JP2003149122A - Scanning probe microscope - Google Patents

Scanning probe microscope

Info

Publication number
JP2003149122A
JP2003149122A JP2001352141A JP2001352141A JP2003149122A JP 2003149122 A JP2003149122 A JP 2003149122A JP 2001352141 A JP2001352141 A JP 2001352141A JP 2001352141 A JP2001352141 A JP 2001352141A JP 2003149122 A JP2003149122 A JP 2003149122A
Authority
JP
Japan
Prior art keywords
sample
fine particles
probe
cantilever
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001352141A
Other languages
Japanese (ja)
Other versions
JP3883846B2 (en
Inventor
Kazunori Ando
和徳 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2001352141A priority Critical patent/JP3883846B2/en
Publication of JP2003149122A publication Critical patent/JP2003149122A/en
Application granted granted Critical
Publication of JP3883846B2 publication Critical patent/JP3883846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the surface physical properties of a sample without being influenced by the variation of contact areas by securing the contact area between a probe and the sample, preventing plastic deformation, and seizing the contact area in a scanning probe microscope. SOLUTION: Fine particles are dispersed on the surface of the sample, a surface irregularity image is measured, a probe of a cantilever is moved onto the fine particles, the distance between the cantilever and the sample is vibrated to ensure the contact area with the sample surface, and the displacement response of the cantilever is obtained. By measuring the surface irregularity, the sizes of the dispersed fine particles are measured, and the contact area with the sample surface is identified. By attaching the fine particles having known sizes to the tip of the probe, the surface physical properties on the surface of the attached sample are measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【発明の属する技術分野】本発明は、先端に微小な探針
を有するカンチレバーとカンチレバ−の変位を検出する
手段とカンチレバ−と試料間の距離を一定周期で所望の
振幅量で振動させる手段と試料を移動させる試料移動手
段とからなり、試料の表面物性を測定する走査型プロー
ブ顕微鏡において、試料表面上に微粒子を分散させて、
表面凹凸像を測定後、カンチレバ−の探針を微粒子上に
移動させて、カンチレバ−と試料間の距離を振動させ
て、カンチレバ−の変位応答を得ることを特徴とする走
査型プローブ顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises means for detecting displacement of a cantilever and a cantilever having a minute probe at the tip, and means for vibrating the distance between the cantilever and the sample at a desired amplitude in a constant cycle. A sample moving means for moving the sample, in a scanning probe microscope for measuring the surface properties of the sample, by dispersing fine particles on the sample surface,
The present invention relates to a scanning probe microscope characterized in that after measuring a surface unevenness image, a probe of a cantilever is moved onto fine particles to vibrate a distance between the cantilever and a sample to obtain a displacement response of the cantilever.

【従来の技術】従来の走査型プローブ顕微鏡は、先端に
微小な探針を有するカンチレバーと、カンチレバ−の変
位を検出する手段と、カンチレバーを試料に対して相対
的に、一定周期で所望の振幅量で振動させる手段と、振
動させる入力信号と検出される出力信号の時間的遅れを
検出する手段と試料を移動させる試料移動手段とからな
る走査型プローブ顕微鏡において、探針を測定したい試
料面に直接接触させることで試料表面の粘弾性特性など
の表面物性が測定されていた。
2. Description of the Related Art A conventional scanning probe microscope has a cantilever having a fine probe at its tip, a means for detecting the displacement of the cantilever, and the cantilever relative to a sample and having a desired amplitude at a constant cycle. In a scanning probe microscope consisting of a means for vibrating by a quantity, a means for detecting a time delay between an input signal to be vibrated and a detected output signal, and a sample moving means for moving the sample, the probe is placed on the sample surface to be measured. Surface physical properties such as viscoelastic properties of the sample surface were measured by direct contact.

【発明が解決しようとする課題】従来の走査型プローブ
顕微鏡では、探針を試料表面に接触させるときカンチレ
バ−のタイプにより針先Rが異なり、試料面との接触面
積が異なる欠点があった。また、カンチレバ−は表面凹
凸像の分解能を高めるために針先を先鋭化させているた
め試料面との接触面積が極小となり、やわらかいカンチ
レバ−を使用してもやわらかい試料では接触圧が大きく
なり、試料を塑性変形させてしまい、試料の粘弾性特性
が測定できない欠点もあった。また針先の大きさもバラ
ツキがあり、先鋭化されているがゆえに小さなバラツキ
でも接触面積で決まる応力は大きく変化してしまう欠点
もあった。
The conventional scanning probe microscope has a drawback that when the probe is brought into contact with the sample surface, the needle tip R is different depending on the type of the cantilever and the contact area with the sample surface is different. Further, since the cantilever has a sharpened needle tip in order to enhance the resolution of the surface unevenness image, the contact area with the sample surface becomes extremely small, and even if a soft cantilever is used, the contact pressure becomes large in a soft sample, There is also a drawback that the sample is plastically deformed and the viscoelastic property of the sample cannot be measured. In addition, the size of the needle tip also varies, and since it is sharpened, the stress determined by the contact area changes greatly even with a small variation.

【課題を解決するための手段】上記の問題点を解決する
ために、本発明では、先端に微小な探針を有するカンチ
レバーと、カンチレバ−の変位を検出する手段と、カン
チレバーを試料に対して相対的に、一定周期で所望の振
幅量で振動させる手段と、試料を移動させる試料移動手
段とからなり、試料の表面物性を測定する走査型プロー
ブ顕微鏡において、試料表面上に微粒子を分散させて、
表面凹凸像を測定後、カンチレバ−の探針を微粒子上に
移動させて、カンチレバーを試料に対して相対的に、一
定周期で所望の振幅量で振動させて、微粒子により試料
面との接触面積を確保して、カンチレバ−の変位応答を
得るようにした。また表面凹凸像を測定することで分散
させた微粒子の大きさも測定し、試料面との接触面積を
同定するようにした。また、大きさのわかった微粒子を
針先に付着させることで付着後の試料面での変位応答測
定をするようにした。
In order to solve the above problems, in the present invention, a cantilever having a minute probe at the tip, a means for detecting displacement of the cantilever, and a cantilever with respect to a sample are provided. Relatively, in a scanning probe microscope that measures the surface physical properties of a sample, it consists of a means for oscillating with a desired amount of amplitude in a fixed cycle and a sample moving means for moving the sample. ,
After measuring the surface irregularity image, move the probe of the cantilever over the microparticles, vibrate the cantilever relative to the sample with a desired amplitude amount in a constant cycle, and contact area with the sample surface by the microparticles. To ensure a cantilever displacement response. The size of the dispersed fine particles was also measured by measuring the surface unevenness image, and the contact area with the sample surface was identified. In addition, fine particles of known size were attached to the tip of the needle to measure the displacement response on the surface of the sample after attachment.

