JPH05142396A - X-ray reflecting mirror, x-ray image forming device and x-ray condensing device - Google Patents

X-ray reflecting mirror, x-ray image forming device and x-ray condensing device

Info

Publication number
JPH05142396A
JPH05142396A JP3335689A JP33568991A JPH05142396A JP H05142396 A JPH05142396 A JP H05142396A JP 3335689 A JP3335689 A JP 3335689A JP 33568991 A JP33568991 A JP 33568991A JP H05142396 A JPH05142396 A JP H05142396A
Authority
JP
Japan
Prior art keywords
ray
reflecting mirror
ray reflecting
image forming
curved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3335689A
Other languages
Japanese (ja)
Inventor
Motoshige Tatsumi
元茂 辰巳
Masaharu Seki
正治 関
Tsukasa Miyazaki
司 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP3335689A priority Critical patent/JPH05142396A/en
Publication of JPH05142396A publication Critical patent/JPH05142396A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a multi-film type X-ray reflecting mirror which is excellent in thickness and flexibility, easy to process multiple nesting, and is also so excellent in lightness as to be formed into a curved article such as a cylinder and the like, and thereby provide a X-ray image forming device and a X-ray condensing device in which the aforesaid X-ray reflecting mirror is incorporated. CONSTITUTION:A X-ray image forming device or a X-ray condensing device includes a multi-film type X-ray reflecting mirror where more than two kinds of thin films 21 and 22 which are different in refractive index against X-rays, are laminated 3 in cycles over a flexible substrate 1, a nesting type X-ray reflecting mirror where the X-ray reflecting mirror is in a curved condition, and a curved conditional or a nesting type X-ray reflecting mirror. The X-ray image forming device which is excellent in condensing efficiency, are therefore provided, an artificial satellite can be easily launched because a X-ray telescope can be made light in weight, an high-volume production capacity can thereby be enhanced, which enables each product in continuous length with a large area to be easily manufactured continuously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、可撓性を有して湾曲形
態等への加工が容易な多層膜型のX線反射鏡、並びにそ
れを用いたX線望遠鏡やX線顕微鏡等のX線結像装置、
及びX線リソグラフィー装置やX線レーザー装置等に用
いられるX線集光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer film type X-ray reflecting mirror which is flexible and can be easily processed into a curved shape, and an X-ray telescope and an X-ray microscope using the same. X-ray imaging device,
And an X-ray condensing device used for an X-ray lithography device, an X-ray laser device, and the like.

【0002】[0002]

【従来の技術】従来、表面を精密研磨したガラス板やシ
リコンウエハーの上に、重元素の薄層と軽元素の薄層を
交互に多数積層してなるX線反射鏡が知られていた。こ
れはガラス板等の上に設けた多層膜によるブラッグ反射
を利用したものである。かかる多層膜型のX線反射鏡
は、それまでの全反射タイプのX線反射鏡よりも反射面
に対して大きい角度(小さい入射角)で入射させること
ができ、X線ビームの反射に必要な面積を小さくでき
て、ひいてはX線反射鏡を小型化できる利点を有してい
る。
2. Description of the Related Art Heretofore, there has been known an X-ray reflecting mirror in which a large number of thin layers of heavy elements and thin layers of light elements are alternately laminated on a glass plate or a silicon wafer whose surface is precisely polished. This utilizes Bragg reflection by a multilayer film provided on a glass plate or the like. Such a multilayer film type X-ray reflecting mirror can enter the reflecting surface at a larger angle (smaller incident angle) than the conventional total reflection type X-ray reflecting mirror, and is necessary for reflecting the X-ray beam. This has the advantage that the specific area can be made small and the X-ray reflecting mirror can be made compact.

【0003】すなわち、多層膜型のX線反射鏡では、X
線の波長をλ、反射層の厚さすなわち重元素と軽元素の
各薄層の合計厚さをd、反射面に対する入射の角度をθ
とした場合に、式:mλ=2dsinθで表されるブラッ
グ条件を満足する方向に強いX線反射を得ることができ
る。なお、前記式中のmは正の整数である。
That is, in a multilayer film type X-ray reflecting mirror, X
The wavelength of the line is λ, the thickness of the reflective layer, that is, the total thickness of each thin layer of heavy and light elements, is d, and the angle of incidence on the reflective surface is θ.
In such a case, strong X-ray reflection can be obtained in the direction satisfying the Bragg condition represented by the formula: mλ = 2d sin θ. Note that m in the above formula is a positive integer.

