronomical telescope, etc., which has been mainly used for academic purposes, was devised, and its principle has been known. However, it was rarely applied to industrial equipment such as inspection equipment. Generally, X-rays used in medical and industrial inspection devices are produced by applying an electron beam to an anticathode, but since the X-ray generation efficiency is extremely low, X-ray tubes have been used conventionally. We have responded by improving the power of, improving the image intensifier (image intensifier), etc. As an X-ray intensifying device that intensifies X-rays until the X-rays from the X-ray source irradiate the object, a large number of micro hollow tubes are bundled and the X-rays are totally reflected on the inner surface. The present invention has only devised a device for focusing on a desired focus or line, and has not been put into practical use.

【0003】[0003]

【発明が解決しようとする課題】上述したように、医療
や産業検査装置に用いられるX線は、X線の発生効率が
極めて小さく、必要なX線の強度を得るためには、X線
源側のパワーアップやイメージインテンシファイヤーの
改良などによって対応していた。しかしながら、X線の
線状検出器においては、このような対応をしてもX線源
から放射されたX線束のうち線状検出器に入射するX線
の量は少なく、かなりのX線が捨てられて無駄になって
いた。
As described above, X-rays used in medical and industrial inspection devices have extremely low X-ray generation efficiency, and in order to obtain the required X-ray intensity, an X-ray source is required. It was supported by powering up the side and improving the image intensifier. However, in the X-ray linear detector, even if such a measure is taken, the amount of X-rays incident on the linear detector in the X-ray flux emitted from the X-ray source is small, and considerable X-rays are generated. It was thrown away and wasted.

【0004】本発明は上述のような事情から成されたも
のであり、本発明の目的は、線状検出器を用いたX線検
査装置の信号量を大幅に増強させることができるX線増
強反射板及び装置を提供することにある。
The present invention has been made under the circumstances as described above, and an object of the present invention is to enhance the X-ray intensity capable of significantly increasing the signal amount of the X-ray inspection apparatus using the linear detector. To provide a reflector and a device.

【0005】[0005]

【課題を解決するための手段】本発明は、全反射を用い
てX線を増強するX線増強反射板及びX線検査装置に関
するものであり、本発明の上記目的は、X線増強反射板
に関しては、X線の反射板として極めて平滑な金属板が
2次元楕円面を成すように配置され、その楕円の一方の
焦点位置に配置されたX線源から放射されるX線を前記
楕円面で全反射させて他方の焦点位置に線状に集束させ
ることによって、X線の線状検出器に入るX線強度を増
強させるようになっていることによって達成される。
The present invention relates to an X-ray intensifying reflector and an X-ray inspection apparatus for intensifying X-rays by using total internal reflection, and the above object of the present invention is to provide an X-ray intensifying reflector. With respect to, the extremely smooth metal plate as an X-ray reflector is arranged so as to form a two-dimensional elliptical surface, and the X-ray emitted from the X-ray source arranged at one focal point of the ellipse is used as the elliptic surface. It is achieved by increasing the intensity of X-rays entering the linear detector by totally reflecting the light and linearly focusing it on the other focal position.

【0006】さらに、前記X線の全反射の臨界角度を大
きくするために前記反射板の反射面が高密度の重金属で
構成されており、更に前記反射板が多層に配置され、波
長の短いX線は内側、波長の長いX線は外側の反射板で
それぞれ反射させるようになっていること;前記反射板
は、鏡面に近い仕上げを施した部材(ガラス若しくは金
属の板)を基板として、その基板の表面の微小な凹凸を
減らすために高分子材料から成る薄膜の層が形成され、
更にその薄膜の層の上に高密度の重金属から成る反射面
が形成されていること;前記薄膜の層は、重合体に転化
させた高分子材料を溶液のかたちで表面に塗布して前記
高分子材料を半密閉状態の容器内で乾燥させることによ
って(若しくは半重合状態の高分子材料を塗布後に加熱
処理をして完全に重合させることによって)形成され、
前記反射面は、前記薄膜の層に重金属を蒸着することに
よって形成されていること;前記2次元楕円面は、所望
の楕円に溝加工した枠に平らな反射板を嵌着することに
よって形成されるようになっていること;によって、そ
れぞれ一層効果的に達成される。また、X線検査装置に
関しては、上記構成のX線増強反射板を有することによ
って達成される。
Further, in order to increase the critical angle of the total reflection of the X-rays, the reflecting surface of the reflecting plate is made of a high-density heavy metal, and the reflecting plates are arranged in multiple layers, and the X wavelength is short. X-rays with long wavelengths should be reflected by an outer reflector, and the reflector should be made of a member (glass or metal plate) with a finish close to a mirror surface as a substrate. A thin film layer made of a polymer material is formed to reduce minute irregularities on the surface of the substrate.
Furthermore, a reflective surface composed of a high-density heavy metal is formed on the thin film layer; the thin film layer is formed by applying a polymer material converted into a polymer to the surface in the form of a solution. It is formed by drying the molecular material in a semi-sealed container (or by heating the semi-polymerized polymeric material and then completely polymerizing it),
The reflecting surface is formed by depositing a heavy metal on the thin film layer; the two-dimensional elliptical surface is formed by fitting a flat reflecting plate to a frame grooved into a desired ellipse. Each of them is achieved more effectively. Further, the X-ray inspection apparatus is achieved by having the X-ray enhanced reflection plate having the above configuration.

