JP2003149044A - Evaluation method for stability of slant face - Google Patents

Evaluation method for stability of slant face

Info

Publication number
JP2003149044A
JP2003149044A JP2001346376A JP2001346376A JP2003149044A JP 2003149044 A JP2003149044 A JP 2003149044A JP 2001346376 A JP2001346376 A JP 2001346376A JP 2001346376 A JP2001346376 A JP 2001346376A JP 2003149044 A JP2003149044 A JP 2003149044A
Authority
JP
Japan
Prior art keywords
slope
rock
vibration
geophone
observed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001346376A
Other languages
Japanese (ja)
Inventor
Yasushi Senda
容嗣 千田
Hideki Terada
秀樹 寺田
Masaki Tsuji
雅規 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oyo Corp
Original Assignee
Oyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oyo Corp filed Critical Oyo Corp
Priority to JP2001346376A priority Critical patent/JP2003149044A/en
Publication of JP2003149044A publication Critical patent/JP2003149044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To objectively evaluate the stability of a slant face of a rock-bed including a change in the inside state of the rock-bed. SOLUTION: A plurality of geophones 12a, and so on 12e are arranged on a slant face 10 of a rock-bed being an object of observation, and vibrations which are generated ordinarily are observed by individual geophones. By finding planar or cross-sectional vibration characteristics, and comparing the vibration characteristics, relative stability of the slant face is evaluated. Concretely, there are methods of finding planar or cross-sectional vibrational particle loci, and knowing whether or not there are any directivities in the vibrational particle loci, and comparing the magnitudes of their amplitudes, of finding the amplitudes of vibrations, plotting on a co-ordinate plane vbrational energy ratios of a slant face portion of the rock-bed/a base rock portion with respect to the height of the slant face, and comparing the magnitudes of the gradients of their characteristic curves, and of finding a spectrum ratio of the vibrations of the slant face portion of the rock-bed/the base rock portion, and comparing the magnitudes of the amplification ratios of vibrations of a dominant frequency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、日常的に発生して
いる振動(常時微動)を利用し、岩盤斜面の状態とその
振動特性の関係を解析することにより斜面の安定性を評
価する方法に関するものである。この技術は、例えば道
路(トンネルや洞門等の構造物も含む)への斜面災害を
未然に防止するため、初期調査段階での斜面の相対的な
崩落危険度を判定し、斜面崩落に備えた監視を行うか、
あるいは応急・恒久対策を実施する必要性などを判断す
るのに有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention utilizes daily vibrations (microtremors) to analyze the relationship between the state of rock slopes and their vibration characteristics to evaluate the stability of slopes. It is about. In order to prevent slope disasters on roads (including structures such as tunnels and cave gates), this technology determines the relative risk of slope collapse during the initial survey stage and prepares for slope collapse. To monitor or
Alternatively, it is useful to judge the necessity of implementing emergency / permanent measures.

【0002】[0002]

【従来の技術】岩盤斜面の崩壊対策は、防災上の重要な
課題の一つである。しかし、初期調査における岩盤斜面
の安定性評価は、専ら地質技術者の目視による観察、経
験などに基づく定性的判断によって行われており、計器
等による客観的な評価は十分に確立されていないのが現
状である。
2. Description of the Related Art Countermeasures against the collapse of rock slopes are one of the important issues in disaster prevention. However, the stability evaluation of rock slopes in the initial survey is performed solely by visual observation of geotechnical engineers and qualitative judgment based on experience, etc., and objective evaluation by instruments etc. is not sufficiently established. Is the current situation.

【0003】[0003]

【発明が解決しようとする課題】目視による観察では岩
盤内部の状態変化を把握することは困難である。また観
察者(地質技術者)の経験などに依存するため、安定性
評価の信頼性に欠ける問題があった。そこで、計器観測
によって、岩盤斜面の安定性を客観的に評価できる方法
の開発が強く望まれている。
DISCLOSURE OF THE INVENTION It is difficult to grasp the change in the state of the bedrock by visual observation. In addition, there is a problem that the stability evaluation is not reliable because it depends on the experience of the observer (geologist). Therefore, it is strongly desired to develop a method that can objectively evaluate the stability of rock slopes by instrumental observation.

【0004】本発明の目的は、岩盤内部の状態変化を含
めて岩盤斜面の安定性を客観的に評価できる方法を提供
することである。
An object of the present invention is to provide a method capable of objectively evaluating the stability of a rock slope including a change in the condition inside the rock.

【0005】[0005]

【課題を解決するための手段】岩盤内部の亀裂状態に変
化が生じ、岩盤の変位等の静的挙動が変化すると、振動
・スペクトル等の動的挙動も変化する。また、斜面(不
安定岩盤)の崩落危険度は、背面の安定岩盤との密着性
等によって異なり、その密着性の差異により、振動の振
幅や周波数などの振動特性も異なってくる。本発明は、
このような現象に着目し、常時微動(日常的に発生して
いる振動)を利用して斜面の安定性を評価しようとする
ものである。
[Means for Solving the Problems] When the crack state inside the rock mass changes and the static behavior such as displacement of the rock mass changes, the dynamic behavior such as vibration and spectrum also changes. Further, the risk of collapse of the slope (unstable rock mass) differs depending on the adhesion to the stable rock mass on the back surface, and the difference in the adhesion also causes the vibration characteristics such as the amplitude and frequency of the vibration to differ. The present invention is
Focusing on such a phenomenon, it is intended to evaluate the stability of the slope by using micro-movements (vibrations that occur daily).