【発明の実施の形態】本発明は、図に示すように、先端
に微小な探針を有するカンチレバーとカンチレバ−の変
位を検出する手段と、カンチレバーを試料に対して相対
的に、一定周期で所望の振幅量で振動させる手段と、試
料を移動させる試料移動手段とからなり、試料の表面物
性を測定する走査型プローブ顕微鏡において、試料表面
上に微粒子を分散させて、表面凹凸像を測定後、カンチ
レバ−の探針を微粒子上に移動させて、カンチレバーを
試料に対して相対的に振動させて、微粒子により試料面
との接触面積を確保して、カンチレバ−の変位応答を得
るようにした。また表面凹凸像を測定することで分散さ
せた微粒子の大きさも測定し、試料面との接触面積を同
定することで変位応答を正確に測定するようにした。ま
た大きさのわかった微粒子を針先に付着させることで試
料面との接触面積を正確に把握し、付着後の変位応答測
定を容易にした。
BEST MODE FOR CARRYING OUT THE INVENTION As shown in the drawings, the present invention is a cantilever having a minute probe at its tip and a means for detecting the displacement of the cantilever, and the cantilever relative to the sample at a constant cycle. In a scanning probe microscope that measures the surface physical properties of the sample, consisting of a means for oscillating with a desired amplitude amount and a sample moving means for moving the sample, disperse the fine particles on the sample surface, and measure the surface unevenness image. , The cantilever probe was moved over the microparticles, and the cantilever was vibrated relative to the sample to secure the contact area with the sample surface by the microparticles and obtain the displacement response of the cantilever. . The size of the dispersed fine particles was also measured by measuring the surface unevenness image, and the displacement response was accurately measured by identifying the contact area with the sample surface. By attaching fine particles of known size to the tip of the needle, the contact area with the sample surface was accurately grasped, and the displacement response measurement after attachment was facilitated.

