JP2002055172A - Method of investigating cavity in ground - Google Patents

Method of investigating cavity in ground

Info

Publication number
JP2002055172A
JP2002055172A JP2000240405A JP2000240405A JP2002055172A JP 2002055172 A JP2002055172 A JP 2002055172A JP 2000240405 A JP2000240405 A JP 2000240405A JP 2000240405 A JP2000240405 A JP 2000240405A JP 2002055172 A JP2002055172 A JP 2002055172A
Authority
JP
Japan
Prior art keywords
cavity
ground
measured
density
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000240405A
Other languages
Japanese (ja)
Inventor
Toru Kuwabara
徹 桑原
Kazuto Namiki
和人 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2000240405A priority Critical patent/JP2002055172A/en
Publication of JP2002055172A publication Critical patent/JP2002055172A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Abstract

PROBLEM TO BE SOLVED: To provide a method of investigating a cavity in the ground by which the presence of a cavity under the underground water surface is made easily and accurately graspable. SOLUTION: A boring hole is drilled in the ground being an investigation object, the elastic wave velocity is measured in the periphery of a hole wall for every prescribed depth, and a density distribution is measured in the periphery of the hole wall. The measurement of the elastic wave velocity is carried out by a method analyzing a propagation phenomenon based on differences in a density and rigidity of a layer, a sensor is set on the ground level or underground, and an arrival time of an elastic wave oscillated artificially and the like are measured in a site of some distance therefrom. A concrete measuring method for the density distribution is also known, for example, a formation density logging method using a γ-ray or the like, or the like is adopted therefor. An electric specific resistance in the periphery of the hole wall of the boring hole is measured in every prescribed depth, and the presence of the cavity or a ground characteristic resulting from the cavity is verified based on a correlation between a measured value herein and the density distribution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地盤内空洞の調査
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for investigating a cavity in a ground.

【0002】[0002]

【従来の技術】従来より、設計施工に際して、既存の地
下空洞の存在が問題になるような事業プロジェクトがし
ばしば知られている。このような既設の空洞としては、
旧炭坑の小規模空洞や採掘跡、金属鉱床の小規模採掘跡
や坑道、沖縄琉球石灰岩などに見られる小規模鍾乳洞な
どが該当する。大規模な空洞は記録が残っていることか
ら、事前に対策をたてて対処することができるものの、
小規模なものは記録が無く、構造物の構築計画に際して
しばしば問題となっている。
2. Description of the Related Art Conventionally, there are often known business projects in which the existence of an existing underground cavity is a problem when designing and constructing. As such an existing cavity,
This includes small-scale cavities and mining sites in former coal mines, small-scale mining sites and tunnels in metal deposits, and small-scale limestone caves found in Okinawa Ryukyu Limestone. Large-scale cavities can be dealt with in advance because there is a record,
Smaller ones have no records and are often a problem when planning the construction of structures.

【0003】このような空洞は、支持基盤としての安全
性の問題、施工上の逸泥などの環境対策の問題、海水の
逆流などの塩水浸入の問題、水みちとしての空洞による
地下水障害、及び施工に際しても各種のトラブル発生の
危険性をはらんでいるので、事前に把握しておくことが
不可欠である。
[0003] Such a cavity has problems of safety as a support base, problems of environmental measures such as construction sludge, problems of salt water intrusion such as backflow of seawater, groundwater obstruction due to a cavity as a waterway, and There is also a risk of various troubles during construction, so it is essential to know in advance.