【0007】[0007]

【発明の実施の形態】以下、図面に基づいて本発明の好
適な実施の形態について詳細に説明する。図1は、本発
明に係るX線増強反射板(以下、X線反射板ユニットと
言う)の概略構成を断面図で示しており、図2は同反射
板の概略構成を斜視図で示している。なお、図1及び図
2は、楕円の短軸の長さを実際より大幅に拡大して模式
的に示している。本発明に係るX線反射板ユニット10
は、金のような高密度の極めて平滑な表面を持つ金属板
(反射板)11を2次元楕円面Rの一部を成すように、
例えば図中に示すように2枚の反射板11を対向して配
置し、それらの2次元楕円面を有する反射板11の中心
を通る楕円の一方の焦点位置F1にX線源1を配置し、
そのX線源1から放射されるX線2を反射面12で全反
射を起こさせ、図2中に示すように所定の位置に線状に
焦点F2を結ばせることで、線状検出器を用いたX線検
査装置の信号量を大幅に増強させるようにしたものであ
る。なお、本発明の好適な実施の形態で言う「2次元楕
円面」とは、断面が常に同一形状の楕円となる環形円柱
の周壁の面を意味する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional view showing a schematic configuration of an X-ray enhanced reflector (hereinafter referred to as an X-ray reflector unit) according to the present invention, and FIG. 2 is a perspective view showing a schematic configuration of the reflector. There is. It should be noted that FIGS. 1 and 2 schematically show the length of the minor axis of the ellipse in a greatly enlarged manner compared to the actual length. X-ray reflector unit 10 according to the present invention
Is a metal plate (reflector) 11 having a high density and an extremely smooth surface such as gold so as to form a part of the two-dimensional elliptical surface R,
For example, as shown in the figure, two reflection plates 11 are arranged facing each other, and the X-ray source 1 is arranged at one focus position F1 of an ellipse passing through the center of the reflection plate 11 having the two-dimensional elliptical surface. ,
The X-ray 2 emitted from the X-ray source 1 is totally reflected by the reflecting surface 12, and the focal point F2 is linearly formed at a predetermined position as shown in FIG. The signal amount of the used X-ray inspection apparatus is greatly enhanced. The “two-dimensional elliptical surface” referred to in the preferred embodiment of the present invention means the surface of the peripheral wall of the ring-shaped cylinder whose cross section is always the same ellipse.

【0008】図3は、上記の反射板11を備えたX線反
射板ユニットのハウジングの構成例を斜視図で示してい
る。図3において、ハウジング13の両端部には、X線
源1から放射されるX線を入射する入射用開口部13a
と、反射板で全反射させたX線を出射する出射用開口部
13bがそれぞれ設けられており、両側の内壁部には放
電加工等により所望の楕円に溝加工が施された反射板嵌
入用の溝13cが所定の間隔で複数形成されている。本
例のX線反射板ユニットは、反射板となる平らな金属板
の両端部をハウジング13の両側の溝13cに嵌入して
固定することによって、それぞれの反射板の反射面が所
望の2次元楕円面を成すように、多層に対向して配置さ
れるようになっている。
FIG. 3 is a perspective view showing a structural example of a housing of an X-ray reflection plate unit having the reflection plate 11 described above. In FIG. 3, at both ends of the housing 13, an entrance opening 13a for entering X-rays emitted from the X-ray source 1 is made.
And an emission opening 13b for emitting X-rays that are totally reflected by the reflection plate, and for inserting the reflection plate into which a desired ellipse is grooved by electrical discharge machining or the like on the inner wall portions on both sides. A plurality of grooves 13c are formed at predetermined intervals. In the X-ray reflection plate unit of this example, both ends of a flat metal plate serving as a reflection plate are fitted and fixed in the grooves 13c on both sides of the housing 13 so that the reflection surface of each reflection plate has a desired two-dimensional shape. The layers are arranged so as to face each other so as to form an elliptical surface.

【0009】図3の例では、X線の各波長に応じた曲率
を有する各楕円に対応させて楕円の溝13cが4本形成
されており、各溝13cに金属板が嵌着されることで、
楕円の第1の焦点と第2の焦点(線状の焦点群)とを通
る平面に対して対象の位置に2組の反射板が対向して配
置されるようになっている。
In the example of FIG. 3, four elliptical grooves 13c are formed corresponding to each ellipse having a curvature corresponding to each wavelength of X-rays, and a metal plate is fitted into each groove 13c. so,
Two sets of reflectors are arranged so as to face each other at a target position with respect to a plane passing through the first focus and the second focus (linear focus group) of the ellipse.