【実施例】実施例について図面を参照して説明すると、
図1(a),1(b),1(c)は走査型プローブ顕微
鏡の測定において、本発明の方式の模式図である。カン
チレバ−と試料間の距離を、カンチレバーを試料に対し
て相対的に、一定周期で所望の振幅量で振動させる手段
として、試料移動手段に内蔵する上下動作をモジュレ−
ション入力として利用する場合について表面物性測定の
中で粘弾性特性を測定する例を図1(a)で説明する。
カンチレバ−1の先端には探針2があり、試料3と接触
している。試料は試料台4の上に設置されている。試料
台は試料移動手段5に設置されている。試料移動手段は
上下方向の動作と平面方向の動作が可能である。上下方
向に動作させることで針先を試料面に対して押し付け、
離しの繰り返しの振動を与えることができる。平面方向
の動作では探針と試料面接触位置を相対的に移動させる
ことができる。試料への振動は試料移動手段に内蔵する
上下動作によりモジュレ−ション入力6として与えられ
る。カンチレバ−にはレ−ザ7が照射されていて反射光
は変位検出手段8に到達する。変位検出手段の到達位置
によりカンチレバ−の変位が出力信号9として得られ
る。モジュレ−ション入力には一般に正弦波が利用さ
れ、出力信号の波形は入力波形に対して時間的に遅れる
特性となる。時間的遅れの大きさは試料の粘弾性特性を
代表する値となる。またモジュレ−ション入力の振動量
(振幅)をA0とすると出力信号の振動量(振幅)はA
1となる。試料がやわらかければ出力振幅A1はA0よ
り小さくなる。出力振幅A1の値の大きさでも試料の粘
弾性特性が測定できる。なおモジュレ−ション入力とし
て試料移動手段の代わりにカンチレバ−側に設置された
別の振動手段10を用いてもよい。次に試料表面に微粒
子を分散する手順を図1(b)および図1(c)に示
す。試料上に微粒子を分散させて、カンチレバ−で試料
表面の凹凸像を測定する。カンチレバ−の探針を微粒子
上に移動させる。探針が微粒子上にある状態で、モジュ
レ−ション入力を加え、入力波形に対する出力波形の応
答を測定する。前述の時間的遅れ、あるいは出力振幅A
1の大きさを測定することで試料の粘弾性特性を測定す
る。通常の探針が直接試料面に接触する場合には、探針
は先鋭化されているので試料表面への潜り方次第で接触
面積はバラツキやすい。微粒子上では試料表面との接触
面積をかせぐことができるのでバラツキを抑えることが
できる。また表面凹凸像を測定する際に微粒子の大きさ
を知ることもできるので接触面積の同定も可能となる。
次に分散する微粒子の別の実施例を図2に示す。図2
(a)では円柱状の微粒子を試料面上に分散させた後、
探針を円柱微粒子上に移動させ、モジュレ−ションを加
えて試料の粘弾性特性を測定する。図2(b)ではファ
イバ−状の微粒子を水平になるように試料面上に分散さ
せた後、探針をファイバ−状微粒子の円筒面上に移動さ
せ、モジュレ−ションを加えて、試料の粘弾性特性を測
定する。分散するファイバ−状微粒子はカ−ボンナノチ
ュ−ブ、セラミック系のファイバ-、金属系のファイバ-
などでもよい。図2(c)では角状の微粒子を試料面上
に分散させた後、探針を角状微粒子上に移動させ、モジ
ュレ−ションを加えて試料の粘弾性特性を測定する。い
ずれの場合にも表面凹凸像の測定後、探針を微粒子上に
移動させるので、接触面積の大きさを測定できる。接触
面積を知ることができるので探針の先鋭化のバラツキに
よらず、試料面への変位置応答と接触面積の関係を把握
できる。図3(a)に分散させた微粒子の試料面との接
触が平面である例を示す。例えば微粒子が角状のもので
あれば、表面凹凸像を測定することで接触面の幅Wと奥
行きLを求めることができるので、微粒子が長方形であ
れば、接触面積は、幅Wx奥行きLとなる。微粒子が多
角形であっても表面凹凸像を測定することで接触面積は
見積もることができる。単位面積あたりの押し付け具
合、つまり応力を測定することができる。接触面積が把
握できるので、接触面積のバラツキを除外した、試料の
粘弾性特性も測定することができる。図3(b)に分散
させた微粒子がファイバ−状で試料面との接触が円筒面
である例を示す。微粒子の円筒面上に探針を移動させた
状態を基準とする。探針を押しつけて探針の変位が基準
に対しhだけ下がったとする。微粒子の半径をRとすれ
ば、接触部の円弧を形成する角度αはα=invers
e(cos((R−h)/R)で求めることができる。
円筒面の全周は2xπxRで与えられるので、接触部の
円弧の長さVは、V=(2xπxR)x(2xα)/3
60で得られる。よって接触部の面積は、(円弧長V)
x(奥行きL)で同定できる。なお接触部が球面である
場合も同様にして接触面積を同定できる。図4に、試料
表面上に分散させる微粒子に予め帯電しやすい処理をし
て、探針を微粒子上に移動させて探針に付着させるとし
た別の実施例を示す。図4(a)でまず所望の大きさの
微粒子を選定する。図4(b)で微粒子の周囲面に帯電
処理41を施す。図4(c)に作業基板42上に微粒子
を分散させる。このとき作業基板自身は帯電しない導電
性であることが望ましい。図4(d)に、微粒子を分散
させた基板上で表面凹凸像を測定して探針を微粒子上に
移動させる。この状態で電流を流す手段43により、帯
電処理した微粒子が付着するように、探針に印加する電
位の方向を決める。図4(e)に探針に微粒子が付着し
たあと、作業基板から探針を離すと、探針に微粒子が付
着した状態となる。図4(f)で、微粒子が付着した探
針で別試料44を測定する。なお電位をかけずにカンチ
レバ−自身の母材の材質である窒化珪素、Siの自然酸
化膜の帯電で静電気集塵させてもよい。また探針側に帯
電処理させておいて微粒子を付着させてもよい。図5
に、探針に微粒子を電着させて付着させる別の実施例を
示す。図5(a)でまず所望の大きさの微粒子を選定す
る。図5(b)で微粒子および探針を含めてカンチレバ
−に導電処理51をする。図5(c)で微粒子を基板に
分散させる。カンチレバ−は電流を流す手段43に取り
付ける。図5(d)で微粒子を分散させた基板の表面凹
凸像を測定し、微粒子上に探針を移動させる。電流を流
す手段によりカンチレバ−、探針を介して瞬間的あるい
は継続的に電流を流す。電流が流れることで導電性コ−
トが溶融し、電流を流すのを止めれば、溶融した導電性
コ−ト成分が凝固し、探針は微粒子に付着する。図5
(e)で探針を基板より離せば、微粒子は探針に付着し
た状態となる。図5(f)で、微粒子が付着した探針で
別試料44を測定する。なお微粒子自身が導電性の性質
があれば微粒子自身には導電処理をする必要はなく、探
針側の導電性コ−トの溶融、凝固で微粒子を付着させて
もよい。また基板側から電流を流して導電性コ−トの溶
融、凝固で微粒子を付着させてもよい。図6に、分散さ
せる微粒子に予め粘着成分をコ−トし、探針に微粒子を
付着させる別の実施例を示す。図6(a)でまず所望の
大きさの微粒子を選定する。図6(b)で、微粒子およ
び探針に粘着処理61をする。図6(c)で、粘着処理
した微粒子を基板上に分散させる。カンチレバ−は加熱
手段62に取り付けられる。図6(d)で、微粒子を分
散させた基板の表面凹凸像を測定し、微粒子上に探針を
移動させる。カンチレバ−を加熱する手段によりカンチ
レバ−、探針の粘着成分コ−トを溶かす、あるいは粘着
性を上げる。探針は微粒子と接触した状態で粘着性が増
え、カンチレバ−の加熱を止めることで、粘着成分が凝
固あるいは室温にもどって微粒子は探針に付着する。図
6(e)で探針を基板より離せば、微粒子は探針に付着
した状態となる。図6(f)で、微粒子が付着した探針
で別試料44を測定する。なお探針のみに粘着成分のコ
−トをして微粒子には粘着成分のコ−トをしない組み合
わせでもよい。またカンチレバ−の加熱手段の代わりに
基板の下に加熱ヒ−タを設置し微粒子上に探針がある状
態で基板側から加熱して粘着成分コ−トを溶融させて微
粒子を探針に付着させてもよい。この場合には基板は粘
着処理成分となじまない材質が望ましい。また基板の下
に設置する加熱ヒ−タの代わりに基板および探針の上方
に輻射ランプを設置し、輻射加熱で粘着成分コ−トを溶
融させて微粒子を探針に付着させてもよい。図7に、微
粒子を分散後、表面凹凸像を測定することで微粒子のサ
イズ、試料との接触面積を測定し、カンチレバ−の変位
応答における接触面積の同定をする別の実施例を示す。
大きさ、試料との接触面積が一定でない場合でも、微粒
子の分散後、表面凹凸像測定後、断面プロファイルを測
定することで接触面積を求めることができる。接触面積
を把握した上で、入力波形に対する出力波形の時間的遅
れから試料の粘弾性特性を接触面積のバラツキに左右さ
れることなく測定することができる。また同じく入力振
幅に対する出力振幅の大きさからも試料の粘弾性特性を
接触面積のバラツキに左右されることなく測定すること
もできる。また以上までは、探針を試料面に対して押し
付けることで得られる物性として粘弾性特性の例で説明
してきた。一方、探針を試料面から離すことに着目すれ
ば得られる表面物性としては、試料面の吸着特性もあ
る。微粒子を分散後、表面凹凸像を測定し微粒子のサイ
ズ、試料との接触面積を測定し、探針に微粒子を付着さ
せる工程を経て別の試料上で微粒子付きの探針を試料面
に対して接触、離しを繰り返す実施例を図8に示す。図
8(a)で微粒子付きの探針が試料面上の吸着が小さい
部分81に接触している。図8(b)で試料を下方向へ
移動させるとカンチレバ−はつり竿状態になる。探針が
どの程度試料側に引っ張られているかはカンチレバ−に
照射されているレ−ザの反射光を変位検出器で知ること
で探針の変位量を知ることができる。図8(c)でさら
に試料を下方向に移動させれば微粒子付きの探針は試料
面から離れる。次に図8(d)で微粒子付きの探針が試
料面上の吸着が大きい部分82に接触している。図8
(e)で試料を下方向へ移動させるとカンチレバ−はつ
り竿状態になる。探針がどの程度試料側に引っ張られて
いるかはカンチレバ−に照射されているレ−ザの反射光
を変位検出器で知ることで探針の変位量を知ることがで
きる。図8(f)でさらに試料を下方向に移動させれば
微粒子付きの探針は試料面から離れる。吸着の大きい部
分ではカンチレバ−のつり竿状態は顕著で探針の変位も
大、吸着の小さい部分ではカンチレバ−のつり竿状態の
度合いは少なく探針の変位は小さくなる。試料面から離
れるときの探針の変位を測定することで試料面のポイン
トにおける吸着力の大小つまり吸着特性を測定できる。
また表面凹凸像を測定しながら微粒子付きの探針が離れ
るときの変位をマッピングしていけば吸着特性のマッピ
ング像も得ることもできる。また微粒子を探針に付着さ
せた状態で試料移動手段により試料を水平方向に相対的
にずらせばカンチレバ−は摩擦などによりねじれて摩擦
特性を測定する実施例を図9に示す。図9(a)は探針
を有するカンチレバ−の長手方向が紙面と垂直の場合を
示している。微粒子付きの探針は試料面上に接触してい
る。カンチレバ−がねじれやすいようにカンチレバ−の
長手方向に直交する方向に試料を移動させる。摩擦の小
さい部分91ではねじれ量は小さい。図9(b)で微粒
子付きの探針が摩擦の大きい部分92にくるとねじれ量
は大きくなる。図9(c)で再び摩擦の小さい部分91
に微粒子付きの探針がくればねじれ量は小さくなる。微
粒子付きの探針に対して試料を水平方向に移動させ、ね
じれ量を変位検出手段により測定することで試料表面の
摩擦特性のマッピング像も得ることができる。また摩擦
特性の測定目的では探針と試料間の距離を周期的に上下
方向に振動させるかわりに、試料移動手段の水平方向の
動作で、微粒子付きの探針に対して試料を水平方向に所
望の振動数、所望の振動量で振動させながら試料面を測
定していってもよい。摩擦の大きい部分で同じくねじれ
量が大、摩擦の小さい部分でねじれ量が小となり、水平
方向の振動(モジュレ−ション入力)をさせながら、同
様に試料表面の摩擦特性のマッピング像を得ることもで
きる。
EXAMPLES Examples will be described with reference to the drawings.
1 (a), 1 (b) and 1 (c) are schematic diagrams of the method of the present invention in the measurement of a scanning probe microscope. The distance between the cantilever and the sample is modulated by the vertical movement built in the sample moving means as a means for vibrating the cantilever relative to the sample with a desired amplitude amount in a constant cycle.
An example of measuring the viscoelastic property in the surface physical property measurement in the case of using it as an application input will be described with reference to FIG.
The tip 2 of the cantilever-1 has a probe 2, which is in contact with the sample 3. The sample is set on the sample table 4. The sample table is installed on the sample moving means 5. The sample moving means is capable of vertical movement and planar movement. The needle tip is pressed against the sample surface by operating in the vertical direction,
It is possible to give repeated vibrations of separation. In the operation in the plane direction, the contact position between the probe and the sample surface can be moved relatively. The vibration to the sample is given as the modulation input 6 by the vertical movement built in the sample moving means. The cantilever is irradiated with the laser 7 and the reflected light reaches the displacement detecting means 8. The displacement of the cantilever is obtained as an output signal 9 depending on the arrival position of the displacement detecting means. A sine wave is generally used for the modulation input, and the waveform of the output signal has a characteristic that it lags behind the input waveform in time. The magnitude of the time delay is a value that represents the viscoelastic properties of the sample. If the vibration amount (amplitude) of the modulation input is A0, the vibration amount (amplitude) of the output signal is A0.
It becomes 1. If the sample is soft, the output amplitude A1 will be smaller than A0. The viscoelastic property of the sample can be measured even with the magnitude of the value of the output amplitude A1. As a modulation input, another vibrating means 10 installed on the cantilever side may be used instead of the sample moving means. Next, the procedure for dispersing fine particles on the sample surface is shown in FIGS. 1 (b) and 1 (c). Fine particles are dispersed on the sample, and a concavo-convex image on the sample surface is measured with a cantilever. The cantilever probe is moved onto the fine particles. With the probe on the fine particles, a modulation input is applied and the response of the output waveform to the input waveform is measured. The above-mentioned time delay or output amplitude A
The viscoelastic property of the sample is measured by measuring the size of 1. When a normal probe directly contacts the sample surface, the probe area is sharpened, and thus the contact area tends to vary depending on how it dives into the sample surface. Since it is possible to increase the contact area with the sample surface on the fine particles, it is possible to suppress variations. Further, since the size of the fine particles can be known when measuring the surface unevenness image, the contact area can be identified.
Another example of the fine particles to be dispersed is shown in FIG. Figure 2
In (a), after the cylindrical fine particles are dispersed on the sample surface,
The probe is moved onto the cylindrical fine particles, and modulation is applied to measure the viscoelastic properties of the sample. In FIG. 2B, after the fiber-shaped fine particles are dispersed horizontally on the sample surface, the probe is moved onto the cylindrical surface of the fiber-shaped fine particles, and the modulation is applied to the sample surface. Measure the viscoelastic properties. The dispersed fiber-like fine particles are carbon nano tubes, ceramic fibers, and metal fibers.
And so on. In FIG. 2 (c), after the angular fine particles are dispersed on the sample surface, the probe is moved onto the angular fine particles and modulation is applied to measure the viscoelastic characteristics of the sample. In either case, since the probe is moved onto the fine particles after the surface unevenness image is measured, the size of the contact area can be measured. Since the contact area can be known, the relationship between the displacement response to the sample surface and the contact area can be grasped regardless of the variation in sharpening of the probe. FIG. 3A shows an example in which the dispersed fine particles are in contact with the sample surface on a flat surface. For example, if the fine particles are angular, the width W and depth L of the contact surface can be obtained by measuring the surface unevenness image. Therefore, if the fine particles are rectangular, the contact area is the width W × depth L. Become. Even if the particles are polygonal, the contact area can be estimated by measuring the surface unevenness image. The pressing condition per unit area, that is, the stress can be measured. Since the contact area can be grasped, it is possible to measure the viscoelastic property of the sample without the variation of the contact area. FIG. 3B shows an example in which the dispersed fine particles are fiber-shaped and the contact with the sample surface is a cylindrical surface. The state where the probe is moved on the cylindrical surface of the fine particles is used as a reference. It is assumed that the probe is pressed and the displacement of the probe is lowered by h with respect to the reference. If the radius of the fine particles is R, the angle α forming the arc of the contact portion is α = invers