【0004】一方、物質のX線に対する屈折率が1より
も僅かに小さいことを利用した全反射タイプのX線反射
鏡では、波長が数nmのX線の場合その臨界角は88〜8
9度であり、それよりX線を全反射させるためには反射
面に対して2〜1度の浅い角度で入射させることが必要
となり、前記の多層膜型のものに比べてより浅い角度で
入射させる必要がある。従ってX線ビームの反射に、よ
り大きな面積が必要となる。しかし、かかる大面積の全
反射型のX線反射鏡の形成は困難である。
On the other hand, in the case of a total reflection type X-ray reflecting mirror utilizing the fact that the refractive index of a substance for X-rays is slightly smaller than 1, the critical angle thereof is 88 to 8 when the wavelength is a few nm.
The angle is 9 degrees, and in order to totally reflect the X-ray, it is necessary to make the incident angle to the reflecting surface at a shallow angle of 2 to 1 degree, which is shallower than that of the multilayer film type. It is necessary to make it incident. Therefore, a larger area is required to reflect the X-ray beam. However, it is difficult to form such a large area total reflection type X-ray reflecting mirror.

【0005】なおちなみに、X線に対する屈折率(n)
は一般に、n=1−δ−iβで表され、δ及びβは小さ
い値でX線の波長により変化する。具体的には例えば、
波長1.54ÅのX線のδ及びβは、タングステンでそ
れぞれ4.5/105、3.7/106、炭素でそれぞれ
7.2/106、1.1/108である。
Incidentally, the refractive index (n) for X-rays
Is generally represented by n = 1-δ-iβ, and δ and β are small values and change depending on the wavelength of the X-ray. Specifically, for example,
The δ and β of the X-ray wavelength 1.54 Å, respectively tungsten 4.5 / 10 5, 3.7 / 10 6, respectively carbon 7.2 / 10 6, 1.1 / 10 8.

【0006】前記のように全反射型のX線反射鏡よりも
小型化等の点で有利な多層膜型のX線反射鏡ではある
が、波長が数Å以下の硬X線の場合には、前記の層厚
(d)を例え原子間距離程度に薄くしても入射の角度
(θ)を浅くする必要があり、反射有効面積が減少す
る。
As described above, the multilayer film type X-ray reflecting mirror is advantageous over the total reflection type X-ray reflecting mirror in terms of downsizing, but in the case of a hard X-ray having a wavelength of several Å or less, Even if the layer thickness (d) is thinned to an interatomic distance, the incident angle (θ) needs to be shallow, and the effective reflection area is reduced.

【0007】他方、斜入射型反射鏡にあって湾曲形態の
反射鏡の異径物を筒体の内側に重ね合わせてネスティン
グ形態とし、反射有効面積を増大させたものが知られて
いる。しかしながら、研磨時に要求される強度と反射鏡
としての精度維持の点よりガラス板を基板とする場合に
あってもその厚さを2〜3cmとする必要があり、ネステ
ィングできる重ね合わせ数の上限が4重程度と少なく、
反射有効面積を充分に増大させることができない問題点
があった。
On the other hand, there is known a grazing-incidence type reflecting mirror in which a curved reflecting mirror having a different diameter is overlapped with the inside of a cylindrical body to form a nesting shape to increase the effective reflection area. However, even if a glass plate is used as the substrate, the thickness must be 2 to 3 cm from the viewpoint of the strength required for polishing and the accuracy of the reflection mirror, and the upper limit of the number of layers that can be nested is limited. As little as four layers,
There is a problem that the effective reflection area cannot be increased sufficiently.

【0008】また、ガラス基板の自重等により反射鏡全
体が重くなる問題点、ガラス面を平滑な曲面に精密研磨
することが困難であるなど曲面部を有するものの形成が
困難な問題点があった。さらに、X線望遠鏡におけるよ
うな筒状のX線反射鏡を得る場合、ガラス筒等の内側に
各層厚が高度に制御された多層膜を形成することが実質
的に困難な問題点などもあった。
Further, there are problems that the entire reflecting mirror becomes heavy due to its own weight of the glass substrate, and that it is difficult to precisely form the glass surface into a smooth curved surface, thus making it difficult to form a curved surface. .. Further, in the case of obtaining a tubular X-ray reflecting mirror as in an X-ray telescope, there is a problem in that it is substantially difficult to form a multilayer film in which each layer thickness is highly controlled inside a glass tube or the like. It was