【0010】図4(A)〜(C)は、X線反射板ユニッ
トに反射板が装着された状態を示しており、図4(A)
が入射用開口部13aの形状を示す正面図、図4(B)
が出射用開口部13bの形状を示す背面図、図4(C)
が反射板の側面形状を示す一部側面断面図である。本例
では、楕円の長軸の長さ(≒第1焦点から第2焦点まで
の長さ)=570、楕円の長軸方向の端部(≒X線源の
位置)から入射用開口部13aまでの長さ=100と
し、図4中の各サイズを示す値は、反射板のサイズW=
90,奥行きD=90,Wi1=1.26,Wi2=
4.46,Wo1=1.55,Wo2=5.5(単位は
それぞれ“mm”)としている。そして、波長の短いX
線は内側の反射板11−1、波長の長いX線は外側の反
射板11−2でそれぞれ反射させるようになっている。
なお、図4(C)中の2点鎖線で示す部分は、反射板を
3層にした場合を示しており、その場合、Wi3=6.
96,Wo3=8.58となる。これらのサイズは、適
用されるX線検査装置に応じて決定されるものであり、
本実施例に限るものではない。さらに、反射板の層の数
や、入射用開口部13aの形状、出射用開口部13bの
形状についても本実施例に限るものではない。
FIGS. 4A to 4C show a state in which a reflector is attached to the X-ray reflector unit, and FIG.
Is a front view showing the shape of the entrance opening 13a, FIG.
Is a rear view showing the shape of the emission opening 13b, FIG.
FIG. 3 is a partial side sectional view showing a side surface shape of a reflection plate. In this example, the length of the major axis of the ellipse (≈the length from the first focus to the second focus) = 570, and the entrance opening 13a from the end of the ellipse in the major axis direction (≈the position of the X-ray source). Up to 100 = 100, and the value indicating each size in FIG.
90, depth D = 90, Wi1 = 1.26, Wi2 =
4.46, Wo1 = 1.55, Wo2 = 5.5 (unit is “mm”). And the short wavelength X
The X-ray having a long wavelength is reflected by the inner reflection plate 11-1, and the X-ray having a long wavelength is reflected by the outer reflection plate 11-2.
The portion indicated by the chain double-dashed line in FIG. 4C shows the case where the reflection plate has three layers. In that case, Wi3 = 6.
96, Wo3 = 8.58. These sizes are determined according to the applied X-ray inspection apparatus,
The present invention is not limited to this embodiment. Further, the number of layers of the reflection plate, the shape of the entrance opening 13a, and the shape of the exit opening 13b are not limited to those in this embodiment.

【0011】また、図3に示した反射板ユニット10
は、X線源1がその中心を通り、且つ線状検出器に平行
になるように正確に調整するために、位置と方向を自在
に調整することができる機構(図3中のネジ式等の調整
機構)が設けられる。
Further, the reflector unit 10 shown in FIG.
Is a mechanism capable of freely adjusting the position and direction in order to accurately adjust the X-ray source 1 so as to pass through the center of the X-ray source 1 and be parallel to the linear detector (screw type or the like in FIG. 3). Adjustment mechanism) is provided.

【0012】ここで、上記のように反射板を多層に配置
する理由について説明する。図5は、X線ターゲットに
或るエネルギーに加速した電子を当てた場合のX線の波
長と強度との関係をグラフで示したもので、一般的に、
X線源から放射されるX線は、加速エネルギーによって
決まる最短波長を持つ連続X線とターゲットの物質(元
素)によって決まる特性X線(図5中の点線)とからな
る。また、X線の全反射の臨界角は、X線の波長に比例
するという特性がある。ここで、全反射の臨界角とは、
その角度以下で入射した或る波長以上のX線はすべて入
射角と等しい角度で反射するが、それ以上の角度で入射
したものは反射を起さず吸収される臨界の角度を意味す
る。従って、短い波長のX線に対する反射板は偏平な2
次元楕円面となり、長い波長のX線に対するそれは膨ら
んだものになる。そこで、本発明では、或る短い波長の
X線に対する小さい入射角を持つ反射板を内側に、長い
波長に対する反射板を外側に多層に配置する構成とする
ことで、広範囲の波長のX線を効率的に集束させてX線
強度の高効率化を図るようにしている。
Now, the reason why the reflectors are arranged in multiple layers as described above will be described. FIG. 5 is a graph showing the relationship between the wavelength and the intensity of X-rays when an electron accelerated to a certain energy is applied to the X-ray target.
The X-rays emitted from the X-ray source consist of continuous X-rays having the shortest wavelength determined by the acceleration energy and characteristic X-rays (dotted lines in FIG. 5) determined by the target substance (element). Further, there is a characteristic that the critical angle of total reflection of X-rays is proportional to the wavelength of X-rays. Here, the critical angle of total reflection is
All X-rays of a certain wavelength or more that are incident at an angle equal to or less than that angle are reflected at an angle equal to the incident angle, but those incident at an angle greater than that mean a critical angle at which they are absorbed without being reflected. Therefore, the reflector for X-rays of short wavelength has a flat 2
It becomes a three-dimensional ellipsoid and becomes bulging for long wavelength X-rays. Therefore, according to the present invention, a reflection plate having a small incident angle with respect to X-rays of a certain short wavelength is arranged inside and a reflection plate with respect to a long wavelength is arranged outside so that X-rays of a wide range of wavelengths can be obtained. The X-ray intensity is efficiently focused by increasing the efficiency.

【0013】一般的に、加速エネルギーが数10keV
のものがX線検査装置に利用されているので、タングス
テン・ターゲットを50keVで励起した場合を考える
と、図5の連続X線の強度の最大は27keV付近にあ
り、特性X線としては、K線が59keVのエネルギー
なのでこの場合は励起されず、L線、M線になる。図3
に示したX線反射板ユニット10は、波長領域m(連続
X線のピークより幾分高エネルギーの30keVからL
線まで)のX線を特に効率的に集束させるように、各反
射板を多層に配置した構成としている。30keVより
高エネルギーの短波長のX線を反射させることも反射板
の入射角を小さくすることによって勿論可能である。ま
た、L線より長波長のX線は取り入れられるが、エネル
ギーが小さく、透過力も落ちるので入力信号としての寄
与は小さくなる。
Generally, the acceleration energy is several tens keV.
Since the one used in the X-ray inspection apparatus is a case where a tungsten target is excited at 50 keV, the maximum intensity of continuous X-rays in FIG. 5 is around 27 keV, and the characteristic X-ray is K Since the line has an energy of 59 keV, it is not excited in this case and becomes an L line and an M line. Figure 3
The X-ray reflector unit 10 shown in FIG. 2 has a wavelength region m (from 30 keV to L which is somewhat higher than the peak of continuous X-rays,
The reflectors are arranged in multiple layers so that X-rays (up to the lines) can be focused particularly efficiently. Of course, it is also possible to reflect X-rays having a short wavelength and energy higher than 30 keV by reducing the incident angle of the reflector. Further, although X-rays having a wavelength longer than that of the L-rays can be taken in, the energy is small and the penetrating power is low, so that the contribution as an input signal is small.