【0006】本発明は、観測対象である斜面に複数の受
振器を配設し、日常的に発生している振動を各受振器で
観測し、平面的あるいは断面的な振動特性を求めて、振
動特性を比較するすることにより斜面の相対的な安定性
を評価することを特徴とする斜面の安定性評価方法であ
る。
According to the present invention, a plurality of geophones are arranged on the slope to be observed, and the vibrations that are routinely generated are observed by the geophones to obtain the planar or cross-sectional vibration characteristics. It is a slope stability evaluation method characterized by evaluating relative stability of slopes by comparing vibration characteristics.

【0007】また本発明は、観測対象である斜面に複数
の受振器を配設し、その少なくとも1つの受振器の設置
位置は基岩部と見なせる箇所とし、日常的に発生してい
る振動を各受振器で同時観測し、平面的あるいは断面的
な振動特性を求めて、基岩部に設置した受振器とそれ以
外の受振器との振動特性を比較するすることにより斜面
の相対的な安定性を評価することを特徴とする斜面の安
定性評価方法である。
Further, according to the present invention, a plurality of geophones are arranged on the slope to be observed, and at least one of the geophones is installed at a position that can be regarded as a base rock portion, and vibrations that occur on a daily basis are Simultaneous observation with a geophone to obtain the planar or cross-sectional vibration characteristics and compare the vibration characteristics of the geophone installed on the base rock and other geophones to determine the relative stability of the slope. This is a slope stability evaluation method characterized by evaluation.

【0008】観測対象である斜面の岩盤部と、その直近
の基岩部と見なせる箇所とに受振器を設置して日常的に
発生している振動を観測する。本発明において振動特性
を比較する方法としては、より具体的には、平面的ある
いは断面的な振動粒子軌跡を求めて、その振動粒子軌跡
の方向性の有無と振幅の大小により斜面の相対的な安定
性を評価する方法、平面的あるいは断面的な振動の振幅
を求めて、斜面の高さに対する斜面岩盤部/基岩部の振
動エネルギー比を座標面上にプロットし、その特性曲線
の傾きの大小により斜面の相対的な安定性を評価する方
法、平面的あるいは断面的な斜面岩盤部/基岩部の振動
のスペクトル比を求めて、卓越周波数の振動の増幅比の
大小により斜面の相対的な安定性を評価する方法があ
る。
[0008] A geophone is installed at the rock mass on the slope to be observed and at a place near the rock mass that can be regarded as the base rock, and vibrations that occur daily are observed. As a method of comparing the vibration characteristics in the present invention, more specifically, a two-dimensional or cross-sectional vibration particle trajectory is obtained, and the relative slope of the slope is determined by the presence or absence of the directionality of the vibration particle trajectory and the magnitude of the amplitude. A method for evaluating stability, the amplitude of planar or cross-section vibration is determined, and the vibration energy ratio of the slope rock / base rock to the height of the slope is plotted on the coordinate plane, and the slope of the characteristic curve is small or large. The relative stability of the slope can be evaluated by the method of evaluating the relative stability of the slope, the spectral ratio of the plane rock or cross section rock / base rock, and the magnitude of the amplification ratio of the vibration at the dominant frequency. There is a method to evaluate sex.

【0009】本発明では、上下1成分と水平2成分の計
3成分の受振が可能な受振器本体と該受振器本体の背面
に突設した固定用スパイクを備えた受振器を用いるのが
好ましい。観測対象である斜面の岩盤部及びその直近の
基岩部と見なせる箇所とに削孔を形成し、該削孔に前記
受振器の固定用スパイクを挿入し、水平調整後に接合材
により固着することで設置する。受振器は、観測対象で
ある斜面の岩盤部に1箇所以上設置するが、岩盤の規模
によっては複数箇所(例えば上部、中部、下部など)配
置するのが好ましい。
In the present invention, it is preferable to use a geophone that can receive a total of three components, one component vertically and two components horizontally, and a geophone having a fixing spike protruding from the back surface of the body. . By forming a hole in the rock part of the slope to be observed and a place that can be regarded as the base rock part in the immediate vicinity, insert the spike for fixing the geophone into the hole, and fix it with the bonding material after horizontal adjustment Install. The geophones are installed at one or more places on the rock part of the slope to be observed, but it is preferable to arrange at a plurality of places (for example, upper part, middle part, lower part, etc.) depending on the size of the bedrock.

【0010】[0010]

【発明の実施の形態】図1は本発明方法の実施態様の一
例を示す説明図である。一部に不安定要素があると予想
される岩盤斜面10が観測対象となる。その岩盤斜面に
複数の受振器12を設置する。この図1では5台の受振
器12a,…,12eを分散配置している。そのうちの
1台の受振器12aは、不安定岩盤と思われる部分の直
近の基岩部と見なせる箇所に設置する。基岩部か否か
は、地質技術者の目視観察等によって、ある程度の確度
で定性的に判断することはできる。そこで、そのような
判断に基づき受振器を設置するのである。そして、日常
的に発生している振動(常時微動、車両走行振動など)
を全ての測定点で同時観測する。
1 is an explanatory view showing an example of an embodiment of the method of the present invention. The rock slope 10, which is expected to have an unstable element in part, is to be observed. A plurality of geophones 12 are installed on the rock slope. In FIG. 1, five geophones 12a, ..., 12e are arranged in a distributed manner. One of the geophones 12a is installed in a place which can be regarded as a base rock portion in the immediate vicinity of a portion considered to be unstable rock. It can be qualitatively judged with a certain degree of certainty by visual observation by a geotechnical engineer whether or not it is a base rock. Therefore, the geophone is installed based on such a judgment. And the vibrations that occur on a daily basis (always small movements, vehicle vibrations, etc.)
Are simultaneously observed at all measurement points.