【0009】[0009]

【発明が解決しようとする課題】本発明は、薄さに優れ
て多重ネスティング処理が容易であると共に、可撓性を
有して筒体等を含む湾曲形態物を容易に形成でき、軽さ
にも優れる多層膜型のX線反射鏡の開発を課題とする。
DISCLOSURE OF THE INVENTION The present invention is excellent in thinness and easy to perform multiple nesting processing, and also has flexibility and can easily form a curved form including a tubular body and the like. The development of a multilayer film type X-ray reflecting mirror, which is also excellent, is an issue.

【0010】[0010]

【課題を解決するための手段】本発明は、可撓性基板の
上に、X線に対する屈折率が異なる2種以上の薄層を周
期的に積層してなることを特徴とする多層膜型のX線反
射鏡、及びそのX線反射鏡が湾曲状態にあるネスティン
グ形態のX線反射鏡、並びに湾曲状態の、又はネスティ
ング形態の前記X線反射鏡を有することを特徴とするX
線結像装置ないしX線集光装置を提供するものである。
The present invention is a multilayer film type characterized in that two or more thin layers having different refractive indices for X-rays are periodically laminated on a flexible substrate. X-ray reflecting mirror, and a nesting type X-ray reflecting mirror in which the X-ray reflecting mirror is in a curved state, and an X-ray reflecting mirror in a curved state or in a nesting type.
A line imaging device or an X-ray focusing device is provided.

【0011】[0011]

【作用】可撓性基板の使用により、薄くて軽い多層膜型
のX線反射鏡の形成が可能になる。また、数百を超える
ネスティング処理も容易で、有効反射面積の増大により
明るい像を形成することができる。さらに曲げ等の加工
が容易であり、筒体やその湾曲体などを含む様々な湾曲
形態物を容易に形成することができる。
By using the flexible substrate, it is possible to form a thin and light multilayer film type X-ray reflecting mirror. Further, a nesting process of several hundreds or more is easy, and a bright image can be formed by increasing the effective reflection area. Further, bending and the like are easy, and various curved forms including a cylindrical body and its curved body can be easily formed.

【0012】[0012]

【実施例】本発明のX線反射鏡は、可撓性基板の上に、
X線に対する屈折率が異なる2種以上の薄層を周期的に
積層してなる多層膜型のものである。その例を図1に示
した。1が可撓性基板、2が積層の基本単位である層の
組で、X線に対する屈折率が異なる2種の薄層21,2
2からなる。
EXAMPLE An X-ray reflecting mirror of the present invention is a flexible substrate,
It is a multi-layer film type in which two or more thin layers having different refractive indices for X-rays are periodically laminated. An example thereof is shown in FIG. Reference numeral 1 is a flexible substrate, and 2 is a set of layers which is a basic unit of lamination, and two kinds of thin layers 21 and 2 having different refractive indices for X-rays.
It consists of two.

【0013】可撓性基板としては、ポリエチレンテレフ
タレートやポリイミドなどで代表されるプラスチックか
らなるフィルム、金属箔などがあげられる。層の組を設
ける表面は、散乱や層厚乱れの防止によるブラッグ反射
の反射効率の向上の点より可及的に平滑であることが好
ましい。就中、その表面粗さ(凸部と凹部の差)が層の
組の厚さ、すなわちX線に対する屈折率が異なる2種以
上の薄層の積層物からなる重畳繰返し単位の厚さの1/
3以下であることが好ましい。
Examples of the flexible substrate include a film made of plastic such as polyethylene terephthalate and polyimide, and a metal foil. The surface on which the set of layers is provided is preferably as smooth as possible from the viewpoint of improving the reflection efficiency of Bragg reflection by preventing scattering and layer thickness disorder. In particular, the surface roughness (difference between a convex portion and a concave portion) is 1 of the thickness of the layer set, that is, the thickness of a repeating repeating unit composed of a laminate of two or more thin layers having different refractive indices for X-rays. /
It is preferably 3 or less.