【0014】次に、X線反射板ユニット10に収容され
る反射板の構成について、具体例を示して説明する。
Next, the structure of the reflector contained in the X-ray reflector unit 10 will be described with reference to a specific example.

【0015】X線の屈折率は、可視光や赤外線と比較し
て非常に小さいため、屈折を利用した光学素子は殆どな
く、代わりに全反射を利用することになるが、X線源か
ら放射されたX線を有効に使用するためには、全反射の
臨界角度を可能な限り大きくすることが望ましい。そこ
で、反射面を構成する反射体の材料としては、高密度の
重金属を使用するのが効果的である。何故なら、X線の
全反射の臨界角θcは、X線の波長をλ、反射体の密度
をρとすると、θc≦1.6×10×λ×ρ 1/2と表
され、反射体の密度ρが大きいほど臨界角を大きくでき
るからである。
The refractive index of X-ray is higher than that of visible light or infrared light.
Are very small, so most optical elements that utilize refraction
Instead, we will use total internal reflection instead of an X-ray source.
In order to effectively use the X-rays emitted from the
It is desirable to make the critical angle as large as possible. There
Therefore, as the material of the reflector that constitutes the reflective surface,
It is effective to use heavy metals. Because of the X-ray
The critical angle θc of total reflection is the wavelength of X-rays, and the density of the reflector.
Is ρ, θc ≦ 1.6 × 105× λ × ρ 1/2And table
The larger the reflector density ρ, the larger the critical angle
This is because that.

【0016】重金属としては、密度の高い順に、イリジ
ウム,オスミウム,白金,レニウム,ネプツニウム,プ
ルトニウム,金,タングステンなどが挙げられるが、表
面粗さ、加工性、コスト、耐蝕性、融点、価格などの様
々な観点から総合的に評価すると、反射体に用いる重金
属としては、金,オスミウム,白金,イリジウムなどが
好ましい。但し、このような重金属を反射板として単体
で用いると、表面が極めて平滑で且つ精密な2次元楕円
面を形成するのが難しく、また、形状を維持するために
反射板を肉薄にできず、低コスト化や軽量化を妨げる要
因となる。
Examples of heavy metals include iridium, osmium, platinum, rhenium, neptunium, plutonium, gold, and tungsten in descending order of density. Surface roughness, workability, cost, corrosion resistance, melting point, price, etc. When comprehensively evaluated from various viewpoints, gold, osmium, platinum, iridium and the like are preferable as the heavy metal used for the reflector. However, when such a heavy metal is used alone as a reflector, it is difficult to form a precise two-dimensional ellipsoidal surface having a very smooth surface, and the reflector cannot be thinned to maintain its shape. It becomes a factor that hinders cost reduction and weight reduction.

【0017】そこで、本発明の好適な実施の形態では、
反射板は、図6の断面図に示すように、平滑化するため
の2層11a,11bの部材上に反射層11cを設けた
構成としている。図6中の第1の層11aは、反射板の
基板であり、材料としては、平滑な表面を有し、加工性
やコスト、重量の点で優れた軽金属(例えばアルミニウ
ム)若しくは合金を使用するのが好ましい。基板11a
の上の層11bは、基板の表面を更に平滑化するための
層であり、本例では、基板11aの上にアクリル系樹脂
等の高分子材料を塗布するなどにより薄膜11bの層を
形成している。そして、第3の層11cは、X線を全反
射させるための反射層であり、上述した重金属を反射体
として薄膜11bの層の上に蒸着する等により反射面を
形成している。
Therefore, in the preferred embodiment of the present invention,
As shown in the sectional view of FIG. 6, the reflection plate has a structure in which a reflection layer 11c is provided on a member of two layers 11a and 11b for smoothing. The first layer 11a in FIG. 6 is a substrate of a reflection plate, and a light metal (for example, aluminum) or an alloy having a smooth surface and excellent in workability, cost, and weight is used as a material. Is preferred. Board 11a
The upper layer 11b is a layer for further smoothing the surface of the substrate. In this example, the layer of the thin film 11b is formed by coating a polymer material such as acrylic resin on the substrate 11a. ing. The third layer 11c is a reflective layer for totally reflecting X-rays, and has a reflective surface formed by vapor-depositing the above-mentioned heavy metal as a reflector on the layer of the thin film 11b.

【0018】ここで、基板11aの材料として“アルミ
ニウム”、薄膜11bの材料として“プラスチック”、
反射層11cの材料として“金”を用いた場合を例とし
て、反射板11の製造方法の具体例を説明する。
Here, the material of the substrate 11a is "aluminum", the material of the thin film 11b is "plastic",
A specific example of the method for manufacturing the reflection plate 11 will be described by taking the case where "gold" is used as the material of the reflection layer 11c as an example.