【0011】ここで受振器としては、微小振動を3成分
(上下1成分と水平2成分)について検出可能なデバイ
スを用いる。例えば、弾性波探査などで従来用いられい
る受振器(例えば固有周波数8Hz)が利用できる。図
2に示すように、受振器12は、受振器本体14の背面
に固定用スパイク16を突設した構造とする。
Here, as the geophone, a device capable of detecting minute vibration for three components (upper and lower one components and horizontal two components) is used. For example, a geophone (for example, natural frequency 8 Hz) conventionally used for elastic wave exploration can be used. As shown in FIG. 2, the geophone 12 has a structure in which a fixing spike 16 is projectingly provided on the back surface of the geophone main body 14.

【0012】受振器12は、次のように設置する。設置
場所として、できるだけ平坦な壁面を探す。岩盤18と
受振器本体14との接触面積を大きくするため、たがね
等を用いて凹凸部を概略平坦に整形するのが好ましい。
そして、岩盤18を電動ドリル等を用いて削孔(例えば
直径14mm)する。削孔20は、ほぼ水平で所定の方向
(NS:南北あるいはEW:東西)を向くようにし、布
やブラシで壁面の水分やゴミ等を拭き取る。削孔20に
半分程度のパテ(接合材)22を入れ、受振器12のス
パイク(例えば基部側の直径12mm)16を削孔20内
に押し入れ、概略固定する。受振器本体14の上面の水
準器で水平(傾き±15°以内)に調整し、NS及びE
Wの方向を合わせる。そして岩盤18に受振器本体14
をパテ22などで固定する。このようにして受振器12
を短時間で(1箇所当たり15分程度で)簡易に岩盤1
8に固定することができる。
The geophone 12 is installed as follows. Find a wall that is as flat as possible for the installation location. In order to increase the contact area between the bedrock 18 and the geophone main body 14, it is preferable to shape the uneven portion into a substantially flat shape using a chisel or the like.
Then, the rock 18 is drilled (for example, diameter 14 mm) using an electric drill or the like. The drilled holes 20 are substantially horizontal and face a predetermined direction (NS: north-south or EW: east-west), and wipe water and dust off the wall surface with a cloth or a brush. About half of the putty (bonding material) 22 is put into the drilled hole 20, and the spike 16 (for example, the diameter of the base side is 12 mm) 16 of the geophone 12 is pushed into the drilled hole 20 and is roughly fixed. Adjust horizontally (tilt within ± 15 °) with the level on the top surface of the geophone main body 14, and set NS and E.
Match the direction of W. And the geophone body 14 is attached to the bedrock 18.
Is fixed with putty 22 or the like. In this way, the geophone 12
In a short time (about 15 minutes per location) 1
It can be fixed at 8.

【0013】測定系は、微小な振動を測定でき、運搬・
設置が簡便で経済性に優れたものとする。測定系統の一
例を図3に示す。各受振器12a,…,12eの検出信
号はケーブル(6芯シールドケーブル等)23によって
直流増幅器24に導く。直流増幅器24としては、少な
くとも3成分×設置個数分のチャンネル数を有し、DC
〜100kHz程度の周波数特性を有するものを用い
る。直流増幅器24の出力を、デジタルデータレコーダ
26でデータ収録する。デジタルデータレコーダ26
は、例えばサンプリング間隔200〜500Hz程度で
各受振器12a,…,12eからのデータを同時に測定
できるものを用いる。
The measuring system can measure minute vibrations and
The installation should be simple and economical. An example of the measurement system is shown in FIG. The detection signals of the geophones 12a, ..., 12e are guided to a DC amplifier 24 by a cable (6-core shielded cable or the like) 23. The DC amplifier 24 has at least 3 components × the number of installed channels, and
A material having a frequency characteristic of about 100 kHz is used. The output of the DC amplifier 24 is recorded by the digital data recorder 26. Digital data recorder 26
For example, a device that can simultaneously measure data from the geophones 12a, ..., 12e at a sampling interval of about 200 to 500 Hz is used.

【0014】本発明では、このようなシステムを用いて
常時微動を受振器で同時観測し、平面的あるいは断面的
な振動特性を求めて、振動特性を比較するすることによ
り斜面の相対的な安定性を評価するのである。振動特性
を比較する方法としては、より具体的には、平面的ある
いは断面的な振動粒子軌跡を求めて、その振動粒子軌跡
の方向性の有無と振幅の大小により斜面の相対的な安定
性を評価する方法、平面的あるいは断面的な振動の振幅
を求めて、斜面の高さに対する斜面岩盤部/基岩部の振
動エネルギー比を座標面上にプロットし、その特性曲線
の傾きの大小により斜面の相対的な安定性を評価する方
法、平面的あるいは断面的な斜面岩盤部/基岩部の振動
のスペクトル比を求めて、卓越周波数の振動の増幅比の
大小により斜面の相対的な安定性を評価する方法があ
る。
According to the present invention, such a system is used to simultaneously observe micromotions at the same time with a geophone to obtain planar or cross-sectional vibration characteristics and compare the vibration characteristics to compare the relative stability of slopes. To evaluate sex. As a method of comparing the vibration characteristics, more specifically, a two-dimensional or cross-sectional vibration particle trajectory is obtained, and the relative stability of the slope is determined by the presence or absence of the directionality of the vibration particle trajectory and the magnitude of the amplitude. The method of evaluation, the amplitude of the plane or cross-section vibration is calculated, the vibration energy ratio of the slope rock mass / base rock part to the height of the slope is plotted on the coordinate plane, and the slope of the characteristic curve determines the slope of the slope. A method for evaluating relative stability, the spectral ratio of the plane rock or cross-section slope rock / base rock vibration is obtained, and the relative stability of the slope is evaluated by the magnitude of the amplification ratio of the vibration at the dominant frequency. There is a way to do it.