【0014】表面が平滑なプラスチックフィルムは、例
えば表面を高度に平滑化した台上でプラスチック溶液を
必要に応じ押圧処理下にキャスティングする方法などに
より得ることができる。可撓性基板の厚さは、湾曲形態
等への加工に必要な可撓性などに応じて適宜に決定して
よい。一般には、10μm〜1mm程度の厚さのものが用
いられる。
The plastic film having a smooth surface can be obtained by, for example, a method of casting a plastic solution on a table having a highly smooth surface, if necessary under pressure treatment. The thickness of the flexible substrate may be appropriately determined according to the flexibility required for processing into a curved shape or the like. Generally, those having a thickness of about 10 μm to 1 mm are used.

【0015】前記したように重畳の繰返し単位である層
の組(2)は、X線に対する屈折率が異なる2種以上の
薄層の積層物で形成される。各層の組を形成する薄層の
数は、2〜5種類が一般的であるが、これに限定するも
のではない。従って本発明のX線反射鏡の形成は例え
ば、可撓性基板の上に各薄層を周期的に積層することに
より行うことができる。重畳する層数は任意であり、数
百層を超える重畳層とすることも可能である。一般に
は、得られるX線反射鏡の可撓性、ないし湾曲加工性な
どの点より1000層以下、就中2〜100層程度とさ
れる。
As described above, the layer set (2), which is a repeating unit of superposition, is formed of a laminate of two or more kinds of thin layers having different refractive indices for X-rays. The number of thin layers forming each set of layers is generally 2 to 5 but is not limited to this. Therefore, the X-ray reflecting mirror of the present invention can be formed, for example, by periodically laminating each thin layer on a flexible substrate. The number of layers to be overlapped is arbitrary, and it is possible to set the number of layers to be more than several hundred. In general, the number of layers is 1,000 or less, especially about 2 to 100, from the viewpoint of flexibility of the obtained X-ray reflecting mirror or bending workability.

【0016】積層処理は、例えばスパッタリング法、イ
オンビームスパッタリング法、真空蒸着法などの適宜な
方法で行ってよい。各薄層の厚さは、上記したブラッグ
条件より明らかな如く大きい入射の角度(θ)の達成の
点より薄いほど好ましい。従って均一層の形成精度など
に応じて適宜に決定され、一般には10nm以下、就中1
nm以下とされる。なお、層の組(2)の形成単位であ
る、X線に対する屈折率が異なる2種以上の薄層の各層
(21,22)は、その厚さが異なっていてもよい。
The lamination process may be carried out by an appropriate method such as a sputtering method, an ion beam sputtering method, a vacuum evaporation method or the like. It is preferable that the thickness of each thin layer is smaller than that of achieving a large angle of incidence (θ), as is clear from the Bragg conditions described above. Therefore, it is appropriately determined according to the formation accuracy of the uniform layer, and generally 10 nm or less, especially 1
Below nm. In addition, each layer (21, 22) of two or more kinds of thin layers having different refractive indices for X-rays, which is a forming unit of the layer set (2), may have different thicknesses.

【0017】各薄層の形成に用いられる物質としては、
小さい屈折率を与えるものとして例えば白金、金、イリ
ジウム、鉄、ニッケル、タングステン、モリブデン、タ
ンタルなどの重元素、ないし密度の高いものがあげら
れ、大きい屈折率を与えるものとして例えば炭素、シリ
コン、ベリリウムなどのX線の吸収が少ない軽元素、な
いし密度の低いものがあげられる。また前記の元素を含
有する合金、ないし化合物なども用いることができ、使
用物質については特に限定はない。なお波長が数nm以下
のX線に対しては通例、白金と炭素、あるいはタングス
テンと炭素の組合せなどとされる。
The material used to form each thin layer is
As a substance that gives a small refractive index, for example, a heavy element such as platinum, gold, iridium, iron, nickel, tungsten, molybdenum, tantalum, or a substance having a high density can be given, and as a substance that gives a large refractive index, for example, carbon, silicon or beryllium. Examples include light elements with low X-ray absorption, or low density elements. Further, alloys or compounds containing the above elements can also be used, and the substances used are not particularly limited. For X-rays having a wavelength of several nm or less, it is customary to use a combination of platinum and carbon, or a combination of tungsten and carbon.