【0019】なお、反射板11の幅Wは、線状検出器の
検出部の幅に応じて決定され、奥行きDは、第1,第2
の焦点間の距離,X線源からの反射板11の配置位置、
重金属の密度(全反射の臨界角度)等に応じて決定され
る。
The width W of the reflecting plate 11 is determined according to the width of the detecting portion of the linear detector, and the depth D is the first and second.
Distance between the focal points of, the arrangement position of the reflector 11 from the X-ray source,
It is determined according to the density of the heavy metal (critical angle of total reflection) and the like.

【0020】先ず、精密ロール(超精密圧延)によって
鏡面に近い仕上げを施した厚さTの平らな基板を製作
する。基板の部材としてはガラス若しくは金属が好まし
く、本例では、厚さT=0.3mm,幅W=90m
m,奥行きD=90mmのアルミニウム板を基板として
いる(ステップ1)。次に、アルミニウム板の表面の微
小な凹凸を減らすために、プラスチックの膜を薄く塗布
する。その際、重合によってより高い分子量を持つ重合
体に転化させたものを溶液として塗布、或いは半重合の
ものを塗布して薄膜(本例では、厚さT=0.5ミク
ロン程度)を形成する(ステップ2)。次に、薄膜が固
まる際に空気中の水分などが起因して表面が粒状になる
のを回避するために、半密閉状態の容器内で薄膜を乾燥
若しくは重合させる。これにより、塗布した薄膜層の体
積を変えずに固めることができる(ステップ3)。そし
て、プラスチック膜の上に密度の大きい金を蒸着してX
線の反射面(本例では、金の厚さT=200〜300
Å程度の反射面)を形成する。その際、プラスチック膜
の上にクロムを着けた上に金を蒸着するようにしても良
い(ステップ4)。この反射面が形成された反射板を精
密に所望の楕円に溝加工した枠(図3中の溝13c)に
嵌入し、固定することによって2次元の楕円面を形成す
る(ステップ5)。以上の工程により、極めて平滑で且
つ臨界角度の大きな反射面を有する反射板を製作するこ
とができ、また、各反射板の反射面が所望の2次元の楕
円面を成すように配置された反射板ユニットを容易に製
作することができる。
First, a flat substrate having a thickness of T 1 which is finished by a precision roll (ultra-precision rolling) to have a finish close to a mirror surface is manufactured. The substrate member is preferably glass or metal, and in this example, thickness T 1 = 0.3 mm, width W = 90 m.
The substrate is an aluminum plate with m and depth D = 90 mm (step 1). Next, a plastic film is thinly applied in order to reduce minute irregularities on the surface of the aluminum plate. At that time, a thin film (thickness T 2 = about 0.5 micron in this example) is formed by applying a solution converted to a polymer having a higher molecular weight as a solution or a semi-polymerized product. Yes (step 2). Next, when the thin film hardens, the thin film is dried or polymerized in a semi-sealed container in order to prevent the surface from becoming granular due to moisture in the air or the like. This allows the applied thin film layer to be solidified without changing its volume (step 3). Then, deposit gold with a high density on the plastic film and
Line reflection surface (in this example, gold thickness T 3 = 200 to 300)
Å About reflective surface) is formed. At that time, gold may be vapor-deposited on the plastic film on which chromium is deposited (step 4). A two-dimensional elliptical surface is formed by fitting the reflecting plate having the reflecting surface precisely into a frame (groove 13c in FIG. 3) grooved into a desired ellipse and fixing it (step 5). Through the above steps, it is possible to manufacture a reflecting plate having a reflecting surface which is extremely smooth and has a large critical angle, and the reflecting surface of each reflecting plate is arranged so as to form a desired two-dimensional elliptical surface. The plate unit can be easily manufactured.

【0021】なお、上述した実施の形態においては、反
射面が2次元の楕円面を成すようにした場合を例として
説明したが、X線源と線状の点群の各点とを第1,第2
焦点とする楕円群で形成される3次元楕円面を反射面と
し、その反射面を有する反射板を配置して、第1焦点の
位置のX線源からのX線を各第2焦点の位置に線状に集
束させるようにしても良い。また、X線を線状に集束さ
せる場合を例として説明したが、楕円体の楕円面を反射
面とし、その反射面を有する環状の反射板若しくは複数
の反射板を配置し、X線を点状に集束させるようにして
も良い。
In the above-described embodiment, the case where the reflecting surface forms a two-dimensional elliptical surface has been described as an example. However, the X-ray source and each point of the linear point group are the first. , Second
A three-dimensional ellipsoidal surface formed by a group of ellipses serving as a focal point is used as a reflecting surface, and a reflecting plate having the reflecting surface is arranged so that X-rays from the X-ray source at the positions of the first focal points are positioned at the positions of the second focal points. It may be made to converge linearly. Further, the case where the X-rays are focused linearly has been described as an example, but an ellipsoidal surface of an ellipsoid is used as a reflecting surface, and an annular reflecting plate or a plurality of reflecting plates having the reflecting surface is arranged, and the X-rays are focused on a point. You may make it converge in a shape.