【0015】図1に示すように、岩盤に伝播してくる振
動は各受振器12a,…,12eで検出される。そのと
き、基岩部に設置された受振器12aと不安定岩盤部に
設置された受振器12b,…,12dとでは、観測結果
が顕著に異なる。例えば、不安定岩盤部に設置された受
振器12b,…,12dでは、振動が増幅されたかのよ
うに振幅が拡大する。それに対して最上部の受振器12
eでの検出振幅が小さかったとすると、そこは安定岩盤
部ということになる。従って、受振器12dと受振器1
2eの間に深い亀裂30が入っていることが予想され、
それによって不安定岩盤部の大きさを推定することも可
能となる。また、経時的観測中に振動の振幅や周波数等
の振動特性が変化したとすれば、岩盤内部の亀裂状態の
変化や岩盤の変位などが生じたことを意味し、それによ
って岩盤の静的挙動がどの時点でどのように変化したか
が判断できる。
As shown in FIG. 1, the vibration propagating to the bedrock is detected by each of the geophones 12a, ..., 12e. At that time, the observation results are remarkably different between the geophone 12a installed in the base rock part and the geophones 12b, ..., 12d installed in the unstable rock part. For example, in the geophones 12b, ..., 12d installed on the unstable rock mass, the amplitude expands as if the vibration was amplified. On the other hand, the topmost geophone 12
If the detection amplitude at e is small, it means that it is a stable rock mass. Therefore, the geophone 12d and the geophone 1
It is expected that there will be a deep crack 30 between 2e,
It also makes it possible to estimate the size of the unstable rock mass. Also, if the vibration characteristics such as the amplitude and frequency of the vibration change during the observation over time, it means that the crack state inside the rock mass changes or the rock mass displacement occurs, which causes the static behavior of the rock mass. Can be determined at what point and how it changed.

【0016】測定した振動(常時微動、車両走行振動
等)の記録について、以下の解析を行い斜面の振動特性
(周波数特性、応答特性等)を把握する。
The following analysis is performed on the record of the measured vibration (microtremor, vehicle running vibration, etc.) to grasp the vibration characteristics (frequency characteristics, response characteristics, etc.) of the slope.

【0017】(1)振動粒子軌跡(オービット) 各測定点における岩盤の揺れとその方向を、NS−E
W、NS−UD(上下)、EW−UDの3平面について
整理する。平面的あるいは断面的な振動粒子軌跡をとる
ことで、斜面特有の振動軌跡を把握することができ、こ
れに基づき安定性評価が可能である。
(1) Vibration Particle Trajectory (Orbit) NS-E
The three planes of W, NS-UD (upper and lower), and EW-UD are arranged. By taking a planar or cross-sectional vibration particle locus, it is possible to grasp the vibration locus peculiar to the slope, and based on this, stability evaluation is possible.

【0018】(2)振動(速度)波形の出力 各測定点における最大速度振幅について整理する。振動
の揺れの大きさが、岩盤の上と下とでどのように異なる
のか、あるいは不安定岩盤部と安定岩盤部でどのように
異なるのかなどを把握する。具体的には、斜面の高さと
振動エネルギー比(斜面岩盤部/基岩部)の関係をプロ
ットする。斜面の高さとは、何らかの基準レベル(例え
ば基岩部に設置した受振器の位置)から測定した他の受
振器の高さ位置である。不安定岩盤部の上部・中部・下
部での速度振幅から振動モードを分析することで崩壊形
態を想定することができる。
(2) Output of vibration (velocity) waveform The maximum velocity amplitude at each measurement point is summarized. Understand how the magnitude of vibration varies between the top and bottom of the rock mass, or how the unstable rock mass and the stable rock mass differ. Specifically, the relationship between the height of the slope and the vibration energy ratio (slope bedrock / base rock) is plotted. The height of the slope is the height position of another geophone, which is measured from some reference level (for example, the position of the geophone installed on the base rock part). The collapse mode can be assumed by analyzing the vibration mode from the velocity amplitudes at the upper, middle and lower parts of the unstable rock mass.

【0019】(3)周波数分析によるスペクトル及びス
ペクトル比の出力 各測定点における卓越周波数について整理する。基岩部
のスペクトルと他の斜面岩盤部のスペクトルとの比を求
め、安定岩盤部と不安定岩盤部との間で、どのような周
波数の振動がどの程度増幅されているのか(倍率)を把
握する。不安定岩盤部や安定岩盤部の卓越周波数の振幅
を整理することによって、相対的な危険度ランクを評価
できる。
(3) Output of spectrum and spectrum ratio by frequency analysis The dominant frequencies at each measurement point are summarized. Determine the ratio of the spectrum of the base rock to the spectrum of other slope rocks to understand what frequency vibration is amplified between the stable rock and unstable rock (magnification) To do. The relative risk rank can be evaluated by arranging the amplitudes of the predominant frequencies of unstable rocks and stable rocks.