【0018】本発明のX線反射鏡はその可撓性に基づい
て、筒体やその湾曲体などを含む湾曲形態等に容易に加
工することができる。従って、適宜な加工形態で用いる
ことができる。またX線反射鏡が湾曲状態で重畳する形
態など、適宜な形態で容易にネスティング処理すること
ができる。図2に円筒形態にネスティングしたものを例
示した。1が可撓性基板、3が層の組の重畳層からなる
多層膜である。
Due to its flexibility, the X-ray reflecting mirror of the present invention can be easily processed into a curved shape including a cylindrical body or a curved body thereof. Therefore, it can be used in an appropriate processing form. Further, the nesting process can be easily performed in an appropriate form such as a form in which the X-ray reflecting mirrors are superposed in a curved state. FIG. 2 shows an example of nesting in a cylindrical form. Reference numeral 1 is a flexible substrate, and 3 is a multi-layered film including an overlapping layer of a set of layers.

【0019】本発明のX線反射鏡、ないしそのネスティ
ング物は、X線望遠鏡やX線顕微鏡などのX線結像装
置、あるいはX線リソグラフィー装置やX線レーザー装
置などの反射鏡ないし集光装置に好ましく用いることが
できる。
The X-ray reflecting mirror of the present invention or its nesting object is an X-ray imaging device such as an X-ray telescope or an X-ray microscope, or a reflecting mirror or a condensing device such as an X-ray lithography device or an X-ray laser device. Can be used preferably.

【0020】図3にX線集光装置を例示した。これは、
本発明のX線反射鏡を円筒状に加工した筒体4を、さら
に回転放物面に沿うよう湾曲させて光軸Aに対して対象
に配置し、それに入射した平行X線ビームを焦点面Bに
おいて可及的に点状に反射集光するようにしたものであ
る。なおX線結像装置への適用は、本発明のX線反射
鏡、ないしそのネスティング物を従来のX線反射鏡と置
換する方法などにより容易に行うことができる。
FIG. 3 illustrates an X-ray focusing device. this is,
A cylindrical body 4 obtained by processing the X-ray reflecting mirror of the present invention into a cylindrical shape is further curved along a paraboloid of revolution and arranged on the object with respect to the optical axis A, and the parallel X-ray beam incident on the cylindrical body 4 is focused on the focal plane. In B, the light is reflected and condensed in a point shape as much as possible. The application to the X-ray imaging apparatus can be easily performed by the method of replacing the X-ray reflecting mirror of the present invention or its nesting object with the conventional X-ray reflecting mirror.

【0021】実施例1 真空室内にターゲットとしてタングステンと炭素を備
え、フィルムの巻取り装置も備えたスパッタリング装置
を用いて、2種のターゲット上をフィルムに往復させる
方式で厚さ125μmのポリイミドフィルム又はポリエ
チレンテレフタレートフィルムの上に、厚さ3.8nmの
炭素層と、厚さ5.7nmのタングステン層を交互に9層
ずつ形成し、多層膜型のX線反射鏡を得た。
Example 1 Using a sputtering apparatus having tungsten and carbon as targets in a vacuum chamber and also having a film winding apparatus, a polyimide film having a thickness of 125 μm was formed by reciprocating the film over two types of targets. On the polyethylene terephthalate film, a carbon layer having a thickness of 3.8 nm and a tungsten layer having a thickness of 5.7 nm were alternately formed by nine layers each to obtain a multilayer film type X-ray reflecting mirror.

【0022】前記で得たX線反射鏡の多層膜に対して、
波長1.54ÅのX線を入射させ、入射の角度と反射強
度の関係を調べた。その結果を図4、図5のグラフに示
した。なおグラフにおける反射強度は対数目盛により示
している。また横軸は偏角、すなわちX線の入射方向と
反射方向がなす角である。図4が基板にポリイミドフィ
ルムを用いたもので、1度を超える高い偏角の場合にも
満足できる強度の反射光を得ることができた。なお偏角
が0度に近い部分は、全反射に基づくピークである。
For the multilayer film of the X-ray reflecting mirror obtained above,
An X-ray with a wavelength of 1.54Å was made incident, and the relationship between the incident angle and the reflection intensity was investigated. The results are shown in the graphs of FIGS. The reflection intensity in the graph is shown on a logarithmic scale. Further, the horizontal axis represents a deviation angle, that is, an angle formed by the X-ray incident direction and the reflection direction. FIG. 4 shows the case where a polyimide film is used for the substrate, and reflected light having a satisfactory intensity can be obtained even in the case of a high deflection angle of more than 1 degree. The portion where the declination angle is close to 0 degree is a peak based on total reflection.