It can be determined by e (cos ((R−h) / R).
Since the entire circumference of the cylindrical surface is given by 2xπxR, the arc length V of the contact portion is V = (2xπxR) x (2xα) / 3
Obtained at 60. Therefore, the contact area is (arc length V)
It can be identified by x (depth L). The contact area can be identified in the same manner when the contact portion is spherical. FIG. 4 shows another embodiment in which the fine particles to be dispersed on the sample surface are pre-charged so that the fine particles are moved to adhere to the fine particles. First, in FIG. 4A, fine particles having a desired size are selected. In FIG. 4B, the charging process 41 is performed on the peripheral surface of the fine particles. In FIG. 4C, fine particles are dispersed on the work substrate 42. At this time, it is desirable that the work substrate itself is electrically conductive so that it is not charged. In FIG. 4D, an uneven surface image is measured on a substrate in which fine particles are dispersed, and the probe is moved onto the fine particles. In this state, the direction of the potential to be applied to the probe is determined by the means 43 for passing the current so that the charged fine particles adhere. After the particles adhere to the probe as shown in FIG. 4E, when the probe is separated from the work substrate, the particles adhere to the probe. In FIG. 4 (f), another sample 44 is measured with a probe having fine particles attached thereto. Alternatively, electrostatic charges may be collected by charging the natural oxide film of silicon nitride or Si, which is the material of the base material of the cantilever itself, without applying a potential. Further, the fine particles may be attached to the probe side after being charged. Figure 5
Another example in which fine particles are electrodeposited and attached to the probe is shown in FIG. In FIG. 5A, first, fine particles having a desired size are selected. In FIG. 5B, the cantilever including the fine particles and the probe is subjected to the conductive treatment 51. In FIG. 5C, fine particles are dispersed on the substrate. The cantilever is attached to the means 43 for passing an electric current. In FIG. 5 (d), a surface unevenness image of the substrate on which the fine particles are dispersed is measured, and the probe is moved onto the fine particles. An electric current is instantaneously or continuously passed through a cantilever and a probe by means of an electric current. Conducting current
When the coating melts and the flow of electric current is stopped, the molten conductive coat component solidifies and the probe sticks to the fine particles. Figure 5
When the probe is separated from the substrate in (e), the fine particles are attached to the probe. In FIG. 5 (f), another sample 44 is measured with a probe having fine particles attached thereto. If the fine particles themselves have a conductive property, it is not necessary to subject the fine particles to a conductive treatment, and the fine particles may be attached by melting or solidifying the conductive coat on the probe side. Alternatively, an electric current may be applied from the side of the substrate to melt and solidify the conductive coat to adhere the fine particles. FIG. 6 shows another embodiment in which the adhesive component is previously coated on the fine particles to be dispersed and the fine particles are attached to the probe. First, in FIG. 6A, fine particles having a desired size are selected. In FIG. 6B, the adhesion treatment 61 is applied to the fine particles and the probe. In FIG. 6 (c), the adhesive-treated fine particles are dispersed on the substrate. The cantilever is attached to the heating means 62. In FIG. 6D, a surface unevenness image of a substrate in which fine particles are dispersed is measured, and a probe is moved onto the fine particles. By heating the cantilever, the adhesive component coat of the cantilever and the probe is melted or the adhesiveness is increased. The stickiness of the probe increases in contact with the fine particles, and when the heating of the cantilever is stopped, the sticky component coagulates or returns to room temperature, and the fine particles adhere to the probe. When the probe is separated from the substrate in FIG. 6E, the fine particles are attached to the probe. In FIG. 6 (f), another sample 44 is measured with a probe having fine particles attached thereto. It should be noted that the combination may be such that only the probe is coated with the adhesive component and the fine particles are not coated with the adhesive component. Also, instead of the heating means of the cantilever, a heating heater is installed under the substrate, and the probe is placed on the fine particles to heat from the substrate side to melt the adhesive component coat and attach the fine particles to the probe. You may let me. In this case, the substrate is preferably made of a material that is not compatible with the adhesive treatment component. Further, instead of the heating heater installed under the substrate, a radiant lamp may be installed above the substrate and the probe, and the adhesive component coat may be melted by radiant heating to adhere the fine particles to the probe. FIG. 7 shows another embodiment in which the size of the fine particles and the contact area with the sample are measured by measuring the surface unevenness image after dispersing the fine particles to identify the contact area in the displacement response of the cantilever.
Even if the size and the contact area with the sample are not constant, the contact area can be obtained by measuring the cross-sectional profile after the fine particles are dispersed, the surface unevenness image is measured. After grasping the contact area, the viscoelastic property of the sample can be measured from the time delay of the output waveform with respect to the input waveform without being influenced by the variation of the contact area. Similarly, the viscoelastic property of the sample can be measured from the magnitude of the output amplitude with respect to the input amplitude without being affected by the variation in the contact area. In the above, the example of the viscoelastic property has been described as the physical property obtained by pressing the probe against the sample surface. On the other hand, the surface physical properties obtained by focusing on separating the probe from the sample surface also include the adsorption property of the sample surface. After dispersing the fine particles, measure the surface unevenness image to measure the size of the fine particles and the contact area with the sample, and through the process of attaching the fine particles to the probe, put the probe with the fine particles on the sample surface on another sample. An embodiment in which contact and separation are repeated is shown in FIG. In FIG. 8A, the probe with fine particles is in contact with the portion 81 on the sample surface where the adsorption is small. When the sample is moved downward in FIG. 8B, the cantilever is in a fishing rod state. The extent to which the probe is pulled toward the sample can be determined by knowing the reflected light of the laser applied to the cantilever with the displacement detector. When the sample is further moved downward in FIG. 8C, the fine particle-attached probe is separated from the sample surface. Next, in FIG. 8D, the probe with fine particles is in contact with the portion 82 on the sample surface where the adsorption is large. Figure 8
When the sample is moved downward in (e), the cantilever is in a fishing rod state. The extent to which the probe is pulled toward the sample can be determined by knowing the reflected light of the laser applied to the cantilever with the displacement detector. If the sample is further moved downward in FIG. 8F, the fine particle-attached probe is separated from the sample surface. In the portion where the adsorption is large, the cantilever's fishing rod state is remarkable and the displacement of the probe is large, and in the portion where the adsorption is small, the degree of the cantilever fishing rod state is small and the displacement of the probe is small. By measuring the displacement of the probe when moving away from the sample surface, the magnitude of the suction force at the point on the sample surface, that is, the suction characteristic can be measured.
Also, by mapping the displacement when the probe with fine particles separates while measuring the surface unevenness image, a mapping image of the adsorption property can be obtained. FIG. 9 shows an embodiment in which the cantilever is twisted by friction or the like to measure the frictional characteristics by relatively shifting the sample in the horizontal direction with the sample moving means while the fine particles are attached to the probe. FIG. 9A shows a case where the longitudinal direction of the cantilever having a probe is perpendicular to the paper surface. The probe with fine particles is in contact with the sample surface. The sample is moved in a direction orthogonal to the longitudinal direction of the cantilever so that the cantilever is easily twisted. The amount of twist is small in the portion 91 where the friction is small. In FIG. 9B, when the probe with fine particles comes to the portion 92 where the friction is large, the amount of twist becomes large. In FIG. 9 (c), a small friction portion 91 is shown again.
If a probe with fine particles comes in, the amount of twist becomes smaller. By moving the sample in the horizontal direction with respect to the fine particle-attached probe and measuring the amount of twist by the displacement detecting means, a mapping image of the friction characteristics of the sample surface can also be obtained. For the purpose of measuring the frictional characteristics, instead of periodically vibrating the distance between the probe and the sample in the vertical direction, the sample moving means moves the sample in the horizontal direction by moving the sample moving means in the horizontal direction. The sample surface may be measured while vibrating at the desired frequency and the desired vibration amount. Similarly, the amount of twist is large in the area of high friction, and the amount of twist is small in the area of low friction, and it is also possible to obtain a mapping image of the friction characteristics of the sample surface while performing horizontal vibration (modulation input). it can.