【0022】[0022]

【発明の効果】以上のように本発明によれば、一方の焦
点位置に配置されたX線源から放射されるX線を楕円面
で全反射させて他方の焦点位置に線状に集束させるよう
にしているので、線状検出器を用いたX線検査装置の信
号量を大幅に増強させるデバイスを実現することができ
る。X線検査装置は、分解能を向上させるため検出器の
寸法を小型化する方向にある。これは必然的に信号量の
減少を招くことになるが、本発明に係るX線増強反射板
を適用することにより、今までX線検出部に入射されず
に捨てていたX線を、波長が2.3Å程度の長い場合で
数十倍、0.4Å程度の短い場合で10倍程度の利得
で、有効な信号として取込むことが可能となる。そのこ
とは、高分解能で早い処理が可能となることを意味し、
その効果は極めて大きい。そのため、X線顕微鏡,異物
検査装置,物質の表面検査装置,蛍光X線分析装置など
の各種の産業検査装置や、X線診断装置などの医用X線
装置に好適に適用することができる。
As described above, according to the present invention, the X-rays emitted from the X-ray source arranged at one focus position are totally reflected by the elliptical surface and are linearly focused at the other focus position. Thus, it is possible to realize a device that significantly increases the signal amount of the X-ray inspection apparatus using the linear detector. The X-ray inspection apparatus tends to reduce the size of the detector in order to improve the resolution. This inevitably leads to a decrease in the signal amount, but by applying the X-ray enhanced reflection plate according to the present invention, the X-rays that have been thrown away without being incident on the X-ray detection unit until now can be converted into wavelengths. Can be acquired as an effective signal with a gain of several tens of times when it is as long as 2.3 Å and about 10 times when it is as short as 0.4 Å. That means high resolution and fast processing are possible.
The effect is extremely large. Therefore, it can be suitably applied to various industrial inspection devices such as an X-ray microscope, a foreign substance inspection device, a material surface inspection device, and a fluorescent X-ray analysis device, and a medical X-ray device such as an X-ray diagnostic device.

【0023】また、請求項2に係る発明によれば、X線
の全反射の臨界角度を大きくすることができると共に、
複数の波長のX線を線状に集束させることができるの
で、X線強度の高効率化を図ることができる。また、請
求項3及び4に係る発明によれば、極めて平滑な反射面
を有する反射板を提供することができるので、X線の全
反射を正確に起させることができ、照射領域上のX線分
布の均一化及びX線の乱反射や反射板透過に伴うX線量
の低減を回避することができる。また、請求項5に係る
発明によれば、精密な2次元楕円面を容易に形成するこ
とができるので、X線増強反射板を安価に提供すること
ができる。
Further, according to the invention of claim 2, the critical angle of total reflection of X-rays can be increased, and
Since the X-rays having a plurality of wavelengths can be linearly focused, the efficiency of the X-ray intensity can be improved. Further, according to the inventions according to claims 3 and 4, since it is possible to provide a reflector having an extremely smooth reflecting surface, total reflection of X-rays can be accurately caused, and X on the irradiation area can be accurately reflected. It is possible to avoid uniforming the line distribution and reducing the X-ray dose due to diffused reflection of X-rays and transmission of the reflector. Further, according to the invention of claim 5, a precise two-dimensional elliptical surface can be easily formed, so that the X-ray enhanced reflection plate can be provided at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るX線増強反射板の概略構成を模式
的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a schematic configuration of an X-ray enhanced reflection plate according to the present invention.

【図2】本発明に係るX線増強反射板の概略構成を模式
的に示す斜視図である。
FIG. 2 is a perspective view schematically showing a schematic configuration of an X-ray enhanced reflection plate according to the present invention.

【図3】本発明に係るX線反射板ユニットのハウジング
の構成例を示す斜視図である。
FIG. 3 is a perspective view showing a configuration example of a housing of an X-ray reflector unit according to the present invention.

【図4】本発明に係るX線反射板ユニットに反射板が多
層に装着された状態を示す図である。
FIG. 4 is a diagram showing a state in which a plurality of reflectors are mounted on the X-ray reflector unit according to the present invention.

【図5】X線の波長とエネルギーとの関係を示す図であ
る。
FIG. 5 is a diagram showing a relationship between an X-ray wavelength and energy.

【図6】本発明に係る反射板の構成の一例を示す断面図
である。
FIG. 6 is a cross-sectional view showing an example of the configuration of a reflection plate according to the present invention.

【符号の説明】[Explanation of symbols]