【0004】従来、地表からの各種物理探査技術を主体
として、浅層反射法探査、地表面レーダなどの物理探
査、ボアホールTVなどによる孔内観察、ジオトモグラ
フィーを含む比抵抗を利用した孔内間計測法などが実施
されている。
Conventionally, various types of physical exploration techniques from the surface of the earth have been mainly used, such as shallow reflection surveys, physical surveys such as ground surface radar, observations in the borehole by a TV such as a borehole TV, and a borehole using specific resistance including geotomography. Measurement methods have been implemented.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
従来の物理探査技術は、空洞の規模、地下水の有無、調
査深度、地盤条件などにより非常に限定され、また調査
結果の評価も一義的に得ることが困難で、実際に正確に
検出することは容易ではなかった。特に、地盤または岩
盤内部の空洞位置が、例えば数十mと深く、かつ地下水
面以下に存在する場合には、実質的に対応できる調査技
術がないのが現状であり、地下水位の高い日本では有効
な調査手法はなかったと言うことができる。
However, these conventional geophysical exploration techniques are very limited by the size of the cavity, the presence or absence of groundwater, the depth of the survey, the ground conditions, and the like. And it was not easy to actually detect accurately. In particular, when the location of the cavity inside the ground or rock is deep, for example, several tens of meters, and exists below the groundwater level, there is currently no survey technology that can practically cope with it. It can be said that there was no effective survey method.

【0006】上述した物理探査方法は、主に地層の層構
造断面を求めるもので、このうち、浅層反射法探査で
は、空洞の直径が数m以上と、浅層部分での大規模な空
洞以外の探査は困難である。また地表面レーダは空洞の
直径数十cm以上のものの探査が可能であるが、地表面
下4m程度以内の探査が限界であり、地下水面下の探査
には使用できない。
[0006] The above-mentioned physical exploration method mainly determines the layer structure section of the stratum. Among them, in the shallow layer reflection survey, the diameter of the cavity is several meters or more, and a large-scale cavity in the shallow layer portion is used. Other exploration is difficult. In addition, the ground surface radar is capable of exploring a cavity with a diameter of several tens of cm or more, but the exploration within about 4 m below the ground surface is the limit and cannot be used for the exploration below the groundwater level.

【0007】これに対し、各種の探査技術を組み合わせ
ることにより精度を上げることも考えられるが、費用の
負担が大きいという課題があった。
On the other hand, it is conceivable to improve the accuracy by combining various exploration techniques, but there is a problem that the cost is large.

【0008】本発明は、以上の課題を解決するものであ
って、その目的は、地下水面下における空洞の有無を簡
単かつ正確に把握できるようにした地盤内空洞の調査方
法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for investigating a cavity in a ground, which makes it possible to easily and accurately grasp the presence or absence of a cavity below groundwater. is there.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、本発明は、調査対象である地盤にボーリング孔を削
孔し、所定深度毎に孔壁周辺の弾性波速度を測定すると
ともに、孔壁周辺の密度分布を測定し、深度毎に得られ
た両測定値の相関から、空洞の有無または該空洞に起因
する地盤特性を検証することを特徴とする(請求項
1)。以上において、前記弾性波および密度の測定値
は、一定の相関があり、従って、本発明方法では、デー
タ整理により相関から外れた測定値があった場合、その
位置に空洞があったり、他の部分に対して地盤特性が著
しく異なることが判定できる。
According to the present invention, a boring hole is drilled in a ground to be surveyed, and an elastic wave velocity around a hole wall is measured at predetermined depths. The method is characterized in that the density distribution around the wall is measured, and the presence or absence of a cavity or the ground characteristics caused by the cavity is verified from the correlation between the two measured values obtained for each depth (claim 1). In the above, the measured values of the elastic wave and the density have a certain correlation. Therefore, according to the method of the present invention, when there is a measured value deviated from the correlation due to the data reduction, there is a cavity at that position or other It can be determined that the ground characteristics are significantly different from each other.

【0010】また、本発明では、ボーリング孔の孔壁周
辺の電気的比抵抗値を所定深度毎に測定し、この測定値
と前記密度分布との相関から地盤特性を検証することを
特徴とする(請求項2)。従って、本発明方法では、測
定精度をさらにあげることができる。
Further, the present invention is characterized in that the electrical resistivity around the hole wall of the borehole is measured at every predetermined depth, and the ground characteristics are verified from the correlation between the measured value and the density distribution. (Claim 2). Therefore, in the method of the present invention, the measurement accuracy can be further improved.