【0020】[0020]

【実施例】斜面の安定性評価は、振動の方向・振動の振
幅(振動エネルギー)・振動の周波数特性から行う。
[Embodiment] The stability of a slope is evaluated based on the vibration direction, vibration amplitude (vibration energy), and vibration frequency characteristics.

【0021】(1)振動の方向(振動粒子軌跡) 測定結果の一例を図4に示す。岩盤が不安定であるほど
特有の方向に大きく振動する。特有の方向とは、その岩
盤が変化している方向、つまり岩盤の安定性が損なわれ
崩落する方向であると考えられる。また不安定度が大き
い岩盤は、その大きさや形状に関係なく、大きい振幅の
振動粒子軌跡となる。従って、振動粒子軌跡に方向性が
無く、その軌跡の最も小さい場合は安定な岩盤であり、
それに対して軌跡に方向性が見られ、その幅も大きい場
合は不安定な岩盤であると判断される。図6のCは基岩
部のデータであり、振動は極めて小さく、方向性もな
い。AとBは不安定岩盤部のデータであり、同じ岩盤の
場合は上部(高所)ほど大きな振動が検出されることが
分かる。
(1) Vibration direction (vibrating particle locus) FIG. 4 shows an example of measurement results. The more unstable the bedrock is, the more it vibrates in a specific direction. The peculiar direction is considered to be the direction in which the bedrock is changing, that is, the direction in which the stability of the bedrock is impaired and collapses. In addition, rock mass with a large degree of instability has large-amplitude oscillating particle trajectories regardless of its size and shape. Therefore, there is no direction in the trajectory of vibrating particles, and if the trajectory is the smallest, it is a stable rock mass,
On the other hand, if the trajectory shows directionality and the width is large, it is judged that the rock is unstable. C in FIG. 6 is data of the base rock part, and the vibration is extremely small and has no directionality. It is understood that A and B are data of unstable rock mass, and in the case of the same rock mass, larger vibration is detected at the upper part (high place).

【0022】(2)振動の振幅(振動エネルギー) 基岩部に対して、不安定岩盤部は相対的に大きく振動
し、不安定岩盤は上部の方が(不安定岩塊の高さが高い
ほど)より大きく振動する。岩盤斜面の高さに対する振
動エネルギー比(岩盤斜面/基岩部)をプロットしたの
が図5である。不安定な岩盤の場合、重心位置が不安定
岩塊の高さの半分より高い位置にあり、斜面下方に向か
っているためと考えられる。他方、安定な岩盤は、その
高さにあまり関係なく、ほぼ同様の大きさで振動してい
る(高さが高くなっても振動振幅は明瞭に大きくならな
い)。このことを概念的にまとめたのが図6である。従
って、斜面の高さと振動エネルギー比を座標軸にプロッ
トすることで、岩盤の相対的な安定性を評価することが
できる。
(2) Amplitude of vibration (vibration energy) The unstable rock mass vibrates relatively large with respect to the base rock, and the unstable rock mass is higher in the upper part (the higher the unstable mass is ) It vibrates more. FIG. 5 is a plot of the vibration energy ratio (rock slope / ground rock portion) with respect to the rock slope height. In the case of unstable rock mass, the position of the center of gravity is higher than half the height of the unstable rock mass, and this is considered to be due to the downward slope. On the other hand, stable rocks vibrate with almost the same magnitude regardless of their height (the vibration amplitude does not clearly increase as the height increases). This is conceptually summarized in FIG. Therefore, by plotting the height of the slope and the vibration energy ratio on the coordinate axes, the relative stability of the rock mass can be evaluated.

【0023】(3)振動の周波数特性 図7は振動スペクトルの出力例を示しており、Aは不安
定岩盤部のスペクトル、Bは基岩部のスペクトルであ
る。基岩部のスペクトルと岩盤斜面のスペクトルとの比
を求めると、図8に示すように、岩盤斜面が不安定な場
合(図8のA参照)には明瞭なピークが見られ、特有の
周波数の振動が少なくとも10倍以上増幅されている。
他方、岩盤斜面が安定な場合(図8のB参照)には明瞭
なピークは見られない。不安定岩盤の重心位置と高さに
よって、卓越周波数は異なる。重心位置が不安定岩塊の
高さの半分より高い位置にある場合や斜面下方に向かっ
ている場合は、安定岩盤に比べ特有の周波数の振動が増
幅される。斜面によって固有の卓越周波数があると考え
られるため、対象とする斜面内の相対的な不安定度を測
る指標となる。
(3) Frequency characteristics of vibration FIG. 7 shows an output example of the vibration spectrum, where A is the spectrum of the unstable rock mass and B is the spectrum of the base rock mass. When the ratio of the spectrum of the base rock and the spectrum of the rock slope is calculated, a clear peak is seen when the rock slope is unstable (see A in FIG. 8), as shown in FIG. Vibration is amplified at least 10 times or more.
On the other hand, no clear peak is seen when the rock slope is stable (see FIG. 8B). The dominant frequency differs depending on the position and height of the center of gravity of the unstable rock. When the center of gravity is higher than half of the height of the unstable rock mass or when it goes down the slope, the vibration of a specific frequency is amplified compared with the stable rock mass. Since it is considered that the slope has its own dominant frequency, it serves as an index for measuring the relative instability within the target slope.