F1 第1の焦点位置 F2 第2の焦点位置 R 2次元楕円面 1 X線源 2 X線 10 X線反射板ユニット 11 反射板 11a 基板(第1の層) 11b 薄膜層(第2の層) 11c 反射層(第3の層) 12 反射面 13 ハウジング 13a 入射用開口部 13b 出射用開口部 13c 反射板嵌入用の溝 F1 first focus position F2 second focus position R two-dimensional ellipsoid 1 X-ray source 2 X-ray 10 X-ray reflector unit 11 reflector 11a substrate (first layer) 11b Thin film layer (second layer) 11c Reflective layer (third layer) 12 Reflective surface 13 housing 13a entrance opening 13b exit opening 13c Groove for inserting reflector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 23/02 G01N 23/02 H05G 1/00 H05G 1/00 G (72)発明者 斎藤 泰 東京都調布市多摩川一丁目43番2号 株式 会社東研内 Fターム(参考) 2G001 AA01 CA01 DA08 4C092 AB30 AC01 AC08 BD10 4C093 AA30 CA50 EA20 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01N 23/02 G01N 23/02 H05G 1/00 H05G 1/00 G (72) Inventor Tai Saito Tokyo Metropolitan Chofu 1-43, Ichi-Tama River Stock F-term within Token Co., Ltd. (reference) 2G001 AA01 CA01 DA08 4C092 AB30 AC01 AC08 BD10 4C093 AA30 CA50 EA20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 極めて平滑な金属板が2次元楕円面を成
すようにX線の反射板として配置され、その楕円の一方
の焦点位置に配置されたX線源から放射されるX線を前
記楕円面で全反射させて他方の焦点位置に線状に集束さ
せることによって、X線の線状検出器に入るX線強度を
増強させるようになっていることを特徴とするX線増強
反射板。
1. An extremely smooth metal plate is arranged as an X-ray reflector so as to form a two-dimensional elliptical surface, and X-rays emitted from an X-ray source arranged at one focal point of the ellipse are described above. An X-ray intensifying reflector characterized in that the intensity of X-rays entering a linear detector of X-rays is enhanced by totally reflecting on an elliptical surface and linearly focusing on the other focal position. .
【請求項2】 前記X線の全反射の臨界角度を大きくす
るために前記反射板の反射面が高密度の重金属で構成さ
れており、更に前記反射板が多層に配置され、波長の短
いX線は内側、波長の長いX線は外側の反射板でそれぞ
れ反射させるようになっている請求項1に記載のX線増
強反射板。
2. The reflection surface of the reflection plate is made of a high-density heavy metal in order to increase the critical angle of the total reflection of the X-rays, and the reflection plates are arranged in multiple layers to provide a short wavelength X-ray. The X-ray enhanced reflection plate according to claim 1, wherein the X-ray having a long wavelength and the X-ray having a long wavelength are reflected by the reflection plate on the outside.
【請求項3】 前記反射板は、鏡面に近い仕上げを施し
た部材を基板として、その基板の表面の微小な凹凸を減
らすために高分子材料から成る薄膜の層が形成され、更
にその薄膜の層の上に高密度の重金属から成る反射面が
形成されている請求項1又は2に記載のX線増強反射
板。
3. A thin film layer made of a polymer material is formed on the reflection plate as a substrate with a member having a finish close to a mirror surface as a substrate to reduce minute irregularities on the surface of the substrate. The X-ray enhanced reflector according to claim 1 or 2, wherein a reflective surface made of a heavy metal having a high density is formed on the layer.
【請求項4】 前記薄膜の層は、重合体に転化させた高
分子材料を溶液のかたちで表面に塗布して前記高分子材
料を半密閉状態の容器内で乾燥させることによって形成
され、前記反射面は、前記薄膜の層に重金属を蒸着する
ことによって形成されている請求項3に記載のX線増強
反射板。
4. The thin film layer is formed by applying a polymer material converted to a polymer on the surface in the form of a solution and drying the polymer material in a semi-sealed container. The X-ray intensifying reflector according to claim 3, wherein the reflecting surface is formed by depositing a heavy metal on the layer of the thin film.
【請求項5】 前記2次元楕円面は、所望の楕円に溝加
工した枠に平らな反射板を嵌着することによって形成さ
れるようになっている請求項1乃至4のいずれかに記載
のX線増強反射板。
5. The two-dimensional elliptical surface is formed by fitting a flat reflection plate on a frame grooved into a desired ellipse. X-ray enhanced reflector.
【請求項6】 請求項1乃至5のいずれかに記載のX線
増強反射板を有することを特徴とするX線検査装置。
6. An X-ray inspection apparatus comprising the X-ray enhanced reflection plate according to claim 1.
JP2001345280A 2001-11-09 2001-11-09 X-ray intensifying reflecting plate and x-ray inspection device Pending JP2003149392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001345280A JP2003149392A (en) 2001-11-09 2001-11-09 X-ray intensifying reflecting plate and x-ray inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001345280A JP2003149392A (en) 2001-11-09 2001-11-09 X-ray intensifying reflecting plate and x-ray inspection device

Publications (1)

Publication Number Publication Date
JP2003149392A true JP2003149392A (en) 2003-05-21

Family

ID=19158645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001345280A Pending JP2003149392A (en) 2001-11-09 2001-11-09 X-ray intensifying reflecting plate and x-ray inspection device

Country Status (1)

Country Link
JP (1) JP2003149392A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506929A (en) * 2007-12-07 2011-03-03 ゼネラル・エレクトリック・カンパニイ Multiple energy imaging system and method using optical apparatus
JP2016011955A (en) * 2014-06-26 2016-01-21 ヘレウス ノーブルライト アメリカ エルエルシー Modular uv led lamp reflector assembly
JP2019012695A (en) * 2013-09-19 2019-01-24 シグレイ、インコーポレイテッド X-ray source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
WO2020132360A1 (en) * 2018-12-20 2020-06-25 Arizona Board Of Regents On Behalf Of Arizona State University Off-axis capillary x-ray optics
US10845491B2 (en) 2018-06-04 2020-11-24 Sigray, Inc. Energy-resolving x-ray detection system
US10962491B2 (en) 2018-09-04 2021-03-30 Sigray, Inc. System and method for x-ray fluorescence with filtering
US10976273B2 (en) 2013-09-19 2021-04-13 Sigray, Inc. X-ray spectrometer system
US10991538B2 (en) 2018-07-26 2021-04-27 Sigray, Inc. High brightness x-ray reflection source
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US11056308B2 (en) 2018-09-07 2021-07-06 Sigray, Inc. System and method for depth-selectable x-ray analysis
US11143605B2 (en) 2019-09-03 2021-10-12 Sigray, Inc. System and method for computed laminography x-ray fluorescence imaging
US11175243B1 (en) 2020-02-06 2021-11-16 Sigray, Inc. X-ray dark-field in-line inspection for semiconductor samples
US11217357B2 (en) 2020-02-10 2022-01-04 Sigray, Inc. X-ray mirror optics with multiple hyperboloidal/hyperbolic surface profiles
US11215572B2 (en) 2020-05-18 2022-01-04 Sigray, Inc. System and method for x-ray absorption spectroscopy using a crystal analyzer and a plurality of detector elements
US11549895B2 (en) 2020-09-17 2023-01-10 Sigray, Inc. System and method using x-rays for depth-resolving metrology and analysis
US11686692B2 (en) 2020-12-07 2023-06-27 Sigray, Inc. High throughput 3D x-ray imaging system using a transmission x-ray source
US11885755B2 (en) 2022-05-02 2024-01-30 Sigray, Inc. X-ray sequential array wavelength dispersive spectrometer
US11992350B2 (en) 2022-03-15 2024-05-28 Sigray, Inc. System and method for compact laminography utilizing microfocus transmission x-ray source and variable magnification x-ray detector

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506929A (en) * 2007-12-07 2011-03-03 ゼネラル・エレクトリック・カンパニイ Multiple energy imaging system and method using optical apparatus
JP2019012695A (en) * 2013-09-19 2019-01-24 シグレイ、インコーポレイテッド X-ray source
US10976273B2 (en) 2013-09-19 2021-04-13 Sigray, Inc. X-ray spectrometer system
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
JP2016011955A (en) * 2014-06-26 2016-01-21 ヘレウス ノーブルライト アメリカ エルエルシー Modular uv led lamp reflector assembly
US10845491B2 (en) 2018-06-04 2020-11-24 Sigray, Inc. Energy-resolving x-ray detection system
US10989822B2 (en) 2018-06-04 2021-04-27 Sigray, Inc. Wavelength dispersive x-ray spectrometer
US10991538B2 (en) 2018-07-26 2021-04-27 Sigray, Inc. High brightness x-ray reflection source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
US10962491B2 (en) 2018-09-04 2021-03-30 Sigray, Inc. System and method for x-ray fluorescence with filtering
US11056308B2 (en) 2018-09-07 2021-07-06 Sigray, Inc. System and method for depth-selectable x-ray analysis
US11875910B2 (en) 2018-12-20 2024-01-16 Arizona Board Of Regents On Behalf Of Arizona State University Off-axis capillary x-ray optics
WO2020132360A1 (en) * 2018-12-20 2020-06-25 Arizona Board Of Regents On Behalf Of Arizona State University Off-axis capillary x-ray optics
US11143605B2 (en) 2019-09-03 2021-10-12 Sigray, Inc. System and method for computed laminography x-ray fluorescence imaging
US11175243B1 (en) 2020-02-06 2021-11-16 Sigray, Inc. X-ray dark-field in-line inspection for semiconductor samples
US11217357B2 (en) 2020-02-10 2022-01-04 Sigray, Inc. X-ray mirror optics with multiple hyperboloidal/hyperbolic surface profiles
US11428651B2 (en) 2020-05-18 2022-08-30 Sigray, Inc. System and method for x-ray absorption spectroscopy using a crystal analyzer and a plurality of detector elements
US11215572B2 (en) 2020-05-18 2022-01-04 Sigray, Inc. System and method for x-ray absorption spectroscopy using a crystal analyzer and a plurality of detector elements
US11549895B2 (en) 2020-09-17 2023-01-10 Sigray, Inc. System and method using x-rays for depth-resolving metrology and analysis
US11686692B2 (en) 2020-12-07 2023-06-27 Sigray, Inc. High throughput 3D x-ray imaging system using a transmission x-ray source
US11992350B2 (en) 2022-03-15 2024-05-28 Sigray, Inc. System and method for compact laminography utilizing microfocus transmission x-ray source and variable magnification x-ray detector
US11885755B2 (en) 2022-05-02 2024-01-30 Sigray, Inc. X-ray sequential array wavelength dispersive spectrometer

Similar Documents

Publication Publication Date Title
JP2003149392A (en) X-ray intensifying reflecting plate and x-ray inspection device
RU2249840C2 (en) Lithographic device
JP2526409B2 (en) X-ray lens
WO1991001076A1 (en) Focused x-ray source
JPH04262300A (en) Roentgen microscope and forming method of roentgen image
JP5836395B2 (en) Multipass optical device
TW200424796A (en) Contamination barrier with expandable lamellas
US20130105712A1 (en) Apparatus and method for generating extreme ultraviolet light
WO1988000108A1 (en) Laser beam forming apparatus
JP6521384B2 (en) Optical mirror, X-ray fluorescence analysis device and method for X-ray fluorescence analysis
US10395788B2 (en) X-ray collimator
CN115657174A (en) Device for weakening stray light
CN111653659A (en) Device for reducing divergence angle of light emitted by light emitting diode and manufacturing method thereof
US20130243156A1 (en) Radiation imaging apparatus
JP5498206B2 (en) Electromagnetic wave collector sheet
Gary et al. X-ray imaging of an X-pinch plasma with a bubble compound refractive lens
Willi et al. Time resolved soft x‐ray imaging with submicron spatial resolution
JPH05142396A (en) X-ray reflecting mirror, x-ray image forming device and x-ray condensing device
Seely et al. High-resolution imaging of laser-produced plasmas at a wavelength of 130 Å by a normal-incidence multilayer-mirror microscope
JP2009042745A (en) Reflective iris
Gu et al. Measurements of electron and proton heating temperatures from extreme-ultraviolet light images at 68eV in petawatt laser experiments
JP2001201599A (en) Apparatus for guiding x-ray
CA2392378A1 (en) X-ray zoom lens
US6282259B1 (en) X-ray mirror system providing enhanced signal concentration
US20100014641A1 (en) High-Resolution X-Ray Optic and Method for Constructing an X-Ray Optic

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050607