【0023】一方、図5が基板にポリエチレンテレフタ
レートフィルムを用いたもので、全反射による寄与が考
えられない1度を超える偏角で満足できる強度の反射光
を得ることができた。ネスティングによる多重化によ
り、より強い反射光を得ることができる。
On the other hand, FIG. 5 shows the case where a polyethylene terephthalate film is used for the substrate, and it is possible to obtain a reflected light of a sufficient intensity with a deviation angle of more than 1 degree in which the contribution of total reflection is not considered. By multiplexing by nesting, stronger reflected light can be obtained.

【0024】[0024]

【発明の効果】本発明によれば、薄くて軽く、かつ可撓
性を有する多層膜型のX線反射鏡を得ることができる。
また、数百を超える多重ネスティング処理も容易に行う
ことができ、有効面積が大きくて明るい像を形成するX
線結像装置、ないし集光効率に優れるX線集光装置を得
ることができる。さらに曲げ加工等が容易で、筒体等の
様々な湾曲形態物を容易に形成することができる。加え
て軽いことによりX線望遠鏡を軽量化でき、人工衛星の
打ち上げを容易にするなどの利点も有している。また更
に、大面積の長尺体を容易に連続製造できる等の量産性
に優れる利点も有している。
According to the present invention, it is possible to obtain a thin, light and flexible multilayer film type X-ray reflecting mirror.
In addition, multiple nesting processing in excess of several hundreds can be easily performed, and a large effective area forms a bright image.
It is possible to obtain a line imaging device or an X-ray focusing device having excellent focusing efficiency. Further, bending work is easy, and various curved forms such as a cylinder can be easily formed. In addition, the lightness makes it possible to reduce the weight of the X-ray telescope and also has the advantage of facilitating the launch of an artificial satellite. Further, it also has an advantage of being excellent in mass productivity such that a long-sized body having a large area can be easily continuously manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】X線反射鏡の実施例の断面図。FIG. 1 is a sectional view of an embodiment of an X-ray reflecting mirror.

【図2】ネスティング形態とした実施例の断面図。FIG. 2 is a sectional view of an example in a nesting form.

【図3】X線集光装置の実施例の説明図。FIG. 3 is an explanatory diagram of an embodiment of an X-ray focusing device.

【図4】実施例1における偏角と反射強度の関係を示し
たグラフ。
FIG. 4 is a graph showing the relationship between the deflection angle and the reflection intensity in Example 1.

【図5】実施例1における他の偏角と反射強度の関係を
示したグラフ。
FIG. 5 is a graph showing the relationship between other deflection angles and reflection intensity in Example 1.

【符号の説明】[Explanation of symbols]

1:可撓性基板 2:層の組 21,22:X線に対する屈折率が異なる薄層 3:層の組の重畳層からなる多層膜 4:円筒形態に加工したX線反射鏡 1: Flexible substrate 2: Layer set 21, 22: Thin layer having different refractive index for X-ray 3: Multilayer film consisting of superposed layers of layer set 4: Cylindrical processed X-ray mirror

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 可撓性基板の上に、X線に対する屈折率
が異なる2種以上の薄層を周期的に積層してなることを
特徴とする多層膜型のX線反射鏡。
1. A multilayer film type X-ray reflecting mirror comprising a flexible substrate and two or more thin layers having different refractive indices for X-rays, which are periodically laminated.
【請求項2】 請求項1に記載のX線反射鏡が湾曲状態
にあるネスティング形態のX線反射鏡。
2. A nesting type X-ray reflecting mirror in which the X-ray reflecting mirror according to claim 1 is in a curved state.
【請求項3】 湾曲状態にある請求項1に記載のX線反
射鏡、又は請求項2に記載のX線反射鏡を有することを
特徴とするX線結像装置。
3. An X-ray imaging apparatus comprising the X-ray reflecting mirror according to claim 1 or the X-ray reflecting mirror according to claim 2 in a curved state.
【請求項4】 湾曲状態にある請求項1に記載のX線反
射鏡、又は請求項2に記載のX線反射鏡を有することを
特徴とするX線集光装置。
4. An X-ray condensing device comprising the X-ray reflecting mirror according to claim 1 or the X-ray reflecting mirror according to claim 2 in a curved state.
JP3335689A 1991-11-25 1991-11-25 X-ray reflecting mirror, x-ray image forming device and x-ray condensing device Pending JPH05142396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3335689A JPH05142396A (en) 1991-11-25 1991-11-25 X-ray reflecting mirror, x-ray image forming device and x-ray condensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3335689A JPH05142396A (en) 1991-11-25 1991-11-25 X-ray reflecting mirror, x-ray image forming device and x-ray condensing device