【0024】以上の物理量(計測データ)等を総合的に
判断し、斜面岩盤の安定性を評価する。そして、道路
(トンネルや洞門等の構造物も含む)への斜面災害を未
然に防止するため、初期調査段階で斜面の相対的な崩落
危険度を判定し、斜面崩落に備えた監視を行うか、ある
いは応急・恒久対策を実施する必要性を判断する基礎資
料とする。
The physical quantities (measurement data) and the like described above are comprehensively judged to evaluate the stability of the slope rock mass. Then, in order to prevent slope disasters on roads (including structures such as tunnels and cave gates), the relative risk of slope collapse should be determined at the initial survey stage and monitoring should be performed in preparation for slope collapse. , Or as a basic material to judge the necessity of implementing emergency / permanent measures.

【0025】[0025]

【発明の効果】本発明は上記のように、常時微動を観測
し、平面的あるいは断面的な振動特性を求め振動特性を
比較するすることにより斜面の相対的な安定性を評価す
る方法であるから、岩盤内部の状態変化を含めて岩盤斜
面の安定性を客観的に評価することできる。本発明方法
を採用することで、初期調査段階で斜面の相対的な崩落
危険度を判定し、斜面崩落に備えた監視を行うか、ある
いは応急・恒久対策を実施する必要性を判断する上での
基礎資料を提供することができ、道路等への斜面災害を
未然に防止するのに貢献できる。
As described above, the present invention is a method for evaluating relative stability of a slope by observing micromotions at all times, obtaining planar or sectional vibration characteristics and comparing the vibration characteristics. From this, it is possible to objectively evaluate the stability of the rock slope, including changes in the internal condition of the rock. By adopting the method of the present invention, it is possible to determine the relative risk of collapse of the slope at the initial investigation stage, and to monitor for slope collapse, or to determine the necessity of implementing emergency / permanent measures. We can provide basic data of the above and contribute to prevent slope disasters on roads.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施態様の一例を示す説明図。FIG. 1 is an explanatory diagram showing an example of an embodiment of a method of the present invention.

【図2】受振器の設置状況の一例を示す説明図。FIG. 2 is an explanatory diagram showing an example of the installation state of a geophone.

【図3】測定系統の一例を示すブロック図。FIG. 3 is a block diagram showing an example of a measurement system.

【図4】振動粒子軌跡の例を示す図。FIG. 4 is a diagram showing an example of a trajectory of vibrating particles.

【図5】受振器位置と振動エネルギー比の関係のプロッ
ト図。
FIG. 5 is a plot diagram of the relationship between the position of the geophone and the vibration energy ratio.

【図6】受振器位置と振動エネルギー比の関係の説明
図。
FIG. 6 is an explanatory diagram of a relationship between a position of a geophone and a vibration energy ratio.

【図7】振動スペクトルの出力例を示す図。FIG. 7 is a diagram showing an output example of a vibration spectrum.

【図8】振動スペクトル比の例を示す図。FIG. 8 is a diagram showing an example of a vibration spectrum ratio.

【符号の説明】[Explanation of symbols]

10 岩盤斜面 12,12a,…,12e 受振器 10 Rock slope 12, 12a, ..., 12e Geophone

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻 雅規 東京都千代田区九段北4丁目2番6号 応 用地質株式会社内 Fターム(参考) 2D044 EA07 2G064 BA02 BA28 CC13 CC41    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masanori Tsuji             4-2-6, 9th dan north, Chiyoda-ku, Tokyo             Geological Co., Ltd. F-term (reference) 2D044 EA07                 2G064 BA02 BA28 CC13 CC41