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記載されるような効果を奏する。先端に
微小な探針を有するカンチレバーとカンチレバ−の変位
を検出する手段とカンチレバ−と試料間の距離を一定周
期で所望の振幅量で振動させる手段と試料を移動させる
試料移動手段とからなり、試料の表面物性を測定する走
査型プローブ顕微鏡において、試料表面上に微粒子を分
散させて、表面凹凸像を測定後、カンチレバ−の探針を
微粒子上に移動させて、カンチレバ−と試料間の距離を
振動させて、試料面との接触面積を確保して、カンチレ
バ−の変位応答を得るようにした。また表面凹凸像を測
定することで分散させた微粒子の大きさも測定し、試料
面との接触面積を同定することで変位応答を正確に測定
するようにした。また大きさのわかった微粒子を針先に
付着させることで試料面との接触面積を正確に把握し、
付着後の変位応答測定を容易にした。先鋭化された探針
の接触面積のバラツキを抑えるために探針に大きさのわ
かっている微粒子を付着させて接触面積を同定し表面物
性の測定で試料の特性をバラツキなく正確に得られる効
果がある。また大きさのわかっていない微粒子でも試料
面に分散させて表面凹凸像を測定することで接触面積を
把握して同じく表面物性の測定において試料の特性をバ
ラツキなく正確に得られる効果がある。
The present invention is carried out in the form as described above, and has the following effects. A cantilever having a minute probe at the tip and a means for detecting the displacement of the cantilever, a means for vibrating the distance between the cantilever and the sample with a desired amplitude amount at a constant cycle, and a sample moving means for moving the sample, In a scanning probe microscope that measures the surface physical properties of the sample, disperse the fine particles on the sample surface, measure the surface unevenness image, and then move the probe of the cantilever onto the fine particles to determine the distance between the cantilever and the sample. Was vibrated to secure the contact area with the sample surface and obtain the displacement response of the cantilever. The size of the dispersed fine particles was also measured by measuring the surface unevenness image, and the displacement response was accurately measured by identifying the contact area with the sample surface. Also, by attaching fine particles of known size to the tip of the needle, the contact area with the sample surface can be accurately grasped,
Facilitated displacement response measurement after attachment. In order to suppress the variation in the contact area of the sharpened probe, the fine particles of known size are attached to the probe to identify the contact area, and the physical properties of the surface can be measured. There is. Further, even fine particles of unknown size are dispersed on the sample surface and the surface unevenness image is measured, so that the contact area is grasped, and similarly in the measurement of the surface physical properties, there is an effect that the characteristics of the sample can be accurately obtained without variation.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は走査型プロ−ブ顕微鏡で、粘弾性特性を測
定するときの本発明の模式図。(b)は走査型プロ−ブ顕
微鏡で、試料表面に微粒子を分散させることを説明する
模式図。(c)は走査型プロ−ブ顕微鏡で、試料の粘弾性
特性得る順序の説明図。
FIG. 1A is a schematic diagram of the present invention when measuring viscoelastic properties with a scanning probe microscope. (b) is a scanning probe microscope, and is a schematic diagram explaining dispersing fine particles on the sample surface. (c) is a scanning probe microscope, and is explanatory drawing of the order which obtains the viscoelastic property of a sample.

