JP2003147588A - Surface coating layer by iron and steel and surface treatment method - Google Patents

Surface coating layer by iron and steel and surface treatment method

Info

Publication number
JP2003147588A
JP2003147588A JP2001339059A JP2001339059A JP2003147588A JP 2003147588 A JP2003147588 A JP 2003147588A JP 2001339059 A JP2001339059 A JP 2001339059A JP 2001339059 A JP2001339059 A JP 2001339059A JP 2003147588 A JP2003147588 A JP 2003147588A
Authority
JP
Japan
Prior art keywords
steel
coating layer
treatment
surface coating
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001339059A
Other languages
Japanese (ja)
Other versions
JP4006512B2 (en
Inventor
Hiroshi Nanjo
弘 南條
Tokuo Sanada
徳雄 真田
Michio Yonetani
道夫 米谷
Ikuo Ishikawa
育夫 石川
Den Hoihoa
デン ホイホア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001339059A priority Critical patent/JP4006512B2/en
Publication of JP2003147588A publication Critical patent/JP2003147588A/en
Application granted granted Critical
Publication of JP4006512B2 publication Critical patent/JP4006512B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface treatment method for a surface coating layer by the iron and steel having a flat surface at an atomic level. SOLUTION: The surface coating layer having an electrochemically surface treated surface of <=10 nm in center line surface roughness Ra and <=30 nm in maximum height and having excellent flatness by the iron and steel having the excellent flat surface is subjected to surface cleaning to remove the dirt and oxidized film covering the surface by an electrochemical technique and is then immediately immobilized and the treatment conditions of a high passivation potential, a treating solution of a high temperature, long passivation holding time, and repetition of passivation and cathode reduction are combined, by which the surface is gradually reconstituted by the crystalline oxidized film and a step-terrace structure is formed. The surface flat at the atomic level in the terrace grown or expanded at this time is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、一般構造材料とし
て使用される鉄鋼の耐食性を上げ、かつ表面平坦性を向
上させる技術に関する。鉄鋼母材表面が清浄であるほ
ど、その上に形成される酸化皮膜が結晶化しやすくなる
が、本発明は電気化学的表面処理により、原子レベルで
の平坦(平滑)化された面を備え、これにより従来の粗
い表面よりも耐食性を向上させ、かつガス等の吸着を減
少させることのできる鉄鋼及びその表面処理方法に関す
る。なお、本発明の鉄鋼は、純鉄、ステンレス鋼等の不
働態化処理が可能である鉄を主成分とする材料を意味す
る。
TECHNICAL FIELD The present invention relates to a technique for improving corrosion resistance and improving surface flatness of steel used as a general structural material. The cleaner the surface of the steel base material, the easier the oxide film formed on the surface becomes to crystallize, but the present invention provides a flat (smoothed) surface at the atomic level by the electrochemical surface treatment, Thus, the present invention relates to a steel and a surface treatment method thereof, which can improve corrosion resistance as compared with a conventional rough surface and can reduce adsorption of gas and the like. The steel of the present invention means a material containing iron as a main component, which can be passivated, such as pure iron and stainless steel.

【0002】[0002]

【従来の技術】鉄鋼の耐食性を高め、あるいは鉄鋼を高
真空容器として使用する場合等において、ガス等の吸着
を抑制するために、鉄鋼表面に均質かつ平坦な結晶性酸
化皮膜を形成することが必要であるが、このためにま
ず、鉄鋼母材表面が平滑であることが要求される。従
来、この表面平坦性に優れた鉄鋼表面を得る方法の1つ
として、平滑ロールを使用して仕上冷間圧延を行い、高
光沢の鉄鋼を製造する方法が提案されている(特開平6
−79611)。しかし、この技術における鉄鋼の表面
粗度はRa≦1.0μmと規定されているが、原子レベ
ルの平坦さにはほど遠く、十分な表面平坦性を有すると
は言い難い。また、低酸素分圧雰囲気中で加熱処理する
ことにより、あるいは冷間引抜き後光輝熱処理すること
により、表面粗さRmaxを1μm以下とする表面処理
法が提案されている(特開平6−322512、WO9
5/28239)。しかし、これらの場合も同様に表面
粗さRmaxを1μm以下とする程度のことで、原子レ
ベルの平坦さにはほど遠い。
2. Description of the Related Art A homogeneous and flat crystalline oxide film is formed on the surface of steel in order to improve the corrosion resistance of the steel or to prevent the adsorption of gases when the steel is used as a high vacuum container. Although necessary, this requires that the surface of the steel base material be smooth. Conventionally, as one of methods for obtaining a steel surface having excellent surface flatness, there has been proposed a method for producing a high-gloss steel by performing finish cold rolling using a smooth roll (Japanese Patent Laid-Open No. Hei 6).
-79611). However, although the surface roughness of steel in this technique is specified as Ra ≦ 1.0 μm, it is far from atomic level flatness, and it is hard to say that it has sufficient surface flatness. Further, a surface treatment method has been proposed in which the surface roughness Rmax is 1 μm or less by heat treatment in a low oxygen partial pressure atmosphere, or by bright drawing heat treatment after cold drawing (Japanese Patent Laid-Open No. 6-322512). WO9
5/28239). However, in these cases as well, the surface roughness Rmax is set to 1 μm or less, which is far from atomic level flatness.

【0003】一方で、湿式不働態化処理において、硫酸
溶液中で飽和カロメル電極基準0.2〜0.6Vの電位
で5分以上保持することにより耐食性を向上させる処理
方法が提案されている(特開平9−3655)。しか
し、この技術には原子レベルの平坦化を実現する際のキ
ープロセスである製造後に形成された汚れや非晶質皮膜
の処理方法および不働態化処理への移行プロセスが提案
されていない。また従来、鉄鋼表面において原子レベル
で平坦なテラスを拡張しようとする方法は記述されてい
ない。このようなことから、より高い耐食性およびより
少ないガス吸着性を有する点において優れた平坦性を備
えた鉄鋼および鉄鋼による表面被覆層ならびに原子レベ
ルで平坦なテラスを拡張しようとする表面処理法の開発
が望まれている。
On the other hand, in the wet passivation treatment, a treatment method has been proposed in which the corrosion resistance is improved by keeping the potential at 0.2 to 0.6 V of saturated calomel electrode standard in a sulfuric acid solution for 5 minutes or more ( JP-A-9-3655). However, this technique does not propose a method for treating stains and amorphous films formed after manufacturing, which is a key process for realizing atomic level planarization, and a transition process to passivation treatment. Further, conventionally, a method for expanding a flat terrace at the atomic level on the steel surface has not been described. For this reason, the development of a steel and a surface coating layer of steel with excellent flatness in terms of higher corrosion resistance and less gas adsorption and a surface treatment method for expanding a flat terrace at the atomic level. Is desired.

【0004】[0004]

【発明が解決しようとする課題】本発明は鉄鋼母材表面
または鉄鋼による表面被覆層の平坦性を向上させること
により、鉄鋼の表面に形成される酸化膜の性状を改善し
て耐食性を向上させ、かつガスや汚れ等の吸着が少なく
清浄性において格段に優れた表面を有する鉄鋼およびそ
のような表面の製造方法を確立する。
SUMMARY OF THE INVENTION The present invention improves the flatness of the surface of a steel base material or the surface coating layer of steel to improve the properties of an oxide film formed on the surface of steel to improve corrosion resistance. Further, the present invention establishes a steel having a surface excellent in cleanliness with little adsorption of gas and dirt, and a method for manufacturing such a surface.

【0005】[0005]

【課題を解決するための手段】本発明は、電気化学的表
面処理を改善し、ステップ−テラス構造を備える鉄鋼又
は鉄鋼による表面被覆層のテラスの広さを拡張すること
により、耐食性をさらに向上させかつガス吸着の少ない
構造材としての鉄鋼を得ることができるとの知見を得
た。この知見に基づき本発明は、1)電気化学的処理と
して、鉄鋼を不働態化させる溶液中で−800mV(飽
和カロメル電極基準)より卑な電位で表面皮膜や汚れを
除去した直後に、表面処理電位を−300〜1000m
Vに保持して不働態化処理する鉄鋼又は鉄鋼による表面
被覆層の表面処理において、前記表面処理電位を15分
間(超)〜10時間保持することを特徴とする原子レベ
ルで平坦なテラスの広さを拡張した鉄鋼又は鉄鋼による
表面被覆層及び表面処理方法、2)表面処理電位を70
0〜900mV(飽和カロメル電極基準)に保持して不
働態化処理することを特徴とする上記1)記載の原子レ
ベルで平坦なテラスの広さを拡張した鉄鋼又は鉄鋼によ
る表面被覆層及び表面処理方法、3)電気化学的処理と
して、鉄鋼を不働態化させる溶液中で−800mV(飽
和カロメル電極基準)より卑な電位で表面皮膜や汚れを
除去した直後に、表面処理電位を−300〜1000m
Vに保持して不働態化処理する鉄鋼又は鉄鋼による表面
被覆層の表面処理において、不働態化処理する際の溶液
温度を室温(20°C)〜100°Cの範囲の温度にす
ることを特徴とする原子レベルで平坦なテラスの広さを
拡張した鉄鋼又は鉄鋼による表面被覆層及び表面処理方
法、4)不働態化処理する際の溶液温度を室温(20°
C)〜100°Cの範囲の温度にすることを特徴とする
上記1又は2記載の原子レベルで平坦なテラスの広さを
拡張した鉄鋼又は鉄鋼による表面被覆層及び表面処理方
法、5)溶液温度を30°Cから100°Cの範囲の温
度にすることを特徴とする上記3又は4に記載の原子レ
ベルで平坦なテラスの広さを拡張した鉄鋼又は鉄鋼によ
る表面被覆層及び表面処理方法、を提供する。
The present invention further improves the corrosion resistance by improving the electrochemical surface treatment and expanding the terrace width of the surface coating layer of steel or steel with a step-terrace structure. It was found that it is possible to obtain steel as a structural material that can be made to have less gas adsorption. Based on this finding, the present invention provides 1) as an electrochemical treatment, immediately after removing a surface film or dirt at a base potential lower than -800 mV (saturated calomel electrode standard) in a solution for passivating steel. Potential is -300 to 1000m
In the surface treatment of the surface coating layer of the steel or the steel to be passivated by holding it at V, the surface treatment potential is held for 15 minutes (super) to 10 hours, and a wide terrace with a flat atomic level is characterized. The surface coating layer and surface treatment method with steel or steel with expanded thickness, 2) surface treatment potential of 70
The surface coating layer and the surface treatment with steel or steel having an expanded flat terrace at the atomic level according to the above 1), characterized in that the passivation treatment is carried out by holding at 0 to 900 mV (saturated calomel electrode standard). Method 3) As an electrochemical treatment, immediately after removing the surface coating or dirt at a base potential lower than -800 mV (saturated calomel electrode standard) in a solution for passivating steel, the surface treatment potential is -300 to 1000 m.
In the surface treatment of the surface coating layer of the steel or the steel to be passivated while being held at V, the solution temperature at the time of the passivation is set to a temperature in the range of room temperature (20 ° C) to 100 ° C. The surface coating layer and surface treatment method using iron or steel, which is characterized by expanding the area of flat terraces at the atomic level, and 4) the solution temperature at the time of passivation treatment is room temperature (20 °
C) to 100 ° C., the surface coating layer and surface treatment method using steel or steel having an expanded flat terrace at the atomic level according to the above 1 or 2, and 5) solution The temperature is set to a temperature in the range of 30 ° C to 100 ° C, and the surface coating layer and the surface treatment method using the steel or the steel having an expanded atomic level flat terrace as described in 3 or 4 above. ,I will provide a.

【0006】また、本発明はさらに、6)電気化学的処
理として、鉄鋼を不働態化させる溶液中で−800mV
(飽和カロメル電極基準)より卑な電位で表面皮膜や汚
れを除去した直後に、表面処理電位を−300〜100
0mVに保持して不働態化処理する鉄鋼又は鉄鋼による
表面被覆層の表面処理において、不働態化処理後、鉄鋼
表面を相対湿度50%未満のより低い湿度環境に保持す
ることを特徴とする原子レベルで平坦なテラスの広さを
拡張した鉄鋼又は鉄鋼による表面被覆層及び表面処理方
法、7)不働態化処理後、鉄鋼表面を相対湿度50%未
満のより低い湿度環境に保持することを特徴とする上記
1〜5のそれぞれに記載の原子レベルで平坦なテラスの
広さを拡張した鉄鋼又は鉄鋼による表面被覆層及び表面
処理方法、8)電気化学的処理として、鉄鋼を不働態化
させる溶液中で−800mV(飽和カロメル電極基準)
より卑な電位で表面皮膜や汚れを除去した直後に、表面
処理電位を−300〜1000mVに保持して不働態化
処理する鉄鋼又は鉄鋼による表面被覆層の表面処理にお
いて、前記カソード還元工程と不働態化処理工程を繰り
返すことを特徴とする原子レベルで平坦なテラスの広さ
を拡張した鉄鋼又は鉄鋼による表面被覆層及び表面処理
方法、9)カソード還元工程と不働態化処理工程を繰り
返すことを特徴とする上記1〜7のそれぞれに記載の原
子レベルで平坦なテラスの広さを拡張した鉄鋼又は鉄鋼
による表面被覆層及び表面処理方法、を提供する。
Further, the present invention further comprises 6) as an electrochemical treatment, -800 mV in a solution for passivating steel.
(Saturated calomel electrode standard) Immediately after removing the surface coating and dirt at a more base potential, the surface treatment potential was set to -300 to 100.
In the surface treatment of steel or a surface coating layer made of steel to be passivated by holding it at 0 mV, after the passivation treatment, the steel surface is kept in a lower humidity environment of less than 50% relative humidity. Surface coating layer and surface treatment method with steel or steel with expanded flat terrace area at a level, 7) After passivation treatment, the steel surface is kept in a lower humidity environment of less than 50% relative humidity And a surface coating layer and a surface treatment method using iron or steel having an expanded flat terrace at the atomic level according to each of the above 1 to 5, and 8) a solution for passivating the steel as an electrochemical treatment -800 mV (based on saturated calomel electrode)
Immediately after removing the surface coating and dirt with a more noble potential, in the surface treatment of the surface coating layer of steel or steel in which the surface treatment potential is held at -300 to 1000 mV for passivation, the cathode reduction step and the cathode reduction step are not performed. A surface coating layer and a surface treatment method using steel or steel with an expanded flat terrace at the atomic level, characterized by repeating the passivation treatment step, and 9) repeating the cathode reduction step and the passivation treatment step. The present invention also provides a surface coating layer and a surface treatment method using steel or steel in which the width of a terrace that is flat at the atomic level is expanded, as described in each of 1 to 7 above.

【0007】また、本発明はさらに、10)鉄鋼を不働
態化させる溶液として、硼酸、過塩素酸、酢酸、硝酸、
硫酸、リン酸、シュウ酸、クロム酸、フッ化水素酸から
選択した1種類の溶液又は2種類以上の混合溶液又はそ
れらを50%以上含む溶液を用いて不働態化処理を行う
ことを特徴とする上記1〜9のそれぞれに記載の原子レ
ベルで平坦なテラスの広さを拡張した鉄鋼又は鉄鋼によ
る表面被覆層及び表面処理方法、11)中心線表面粗さ
Raが10nm以下及び又は最大高さRmaxが30n
m以下の電気化学的処理表面を有することを特徴とする
上記1〜10のそれぞれに記載の原子レベルで平坦なテ
ラスの広さを拡張した鉄鋼又は鉄鋼による表面被覆層及
び表面処理方法、12)中心線表面粗さRaが1nm以
下及び又は最大高さRmaxが3nm以下であることを
特徴とする請求項1〜10のそれぞれに記載の原子レベ
ルで平坦なテラスの広さを拡張した鉄鋼又は鉄鋼による
表面被覆層及び表面処理方法、13)スパッターデポジ
ットにより被覆した被覆層であることを特徴とする上記
1〜12のそれぞれに記載の原子レベルで平坦なテラス
の広さを拡張した鉄鋼又は鉄鋼による表面被覆層及び表
面処理方法、を提供するものである。
The present invention further provides 10) as a solution for passivating steel, boric acid, perchloric acid, acetic acid, nitric acid,
The passivation treatment is performed using one type of solution selected from sulfuric acid, phosphoric acid, oxalic acid, chromic acid, hydrofluoric acid, or a mixed solution of two or more types or a solution containing 50% or more thereof. 1) A surface coating layer and a surface treatment method using iron or steel having an expanded flat terrace at the atomic level according to 1) to 9), 11) the center line surface roughness Ra is 10 nm or less, and / or the maximum height. Rmax is 30n
The surface coating layer and the surface treatment method using iron or steel having an expanded terrace area flat at the atomic level according to each of 1 to 10 above, which has an electrochemically treated surface of m or less, 12) The center line surface roughness Ra is 1 nm or less and / or the maximum height Rmax is 3 nm or less, and the steel or steel having expanded atomic-level flat terraces according to each of claims 1 to 10. Surface coating layer and surface treatment method according to 13), which is a coating layer coated with a sputter deposit, and is made of steel or steel having an expanded flat terrace at the atomic level according to each of 1 to 12 above. A surface coating layer and a surface treatment method are provided.

【0008】[0008]

【発明の実施の形態】本発明者らは、電気化学的処理方
法について鋭意研究を重ねた結果、鉄鋼表面を覆ってい
る汚れや非晶質の酸化皮膜を除去した後、他の電位を経
由することなく、直ちに不働態化し、その後、酸化表面
が徐々に再構成されて、均一かつ緻密なステップ−テラ
ス構造が形成されることを見出し、そしてこれにより当
該テラスにおいて原子レベルで平坦な表面を得ることに
成功した。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of intensive studies on the electrochemical treatment method, the present inventors have found that after removing the dirt and amorphous oxide film covering the steel surface, it is passed through another potential. Immediately, and then gradually reconstitutes the oxidized surface to form a uniform and dense step-terrace structure, which leads to an atomically flat surface on the terrace. I got it successfully.

【0009】すなわち、鉄鋼製造後に形成された非晶質
酸化物や水酸化物及び汚れを除去することが、不働態化
電位に保持したときに形成される酸化皮膜の高純度化を
可能にしている。この不純物を含まない酸化皮膜が50
%未満のより低い湿度環境において水分を排除して結晶
化し、原子レベルで平坦な表面を形成させることができ
る。その表面状態は下記に説明する走査型トンネル顕微
鏡で原子像を観測することにより確認できた。
That is, the removal of the amorphous oxides, hydroxides and stains formed after the steel production makes it possible to highly purify the oxide film formed when the passivation potential is maintained. There is. The oxide film containing no impurities is 50
Moisture can be eliminated and crystallized in a lower humidity environment of less than%, forming an atomically flat surface. The surface state was confirmed by observing an atomic image with a scanning tunneling microscope described below.

【0010】鉄鋼表面の汚れや付着物により、そこに常
時水分が保持されるようになり、そのようなところから
錆が生成してゆく。本発明の処理方法のように原子レベ
ルで平坦な表面では処理前に比べて吸着サイトとなる表
面の凸凹の量を著しく減少させることができる。汚れや
吸着を減少させることによって清浄な鉄鋼表面を保ち、
耐食性を向上させるという極めて有効な方法を含んでい
る。
Due to dirt and deposits on the surface of steel, water is always retained there, and rust is generated from such places. As in the case of the treatment method of the present invention, the amount of irregularities on the surface serving as the adsorption site can be remarkably reduced on a surface that is flat at the atomic level compared to before treatment. Keep the steel surface clean by reducing dirt and adsorption,
It contains a very effective method of improving the corrosion resistance.

【0011】本発明の平坦化処理方法の概略は、次の工
程からなる。 (1)機械研磨工程 (2)表面清浄化処理工程 (3)上記工程直後の不働態化処理工程 これにより鉄鋼上に原子レベルの平坦な表面を得ること
ができる。
The outline of the flattening method of the present invention comprises the following steps. (1) Mechanical polishing step (2) Surface cleaning treatment step (3) Passivation treatment step immediately after the above step By this, an atomic level flat surface can be obtained on steel.

【0012】次に、上記工程をそれぞれ詳しく説明す
る。前記(1)の機械研磨工程においては、例えば#2
50〜#3000までの耐水研磨紙をいくつか組み合わ
せて用い研磨した後、1μm以下、好ましくは0.25
μmのダイヤモンドぺーストを用いてバフ研磨する。そ
の後、エチルアルコール、プロピルアルコールまたはア
セトン中で超音波洗浄機を用いて脱脂洗浄して十分な洗
浄を行う。スパッターデポジット等による被覆層を形成
した材料では、すでに被覆層自体が研磨面と同等以上の
平滑面を有するので、この機械研磨工程は不要であり、
主として板材等のバルク材に用いる。
Next, each of the above steps will be described in detail. In the mechanical polishing step (1), for example, # 2
After polishing by using some combination of water-resistant abrasive papers of 50 to # 3000, 1 μm or less, preferably 0.25
Buffing is performed using a diamond paste of μm. After that, degreasing cleaning is performed in ethyl alcohol, propyl alcohol, or acetone using an ultrasonic cleaning machine to perform sufficient cleaning. In a material having a coating layer formed by spatter deposits or the like, since the coating layer itself already has a smooth surface equal to or more than the polishing surface, this mechanical polishing step is unnecessary,
Mainly used for bulk materials such as plate materials.

【0013】次に、前記(2)の表面清浄化処理の工程
においては、鉄鋼材料が不働態化現象を起こす溶液、例
えば硼酸溶液中において−800mV(飽和カロメル電
極基準)より卑な電位で、5分間以上カソード領域に保
持することによって非晶質皮膜や表面の汚れをカソード
還元して除去し、表面清浄化を図ることからなる。この
工程は、本発明の鉄鋼表面に均一かつ緻密なステップ−
テラス構造を形成し、さらにテラスにおいて原子レベル
で平坦な表面を達成させる重要な工程である。
Next, in the step (2) of the surface cleaning treatment, in a solution in which a steel material causes a passivation phenomenon, for example, a boric acid solution, at a base potential lower than -800 mV (saturated calomel electrode standard), By holding the film in the cathode region for 5 minutes or more, the amorphous film and surface stains are cathode-reduced and removed to achieve surface cleaning. This process is a uniform and precise step on the steel surface of the present invention.
It is an important step to form a terrace structure and achieve an atomically flat surface on the terrace.

【0014】前記(3)の不働態化処理工程において
は、清浄化処理後、不働態化領域以外の他の電位を経由
することなく、直ちに不働態化電位に16分間以上保持
する。このときの保持電位は鉄鋼の不働態領域、すなわ
ち−300〜1000mVの電位、好ましくはより貴な
電位(700〜900mV)に保持する。前記(3)の
処理後しばらくすると、不働態化により形成された酸化
皮膜が結晶化し、原子レベルで平坦な表面を得ることが
できる。不働態化電位により、その皮膜の構造安定性が
異なる。低電位では皮膜密度が低く、電位が高くなるに
つれて皮膜密度が高くなる。さらに250mVよりも電
位が高くなると2次元的な構造から3次元的な構造をと
りはじめ、700mV以上では2重3重の構造になるな
ど、皮膜が厚くなり、大きな粒子が形成されて、その粒
子上では広いテラスになる、すなわちテラスの拡張がよ
り可能となる。
In the passivation treatment step (3), after the cleaning treatment, the passivation potential is immediately maintained for 16 minutes or more without passing through any potential other than the passivation region. The holding potential at this time is held in the passive state region of the steel, that is, the potential of -300 to 1000 mV, preferably the noble potential (700 to 900 mV). After a while after the treatment of (3), the oxide film formed by the passivation is crystallized and a flat surface at the atomic level can be obtained. The structural stability of the film differs depending on the passivation potential. At low potential, the film density is low, and as the potential increases, the film density increases. Furthermore, when the potential becomes higher than 250 mV, a two-dimensional structure starts to change to a three-dimensional structure, and at 700 mV or more, the structure becomes a double or triple structure, and the film becomes thick and large particles are formed. Above it becomes a large terrace, ie the terrace can be expanded more.

【0015】特に、前記表面処理電位を15分間(超)
〜10時間保持することによって原子レベルで平坦なテ
ラスの広さを拡張した鉄鋼又は鉄鋼による表面被覆層を
得ることができる。不働態化電位に保持すると電流が急
激に低下し、15分間を超えるとほぼ安定な電流値を示
す。このとき、皮膜が島状に生じ始め、徐々に面積を広
げ、やがて全面を覆うようになる。全面を覆うと電流値
はほぼ一定になる。しかし、詳細に観察すると、わずか
ながら徐々に電流値が低下している。この段階では処理
時間が長いほど電流値が低下し、厚い不働態化皮膜がで
き、再構成により大きなテラスも生じる。しかし、処理
時間が長すぎるとポーラスな皮膜が生じてくるため、テ
ラス幅の拡張に適する処理時間に調整することが必要で
ある。この不働態化処理時間は、10時間以内に保持す
るのが適当である。
In particular, the surface treatment potential is kept for 15 minutes (over)
By holding for 10 to 10 hours, it is possible to obtain a surface coating layer made of steel or steel in which the area of the terrace that is flat at the atomic level is expanded. When it is kept at the passivation potential, the current sharply drops, and when it exceeds 15 minutes, it shows a substantially stable current value. At this time, the film starts to form like islands, the area gradually expands, and eventually the whole surface is covered. When the whole surface is covered, the current value becomes almost constant. However, when observed in detail, the current value gradually decreases slightly. At this stage, the longer the treatment time is, the lower the current value is, the thick passivation film is formed, and the large terrace is also generated by the reconstruction. However, if the treatment time is too long, a porous film will be produced, so it is necessary to adjust the treatment time to be suitable for expanding the terrace width. It is appropriate that the passivation treatment time be kept within 10 hours.

【0016】不働態化処理する際の溶液温度は室温(2
0°C)〜100°Cの範囲の温度にすることが望まし
い。また、不働態化処理後は、鉄鋼表面を相対湿度50
%未満のより低い湿度環境に保持することによって、さ
らに好適なテラスを有する表面を得ることができる。処
理温度で不働態維持電流密度が異なり、温度が高いほど
電流密度は大きくなる。電流密度が大きくなると不働態
皮膜が厚くなり、粒子径も大きくなるので、その粒子を
構成するテラスも広くなる。特に、不働態化処理電位が
高いほど、わずかな温度上昇でも電流密度の顕著な上昇
が起こる。このことから、不働態化処理する際の溶液温
度は、好ましくは30°C以上とするのが良い。溶液中
で不働態化処理した後、湿度が高いと電位は急速に自然
浸漬電位へと戻ってしまう。不働態化処理した後、数時
間は表面構造が再構成するために必要であり、その間は
吸着水による電位降下を抑制するために低湿度の環境が
必要である。したがって、鉄鋼表面の不働態化処理後、
相対湿度50%未満の低い湿度環境に保持することが望
ましい。
The solution temperature during the passivation treatment is room temperature (2
It is desirable to set the temperature in the range of 0 ° C) to 100 ° C. Moreover, after the passivation treatment, the relative humidity of the steel surface is 50
By holding in a lower humidity environment of less than%, a surface with a more suitable terrace can be obtained. The passivity maintaining current density differs depending on the processing temperature, and the higher the temperature, the larger the current density. As the current density increases, the passive film becomes thicker and the particle size also increases, so the terraces that make up the particles also become wider. In particular, as the passivation treatment potential is higher, the current density is significantly increased even with a slight temperature increase. From this, the solution temperature at the time of passivation treatment is preferably 30 ° C. or higher. After the passivation treatment in the solution, if the humidity is high, the potential rapidly returns to the natural immersion potential. After the passivation treatment, several hours are required for the surface structure to be reconstructed, and during that time, a low humidity environment is required to suppress the potential drop due to the adsorbed water. Therefore, after the passivation treatment of the steel surface,
It is desirable to maintain a low humidity environment of less than 50% relative humidity.

【0017】前記カソード還元工程と不働態化処理工程
は、1回でも原子レベルで平坦なテラスの広さを拡張し
た鉄鋼又は鉄鋼による表面被覆層を得ることができる
が、さらにこれを繰り返すことによって、より安定して
テラスの広さを拡張した鉄鋼又は鉄鋼による表面被覆層
を得ることができる。通常、バルク材は被覆材に比べて
平坦化が非常に難しい。したがって、バルク材には還元
−不働態化の繰返しが極めて有効である。また、特にS
US430の不働態化処理に有効である。
In the cathode reduction step and the passivation step, a surface coating layer made of steel or steel having a flat terrace area expanded at the atomic level can be obtained even once. Further, it is possible to more stably obtain the steel or the surface coating layer of the steel with the expanded area of the terrace. Bulk materials are usually much more difficult to flatten than cover materials. Therefore, repeated reduction-passivation is extremely effective for bulk materials. Also, especially S
It is effective for passivation treatment of US430.

【0018】上記にも述べたように、原子レベルで平坦
であることは走査型トンネル顕微鏡で原子像を観測する
ことにより確認できる。このときテラスにおける中心線
平均粗さRaを10nm以下及び又は最大高さRmax
を30nm以下にすることができる。なお、中心線平均
粗さRaを10nm以下に、最大高さRmaxを30n
m以下にする理由は、原子レベルの平坦化を期待できる
からである。好ましくは、テラスにおける中心線平均粗
さRaを1nm以下及び又は最大高さRmaxを3nm
以下とすると良い。
As described above, flatness at the atomic level can be confirmed by observing an atomic image with a scanning tunneling microscope. At this time, the centerline average roughness Ra on the terrace is 10 nm or less and / or the maximum height Rmax.
Can be 30 nm or less. The center line average roughness Ra is 10 nm or less, and the maximum height Rmax is 30 n.
The reason for setting m or less is that atomic level flatness can be expected. Preferably, the centerline average roughness Ra on the terrace is 1 nm or less and / or the maximum height Rmax is 3 nm.
The following is recommended.

【0019】下記の例では特定の鉄鋼を用いて説明して
いるが、これらの例以外の鉄鋼及びステンレス鋼におい
ても当然本発明が適用でき、同等の作用・効果を有す
る。また、不働態化させる溶液としては、鉄鋼が不働態
化するような溶液、すなわち、硼酸、過塩素酸、酢酸、
硝酸、硫酸、リン酸、シュウ酸、クロム酸、フッ化水素
酸及びこれらの中の少なくとも2種類以上による混合溶
液又はそれらを50%以上含む溶液においても当然本発
明が適用でき、同等の作用・効果を有する。また、本発
明において使用できる鉄鋼は鉄鋼板等のバルク材だけで
なく、鉄鋼と同成分の被覆層をめっき、スパッターデポ
ジット等の物理的蒸着法、化学的蒸着法等の手段によ
り、鉄鋼板(バルク材)や他の金属またはセラミックス
等に被覆層を形成した材料にも適用できる。
Although the following examples are explained using specific steels, the present invention can naturally be applied to steels and stainless steels other than these examples and have the same actions and effects. Further, as the passivation solution, a solution that makes steel passivated, that is, boric acid, perchloric acid, acetic acid,
The present invention is naturally applicable to nitric acid, sulfuric acid, phosphoric acid, oxalic acid, chromic acid, hydrofluoric acid, and a mixed solution of at least two or more of these, or a solution containing 50% or more of them, and the same action and Have an effect. Further, the steel which can be used in the present invention is not only a bulk material such as a steel plate, but also a coating layer having the same composition as the steel, a physical vapor deposition method such as a sputter deposit, a chemical vapor deposition method, etc. It is also applicable to a material having a coating layer formed on a bulk material) or other metal or ceramics.

【0020】本発明に使用できる鉄鋼は、純鉄からステ
ンレス鋼までの、鉄を主成分とする材料を意味する。ま
た、不働態化処理できることが前提なので、不働態化し
ない炭素鋼等の材料は当然対象外である。本発明におい
ては、特に純鉄、ステンレス鋼(鉄−12%クロム鋼
等)に有効である。例えば機械研磨ができないような装
置や器具の構造あるいは材料に対しては、スパッターデ
ポジット等により鉄鋼と同等成分の被覆層を形成し、こ
れに本発明の方法による表面処理を施し、酸化膜の性状
を改善して耐食性を向上させ、かつガス等の吸着が少な
く清浄性において優れた表面をもつ材料とすることがで
きる。いずれの場合においても、鉄鋼または同等成分の
表面被覆層をもつ表面の問題であり、本発明の条件を達
成できれば、同等の作用・効果を有する。
The steel which can be used in the present invention means a material containing iron as a main component, from pure iron to stainless steel. In addition, since it is premised that passivation can be performed, materials such as carbon steel that are not passivated are naturally excluded. In the present invention, it is particularly effective for pure iron and stainless steel (iron-12% chrome steel, etc.). For example, for the structure or material of an apparatus or instrument that cannot be mechanically polished, a coating layer having the same composition as steel is formed by sputter depositing, etc., and a surface treatment is performed by the method of the present invention, and the properties of the oxide film are Can improve the corrosion resistance, and can be a material having a surface excellent in cleanliness with less adsorption of gas and the like. In any case, there is a problem of steel or a surface having a surface coating layer of an equivalent component, and if the conditions of the present invention can be achieved, the same action and effect will be obtained.

【0021】本発明で処理した鉄鋼表面の走査型トンネ
ル顕微鏡観察例を、図1および図2に示す。図1は9
9.9%の鉄を基板上にスパッターデポジットにより表
面被覆層を形成し、これに本発明の処理を施したもので
ある。この場合の表面における中心線平均粗さRaは
0.06nmであり、最大高さRmaxは0.31nm
であった。ステップ−ラテス構造が観察されている。図
2は、同様に99.9%の鉄を基板上にスパッターデポ
ジットにより表面被覆層を形成し、これに本発明の処理
を施したものである。この場合の中心線平均粗さRaは
0.03nmであり、最大高さRmaxは0.18nm
であった。そして、原子像が見えることから、原子レベ
ルの平坦性を有していることが明瞭に観察されている。
An example of a scanning tunneling microscope observation of the steel surface treated by the present invention is shown in FIGS. 9 in FIG.
A surface coating layer was formed by sputter depositing 9.9% of iron on a substrate, and this was subjected to the treatment of the present invention. In this case, the center line average roughness Ra on the surface is 0.06 nm, and the maximum height Rmax is 0.31 nm.
Met. A step-lates structure has been observed. In FIG. 2, similarly, a surface coating layer was formed by sputter depositing 99.9% iron on the substrate, and the surface treatment layer was subjected to the treatment of the present invention. In this case, the centerline average roughness Ra is 0.03 nm, and the maximum height Rmax is 0.18 nm.
Met. Since the atomic image is visible, it is clearly observed that it has atomic level flatness.

【0022】[0022]

【実施例および比較例】次に実施例および比較例により
本発明をさらに詳細に説明するが、本発明は、これらの
例によってなんら限定されるものではない。すなわち、
本発明の技術思想の範囲における他の例、態様あるいは
変形等を当然含むものである。
EXAMPLES AND COMPARATIVE EXAMPLES Next, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. That is,
Of course, other examples, modes, modifications and the like within the scope of the technical idea of the present invention are included.

【0023】(実施例1)99.9%純鉄の板材を供試
材として用いた。これを、#400,#600、#10
00、#1500の耐水研磨紙および0.25μmのダ
イヤモンドペーストを用いて機械研磨し、その後エチル
アルコール、イソプロピルアルコール及びアセトン中で
各3分間づつ超音波洗浄した。次に、硼酸溶液中におい
て、飽和カロメル電極基準で−1100mVに5分間、
−1500mVに5分間、−1100mVに30分間、
それぞれ保持した。そして、その直後に+400mVに
30分間保持した後水洗し、これを大気中に保持した。
なお、不働態化処理する際の溶液温度は60°Cとし、
また不働態化処理後は、純鉄表面の相対湿度を30%の
低い湿度環境に保持した。これにより得られた純鉄を、
走査型トンネル顕微鏡により表面構造と原子像を観測し
た結果、ステップ−ラテス構造および原子レベルの平坦
性が観察された。また、このときの中心線平均粗さRa
は0.1nmであり、最大高さRmaxは2.3nmで
あった。また、本実施例1の表面処理を施したものは、
従来のものに比べ耐食性が20%以上向上した。
(Example 1) A plate material of 99.9% pure iron was used as a test material. This is # 400, # 600, # 10
00, # 1500 water resistant polishing paper and 0.25 μm diamond paste were mechanically polished, and then ultrasonically cleaned in ethyl alcohol, isopropyl alcohol and acetone for 3 minutes each. Next, in a boric acid solution, for 5 minutes to -1100 mV based on a saturated calomel electrode,
-1500 mV for 5 minutes, -1100 mV for 30 minutes,
Hold each. Immediately after that, the sample was kept at +400 mV for 30 minutes, washed with water, and kept in the atmosphere.
The solution temperature during the passivation treatment is 60 ° C,
After the passivation treatment, the relative humidity of the pure iron surface was maintained in a low humidity environment of 30%. Pure iron obtained by this,
As a result of observing the surface structure and atomic image with a scanning tunneling microscope, a step-lates structure and atomic level flatness were observed. Further, the center line average roughness Ra at this time
Was 0.1 nm and the maximum height Rmax was 2.3 nm. Further, the surface-treated product of Example 1 is
Corrosion resistance is improved by 20% or more compared with the conventional one.

【0024】(実施例2)99.9%純鉄をターゲット
にしてスパッターし、シリコン基板上に数百nm積層し
た純鉄被覆シリコン基板を供試材とし使用した。この場
合、機械研磨はしていない。次に、これをアセトン中で
1分間超音波洗浄後、硼酸溶液中において、飽和カロメ
ル電極基準で−1100mVに5分間、−1500mV
に15分間、−1100mVに15分間、それぞれ保持
した。そして、その直後に+750mVに15分間保持
した。なお、不働態化処理する際の溶液温度は35°C
とし、また不働態化処理後は、純鉄表面の相対湿度を4
0%の低い湿度環境に保持した。表面構造が徐々に変化
し、走査型トンネル顕微鏡で原子像を観測できた。この
ときの表面粗度は中心線平均粗さRaで0.03nm、
最大高さRmaxで0.18nmであった。
(Example 2) A pure iron-coated silicon substrate, which was sputtered with a target of 99.9% pure iron and laminated for several hundred nm on a silicon substrate, was used as a test material. In this case, mechanical polishing is not performed. Next, this was ultrasonically cleaned in acetone for 1 minute, and then in a boric acid solution for 5 minutes at -1100 mV based on a saturated calomel electrode, at -1500 mV.
For 15 minutes and -1100 mV for 15 minutes. Immediately after that, it was held at +750 mV for 15 minutes. The solution temperature during the passivation treatment is 35 ° C.
After the passivation treatment, the relative humidity of the pure iron surface is set to 4
It was kept in a low humidity environment of 0%. The surface structure changed gradually, and the atomic image could be observed with the scanning tunneling microscope. The surface roughness at this time is 0.03 nm in terms of center line average roughness Ra,
The maximum height Rmax was 0.18 nm.

【0025】(実施例3)ステンレス鋼(JIS規格S
US430)の板材を供試材として用いた。これを、#
400,#600、#1000、#1500の耐水研磨
紙および0.25μmのダイヤモンドペーストを用いて
機械研磨し、その後エチルアルコール、イソプロピルア
ルコール及びアセトン中で各3分間づつ超音波洗浄し
た。次に、硫酸溶液中において、飽和カロメル電極基準
で−1000mVに5分間、−1500mVに3秒間、
−1000mVに2分間、−800mVに1分間、それ
ぞれ保持した(カソード還元処理)。その直後に+40
0mVに15分間保持した(不働態化処理)後水洗し、
これを大気中に1時間以上保持した。なお、不働態化処
理する際の溶液温度は25°Cとした。また、このとき
のステンレス鋼表面の相対湿度は50%であった。再
び、カソード還元処理と不働態化処理を行った。上記の
2つの処理を繰り返すことにより得られたステンレス鋼
を、走査型トンネル顕微鏡により表面構造と原子像を観
測した結果、ステップ−ラテス構造および原子レベルの
平坦性が観察された。また、このときの中心線平均粗さ
Raは0.09nmであり、最大高さRmaxは0.5
5nmであった。
(Example 3) Stainless steel (JIS standard S
A plate material of US430) was used as a test material. this,#
It was mechanically polished using 400, # 600, # 1000, # 1500 water resistant abrasive paper and 0.25 μm diamond paste, and then ultrasonically cleaned in ethyl alcohol, isopropyl alcohol and acetone for 3 minutes each. Next, in a sulfuric acid solution, -1000 mV for 5 minutes, -1500 mV for 3 seconds, based on a saturated calomel electrode,
It was held at −1000 mV for 2 minutes and −800 mV for 1 minute, respectively (cathode reduction treatment). Immediately after that +40
Hold at 0 mV for 15 minutes (passivation treatment), then wash with water,
This was kept in the atmosphere for 1 hour or more. The solution temperature during the passivation treatment was 25 ° C. The relative humidity of the stainless steel surface at this time was 50%. Again, the cathode reduction treatment and the passivation treatment were performed. The surface structure and atomic image of the stainless steel obtained by repeating the above two treatments were observed by a scanning tunneling microscope, and as a result, a step-lates structure and atomic level flatness were observed. The center line average roughness Ra at this time is 0.09 nm, and the maximum height Rmax is 0.5.
It was 5 nm.

【0026】(比較例1)鉄鋼をターゲットとしてスパ
ッタリングし、シリコン基板上に150nm積層した鉄
鋼被覆シリコン基板を供試材として用いた。この場合、
上記実施例2と同様に機械研磨はしていない。次に、こ
れをアセトン中で1分間超音波洗浄後、硼酸溶液中にお
いて、飽和カロメル電極基準で−1100mVに5分
間、−1500mVに15分間、−1100mVに15
分間保持した。その後電位を−600mVに15分間保
持した。この場合安定な不働態皮膜が形成される電位よ
りわずかに卑な電位に保持したため、供試材の表面に酸
化物の成長があまり起こらず、原子像の観測は困難だっ
た。このように、本発明の条件を満たしていないもの
は、鉄鋼表面に均一な酸化膜が形成されず、平坦性に欠
けるという問題が発生した。また、このとき実施例1と
同程度の耐食性の向上は認められなかった。
(Comparative Example 1) A steel coated silicon substrate having a thickness of 150 nm laminated on a silicon substrate was used as a test material. in this case,
Mechanical polishing was not carried out as in the case of Example 2. Next, this was ultrasonically cleaned in acetone for 1 minute, and then in a boric acid solution at -1100 mV for 5 minutes, -1500 mV for 15 minutes, and -1100 mV for 15 minutes in a saturated calomel electrode standard.
Hold for minutes. After that, the potential was held at -600 mV for 15 minutes. In this case, since the potential was kept slightly lower than the potential at which a stable passive film was formed, the growth of oxides did not occur much on the surface of the test material, and it was difficult to observe the atomic image. As described above, those which do not satisfy the conditions of the present invention have a problem that a uniform oxide film is not formed on the surface of steel and lacks flatness. Further, at this time, the same degree of improvement in corrosion resistance as in Example 1 was not recognized.

【0027】[0027]

【発明の効果】本発明は、鉄鋼又は鉄鋼による表面被覆
層の平坦性を向上させることにより、鉄鋼又は鉄鋼によ
る表面被覆層の表面に形成される酸化膜の性状を改善し
て耐食性を向上させ、かつ汚れ等の吸着が少なく清浄性
において格段に優れた表面を有する。これによって、例
えば真空容器に使用した場合には、真空容器内壁のガス
吸着サイトが少なく、迅速に高真空に到達させることが
でき、より高い真空環境を得ることができる。また、ス
パッターデポジット等による表面被覆層にも適用できる
ので、鉄鋼もしくはそれ以外の金属またはセラミックス
等の材料を基板として鉄鋼による表面被覆層を形成し、
上記と同様な効果を得ることができる著しい特徴を有し
ている。
INDUSTRIAL APPLICABILITY The present invention improves the flatness of a steel or steel surface coating layer, thereby improving the properties of an oxide film formed on the surface of the steel or steel surface coating layer to improve corrosion resistance. In addition, it has a surface excellent in cleanliness with little adsorption of dirt and the like. As a result, when used in a vacuum container, for example, there are few gas adsorption sites on the inner wall of the vacuum container, a high vacuum can be reached quickly, and a higher vacuum environment can be obtained. Also, since it can be applied to a surface coating layer such as a sputter deposit, the surface coating layer made of steel is formed by using a material such as steel or other metal or ceramics as a substrate,
It has a remarkable characteristic that the same effect as described above can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】鉄鋼表面の走査型トンネル顕微鏡の観察例であ
り、鉄鋼を基板上にスパッターデポジットし、不働態化
処理により表面皮膜を形成した場合のステップ−ラテス
構造を示す。
FIG. 1 is an observation example of a scanning tunneling microscope of a steel surface, showing a step-lates structure when steel is sputter deposited on a substrate and a surface film is formed by a passivation treatment.

【図2】鉄鋼表面の走査型トンネル顕微鏡の観察例であ
り、同鉄鋼を基板上にスパッターデポジットし、不働態
化処理により表面皮膜を形成した場合のテラス上におけ
る原子像を示す。
FIG. 2 is an observation example of a scanning tunneling microscope of a steel surface, showing an atomic image on a terrace when the steel is sputter-deposited on a substrate and a surface film is formed by passivation treatment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米谷 道夫 宮城県仙台市宮城野区苦竹4丁目2番1号 産業技術総合研究所 東北センター (72)発明者 石川 育夫 宮城県仙台市宮城野区苦竹4丁目2番1号 産業技術総合研究所 東北センター (72)発明者 ホイホア デン 宮城県仙台市宮城野区榴ヶ岡10番2号405 号室   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Michio Yoneya             4-2-1 Gotake, Miyagino-ku, Sendai City, Miyagi Prefecture               AIST Tohoku Center (72) Inventor Ikuo Ishikawa             4-2-1 Gotake, Miyagino-ku, Sendai City, Miyagi Prefecture               AIST Tohoku Center (72) Inventor Hui Hoa Den             405, 10-2 Engaigaoka, Miyagino-ku, Sendai City, Miyagi Prefecture             Issue room

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 電気化学的処理として、鉄鋼を不働態化
させる溶液中で−800mV(飽和カロメル電極基準)
より卑な電位で表面皮膜や汚れを除去した直後に、表面
処理電位を−300〜1000mVに保持して不働態化
処理する鉄鋼又は鉄鋼による表面被覆層の表面処理にお
いて、前記表面処理電位を15分間(超)〜10時間保
持することを特徴とする原子レベルで平坦なテラスの広
さを拡張した鉄鋼又は鉄鋼による表面被覆層及び表面処
理方法。
1. As an electrochemical treatment, -800 mV (based on a saturated calomel electrode) in a solution for passivating steel.
Immediately after removing the surface coating and dirt with a more noble potential, the surface treatment potential is set to 15 in the surface treatment of the steel or the steel for performing the passivation treatment while maintaining the surface treatment potential at -300 to 1000 mV. A surface coating layer and a surface treatment method using iron or steel having an expanded flat terrace at the atomic level, which is held for 10 minutes (ultra) to 10 hours.
【請求項2】 表面処理電位を700〜900mV(飽
和カロメル電極基準)に保持して不働態化処理すること
を特徴とする請求項1記載の原子レベルで平坦なテラス
の広さを拡張した鉄鋼又は鉄鋼による表面被覆層及び表
面処理方法。
2. A steel plate with an expanded flat terrace at the atomic level according to claim 1, characterized in that the passivation treatment is carried out by maintaining the surface treatment potential at 700 to 900 mV (saturated calomel electrode standard). Or a surface coating layer and surface treatment method using steel.
【請求項3】 電気化学的処理として、鉄鋼を不働態化
させる溶液中で−800mV(飽和カロメル電極基準)
より卑な電位で表面皮膜や汚れを除去した直後に、表面
処理電位を−300〜1000mVに保持して不働態化
処理する鉄鋼又は鉄鋼による表面被覆層の表面処理にお
いて、不働態化処理する際の溶液温度を室温(20°
C)〜100°Cの範囲の温度にすることを特徴とする
原子レベルで平坦なテラスの広さを拡張した鉄鋼又は鉄
鋼による表面被覆層及び表面処理方法。
3. As an electrochemical treatment, -800 mV (based on saturated calomel electrode) in a solution for passivating steel.
Immediately after removing the surface coating or dirt with a more base potential, the passivation treatment is carried out in the surface treatment of the steel or the surface coating layer of the steel, which holds the surface treatment potential at -300 to 1000 mV. The solution temperature to room temperature (20 °
C) to 100 ° C. A surface coating layer and a surface treatment method using steel or steel having an expanded flat terrace at the atomic level, which is characterized in that the temperature is in the range of 100 ° C.
【請求項4】 不働態化処理する際の溶液温度を室温
(20°C)〜100°Cの範囲の温度にすることを特
徴とする請求項1又は2記載の原子レベルで平坦なテラ
スの広さを拡張した鉄鋼又は鉄鋼による表面被覆層及び
表面処理方法。
4. The atomic level flat terrace according to claim 1 or 2, wherein the temperature of the solution during the passivation treatment is set to a temperature in the range of room temperature (20 ° C) to 100 ° C. A surface coating layer and a surface treatment method using steel or steel having an expanded width.
【請求項5】 溶液温度を30°Cから100°Cの範
囲の温度にすることを特徴とする請求項3又は4に記載
の原子レベルで平坦なテラスの広さを拡張した鉄鋼又は
鉄鋼による表面被覆層及び表面処理方法。
5. The steel or steel with an expanded atomically flat terrace according to claim 3 or 4, wherein the solution temperature is in the range of 30 ° C to 100 ° C. Surface coating layer and surface treatment method.
【請求項6】 電気化学的処理として、鉄鋼を不働態化
させる溶液中で−800mV(飽和カロメル電極基準)
より卑な電位で表面皮膜や汚れを除去した直後に、表面
処理電位を−300〜1000mVに保持して不働態化
処理する鉄鋼又は鉄鋼による表面被覆層の表面処理にお
いて、不働態化処理後、鉄鋼表面を相対湿度50%未満
のより低い湿度環境に保持することを特徴とする原子レ
ベルで平坦なテラスの広さを拡張した鉄鋼又は鉄鋼によ
る表面被覆層及び表面処理方法。
6. As an electrochemical treatment, -800 mV (based on saturated calomel electrode) in a solution for passivating steel.
Immediately after removing the surface coating and dirt at a more base potential, in the surface treatment of the surface coating layer of steel or steel that holds the surface treatment potential at -300 to 1000 mV for the passivation treatment, after the passivation treatment, A surface coating layer and a method of surface treatment with steel or steel with an expanded atomically flat terrace, characterized in that the steel surface is kept in a lower humidity environment of less than 50% relative humidity.
【請求項7】 不働態化処理後、鉄鋼表面を相対湿度5
0%未満のより低い湿度環境に保持することを特徴とす
る請求項1〜5のそれぞれに記載の原子レベルで平坦な
テラスの広さを拡張した鉄鋼又は鉄鋼による表面被覆層
及び表面処理方法。
7. After the passivation treatment, the steel surface is subjected to a relative humidity of 5
Maintaining a lower humidity environment of less than 0%, the surface coating layer and the surface treatment method with steel or steel with an expanded atomic level flat terrace according to each of claims 1 to 5.
【請求項8】 電気化学的処理として、鉄鋼を不働態化
させる溶液中で−800mV(飽和カロメル電極基準)
より卑な電位で表面皮膜や汚れを除去した直後に、表面
処理電位を−300〜1000mVに保持して不働態化
処理する鉄鋼又は鉄鋼による表面被覆層の表面処理にお
いて、前記カソード還元工程と不働態化処理工程を繰り
返すことを特徴とする原子レベルで平坦なテラスの広さ
を拡張した鉄鋼又は鉄鋼による表面被覆層及び表面処理
方法。
8. As an electrochemical treatment, -800 mV (based on saturated calomel electrode) in a solution for passivating steel.
Immediately after removing the surface coating and dirt with a more noble potential, in the surface treatment of the surface coating layer of steel or steel in which the surface treatment potential is held at -300 to 1000 mV for passivation, the cathode reduction step and the cathode reduction step are not performed. A surface coating layer and a surface treatment method using iron or steel with an expanded flat terrace at the atomic level, characterized by repeating the activation treatment step.
【請求項9】 カソード還元工程と不働態化処理工程を
繰り返すことを特徴とする請求項1〜7のそれぞれに記
載の原子レベルで平坦なテラスの広さを拡張した鉄鋼又
は鉄鋼による表面被覆層及び表面処理方法。
9. A surface coating layer made of steel or steel having an expanded flat terrace at the atomic level according to each of claims 1 to 7, wherein the cathode reduction step and the passivation treatment step are repeated. And surface treatment method.
【請求項10】 鉄鋼を不働態化させる溶液として、硼
酸、過塩素酸、酢酸、硝酸、硫酸、リン酸、シュウ酸、
クロム酸、フッ化水素酸から選択した1種類の溶液又は
2種類以上の混合溶液又はそれらを50%以上含む溶液
を用いて不働態化処理を行うことを特徴とする請求項1
〜9のそれぞれに記載の原子レベルで平坦なテラスの広
さを拡張した鉄鋼又は鉄鋼による表面被覆層及び表面処
理方法。
10. A solution for passivating steel is boric acid, perchloric acid, acetic acid, nitric acid, sulfuric acid, phosphoric acid, oxalic acid,
The passivation treatment is performed by using one type of solution selected from chromic acid and hydrofluoric acid, a mixed solution of two or more types, or a solution containing 50% or more thereof.
To the surface coating layer and the surface treatment method using steel or steel in which the width of the terrace that is flat at the atomic level is expanded.
【請求項11】 中心線表面粗さRaが10nm以下及
び又は最大高さRmaxが30nm以下の電気化学的処
理表面を有することを特徴とする請求項1〜10のそれ
ぞれに記載の原子レベルで平坦なテラスの広さを拡張し
た鉄鋼又は鉄鋼による表面被覆層及び表面処理方法。
11. An atomically flat surface according to claim 1, which has an electrochemically treated surface having a centerline surface roughness Ra of 10 nm or less and / or a maximum height Rmax of 30 nm or less. Coating layer and surface treatment method using steel or steel with an expanded terrace area.
【請求項12】 中心線表面粗さRaが1nm以下及び
又は最大高さRmaxが3nm以下であることを特徴と
する請求項1〜10のそれぞれに記載の原子レベルで平
坦なテラスの広さを拡張した鉄鋼又は鉄鋼による表面被
覆層及び表面処理方法。
12. The atomic level flat terraces according to each of claims 1 to 10, wherein the center line surface roughness Ra is 1 nm or less and / or the maximum height Rmax is 3 nm or less. Surface coating layer and surface treatment method with expanded steel or steel.
【請求項13】 スパッターデポジットにより被覆した
被覆層であることを特徴とする請求項1〜12のそれぞ
れに記載の原子レベルで平坦なテラスの広さを拡張した
鉄鋼又は鉄鋼による表面被覆層及び表面処理方法。
13. A surface coating layer and surface made of steel or steel with an expanded flat terrace at the atomic level according to each of claims 1 to 12, which is a coating layer coated with a spatter deposit. Processing method.
JP2001339059A 2001-11-05 2001-11-05 Surface treatment method of surface coating layer with pure iron or steel or pure iron or steel Expired - Lifetime JP4006512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001339059A JP4006512B2 (en) 2001-11-05 2001-11-05 Surface treatment method of surface coating layer with pure iron or steel or pure iron or steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001339059A JP4006512B2 (en) 2001-11-05 2001-11-05 Surface treatment method of surface coating layer with pure iron or steel or pure iron or steel

Publications (2)

Publication Number Publication Date
JP2003147588A true JP2003147588A (en) 2003-05-21
JP4006512B2 JP4006512B2 (en) 2007-11-14

Family

ID=19153465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001339059A Expired - Lifetime JP4006512B2 (en) 2001-11-05 2001-11-05 Surface treatment method of surface coating layer with pure iron or steel or pure iron or steel

Country Status (1)

Country Link
JP (1) JP4006512B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189666A (en) * 2008-12-18 2010-09-02 Chemical Yamamoto:Kk Surface modified stainless steel and method of treating surface modified stainless steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189666A (en) * 2008-12-18 2010-09-02 Chemical Yamamoto:Kk Surface modified stainless steel and method of treating surface modified stainless steel
JP4678612B2 (en) * 2008-12-18 2011-04-27 株式会社ケミカル山本 Surface-modified stainless steel and processing method for surface-modified stainless steel

Also Published As

Publication number Publication date
JP4006512B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
Rickerby et al. Correlation of process and system parameters with structure and properties of physically vapour-deposited hard coatings
EP1277850A2 (en) Sprayed film of yttria-alumina complex oxide and method of production of said film
JP3435258B2 (en) Manufacturing method of synthetic diamond film
WO1991004353A1 (en) Vapor deposited diamond synthesizing method on electrochemically treated substrate
JP2002505716A (en) How to coat edges with diamond-like carbon
JPH06507210A (en) Surface treatment and deposition method for forming titanium nitride on carbonaceous materials
JP4104026B2 (en) Method for forming oxidation passivated film, fluid contact parts and fluid supply / exhaust system
JP3820787B2 (en) Sputtering target and manufacturing method thereof
JPH0892742A (en) Matrix composite and method of performing surface preparation thereof
JP2015134716A (en) Coated graphite article and reactive ion etch manufacturing and refurbishment of graphite article
JP3731917B2 (en) Planarization method of solid surface by gas cluster ion beam
JP4006512B2 (en) Surface treatment method of surface coating layer with pure iron or steel or pure iron or steel
Vacandio et al. Improvement of the electrochemical behaviour of AlN films produced by reactive sputtering using various under-layers
JP2001501873A (en) Post-treated diamond coating
JPH1161410A (en) Vacuum chamber member and its production
JP2012021178A (en) Method for manufacturing electroless nickel plating film, and substrate for magnetic recording medium using the same
JP3772208B2 (en) Nickel-chromium alloy surface treatment layer and surface treatment method
JPH05132777A (en) Method of forming silicon-diffused layer or silicon overlay coating on surface of metallic substrate by chemical vapor deposition
JPS60114739A (en) Grinding and corrosion of ti
JP3908291B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
US4681669A (en) Method for producing magnetic recording media
Czerwinski et al. The effect of substrate surface nature on texture formation in nickel oxide
Hu et al. Wettability and crystalline orientation of Cu nanoislands on SiO 2 with a Cr underlayer
Yang et al. In-situ atomic force microscope observation of stripping of mercury from HgAu alloy films in acidic media
JP3634460B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050519

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

R150 Certificate of patent or registration of utility model

Ref document number: 4006512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term