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 観測対象である斜面に複数の受振器を配
設し、日常的に発生している振動を各受振器で観測し、
平面的あるいは断面的な振動特性を求めて、振動特性を
比較するすることにより斜面の相対的な安定性を評価す
ることを特徴とする斜面の安定性評価方法。
1. A plurality of geophones are arranged on a slope to be observed, and vibrations that are routinely generated are observed by each geophone,
A slope stability evaluation method, characterized in that the relative stability of a slope is evaluated by obtaining vibration characteristics in a plane or cross section and comparing the vibration characteristics.
【請求項2】 観測対象である斜面に複数の受振器を配
設し、その少なくとも1つの受振器の設置位置は基岩部
と見なせる箇所とし、日常的に発生している振動を各受
振器で同時観測し、平面的あるいは断面的な振動特性を
求めて、基岩部に設置した受振器とそれ以外の受振器と
の振動特性を比較するすることにより斜面の相対的な安
定性を評価することを特徴とする斜面の安定性評価方
法。
2. A plurality of geophones are arranged on the slope to be observed, and at least one of the geophones is installed at a location that can be regarded as a base rock part, and the vibrations that are routinely generated are received by each geophone. To evaluate the relative stability of the slope by simultaneously observing and obtaining the planar or cross-sectional vibration characteristics and comparing the vibration characteristics of the geophone installed on the base rock part and other geophones. A slope stability evaluation method characterized by the following.
【請求項3】 観測対象である斜面の岩盤部と、その直
近の基岩部と見なせる箇所とに受振器を設置して日常的
に発生している振動を観測し、平面的あるいは断面的な
振動粒子軌跡を求めて、その振動粒子軌跡の方向性の有
無と振幅の大小により斜面の相対的な安定性を評価する
ことを特徴とする斜面の安定性評価方法。
3. Vibrations that are routinely generated by installing geophones at the rocky part of the slope to be observed and at a place which can be regarded as the base rock part in the immediate vicinity of the rocky part are observed in plan or cross section. A slope stability evaluation method, characterized in that the relative stability of a slope is evaluated by determining a particle trajectory and determining the directionality of the vibration particle trajectory and the magnitude of the amplitude.
【請求項4】 観測対象である斜面の岩盤部と、その直
近の基岩部と見なせる箇所とに受振器を設置して日常的
に発生している振動を同時観測し、平面的あるいは断面
的な振動の振幅を求めて、斜面の高さに対する斜面岩盤
部/基岩部の振動エネルギー比を座標面上にプロット
し、その特性曲線の傾きの大小により斜面の相対的な安
定性を評価することを特徴とする斜面の安定性評価方
法。
4. A geophone is installed at a rock part of a slope to be observed and a part which can be regarded as a base rock part in the vicinity of the rock part, and vibrations which are routinely generated are simultaneously observed to obtain a planar or sectional view. Obtaining the amplitude of vibration, plotting the vibration energy ratio of the slope rock / base rock to the height of the slope on the coordinate plane, and evaluating the relative stability of the slope by the magnitude of the slope of the characteristic curve A characteristic slope stability evaluation method.
【請求項5】 観測対象である斜面の岩盤部と、その直
近の基岩部と見なせる箇所とに受振器を設置して日常的
に発生している振動を同時観測し、平面的あるいは断面
的な斜面岩盤部/基岩部の振動のスペクトル比を求め
て、卓越周波数の振動の増幅比の大小により斜面の相対
的な安定性を評価することを特徴とする斜面の安定性評
価方法。
5. A geophone is installed at a rock mass on the slope to be observed and a base rock part in the immediate vicinity of the rock mass, and vibrations that occur on a daily basis are simultaneously observed. A slope stability evaluation method, characterized in that the relative stability of the slope is evaluated by obtaining the spectral ratio of the vibration of the slope bedrock / base rock and evaluating the amplification ratio of the vibration of the dominant frequency.
【請求項6】 上下1成分と水平2成分の計3成分の受
振が可能な受振器本体と該受振器本体の背面に突設した
固定用スパイクを備えた受振器を用い、観測対象である
斜面に削孔を形成し、該削孔に前記受振器の固定用スパ
イクを挿入して、水平調整後に接合材により固着するこ
とで設置する請求項1乃至5のいずれかに記載の斜面の
安定性評価方法。
6. An object to be observed using a geophone body capable of receiving a total of three components including one component vertically and two components horizontally, and a geophone having a fixing spike protruding from the back surface of the body. The stability of the slope according to any one of claims 1 to 5, wherein the slope is formed by forming a hole, inserting a spike for fixing the geophone into the hole, and fixing the spike by a bonding material after horizontal adjustment. Sex evaluation method.
JP2001346376A 2001-11-12 2001-11-12 Evaluation method for stability of slant face Pending JP2003149044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001346376A JP2003149044A (en) 2001-11-12 2001-11-12 Evaluation method for stability of slant face

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001346376A JP2003149044A (en) 2001-11-12 2001-11-12 Evaluation method for stability of slant face

Publications (1)

Publication Number Publication Date
JP2003149044A true JP2003149044A (en) 2003-05-21

Family

ID=19159569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001346376A Pending JP2003149044A (en) 2001-11-12 2001-11-12 Evaluation method for stability of slant face

Country Status (1)

Country Link
JP (1) JP2003149044A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051987A (en) * 2005-08-19 2007-03-01 Univ Chuo Evaluation method by energy of slope collapse, and structural damage and energy measuring system
JP2009198285A (en) * 2008-02-21 2009-09-03 Nittoc Constr Co Ltd Rock-bed slope state determination system and rock-bed slope state determination method
JP2009287923A (en) * 2008-05-27 2009-12-10 Railway Technical Res Inst Method and apparatus for evaluating unstableness of rock mass on slope of rock bed
JP2010230464A (en) * 2009-03-27 2010-10-14 Railway Technical Res Inst Noncontact vibration measuring system, stability evaluation system, noncontact vibration measuring method, and stability evaluation method
CN103162927A (en) * 2013-03-27 2013-06-19 山东大学 Vibration disturbance simulator used for geotechnical slope and using method thereof
JP2014089106A (en) * 2012-10-30 2014-05-15 Railway Technical Research Institute Method for evaluating stability of rock lump on rock slope by tapping sound measurement
CN104374466A (en) * 2014-11-25 2015-02-25 大连理工大学 Optical fiber vibration real-time monitoring and alarming system for roadbed collapse
CN104634946A (en) * 2015-02-05 2015-05-20 中国矿业大学(北京) Slope model loading testing device
CN106197645A (en) * 2016-08-10 2016-12-07 中国地质大学(武汉) A kind of pedestal
JP2017040144A (en) * 2015-08-21 2017-02-23 公益財団法人鉄道総合技術研究所 Rock lumb stability evaluation method and program used for the same
DE102016122467A1 (en) * 2016-11-22 2018-05-24 Geo Explorers AG Method and device for estimating the risk of a naturally caused rock or / and landslide on a slope, in particular a mountain slope
CN111287225A (en) * 2020-02-20 2020-06-16 中南大学 Anchor rod stress monitoring and reconstruction slope stability evaluation method for anchoring type slope
CN113174876A (en) * 2021-06-28 2021-07-27 西南交通大学 Rotary intelligent anti-impact steel column and disaster assessment method
JP2021167538A (en) * 2020-04-13 2021-10-21 株式会社大林組 Fragmented rock determination method and fragmented rock determination support system
CN115238482A (en) * 2022-07-08 2022-10-25 苏州大学 Method for calculating supporting pressure of large longitudinal slope rectangular tunnel excavation face