【図2】走査型プロ−ブ顕微鏡で、分散させる微粒子の
形状を説明する模式図。
FIG. 2 is a schematic diagram illustrating the shape of fine particles to be dispersed with a scanning probe microscope.

【図3】走査型プロ−ブ顕微鏡で、分散させる微粒子の
試料表面との接触面積を説明する模式図。
FIG. 3 is a schematic diagram for explaining a contact area of fine particles to be dispersed with a sample surface by a scanning probe microscope.

【図4】走査型プロ−ブ顕微鏡で、帯電処理によって微
粒子を針先へ付着させる場合の実施例を示す模式図。
FIG. 4 is a schematic diagram showing an example in which fine particles are attached to a needle tip by a charging process with a scanning probe microscope.

【図5】走査型プロ−ブ顕微鏡で、導電処理によって微
粒子を針先へ付着させる場合の実施例を示す模式図。
FIG. 5 is a schematic diagram showing an example in which fine particles are attached to a needle tip by a conductive treatment with a scanning probe microscope.

【図6】走査型プロ−ブ顕微鏡で、粘着処理によって微
粒子を針先へ付着させる場合の実施例を示す模式図。
FIG. 6 is a schematic view showing an example in which fine particles are attached to a needle tip by an adhesive treatment with a scanning probe microscope.

【図7】走査型プロ−ブ顕微鏡で、微粒子を試料面に分
散後、接触面積を求める場合の実施例を示す模式図。
FIG. 7 is a schematic diagram showing an example of a case where a contact area is obtained after fine particles are dispersed on a sample surface with a scanning probe microscope.

【図8】走査型プロ−ブ顕微鏡で、微粒子を試料面に分
散後、吸着特性を求める場合の実施例を示す模式図。
FIG. 8 is a schematic diagram showing an example in which fine particles are dispersed on a sample surface and then adsorption characteristics are obtained by a scanning probe microscope.

【図9】走査型プロ−ブ顕微鏡で、微粒子を試料面に分
散後、摩擦特性を求める場合の実施例を示す模式図。
FIG. 9 is a schematic diagram showing an example of a case where a friction characteristic is obtained after fine particles are dispersed on a sample surface with a scanning probe microscope.