【0011】[0011]

【発明の実施の形態】以下、本発明の好ましい実施の形
態を説明する。先ず、調査対象である地盤にボーリング
孔を削孔し、所定深度毎に孔壁周辺の弾性波速度を測定
するとともに、孔壁周辺の密度分布を測定する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described. First, a boring hole is drilled in the ground to be surveyed, the elastic wave velocity around the hole wall is measured at each predetermined depth, and the density distribution around the hole wall is measured.

【0012】弾性波速度の測定は、地層の密度、剛性な
どの違いによる弾性波の伝播現象を解析する方法で行な
われ、地表面または地中にセンサを設置し、ここより離
れた場所から人工的に発振された弾性波の到達時間など
を測定する。弾性波には、P波とS波とがある。P波
は、波の進行方向に振動成分を持った粗密波であり、縦
波とも呼ばれる。一方、S波は、波の伝わる方向に対し
て振動方向が直角なせん断波であり、横波あるいはねじ
れ波とも呼ばれる波である。具体的な測定方法は、周知
であって、サスペンション式PS検層法、VSP測定
法、弾性波トモグラフィー法などがある。
The measurement of the elastic wave velocity is performed by a method of analyzing a propagation phenomenon of an elastic wave due to a difference in density, stiffness, etc. of a stratum. The arrival time and the like of elastically oscillated elastic waves are measured. Elastic waves include P waves and S waves. The P wave is a compression wave having a vibration component in the traveling direction of the wave, and is also called a longitudinal wave. On the other hand, the S wave is a shear wave whose vibration direction is perpendicular to the direction in which the wave propagates, and is also called a transverse wave or a torsional wave. Specific measurement methods are well known and include a suspension type PS logging method, a VSP measurement method, an elastic wave tomography method, and the like.

【0013】また、密度分布の具体的測定方法も同じく
周知であり、例えばγ線などを用いた密度検層法などを
採用することができる。
A specific method of measuring the density distribution is also well known, and for example, a density logging method using γ-rays or the like can be adopted.

【0014】さらに、本発明方法は、以上に加えて、ボ
ーリング孔の孔壁周辺の電気的比抵抗値を所定深度毎に
測定し、この測定値と前記密度分布との相関から空洞の
有無または該空洞に起因する地盤特性を検証することが
できる。この電気的比抵抗値の具体的測定方法も同じく
周知であり、電気検層法、比抵抗トモグラフィー法、比
抵抗二次元探査法などが推奨される。
Further, in addition to the above, the method of the present invention measures the electrical resistivity around the hole wall of the boring hole at every predetermined depth, and determines whether there is a cavity or not based on the correlation between the measured value and the density distribution. The ground characteristics caused by the cavity can be verified. Specific methods for measuring the electrical resistivity are also well known, and an electrical logging method, a resistivity tomography method, a resistivity two-dimensional exploration method, etc. are recommended.

【0015】次いで、以上の測定により得られたデータ
を整理することによって、空洞があったり、他の部分に
対して地盤特性が著しく異なる部位を判定することがで
きる。
Next, by arranging the data obtained by the above-described measurements, it is possible to determine a portion having a cavity or having a significantly different ground characteristic from other portions.

【0016】具体的には次の手法による。 先ず、P波速度(Vp)と密度(単位体積重量)との
1次相関を求める。P波速度は水の影響を受けるので、
この相関直線は地下水面の上と下とで異なり、相関直線
は折れ線となる。このとき、空洞の存在によりP波速度
は余り変らないが、密度は小さくなるので、この部位は
回帰式から大きく外れた異常分布として示される。 S波速度(Vs)と密度との一次相関を求める。S波
速度は水の影響を受けないので、この相関から大きく外
れる部位があることは、岩盤の弱層に対応することと見
なされる。 電気的比抵抗値と密度との1次相関を求める。例えば
多孔質琉球石灰岩では、密度が小さい(間隙が大きい、
すなわち水を多く含んでいる)ほど比抵抗値が大きくな
り、水みちとしての地下水流動の影響が大きい。
Specifically, the following method is used. First, a primary correlation between the P-wave velocity (Vp) and the density (unit volume weight) is determined. Since the P-wave velocity is affected by water,
This correlation line differs between above and below the groundwater table, and the correlation line is a broken line. At this time, the velocity of the P-wave does not change much due to the presence of the cavity, but the density decreases, so that this portion is shown as an abnormal distribution that largely deviates from the regression equation. First-order correlation between S-wave velocity (Vs) and density is obtained. Since the S-wave velocity is not affected by water, it is considered that a portion largely deviating from this correlation corresponds to a weak layer of the rock. A first-order correlation between the electrical resistivity and the density is obtained. For example, porous Ryukyu limestone has a low density (large gap,
That is, the more water is included), the greater the specific resistance value is, and the influence of groundwater flow as a water path is large.

【0017】以上の相関を特定することで、相関から外
れたと見なされる部位あるいは測定方位位置における空
洞の有無や、これによる地盤特性の変化を知ることがで
きるのである。
By specifying the above-mentioned correlation, it is possible to know the presence or absence of a cavity at a portion deemed to deviate from the correlation or at the measurement azimuth position, and the change in ground characteristics due to this.

【0018】[0018]

【実施例】<実験例1>図1,2は具体的測定結果に基
づくVp〜密度、およびVs〜密度の1次相関を示して
いる。図1は空洞などがない方位における測定結果に基
づく一次相関を示し、先ず、P波速度(Vp)と密度と
の関係は、自然乾燥試料、すなわち地下水面上にある位
置と、水飽和試料、すなわち地下水面下とでその相関直
線は勾配が異なり、地下水面下で急激に立ち上がる。な
お、図において、サンプル採取番号のS80,C56
は、ボーリング孔番号を示しており、dryおよびwe
tは、地下水面上での測定結果と、地下水面下での測定
結果を示している。また、S波速度(Vs)と密度との
1次相関は、乾燥、飽和による差がなく、一定の勾配と
なる。
<Experimental Example 1> FIGS. 1 and 2 show the first order correlation between Vp and density and Vs and density based on specific measurement results. FIG. 1 shows a first-order correlation based on a measurement result in an orientation without a cavity or the like. First, the relationship between the P-wave velocity (Vp) and the density is as follows: a naturally dried sample, that is, a position on the groundwater table, a water-saturated sample, In other words, the slope of the correlation line is different from below the water table, and rises sharply below the water table. In the figure, the sample collection numbers S80 and C56
Indicates a boring hole number, and dry and we
t indicates a measurement result on the groundwater table and a measurement result on the groundwater table. The first-order correlation between the S-wave velocity (Vs) and the density has a constant gradient without a difference due to drying and saturation.

【0019】これに対して、図2は、地下水位が高い地
層での測定結果に基づく一次相関を示し、先ずP波速度
(Vp)と密度との関係は地下水位が高いため、図1に
示すような相関による折れ曲りがなく、大きな勾配で一
定となる。これに加え、破線で囲うX部分は相関から外
れた部分であり、いずれも小規模な空洞部分と認定され
る。
On the other hand, FIG. 2 shows a first-order correlation based on a measurement result in a stratum with a high groundwater level. First, the relationship between the P-wave velocity (Vp) and the density is shown in FIG. There is no bending due to the correlation as shown, and it is constant with a large gradient. In addition, the X portion surrounded by a broken line is a portion deviating from the correlation, and all are recognized as small-scale hollow portions.

【0020】また、S波速度(Vs)と密度との1次相
関は、図示のごとくであるが、破線枠で囲われたY部分
は相関から外れた位置であり、弱層部位の存在を示唆し
ている。
The primary correlation between the S-wave velocity (Vs) and the density is as shown in the figure, but the Y portion surrounded by a broken line frame is a position deviating from the correlation, and indicates the existence of the weak layer portion. Suggests.

【0021】<実験例2>図3は、図2をもとにした弾
性波速度/密度と深度との相関を示している。同図のP
波速度/密度分布からは、A部分での実測は深度−7〜
−10m程度、B部分では深度−10〜−16m程度に
集中した岩盤中の小規模空洞が、またC部分では深度−
25〜−30m程度、D部分では深度−31〜−36m
程度に散在した小規模空洞があることが分かる。また、
同図のS波速度/密度分布からは、E部分が岩盤の弱層
部分であることが分かる。この場合、上述したように、
実測しなくても空洞の深度を推定することが可能にな
る。
<Experimental Example 2> FIG. 3 shows the correlation between the elastic wave velocity / density and the depth based on FIG. P in FIG.
From the wave velocity / density distribution, the actual measurement at part A is from depth -7 to
Small cavities in the bedrock are concentrated at about -10 m, part B at a depth of about -10 m to -16 m, and depth at part C is
About 25-30 m, depth D-31 -36 m in D part
It can be seen that there are small cavities scattered to the extent. Also,
From the S-wave velocity / density distribution shown in the figure, it can be seen that the portion E is a weak layer portion of the rock. In this case, as described above,
It is possible to estimate the depth of the cavity without actually measuring it.

【0022】<実験例3>図4は具体的測定結果に基づ
く比抵抗値〜密度の一次相関を示しており、地盤密度が
高いほど比抵抗値が下がることが、図から明らかであ
る。この図から、地層の岩質部分は密度小だと少なく、
密度大になるほど多く含まれ、地層間隙率は、密度小だ
と大きく、密度大になるほど小となる。さらに石灰質
(シルト分)は密度小だと、小であり、密度大になるほ
ど多くなり、含水量は密度小だと多くなり、密度大にな
るほど少なくなる。
<Experimental Example 3> FIG. 4 shows a first-order correlation between specific resistance and density based on specific measurement results. It is apparent from the figure that the specific resistance decreases as the ground density increases. From this figure, the rocky part of the stratum is small when the density is low,
The higher the density, the higher the porosity. The lower the density, the higher the porosity. The higher the density, the lower the porosity. Further, calcareous (silt content) is small when the density is low, and increases as the density increases. The water content increases when the density is low and decreases when the density increases.

【0023】従ってサンプルコア採取および観察とあわ
せて以上の測定とこれに基づく1次相関を求めること
で、地盤性状を的確に把握できる。また、前記実験例1
に示す1次相関に照合することで、的確な参考値として
使用可能となる。
Therefore, the ground properties can be accurately grasped by obtaining the above-mentioned measurements and the primary correlation based on the above-mentioned measurements in addition to the sampling and observation of the sample core. In addition, the experimental example 1
By collating with the primary correlation shown in (1), it can be used as an accurate reference value.

【0024】なお、以上の各実験例において、測定およ
び相関値を求めるにあたり、各測定装置とパソコンとを
接続し、各深度毎の各測定値を記録するとともに、その
測定結果に基づき、予めソフトに内蔵された回帰式など
による一次相関の演算や、相関から外れた部位の特定、
およびその結果の各種数値またはグラフィック表示、印
刷、保存などを行えるようにすれば、測定時におけるデ
ータ処理も簡単に行える。
In each of the above experimental examples, when measuring and correlating values are obtained, each measuring device is connected to a personal computer, each measured value at each depth is recorded, and a software is prepared in advance based on the measured result. Calculation of primary correlation by regression equation etc. built in, identification of parts deviating from correlation,
Also, if various numerical values or graphic results of the results can be displayed, printed, stored, etc., data processing at the time of measurement can be easily performed.

【0025】[0025]

【発明の効果】以上の説明により明らかなように、本発
明による地盤内空洞の調査方法によれば、以下の効果が
ある。 (1)地表からの物理探査方法に比べて実際問題となる
ような小規模空洞の特定が可能となる。 (2)従来ほとんど不可能であった地下水面下での空洞
検出が可能である。 (3)コア試料観察では分らない物性的評価が可能であ
る。 (4)ボーリング孔を利用して、問題の区間に対して変
形試験、透水試験、トレーサ試験、グラウト試験なども
可能であることから、調査ボーリング孔を基準調査孔と
して、必要に応じて各調査項目を付加できる。
As is apparent from the above description, the method for investigating a cavity in the ground according to the present invention has the following effects. (1) It is possible to identify small-scale cavities that are actually problematic compared to the geophysical exploration method from the ground surface. (2) It is possible to detect cavities below the groundwater surface, which was almost impossible in the past. (3) Physical properties that cannot be determined by observation of the core sample can be evaluated. (4) Since a deformation test, a water permeability test, a tracer test, a grout test, and the like can be performed on the section in question using the borehole, the investigation borehole is used as a reference borehole, and each survey is conducted as necessary. Items can be added.

【図面の簡単な説明】[Brief description of the drawings]

【図1】弾性波速度と地盤密度との関係を示すグラフで
ある。
FIG. 1 is a graph showing a relationship between elastic wave velocity and ground density.

【図2】同じく弾性波速度と地盤密度との相関を示すグ
ラフである。
FIG. 2 is a graph showing a correlation between elastic wave velocity and ground density.

【図3】弾性波速度/密度と深度との相関を示すグラフ
である。
FIG. 3 is a graph showing a correlation between elastic wave velocity / density and depth.

【図4】比抵抗値と地盤密度との相関を示すグラフであ
る。
FIG. 4 is a graph showing a correlation between a specific resistance value and a ground density.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 29/18 G01N 29/18 G01V 3/20 G01V 3/20 5/12 5/12 Fターム(参考) 2G001 AA02 BA11 CA02 GA01 KA01 KA04 LA03 2G047 AA10 BC00 BC02 2G060 AA14 AE01 AF07 HC10 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) G01N 29/18 G01N 29/18 G01V 3/20 G01V 3/20 5/12 5/12 F term (reference) 2G001 AA02 BA11 CA02 GA01 KA01 KA04 LA03 2G047 AA10 BC00 BC02 2G060 AA14 AE01 AF07 HC10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 調査対象である地盤にボーリング孔を削
孔し、所定深度毎に孔壁周辺の弾性波速度を測定すると
ともに、孔壁周辺の密度分布を測定し、深度毎に得られ
た両測定値の相関から、空洞の有無または該空洞に起因
する地盤特性を検証することを特徴とする地盤内空洞の
調査方法。
1. A boring hole is drilled in the ground to be surveyed, an elastic wave velocity around the hole wall is measured at each predetermined depth, and a density distribution around the hole wall is measured. A method for investigating a cavity in a ground, characterized by verifying the presence or absence of a cavity or a ground characteristic caused by the cavity from a correlation between the two measured values.
【請求項2】 前記ボーリング孔の孔壁周辺の電気的比
抵抗値を所定深度毎に測定し、この測定値と前記密度分
布との相関から地盤特性を検証することを特徴とする請
求項1に記載の地盤内空洞の調査方法。
2. The method according to claim 1, wherein an electrical resistivity value around the hole wall of the boring hole is measured at predetermined depths, and a ground characteristic is verified from a correlation between the measured value and the density distribution. Survey method for cavities in the ground described in.
JP2000240405A 2000-08-08 2000-08-08 Method of investigating cavity in ground Pending JP2002055172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000240405A JP2002055172A (en) 2000-08-08 2000-08-08 Method of investigating cavity in ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000240405A JP2002055172A (en) 2000-08-08 2000-08-08 Method of investigating cavity in ground

Publications (1)

Publication Number Publication Date
JP2002055172A true JP2002055172A (en) 2002-02-20

Family

ID=18731769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000240405A Pending JP2002055172A (en) 2000-08-08 2000-08-08 Method of investigating cavity in ground

Country Status (1)

Country Link
JP (1) JP2002055172A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124443A (en) * 2011-12-13 2013-06-24 Takenaka Doboku Co Ltd Quality evaluation method for cement improvement ground
CN104807721A (en) * 2015-03-03 2015-07-29 陈熙贵 Method for comprehensively detecting grouting compactness of prestressed pipeline of cast-in-situ prestressed concrete beam
JP2016095140A (en) * 2014-11-12 2016-05-26 株式会社大林組 Method of exploring ahead of tunnel face
CN106124622A (en) * 2016-06-12 2016-11-16 中国十七冶集团有限公司 A kind of prestress pore passage dense degree integrated evaluating method based on sound scattering technology
WO2020194371A1 (en) * 2019-03-22 2020-10-01 日本電気株式会社 Underground cavity examination system and underground cavity examination method
CN112114359A (en) * 2020-08-13 2020-12-22 中南大学 Dangerous area detection method, system and terminal based on active and passive seismic source signals and readable storage medium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124443A (en) * 2011-12-13 2013-06-24 Takenaka Doboku Co Ltd Quality evaluation method for cement improvement ground
JP2016095140A (en) * 2014-11-12 2016-05-26 株式会社大林組 Method of exploring ahead of tunnel face
CN104807721A (en) * 2015-03-03 2015-07-29 陈熙贵 Method for comprehensively detecting grouting compactness of prestressed pipeline of cast-in-situ prestressed concrete beam
CN106124622A (en) * 2016-06-12 2016-11-16 中国十七冶集团有限公司 A kind of prestress pore passage dense degree integrated evaluating method based on sound scattering technology
CN106124622B (en) * 2016-06-12 2019-01-22 中国十七冶集团有限公司 A kind of prestress pore passage dense degree integrated evaluating method based on sound scattering technology
WO2020194371A1 (en) * 2019-03-22 2020-10-01 日本電気株式会社 Underground cavity examination system and underground cavity examination method
JPWO2020194371A1 (en) * 2019-03-22 2021-10-21 日本電気株式会社 Underground cavity inspection system and underground cavity inspection method
CN112114359A (en) * 2020-08-13 2020-12-22 中南大学 Dangerous area detection method, system and terminal based on active and passive seismic source signals and readable storage medium
CN112114359B (en) * 2020-08-13 2021-07-02 中南大学 Dangerous area detection method, system and terminal based on active and passive seismic source signals and readable storage medium

Similar Documents

Publication Publication Date Title
Nur et al. Critical porosity: A key to relating physical properties to porosity in rocks
CN101553742B (en) Discriminating natural fracture- and stress-induced sonic anisotropy using combination of image and sonic logs
US7872944B2 (en) Method of monitoring microseismic events
US20180203144A1 (en) Interferometric Microseismic Imaging Methods and Apparatus
EA007372B1 (en) Method of using electrical and acoustic anisotropy measurements for fracture identification
Groves et al. Use of geophysical methods for soil profile evaluation
US6476608B1 (en) Combining seismic waves with seismoelectrics to perform prospecting and measurements
US8681582B2 (en) Method for sonic indication of formation porosity and lithology
US20170285195A1 (en) Integrating vertical seismic profile data for microseismic anisotropy velocity analysis
Takahashi et al. ISRM suggested methods for borehole geophysics in rock engineering
WO2019157153A1 (en) Mapping fracture length using downhole ground penetrating radar
Ellefsen et al. Crosswell seismic investigation of hydraulically conductive, fractured bedrock near Mirror Lake, New Hampshire
JP2002055172A (en) Method of investigating cavity in ground
Foti Combined use of geophysical methods in site characterization
US11474272B2 (en) Methods and systems for identifying and plugging subterranean conduits
Goldberg et al. Detection of gas hydrates using downhole logs
JP2004138447A (en) Physical property evaluating method for base rock
Zou et al. Investigation of blast-induced fracture in rock mass using reversed vertical seismic profiling
Wang et al. Heterogeneity versus Anisotropy and the State of Stress in Stable Cratons: Observations from a Deep Borehole of Opportunity in Northeastern Alberta, Canada
Ezersky et al. The scale effect of Dead Sea salt velocities based on seismic-acoustic measurements
Tweeton et al. Field tests of geophysical techniques for predicting and monitoring leach solution flow during in situ mining
Shen et al. A combined geological, geophysical and rock mechanics approach to naturally fractured reservoir characterization and its applications
Akbar et al. Identification of Karstic Features with Extensive Geophysical Investigation for Underground Infrastructure-South of Wakrah Pumping Station and Outfall (SWPSO) Project
Khan DELINEATION OF UNCERTAINTIES IN ANISOTROPIC SHALLOW SUBSURFACE BY INTEGRATED GEOPHYSICAL AND GEOMECHANICAL EXAMINATION
Kavand et al. Determination of shear wave velocity profile of sedimentary deposits in Bam city (southeast of Iran) using microtremor measurements

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040924