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051987A (en) * 2005-08-19 2007-03-01 Univ Chuo Evaluation method by energy of slope collapse, and structural damage and energy measuring system
JP2009198285A (en) * 2008-02-21 2009-09-03 Nittoc Constr Co Ltd Rock-bed slope state determination system and rock-bed slope state determination method
JP2009287923A (en) * 2008-05-27 2009-12-10 Railway Technical Res Inst Method and apparatus for evaluating unstableness of rock mass on slope of rock bed
JP2010230464A (en) * 2009-03-27 2010-10-14 Railway Technical Res Inst Noncontact vibration measuring system, stability evaluation system, noncontact vibration measuring method, and stability evaluation method
JP2014089106A (en) * 2012-10-30 2014-05-15 Railway Technical Research Institute Method for evaluating stability of rock lump on rock slope by tapping sound measurement
CN103162927A (en) * 2013-03-27 2013-06-19 山东大学 Vibration disturbance simulator used for geotechnical slope and using method thereof
CN104374466B (en) * 2014-11-25 2017-05-03 大连理工大学 Optical fiber vibration real-time monitoring and alarming system for roadbed collapse
CN104374466A (en) * 2014-11-25 2015-02-25 大连理工大学 Optical fiber vibration real-time monitoring and alarming system for roadbed collapse
CN104634946A (en) * 2015-02-05 2015-05-20 中国矿业大学(北京) Slope model loading testing device
JP2017040144A (en) * 2015-08-21 2017-02-23 公益財団法人鉄道総合技術研究所 Rock lumb stability evaluation method and program used for the same
CN106197645A (en) * 2016-08-10 2016-12-07 中国地质大学(武汉) A kind of pedestal
DE102016122467A1 (en) * 2016-11-22 2018-05-24 Geo Explorers AG Method and device for estimating the risk of a naturally caused rock or / and landslide on a slope, in particular a mountain slope
CN111287225A (en) * 2020-02-20 2020-06-16 中南大学 Anchor rod stress monitoring and reconstruction slope stability evaluation method for anchoring type slope
CN111287225B (en) * 2020-02-20 2021-05-07 中南大学 Anchor rod stress monitoring and reconstruction slope stability evaluation method for anchoring type slope
JP2021167538A (en) * 2020-04-13 2021-10-21 株式会社大林組 Fragmented rock determination method and fragmented rock determination support system
JP7405369B2 (en) 2020-04-13 2023-12-26 株式会社大林組 Floating rock determination method and floating rock determination support system
CN113174876A (en) * 2021-06-28 2021-07-27 西南交通大学 Rotary intelligent anti-impact steel column and disaster assessment method
CN113174876B (en) * 2021-06-28 2021-09-10 西南交通大学 Rotary intelligent anti-impact steel column and disaster assessment method
CN115238482A (en) * 2022-07-08 2022-10-25 苏州大学 Method for calculating supporting pressure of large longitudinal slope rectangular tunnel excavation face

Similar Documents

Publication Publication Date Title
JP2003149044A (en) Evaluation method for stability of slant face
EP2293117B1 (en) VH Signal Integration Measure for Seismic Data
US11619018B2 (en) Soil probing device having built-in generators and detectors for compressional waves and shear waves
USH1524H (en) Method for using electromagnetic grounded antennas as directional geophones
KR101174794B1 (en) Elastic wave measurement device for nondestructive evaluation of concrete structure
Anthony et al. Installation and performance of the Albuquerque Seismological Laboratory small‐aperture posthole array
Bostick III Field experimental results of three-component fiber-optic seismic sensors
JP6832211B2 (en) Ground survey equipment and ground survey method
JP5517258B2 (en) Q factor measurement method using vertical array seismometer
US9234972B2 (en) Method and apparatus for measuring seismic parameters of a seismic vibrator
CN206757054U (en) A kind of face ripple pick-up sensor and face ripple detecting system
JP2000337070A (en) Determination method for geology and stratum change in drilling or boring
JP3274341B2 (en) Damage inspection method for structural support piles
JP2005291903A (en) Hydrophone for underwater geophone, and multipoint observation underwater geophone
JP2000186319A (en) Ground investigation method
CN209162913U (en) A kind of existing building quality inspection of the piles device
JP2850572B2 (en) Geological survey equipment
JP3637526B2 (en) Elastic wave exploration method
Pytel et al. Amplitude and Frequency Characteristics of Rotational Ground Motions Generated by Paraseismic Events
JP2002055172A (en) Method of investigating cavity in ground
JP2820634B2 (en) Pile damage inspection method
EP1235082A1 (en) Method and apparatus to generate shear wave signals and measure seismic parameters in penetrable media
JP4195171B2 (en) Ground structure estimation method
JP3052224B2 (en) Measuring method of allowable bearing capacity of ground
JP2001342619A (en) Determination method for geological and stratum change in excavating and boring