【符号の説明】[Explanation of symbols]

1 カンチレバ− 2 探針 3 試料 4 試料台 5 試料移動手段 6 モジュレ−ション入力 7 レ−ザ 8 変位検出手段 9 信号出力 10 別の振動手段 A0 入力振幅 A1 出力振幅(かたい較正試料のとき) 11 微粒子 21 円柱状微粒子 22 ファイバ−状微粒子 23 角状微粒子 41 帯電処理 42 作業基板 43 電流を流す手段 44 別試料 51 導電処理 61 粘着処理 62 カンチレバ−加熱手段 81 吸着の小さい部分 82 吸着の大きい部分 91 摩擦の小さい部分 92 摩擦の大きい部分 1 cantilever 2 probe 3 samples 4 sample table 5 Sample moving means 6 Modulation input 7 lasers 8 Displacement detection means 9 signal output 10 Alternative vibration means A0 input amplitude A1 output amplitude (when using a hard calibration sample) 11 fine particles 21 Cylindrical fine particles 22 Fiber-like fine particles 23 Horn-shaped fine particles 41 electrification 42 work board 43 means for passing current 44 another sample 51 Conductive treatment 61 Adhesive treatment 62 Cantilever heating means 81 Small adsorption area 82 Large adsorption area 91 Low friction 92 High friction part

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 19/02 G01N 19/02 C 19/04 19/04 D Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) G01N 19/02 G01N 19/02 C 19/04 19/04 D

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 先端に微小な探針を有するカンチレバー
と、カンチレバ−の変位を検出する手段と、カンチレバ
ーを試料に対して相対的に、一定周期で所望の振幅量で
振動させる手段と、試料を移動させる試料移動手段とか
らなり、試料の表面物性を測定する走査型プローブ顕微
鏡において、試料表面上に微粒子を分散させて、表面凹
凸像を測定後、カンチレバ−の探針を微粒子上に移動さ
せて、カンチレバーを試料に対して相対的に振動させ
て、カンチレバ−の変位応答を得ることを特徴とする走
査型プローブ顕微鏡。
1. A cantilever having a minute probe at its tip, a means for detecting displacement of the cantilever, a means for vibrating the cantilever relative to the sample with a desired amplitude at a constant cycle, and a sample. In a scanning probe microscope that measures the surface properties of the sample, the fine particles are dispersed on the sample surface, and after measuring the surface unevenness image, the cantilever probe is moved onto the fine particles. The scanning probe microscope is characterized in that the cantilever is vibrated relative to the sample to obtain the displacement response of the cantilever.
【請求項2】 試料表面上に分散させる微粒子がSi粒
子、SiO2あるいは窒化珪素あるいはアルミナあるい
はTiCなどのセラミック粒子、グラファイト粒子、一
般金属粒子などのかたさを持つ微粒子であることとし
た、請求項1記載の走査型プローブ顕微鏡。
2. The fine particles to be dispersed on the surface of the sample are particles having hardness such as Si particles, ceramic particles such as SiO 2 or silicon nitride, alumina or TiC, graphite particles or general metal particles. The scanning probe microscope described.
【請求項3】 試料表面上に分散させる微粒子が球状で
あることとし、試料面との接触面が球面であることとし
た、請求項1又は2記載の走査型プローブ顕微鏡。
3. The scanning probe microscope according to claim 1, wherein the fine particles to be dispersed on the sample surface are spherical, and the contact surface with the sample surface is spherical.
【請求項4】 試料表面上に分散させる微粒子がファイ
バ−状であることとし、試料面との接触面が円筒面であ
ることとした、請求項1又は2記載の走査型プローブ顕
微鏡。
4. The scanning probe microscope according to claim 1, wherein the fine particles to be dispersed on the surface of the sample are fiber-shaped, and the contact surface with the sample surface is a cylindrical surface.
【請求項5】 試料表面上に分散させる微粒子が円柱状
であることとし、試料面との接触面が平面であることと
した、請求項1又は2記載の走査型プローブ顕微鏡。
5. The scanning probe microscope according to claim 1, wherein the fine particles to be dispersed on the surface of the sample are cylindrical, and the contact surface with the sample surface is a flat surface.
【請求項6】 試料表面上に分散させる微粒子が角状で
あることとし、試料面との接触面が平面であることとし
た、請求項1又は2記載の走査型プローブ顕微鏡。
6. The scanning probe microscope according to claim 1, wherein the fine particles to be dispersed on the sample surface are angular and the contact surface with the sample surface is a flat surface.
【請求項7】 試料表面上に分散させる微粒子に予め帯
電しやすい処理をして、探針を微粒子上に移動させて探
針に付着させることとした、請求項3から6のいずれか
に記載の走査型プローブ顕微鏡。
7. The fine particles to be dispersed on the surface of the sample are preliminarily treated so as to be easily charged, and the probe is moved onto the fine particles to be attached to the probe. Scanning probe microscope.
【請求項8】 カンチレバ−へ電流を流す手段を有し、
試料表面上に分散させる微粒子に予め導電性の処理を
し、カンチレバ−にも導電性の処理をして、探針を微粒
子上に移動させてから電流を流す、あるいは瞬間的に電
圧を印加させることで探針に微粒子を電着させて付着さ
せることとした、請求項3から6のいずれかに記載の走
査型プローブ顕微鏡。
8. A means for supplying an electric current to the cantilever,
The fine particles to be dispersed on the sample surface are previously treated with conductivity, and the cantilever is also treated with conductivity to move the probe to the fine particles and then apply an electric current or momentarily apply a voltage. The scanning probe microscope according to any one of claims 3 to 6, wherein fine particles are electrodeposited and attached to the probe.
【請求項9】 カンチレバ−を加熱する手段を設け、分
散させる微粒子に予め粘着成分をコ−トし、探針を微粒
子上に移動させてカンチレバ−を加熱させることで粘着
成分を溶かし探針に微粒子を付着させてカンチレバ−の
加熱を止めて探針に微粒子を付着させることとした、請
求項3から6のいずれかに記載の走査型プローブ顕微
鏡。
9. A means for heating the cantilever is provided, and the adhesive component is previously coated on the fine particles to be dispersed, and the probe is moved onto the fine particles to heat the cantilever to melt the adhesive component, and the probe is dissolved. The scanning probe microscope according to any one of claims 3 to 6, wherein the fine particles are adhered to stop heating of the cantilever to adhere the fine particles to the probe.
【請求項10】 カンチレバ−を加熱する手段を設け、
カンチレバ−の探針に予め粘着成分をコ−トし、探針を
微粒子上に移動させてカンチレバ−を加熱させることで
粘着成分を溶かし探針に微粒子を付着させてカンチレバ
−の加熱を止めて探針に微粒子を付着させることとし
た、請求項3から6のいずれかに記載の走査型プローブ
顕微鏡。
10. A means for heating the cantilever is provided,
Coat the adhesive component in advance on the cantilever probe, move the probe over the fine particles and heat the cantilever to melt the adhesive component, and attach the fine particles to the probe to stop the heating of the cantilever. The scanning probe microscope according to claim 3, wherein fine particles are attached to the probe.
【請求項11】 微粒子を分散後、表面凹凸像を測定す
ることで微粒子のサイズ、試料との面積を測定し、カン
チレバ−の変位応答における接触面積の同定をし、試料
の応力応答を求めることで試料の粘弾性特性を求めるこ
ととした、請求項1から10のいずれかに記載の走査型
プローブ顕微鏡。
11. A method for obtaining a stress response of a sample by measuring a size of the fine particle and an area with a sample by measuring a surface unevenness image after dispersing the fine particle and identifying a contact area in a displacement response of the cantilever. The scanning probe microscope according to claim 1, wherein the viscoelastic property of the sample is determined by.
【請求項12】 微粒子を探針に付着後、試料面に対し
て微粒子付きの探針を接触と離しを繰り返し、離す際に
必要なレバ−変位量を得ることで試料表面の吸着特性を
求めることとした、請求項1から10のいずれかに記載
の走査型プローブ顕微鏡。
12. The adsorption property of the sample surface is obtained by repeatedly contacting and separating the microparticle-attached probe with respect to the sample surface after adhering the microparticles to the probe, and obtaining the lever displacement amount required for the separation. The scanning probe microscope according to any one of claims 1 to 10.
【請求項13】 微粒子を探針に付着後、試料面に対し
て微粒子付きの探針を試料表面と接触させた状態で試料
移動手段により相対的に試料を水平方向に移動させ、カ
ンチレバ−のねじれ量を測定することで試料表面の摩擦
特性を求めることとした、請求項2から10のいずれか
に記載の走査型プローブ顕微鏡。
13. After adhering the fine particles to the probe, the sample moving means relatively moves the sample in the horizontal direction in a state where the probe with the particles is in contact with the sample surface with respect to the sample surface. The scanning probe microscope according to claim 2, wherein the frictional property of the sample surface is determined by measuring the amount of twist.
【請求項14】 試料表面を微粒子付きの探針に対して
水平方向に一定周期で所望の振幅量で振動させながら測
定することととした、請求項13記載の走査型プローブ
顕微鏡。
14. The scanning probe microscope according to claim 13, wherein the sample surface is measured while vibrating in a horizontal direction with a desired amplitude amount in a horizontal direction with respect to the probe with the fine particles.
JP2001352141A 2001-11-16 2001-11-16 Scanning probe microscope Expired - Fee Related JP3883846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001352141A JP3883846B2 (en) 2001-11-16 2001-11-16 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001352141A JP3883846B2 (en) 2001-11-16 2001-11-16 Scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2003149122A true JP2003149122A (en) 2003-05-21
JP3883846B2 JP3883846B2 (en) 2007-02-21