Publications (1)

Publication Number Publication Date
JPH05142396A true JPH05142396A (en) 1993-06-08

Family

ID=18291400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3335689A Pending JPH05142396A (en) 1991-11-25 1991-11-25 X-ray reflecting mirror, x-ray image forming device and x-ray condensing device

Country Status (1)

Country Link
JP (1) JPH05142396A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512357A (en) * 1998-04-22 2002-04-23 スミソニアン アストロフィジカル オブザーバトリ X-ray diagnostic system
JP2011247825A (en) * 2010-05-28 2011-12-08 Kyoto Univ Method for manufacturing neutron mirror, and neutron mirror
US8111808B1 (en) 2008-08-15 2012-02-07 Lockheed Martin Corporation X-ray explosive imager
US8433037B1 (en) 2008-10-23 2013-04-30 Lockheed Martin Corp X-ray radar
JP2013528804A (en) * 2010-05-19 2013-07-11 シルヴァー,エリック,エイチ Hybrid X-ray optical instrument and method
US8531057B1 (en) 2008-10-22 2013-09-10 Lockheed Martin Corporation Faraday electrical energy sink for a power bus
US9213006B2 (en) 2011-12-02 2015-12-15 Lockheed Martin Corporation Modulated X-ray harmonic detection

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512357A (en) * 1998-04-22 2002-04-23 スミソニアン アストロフィジカル オブザーバトリ X-ray diagnostic system
US8111808B1 (en) 2008-08-15 2012-02-07 Lockheed Martin Corporation X-ray explosive imager
US8983034B2 (en) 2008-08-15 2015-03-17 Lockheed Martin Corporation X-ray explosive imager
US8531057B1 (en) 2008-10-22 2013-09-10 Lockheed Martin Corporation Faraday electrical energy sink for a power bus
US8433037B1 (en) 2008-10-23 2013-04-30 Lockheed Martin Corp X-ray radar
JP2013528804A (en) * 2010-05-19 2013-07-11 シルヴァー,エリック,エイチ Hybrid X-ray optical instrument and method
JP2011247825A (en) * 2010-05-28 2011-12-08 Kyoto Univ Method for manufacturing neutron mirror, and neutron mirror
US9213006B2 (en) 2011-12-02 2015-12-15 Lockheed Martin Corporation Modulated X-ray harmonic detection
US9316602B2 (en) 2011-12-02 2016-04-19 Lockheed Martin Corporation X-ray backscatter detection using modulated X-rays

Similar Documents

Publication Publication Date Title
US4322130A (en) Phase shifting mirror
KR100446126B1 (en) Optical Element Such As Multilayer Film Reflection Mirror, Production Method Therefor And Device Using It
JPH0438500A (en) Observation device utilizing x-ray
JPH05142396A (en) X-ray reflecting mirror, x-ray image forming device and x-ray condensing device
US5239566A (en) Multi-layered mirror
Soong et al. Conical thin foil x-ray mirror fabrication via surface replication
Horikawa et al. Design and fabrication of the Schwarzschild objective for soft x-ray microscopes
JPH0727198B2 (en) Multi-layer reflective mask
Spiller A scanning soft x-ray microscope using normal incidence mirrors
JPH0782117B2 (en) Reflective imaging optics
Singh Grazing incidence optics for X-ray astronomy: X-ray optics
JP2001027699A (en) Multi-layer film reflecting mirror and reflecting optical system
Bouet et al. Large aperture and wedged multilayer Laue lens for X-ray nanofocusing
US5382342A (en) Fabrication process for a gradient index x-ray lens
JP3010844B2 (en) X-ray reflector
EP1282139A1 (en) Multilayer-coated reflective mirrors for x-ray optical systems, and methods for producing same
US5745286A (en) Forming aspheric optics by controlled deposition
JP5920796B2 (en) Method for manufacturing X-ray reflection device
JP3267000B2 (en) Aspherical mirror manufacturing method
JP2002221596A (en) Aspherical mirror
JPH05180993A (en) X-ray reflecting mirror
Furuzawa et al. Replication of a multilayer supermirror
JP2569447B2 (en) Manufacturing method of multilayer mirror
JP3178182B2 (en) Aspherical mirror manufacturing method
JP2012037440A (en) X-ray optical system