Family

ID=19164360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001352141A Expired - Fee Related JP3883846B2 (en) 2001-11-16 2001-11-16 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JP3883846B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241346A (en) * 2007-03-26 2008-10-09 Fujitsu Ltd Probe and measuring instrument using it
JP2011198824A (en) * 2010-03-17 2011-10-06 Yukio Watabe Method of manufacturing hetero structure including metal oxide, and method of manufacturing the metal oxide
RU2723899C1 (en) * 2019-11-05 2020-06-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф.Уткина" Scanning probe of atomic-force microscope with separable remote-controlled nanocomposite emitting element doped with quantum dots, upconverting and magnetic nanoparticles of core-shell structure
RU2724987C1 (en) * 2019-11-06 2020-06-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Scanning probe of atomic-force microscope with separated remote-controlled nanocomposite emitting element doped with quantum dots, upconverting and magnetic nanoparticles of core-shell structure
CN116477566A (en) * 2023-03-23 2023-07-25 清华大学 Single-particle microelectrode preparation method based on microcapillary injection

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU193569U1 (en) * 2019-07-09 2019-11-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" A SCANNING PROBE OF AN ATOMICALLY POWER MICROSCOPE WITH SEPARABLE TELEO-CONTROLLED NANOCOMPOSITE RADIATING ELEMENT BASED ON APCONVERTING AND MAGNETIC STRUCTURE NANOPARTICLES
RU192995U1 (en) * 2019-07-23 2019-10-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" A SCANNING PROBE OF AN ATOMICALLY POWER MICROSCOPE WITH A SEPARABLE TELEO-CONTROLLED NANOCOMPOSITE RADIATING ELEMENT, DOPED WITH APCONVERAL AND MAGNETIC NANOPARTICLE PARTICLES

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241346A (en) * 2007-03-26 2008-10-09 Fujitsu Ltd Probe and measuring instrument using it
JP2011198824A (en) * 2010-03-17 2011-10-06 Yukio Watabe Method of manufacturing hetero structure including metal oxide, and method of manufacturing the metal oxide
RU2723899C1 (en) * 2019-11-05 2020-06-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф.Уткина" Scanning probe of atomic-force microscope with separable remote-controlled nanocomposite emitting element doped with quantum dots, upconverting and magnetic nanoparticles of core-shell structure
RU2724987C1 (en) * 2019-11-06 2020-06-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Scanning probe of atomic-force microscope with separated remote-controlled nanocomposite emitting element doped with quantum dots, upconverting and magnetic nanoparticles of core-shell structure
CN116477566A (en) * 2023-03-23 2023-07-25 清华大学 Single-particle microelectrode preparation method based on microcapillary injection
CN116477566B (en) * 2023-03-23 2024-04-09 清华大学 Single-particle microelectrode preparation method based on microcapillary injection

Also Published As

Publication number Publication date
JP3883846B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
Kappl et al. The colloidal probe technique and its application to adhesion force measurements
JP2730673B2 (en) Method and apparatus for measuring physical properties using cantilever for introducing ultrasonic waves
JP2917674B2 (en) Probe for scanning tunneling microscope and method of manufacturing the same
TWI438437B (en) Method for attaching a conductive particle to the apex of a tip
Boudet et al. Experimental study of the instability of crack propagation in brittle materials
RU2005102703A (en) SCANNING PROBE MICROSCOPE
JPH0145569B2 (en)
Minary-Jolandan et al. Shear piezoelectricity in bone at the nanoscale
JP2007010518A (en) Detection method of target substance using cantilever sensor and detector of target substance
JP2003149122A (en) Scanning probe microscope
JP2000081443A5 (en)
US7665889B2 (en) Quantitative calorimetry signal for sub-micron scale thermal analysis
CN109211804A (en) A kind of production method and device of self-assembly structure
WO2008069247A1 (en) Mass measuring device and cantilever
JP3949948B2 (en) Scanning probe microscope
JP2002301700A (en) Manufacturing method for nanotube probe
Rennie et al. Adhesion characteristics of whole milk powder to a stainless steel surface
GB2235049A (en) Chemical bond microscopy
JP3539867B2 (en) Scanning probe microscope
JP7002672B2 (en) Large radius probe
Anczykowski et al. Atomic force microscopy investigations on polymer latex films
JP2003166928A (en) Scanning probe microscope
JP2011064514A (en) Scanning probe microscope and surface inspection method
JP2000065716A (en) Oscillation-type contact sensor
JP2009276168A (en) Sample holder of scanning probe microscope and sample measurement method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061115

R150 Certificate of patent or registration of utility model

Ref document number: 3883846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees