JP4072410B2 - Method for cleaning discolored titanium material and titanium material - Google Patents

Method for cleaning discolored titanium material and titanium material Download PDF

Info

Publication number
JP4072410B2
JP4072410B2 JP2002279576A JP2002279576A JP4072410B2 JP 4072410 B2 JP4072410 B2 JP 4072410B2 JP 2002279576 A JP2002279576 A JP 2002279576A JP 2002279576 A JP2002279576 A JP 2002279576A JP 4072410 B2 JP4072410 B2 JP 4072410B2
Authority
JP
Japan
Prior art keywords
titanium material
cleaning
titanium
discolored
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002279576A
Other languages
Japanese (ja)
Other versions
JP2004113908A (en
Inventor
佳寿美 柳澤
英一郎 吉川
貴司 屋敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002279576A priority Critical patent/JP4072410B2/en
Publication of JP2004113908A publication Critical patent/JP2004113908A/en
Application granted granted Critical
Publication of JP4072410B2 publication Critical patent/JP4072410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In General (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面が粗面化されたチタン材の表面変色部分を無くす、チタン材の洗浄方法および洗浄剤、洗浄を受けたチタン材に関するものである。
【0002】
【従来の技術】
建材、構造材などに適用されるチタン材は、表面酸化膜(不動体)が溶解するpHが1以下であり、スーパーステンレス鋼よりも錆びにくいという優れた耐食性を有する。また、チタンの比重は4.51と、銅の約50% 、ステンレスの約60% であり、比較的軽く高所作業にも適している。更に、チタンの熱膨張係数も、ステンレスの1/2 、銅の1/3 と小さく、ガラスやコンクリートに近い。このため、チタン材とガラスやコンクリートといった異種の素材を組み合わせることが容易で、意匠性やデザインを重視した建造物を構成するのに適している。
【0003】
そして、チタン材は、表面に、数十μm 程度(Raで0.2 〜5.0 μm 程度) の微細な凹凸 (各凹凸部の直径は20〜50μm 程度) を造り込んで粗面化し、つや、光沢の少ない金属色 (シルバー色) 表面に仕上げることで、ステンレス材やアルミニウム合金材の光沢性表面に比して、高級感あふれる清浄な雰囲気を醸し出すことができる。このため、無塗装 (裸) にて、建造物の屋根や外壁などの美観や意匠性、景観性が求められる用途に、外表面を粗面化して多く使用される。
【0004】
しかし、このような優れた特性を持つチタン材であっても、経年使用による変色が生じる問題がある。チタン材の主成分である金属チタンの固有な色はシルバーであるが、チタン材を経年使用すると次第に褐色味を帯びて変色するようになり、まるで錆びたようにみえてしまうこともある。したがって、この変色が生じた場合にはチタン材の美観や意匠性を大きく損なう。
【0005】
従来から、このチタン材の変色は、チタン材の防食機能自体が損なわれたものではなく、表面酸化膜の成長に伴う干渉色が主たる原因であることが判明している (例えば、非特許文献1〜4参照) 。より具体的には、チタン材の変色は、チタン材表面に比較的安定した酸化膜が比較的ゆっくりと形成されて成長することに起因する。使用環境の条件にもよるが、通常は、チタン材表面には1乃至4年で50乃至200Åの酸化膜が形成される。このチタン材表面に形成される酸化膜そのもののは透明である。しかし、チタン材表面の酸化膜がある程度以上厚くなると、チタン素地と酸化膜表面から反射した光が干渉し、膜厚に応じた色がついて見えるようになり、変色して見える。
【0006】
【非特許文献1】
金子道郎、高橋一浩、他3 名「チタンの変色に及ぼす酸性雨の影響」 CAMP-ISIJ 、 Vol.14 (2001)-1336 、(416)
【非特許文献2】
金子道郎、高橋一浩、他3 名、「チタンの変色に及ぼす炭化チタンの影響」、CAMP-ISIJ 、 Vol.14 (2001)-1337 、(417)
【非特許文献3】
金子道郎、高橋一浩、他4 名「工業用純チタン板の耐変色性の改善」 CAMP-ISIJ 、 Vol.14 (2001)-1338 、(418)
【非特許文献4】
金子道郎、高橋一浩、他4 名、「硝フッ酸水溶液にて溶削した工業用純チタン板の変色挙動」 CAMP-ISIJ、 Vol.14 (2001)-1339 、(419)
【0007】
チタン材の表面酸化膜は、Ti酸化物+(Fe 、Si、Al、NaCl) のような組成を有し (但し、NaClは使用環境による)、膜厚は数十から数千Å (オングストローム) である。また、表面酸化膜の性質は、硬度は2.5GPaから6GPa程度と硬く、チタン素地の5 倍以上硬いという特異な性質を有する。更に、化学的には非常に安定であり、ふっ酸と硝酸の混合物や熱濃硫酸のような強酸にのみ溶解する性質を有する。
【0008】
しかし、チタン材の使用環境によっては、チタン材の変色が促進されてしまう。例えば、排気ガス(微粒子,油成分)にさらされた表面や、表面の雨だれの後が他の部分と異なる色調を示す場合がある。これは、チタン材表面に油や微粒子が付着すると、その部分で酸化膜の成長が他の部分に比べて著しく促進されるために起こる変色である。鉄粉や海水が付着しやすい海辺などの環境に数年おかれたチタン材の表面には、部分的に2000Å以上の酸化膜が成長し、その部分だけ緑やピンク味を帯びて見えるようになることもある。更に、酸性雨によっても変色が助長される。また、建材などのデザインの影響もあり、水がたまりやすい構造や排気口の近くは、他の部分と比較して変色しやすい。
【0009】
また、チタン材の製造工程による影響もあり、焼鈍のやり方によって、表面近傍に炭素分を多く含む場合、炭素分が多いほど変色しやすい。これは、チタンと炭素が炭化チタン(TiC)を形成し、これが基点となって酸化膜が成長するためと考えられている。なお、これらの変色促進要因は、各々前記非特許文献1〜4などにも記載されている。
【0010】
このようなチタン材の変色問題に対し、従来から、チタン材の変色を生じ難くするために、上記変色促進要因を除く対策が種々提案されている。例えば、上記炭素分の影響に対しては、チタン材料として、表面部分に炭素量やフッ素量の少ないチタン材を用いることが提案されている(例えば、特許文献1、2参照)。また、表面酸化膜の表面粗度Raを3 μm 以下に小さく、表面酸化膜の厚さを20Å以下とすることも提案されている(例えば、特許文献3参照)。
【0011】
【特許文献1】
特開2002-12962号公報(第1、2頁)
【特許文献2】
特開2002-47589号公報(第1、2頁)
【特許文献3】
特開平10-8234 号公報(第1、2頁)
【0012】
しかし、チタン材の変色は、上記した通り、使用環境やデザイン、使用年数という他の要因によっても多く生じる。したがって、チタン材の変色は、材料側の改善で、ある程度発生しにくくすることや、ある程度発生を遅らせることは可能であるものの、時間が経過すれば、必然的に生じる問題とも言える。
【0013】
このため、上記特許文献1 〜3 のような、チタンの材料側の改善だけで変色問題に対応することは不可能である。また、表面に微細な凹凸を造り込んで粗面化したチタン材に対しては、前記表面酸化膜の表面粗度を小さくするなどの調整はできない。更に、塗装や保護皮膜を設けるような手段も、前記した通り、無塗装使用 (無塗装仕様) であるチタン材には適用できない。しかも、塗装や保護皮膜あるいは前記材料側の改善によって、変色を抑制することはできるが、すでに建材として建築物や構造物などに適用された上で、変色してしまったチタン材に対応することはできない。
【0014】
したがって、このように建材として適用された上で、すでに変色してしまったチタン材に対しては、このチタン材変色部分を含めて洗浄、あるいは研磨して、表面変色部分を無くす以外に手段は無い。
【0015】
【発明が解決しようとする課題】
しかし、変色チタン材の確立された洗浄技術はこれまで無かった。即ち、変色チタン材の洗浄においては、チタン材採用の理由となっている前記光沢の少ない金属色表面(美観や意匠性表面)を保証するために、洗浄後も、表面の微細な凹凸からなる粗面を保持した上で、表面変色部分を無くす必要が有る。仮に、洗浄によって表面変色部分が無くなっても、表面の微細な凹凸からなる粗面が無くなった場合、前記光沢の少ない金属色表面が失われ、ステンレス材やアルミニウム合金材と同様の光沢性表面となってしまう。これは、前記したチタン材採用の理由や意義自体が失われることを意味する。
【0016】
これまで汎用されている、種々の建材の洗浄(クリーニング)技術では、汚れの除去などの洗浄の対象物としては、勿論、建築物や構造物などに適用されたチタン材を含む。しかし、上記表面の粗面を保持した上で、課題となる表面変色部分を無くすことはできなかった。
【0017】
この理由は、先ず、前記した通り、変色の直接の原因となっているのが、通常の洗浄での汚れに相当する、表面酸化膜乃至表面酸化膜の厚みであることによる。したがって、チタン材の表面変色部分を無くすためには、部分的あるいは全面的に変色している場合を問わず、この変色部分を含めて、表面酸化膜を除去して均一化する、あるいは、表面酸化膜を削って厚みを均一化する必要がある。しかし、チタン材の表面酸化膜は、前記した通り、硬度がチタン素地に比して著しく硬く、化学的に非常に安定であり、ふっ酸と硝酸の混合物のような強酸にのみ溶解するという他の金属の酸化膜には無い特異な性質を有する。
【0018】
更に、粗面を構成する各凹凸部の直径は、前記した通り、20〜50μm 程度であり、表面酸化膜のÅレベルの厚みに比して著しく厚い。このため、表面酸化膜層にも20〜50μm 程度の凹凸が必然的についている。
【0019】
この結果、物理的洗浄、化学的洗浄、あるいは、これらを組み合わせた洗浄にせよ、チタン材の表面酸化膜を除去しようとすれば、必然的に、チタン素地まで削られ、表面の微細な凹凸からなる粗面が失われることとなる。一方、チタン素地を保護しようとすれば、チタン材の表面酸化膜が除去できなくなる。
【0020】
例えば、物理的洗浄の内、高圧水洗浄では、付着した粒子や油分の一部は除去できるが、表面酸化膜を除去することができず、適用できない。
【0021】
これは、研磨粒子(砥粒)を含有した洗浄剤を用いた場合も同様である。砥粒を含有した洗浄剤は、例えばステンレス建材などの洗浄に汎用されている。しかし、ステンレス建材の洗浄の場合には、主にステンレス特有の金属光沢を回復させるために用いられており、チタン材にそのまま用いると、表面の微細な凹凸からなる粗面が失われ、かえって「汚れ感」を増すことになる。同様に、一般に「錆びおとし」や「金属磨き」として用いられている砥粒やサンドペーパーを用いても、黒ずみの発生や表面の微細な凹凸からなる粗面が失われる結果、著しい光沢の増加で「汚れ感」を増大させてしまう。
【0022】
また、化学的洗浄の内、主に水や溶剤に、酸・アルカリや酵素、界面活性剤を含んだ薬剤で表面の汚れを溶解して落とす化学的洗浄剤タイプでは、チタン材の表面酸化膜が除去できない。また、チタン材の表面酸化膜が除去できる前記したフッ酸と硝酸の混合水溶液などでは、表面の微細な凹凸からなる粗面を保ったまま、酸化皮膜を除去することは可能である。しかし、これら化学的洗浄剤は人体や環境に有害であるなどの致命的問題があり、適用できない。
【0023】
本発明はこの様な事情に着目してなされたものであって、その目的は、建築物や構造物などに適用されている、表面が粗面化された変色チタン材に対し、上記表面の粗面を保持した上で、チタン材の表面変色部分を無くす、チタン材の洗浄方法および洗浄を受けたチタン材を提供しようとするものである。
【0024】
【課題を解決するための手段】
この目的を達成するために、本発明変色チタン材の洗浄方法の要旨は、表面がRaで0.2 〜5.0 μm の範囲に粗面化され、建材として無塗装使用されている変色チタン材の表面酸化皮膜をフッ酸と硝酸の混合水溶液を使用せずに除去し、このチタン材の表面変色部分を無くす洗浄方法であって、このチタン材の表面酸化皮膜を研磨にて除去する際に、平均粒子径が5〜100 μm の砥粒を含む洗剤を用いてチタン材表面を研磨し、前記チタン材表面の粗面を構成する凹部と凸部の内、凸部の一部を研磨にて除去する一方、凹部の方は残留させて前記表面の粗面を保持することである。
【0025】
本発明は研磨後もチタン材表面の粗面を保持することを目的とする。したがって、本発明が対象とする表面が粗面化されたチタン材とは、前記したように、表面に微細な凹凸を意図的に造り込んで粗面化し、つや、光沢の少ない金属色表面に仕上げたチタン材である。この点、鏡面研磨仕上げして光沢性表面にしたような、凹凸の無いチタン材 (例えば、積雪防止や鏡面の美観を利用する等の用途) は本発明の対象としない。チタン材の粗面化は、圧延 (粗面化ロール使用) やスキンパス圧延やダル圧延等の軽圧延あるいは表面研磨、更には、酸洗 (化学的な表面処理) や真空焼鈍などの適宜の手段によって可能である。また、本発明チタン材とは、例えば、圧延仕上げ材 (圧延まま材) や、あるいは圧延材に対し、酸洗仕上げ、酸洗後の軽圧延仕上げ、真空焼鈍仕上げ、真空焼鈍後の軽圧延仕上げ、等を施したチタン材が適宜選択される。
【0026】
表面が粗面化されたチタン材の変色の直接の原因となっているのは、前記した通り、表面酸化膜乃至表面酸化膜の厚みである。したがって、チタン材の表面変色部分を無くすためには、部分的あるいは全面的に変色している場合を問わず、この変色部分を含めて、表面酸化膜を研磨にて除去し表面を均一化する、あるいは、表面酸化膜を研磨にて削って表面酸化膜の厚みを均一化する必要がある。
【0027】
このようにチタン材の表面酸化皮膜を研磨にて除去するに際し、本発明者らは、粗面を構成するチタン材表面の凹部と凸部の内、凸部の一部を除去するとともに、凹部の方は残留させるようにチタン材表面を研磨することで、チタン材表面の粗面を保持しつつ、凸部表面と凹部表面との酸化皮膜を除去でき、チタン材の表面変色部分を無くすことができるのを知見した。
【0028】
チタン材表面の粗面を保持するためには、研磨によっても、チタン材表面の凹部と凸部とをそのまま残留させることが望ましい。しかし、粗面化されたチタン材1 表面の粗面を構成する数十〜千数百Å程度の薄膜である酸化膜層にも、凹凸部の直径に相当する程度のクレータ状の凹凸がついている。
【0029】
表面が粗面化されたチタン材表面の断面図を図3 に模式的に示す。また、図4 に、実際の粗面化されたチタン材表面の、150 倍の電子顕微鏡(SEM) 写真 (実際のチタン材表面の150 倍の表面写真を基に図面化したもの) に示す。図3 に示す、粗面化されたチタン材1 表面の粗面を構成する数十〜千数百Å程度の薄膜である酸化膜層4 にも、図3 、4 の通り、凹凸部の直径に相当する20〜50μm 程度のクレータ状の凹凸がついている。
【0030】
このため、チタン材表面の凹部3 と凸部2 とをそのまま残留させて、チタン材の表面酸化膜4 のみを除去することは不可能である。したがって、本発明では、表面酸化膜4 を除去するために、粗面を構成するチタン材表面の凹部と凸部の内、凸部の一部を除去する程度にチタン材表面を研磨する。と同時に、チタン材表面の粗面を保持するために、凹部の方は残留させるようにチタン材表面を研磨する。
【0031】
この概念が無い通常の研磨あるいは洗浄では、チタン材の表面酸化膜4 を除去しようとすれば、必然的に、チタン素地まで削られ、チタン材表面の凹部3 と凸部2 とからなる粗面が失われる。一方、通常の洗浄で、チタン材の粗面を保持しようとすれば、チタン材の表面酸化膜4 が除去できずに、変色をなくすことができない。
【0032】
これに対し、図1(a)にチタン材表面の断面図を模式的に示す通り、例えば、適切な平均粒径を有する砥粒5aなどを用いて研磨する際、粗面を構成するチタン材1 表面の凹部3 と凸部2 の内、凸部2 の一部を除去するとともに、凹部3 の方はできるだけ残留させるようにチタン材1 表面を研磨することで、図1(a)の研磨後の表面輪郭線6 に示す通り、また、後述する図2(a)に実際の研磨後のチタン材表面 (150 倍の表面写真を基に図面化したもの) を示す通り、チタン材1 表面の凹部3 を基本的に保持しつつ、凸部2 表面と凹部3 表面との酸化皮膜4 を除去でき、チタン材1 の表面変色部分を無くすことができる。
【0033】
ここで、チタン材1 表面の凹部3 を保持するためには、凹部3 の輪郭を構成する凸部2 の一部も当然残留させる必要がある。また、凹部3 の方も研磨によって、当然その一部が除去されるが、光沢の少ない金属色 (シルバー色) 表面を確保するための、粗 ( 凹凸 ) が保持される程度までの、凹部3 の除去は許容される。
【0034】
【発明の実施の形態】
以下に、本発明変色チタン材の洗浄方法の実施態様を説明する。
【0035】
本発明で使用する砥粒の平均粒子径は、前記した通り、表面が粗面化された変色チタン材に対し、表面の粗面を保持した上で、チタン材の表面変色部分を無くす効果に対し大きく影響する。本発明ではこの効果を発揮させるために、砥粒の平均粒子径範囲を、チタン材表面の凸部と凹部、特に残留させる凹部の大きさ(直径20〜50μm )に対応させて、5〜100 μm の範囲とする。なお、通常、この種研磨に用いられる砥粒の平均粒子径は、用途によって異なるものの、100nm 程度から数100 μm 程度の広い範囲からなる。
【0036】
砥粒の平均粒子径が5μm 未満と小さ過ぎる場合、例えば、酸化膜厚に対して著しく小さ過ぎる場合には、研磨速度が遅いため、実用的でない。また、例え、それより大きな研磨粉でも、砥粒の平均粒子径が5μm 未満の場合には、図1(b)に示すチタン材表面の断面模式図の通り、チタン素地の凹部3 の大きさ(直径20〜50μm )と比較して研磨粉5bが小さく、研磨後の表面輪郭線6 に示す通り、チタン材1 表面の凹部3 と凸部2 との両方を削ってしまい、凹部3 を残留させて粗面を保持することが困難となる。このため、後述する図2(b)に実際の研磨後のチタン材表面 (150 倍の表面写真を基に図面化したもの) を示す通り、表面変色部分を無くすことはできるものの、粗面を保持することができず、鏡面に近い表面となってしまう。また、表面に研磨による疵7 もつきやすくなる。更に、研磨後の水洗によっても、チタン材1 表面の凹部3 内部に研磨粉が残留しやすくなり、元の粗面素地よりも細かい凹凸をつけてしまい、この部分が逆に黒ずんで汚れのように見えることが生じる。
【0037】
一方、砥粒の平均粒子径が100 μm を越えて大き過ぎる場合、図1(c)に示すチタン材表面の断面模式図の通り、チタン素地の凹部3 の大きさ(直径20〜50μm )と比較して研磨粉5bが大き過ぎ、研磨後の表面輪郭線6 に示す通り、やはり、チタン材1 表面の凹部3 と凸部2 との両方を削ってしまい、凹部3 を残留させて粗面を保持することが困難となる。また、後述する図2(c)に実際の研磨後のチタン材表面 (150 倍の表面写真を基に図面化したもの) を示す通り、目に見えるような大きな疵7 がつきやすくなる。これは、研磨したチタン材の商品価値を失わせる。
【0038】
本発明で使用する砥粒の材質はシリカを含むものが好ましい。この砥粒としては、シリカ単体、アルミナ- シリカの複合体などが例示される。シリカを含む砥粒は、砥粒中のSiがチタン材のTi酸化物と化学結合を形成する、所謂「メカノケミカル研磨」と称される研磨効果があり、研磨効率 (速度) が高い。建材化されたチタン材の洗浄に際しては、機械的な洗浄が難しい部分も有り、手作業による場合でも、研磨効率 (速度) が高い方が実用的である。例えば、アルミナやジルコニアなどの他の材質の砥粒の場合には、研磨効率 (速度) が低くなる。
【0039】
また、砥粒の結晶系は石英であるものが好ましい。砥粒の材質が同じシリカ組成でも、結晶性が高い(=石英)方が非晶質のものに比較して、硬度が高いので、素地よりも著しく硬いチタン酸化膜を研磨するのに適している。
【0040】
砥粒 (研磨粉) を分散させる研磨用の洗浄剤 (砥液、媒体) は、水乃至粘度と保水効果のあるゲル、これらの混合物などが、用途に応じて、粘度と保水性を適宜調整して使用できる。例えば、縦壁状のチタン材に対しては、ある程度流下しない粘度と保水効果のあるゲルなどが好ましく、屋根などの広面積のチタン材に対しては、粘度の低い混合物などが好ましい。範囲中に洗剤成分であるさせておく。
【0041】
また、この洗浄剤に、副成分として、蓚酸、酢酸などの弱酸を含有させれば、砥粒の研磨作用を助長する。即ち、研磨粉により化学的に非常に安定な表面酸化膜に傷を付けた部分からしみ込んだ弱酸がチタン金属素地を溶かす。その結果、活性なチタン金属側を弱酸により若干溶解させることができ、素地と酸化膜の間に剥離が生じ、酸化膜がより効率的に除去される。また、通常の汚れ落としのために中性洗剤などの洗剤を添加するなど、本発明の洗浄効果を損なわない程度に、他の目的や効果のために、適当な薬剤を添加することは許容される。
【0042】
次に、本発明変色チタン材の洗浄方法の手順 (工程) の一例を説明する。
先ず、対象となる変色チタン材の表面に砥粒を分散させた洗浄剤を塗布する。この際、変色部分のみを洗浄 (研磨) すると、非洗浄 (非研磨) 部分とで酸化膜の厚みの差ができ、別の色調差や清浄度差が生じる可能性がある。したがって、変色チタン材の洗浄対象面はこの観点から、変色部分を含めて適宜選択する。
【0043】
次に、変色チタン材の表面を研磨する。研磨は、通常の研磨手段である、布、スポンジ、ブラシ等を用いて行える。但し、砥粒を含有する洗浄剤を振動を加えながら (バイブレーターを用いて) 洗浄面にこすりつけることが好ましい。一方方向のみ何度も研磨されるような洗浄の仕方(例えば回転式)は、表面の微細な凹凸からなる粗面が失われ、かえって「汚れ感」を増すことになったり、前記した疵 (傷) がつく可能性があるため、好ましくない。したがって、洗浄剤をつけたスポンジなどに細かい振動を与えながら洗浄面を均一に動かすことが有効である。洗浄剤としてゲルなどを用いた場合、例えば夏場など、洗浄中に洗剤が乾燥しないように水を吹き付けることが好ましい。
【0044】
変色チタン材の表面を研磨後は、過剰乃至残余の洗浄剤およびチタン表面からを研磨除去された微粒子を除去する洗浄工程に移る。この洗浄工程として、水洗は必須であるが、この前処理として、過剰乃至残余の洗浄剤およびチタン表面からを研磨除去された微粒子を拭き取る、こすり取るなどの物理的な洗浄剤の除去、中性洗剤などの薬剤を塗布したり薬剤洗浄する化学的な洗浄を、適宜行って良い。
【0045】
水洗後のチタン材は乾燥されて仕上げられる。この際、後処理として、更に、再変色を抑制するために、酸化剤を塗布しても良い。即ち、研磨剤を含む洗剤で洗浄直後のチタン材表面には、一部活性なチタン素地または極薄い酸化膜しか有していないため、チタン材製造後にゆっくり養生した素地と比較して若干再変色が助長される傾向が認められる場合がある。したがって、この再変色を抑制するために、チタン材洗浄面を過酸化水素水等の薬剤を霧吹きするなどして軽く人工的に酸化を促進させることも有効である。
【0046】
また、水洗後のチタン材も基本的には無塗装で使用されるが、この使用態様や表面の意匠性を阻害しない範囲で、後処理として、再変色抑制のために、再変色抑制剤として、カップリング剤を塗布して、洗浄後のチタン材表面に保護膜を形成し、再酸化を抑制しても良い。具体例としては、チタネート系カップリング剤やシラン系カップリング剤を表面に塗布し、化学反応させて形成した保護膜を付けておくのが有効である。無機系塗料、例えば、アルカリシリケート系や金属アルコキシド系塗料を塗工しておくのも有効である。
【0047】
なお、本発明におけるこれら一連の洗浄作業は、壁や屋根などの建材として既に使用されている変色チタン材表面が主な対象となる。このため、チタン材表面の形状や使用環境によっては、自動などの洗浄機械などが使用できない場合も多く、基本的に研磨具や洗浄具を用いた人手による作業が主となる。ただ、可能であれば、洗浄作業によって、人手による作業と自動洗浄機械とを適宜組み合わせたり、一連の洗浄作業を自動洗浄機械により行っても勿論良い。
【0048】
【実施例】
次に、本発明方法の実施例を説明する。
鉄粉や海水が付着しやすい海辺環境に建屋の屋根の前面壁建材として設置後、5 年経過して、部分的に変色が発生したチタン材であって、表面の凹部の大きさが直径20〜50μm に粗面化されたチタン材の表面各1m2 を、分散させた砥粒の平均粒径のみを変えた洗浄剤を用い、他の洗浄条件を同じとして洗浄した。なお、洗浄は、チタン材を建材としての使用状態のまま (取り付けたまま) で行った。
【0049】
この洗浄後乾燥させたチタン材の変色していた表面について、ルーペを用いて観察するとともに、表面粗度(Ra)、光沢度(Gs60 °) を測定した。また、参考のために、元の変色していない粗面化チタン材 (前記図4 相当材) 表面の同様に表面粗度(Ra)、光沢度(Gs60 °) を測定した。更に、一部の発明例4 と比較例7 、8 については、チタン材の一部を試料として採取し、試料 (チタン材) 表面を150 倍の電子顕微鏡(SEM) 写真をとって観察した。これらの結果を表1 と、図2(a)、(b) 、(c) (実際の研磨後のチタン材表面の150 倍の表面写真を基に図面化したもの) に示す。
【0050】
砥粒としては、シリカからなる結晶質石英を用いた。砥粒を分散させる研磨用の洗浄剤は、水を加えて粘度を調整したゲルを用い、洗浄剤に対し砥粒を20wt% 分散させた。この洗浄剤をチタン材表面に均一に塗布後、小型のバイブレーターを用いて振動を加えながら (圧力3kgfmm2)、布によりチタン材表面に洗浄剤をこすりつける処理を、チタン材表面全面に対して、各例とも同じ条件となるように行った。また、研磨後は、残余の洗浄剤をハケで拭き取った後、ホースを用いた水洗にて、洗浄剤を完全に除去し、その後自然乾燥した。
【0051】
表1 から明らかな通り、平均粒子径が5〜100 μm の砥粒を含む洗剤を用いてチタン材表面を研磨した発明例2 〜6 は、元の変色していないチタン材例である参考例との表面粗度(Ra)、光沢度(Gs60 °) とほぼ同じであり、表面状況もチタン材表面の凹部を基本的に保持しつつ、チタン材の表面変色部分を無くすことができている。この結果は、図2(a)と図4 との対比からも裏付けられる。
【0052】
但し、砥粒の平均粒子径が5μm と下限値の発明例2 は、表面の凹部の大きさに近い平均粒子径の砥粒を用いた発明例3 、4 、5 や参考例1 に比して、表面粗度(Ra)が低く、参考例に比して光沢度(Gs60 °) が高い。また、砥粒の平均粒子径が100 μm と上限値の発明例6 は、表面の凹部の大きさに近い平均粒子径の砥粒を用いた発明例3 、4 、5 や参考例に比して、やはり、表面粗度(Ra)が低く、参考例に比して光沢度(Gs60 °) が高い。
【0053】
これに対し、砥粒の平均粒子径が5μm 未満と小さ過ぎる比較例7 の場合、表面変色部分を無くすことはできるものの、図2(b)に示す通り、粗面を保持することができず、鏡面に近い表面となってしまう。これは、参考例1 に比して表面粗度(Ra)が著しく低く、参考例に比して光沢度(Gs60 °) が著しく高いことや、図4 との対比からも裏付けられる。
【0054】
一方、砥粒の平均粒子径が100 μm を越えて大き過ぎる比較例8 の場合、表面変色部分を無くすことはできるものの、図2(c)に示す通り、目に見える大きな疵7 がついている。また、発明例に比して、粗面を保持することができていない。これは、参考例1 に比して表面粗度(Ra)が低く、また、光沢度(Gs60 °) が高いことからも裏付けられる。したがって、これらの結果から、本発明洗浄方法の砥粒平均粒子径の条件の意義が分かる。
【0055】
更に、発明例2 〜6 の洗浄後のチタン材に対し、後処理として、3wt%の過酸化水素水を酸化剤として塗布して人工的に酸化を促進した後、前記鉄粉や海水が付着しやすい海辺環境での建屋の屋根の前面壁建材としての使用を継続し、6 カ月間観察した結果、再変色は認められなかった。
【0056】
【表1】

Figure 0004072410
【0057】
【発明の効果】
本発明によれば、建築物や構造物などに適用されている、表面が粗面化された変色チタン材に対し、上記表面の粗面を保持した上で、チタン材の表面変色部分を無くす、チタン材の洗浄方法および洗浄を受けたチタン材を提供することができる。この結果、変色チタン材を簡便に再生できる点で工業的な価値が大きい。
【図面の簡単な説明】
【図1】チタン材表面の凹凸粗面と砥粒との大きさの関係とを模式的に示し、(a) は発明例、(b) 、(c) は比較例を各々示す断面図である。
【図2】実際の研磨後のチタン材表面 (150 倍の表面写真を基に図面化したもの) を示し、(a) は発明例、(b) 、(c) は比較例を各々示す平面図である。
【図3】粗面化されたチタン材表面を模式的に示す断面図である。
【図4】粗面化されたチタン材表面を示す平面図である。
【符号の説明】
1: チタン材、2 凸部、3:凹部、4:酸化皮膜、5:砥粒、6:研磨後の表面輪郭線、 7: 疵[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a titanium material cleaning method and cleaning agent that eliminates a surface discoloration portion of a roughened titanium material, and a titanium material that has undergone cleaning.
[0002]
[Prior art]
Titanium materials applied to building materials, structural materials, and the like have excellent corrosion resistance that the surface oxide film (non-moving body) dissolves at a pH of 1 or less and is less rusting than super stainless steel. Titanium has a specific gravity of 4.51, approximately 50% of copper and approximately 60% of stainless steel, making it relatively light and suitable for work in high places. Furthermore, the thermal expansion coefficient of titanium is as small as 1/2 of stainless steel and 1/3 of copper, which is close to that of glass or concrete. For this reason, it is easy to combine different materials such as titanium and glass or concrete, and it is suitable for constructing a building that emphasizes design and design.
[0003]
And the titanium material is roughened by creating fine irregularities (the diameter of each irregularity is about 20-50μm) of about several tens of μm (about 0.2-5.0 μm in Ra) on the surface. By finishing the surface with few metallic colors (silver color), it is possible to create a clean atmosphere full of luxury compared to the glossy surface of stainless steel or aluminum alloy. For this reason, it is often used by roughening the outer surface for applications that require aesthetics, design, and landscape, such as roofs and outer walls of buildings, without painting (bare).
[0004]
However, even a titanium material having such excellent characteristics has a problem that discoloration occurs over time. The unique color of the titanium metal, which is the main component of the titanium material, is silver, but when the titanium material is used over time, it gradually becomes brownish and discolors, and may appear to be rusted. Therefore, when this discoloration occurs, the beauty and design of the titanium material are greatly impaired.
[0005]
Conventionally, it has been found that this discoloration of the titanium material is not caused by the deterioration of the anticorrosion function itself of the titanium material, but is mainly caused by the interference color accompanying the growth of the surface oxide film (for example, non-patent literature) 1-4). More specifically, the discoloration of the titanium material is caused by a relatively slow formation and growth of a relatively stable oxide film on the surface of the titanium material. Although depending on the conditions of the use environment, an oxide film of 50 to 200 mm is usually formed on the surface of the titanium material in 1 to 4 years. The oxide film itself formed on the surface of the titanium material is transparent. However, if the oxide film on the surface of the titanium material becomes thicker to some extent, the light reflected from the titanium substrate and the oxide film surface interferes, and the color corresponding to the film thickness appears to appear and the color changes.
[0006]
[Non-Patent Document 1]
Michio Kaneko, Kazuhiro Takahashi and 3 others "Influence of acid rain on the discoloration of titanium" CAMP-ISIJ, Vol.14 (2001) -1336, (416)
[Non-Patent Document 2]
Michio Kaneko, Kazuhiro Takahashi and three others, "Effect of titanium carbide on the discoloration of titanium", CAMP-ISIJ, Vol.14 (2001) -1337, (417)
[Non-Patent Document 3]
Michio Kaneko, Kazuhiro Takahashi, and 4 others "Improvement of discoloration resistance of industrial pure titanium plates" CAMP-ISIJ, Vol.14 (2001) -1338, (418)
[Non-Patent Document 4]
Michio Kaneko, Kazuhiro Takahashi and 4 others, “Discoloration Behavior of Industrial Pure Titanium Plates Abraded with Nitrogen Hydrofluoric Acid Solution” CAMP-ISIJ, Vol.14 (2001) -1339, (419)
[0007]
The surface oxide film of titanium material has a composition such as Ti oxide + (Fe, Si, Al, NaCl) (however, NaCl depends on the usage environment), and the film thickness is several tens to several thousand angstroms (angstrom) It is. The surface oxide film has a unique property that the hardness is as hard as 2.5 GPa to 6 GPa, and is 5 times or more as hard as that of the titanium substrate. Furthermore, it is chemically very stable and has the property of dissolving only in a strong acid such as a mixture of hydrofluoric acid and nitric acid or hot concentrated sulfuric acid.
[0008]
However, depending on the usage environment of the titanium material, discoloration of the titanium material is promoted. For example, the surface exposed to exhaust gas (particulates, oil component) or after rain on the surface may show a different color tone from other parts. This is a discoloration that occurs when oil or fine particles adhere to the surface of the titanium material, and the growth of the oxide film is remarkably promoted at that portion as compared with other portions. On the surface of titanium material that has been placed in an environment such as the seaside where iron powder and seawater are likely to adhere, an oxide film of 2000 mm or more grows partially, so that only that part looks green or pinkish Sometimes. Furthermore, discoloration is also promoted by acid rain. In addition, due to the influence of the design of building materials and the like, the structure where water tends to collect and the vicinity of the exhaust port are more likely to discolor than other parts.
[0009]
Moreover, there is also an influence by the manufacturing process of the titanium material, and when the carbon content is increased in the vicinity of the surface depending on the annealing method, the more the carbon content, the easier the color change. This is thought to be because titanium and carbon form titanium carbide (TiC), and this serves as a base point for the growth of the oxide film. These discoloration promoting factors are also described in Non-Patent Documents 1 to 4, respectively.
[0010]
In order to make it difficult to cause discoloration of the titanium material against such a discoloration problem of the titanium material, various measures have been proposed to remove the discoloration promoting factor. For example, with respect to the influence of the carbon content, it has been proposed to use a titanium material having a small amount of carbon or fluorine for the surface portion as the titanium material (see, for example, Patent Documents 1 and 2). It has also been proposed to reduce the surface roughness Ra of the surface oxide film to 3 μm or less and the thickness of the surface oxide film to 20 mm or less (see, for example, Patent Document 3).
[0011]
[Patent Document 1]
JP 2002-12962 A (pages 1 and 2)
[Patent Document 2]
JP 2002-47589 A (pages 1 and 2)
[Patent Document 3]
JP 10-8234 (pages 1 and 2)
[0012]
However, as described above, the discoloration of the titanium material often occurs due to other factors such as the use environment, the design, and the age of use. Therefore, although the discoloration of the titanium material can be made difficult to occur to some extent or delayed to some extent by improvement on the material side, it can be said that it will inevitably occur over time.
[0013]
For this reason, it is impossible to cope with the discoloration problem only by improving the material side of titanium as in Patent Documents 1 to 3 above. Further, it is not possible to make adjustments such as reducing the surface roughness of the surface oxide film with respect to a titanium material roughened by making fine irregularities on the surface. Furthermore, as described above, the means for providing a coating or a protective film cannot be applied to a titanium material that is used without coating (no coating specification). Moreover, discoloration can be suppressed by painting, protective coating, or improvement on the material side, but it must be applied to buildings and structures as a building material, and should correspond to discolored titanium materials. I can't.
[0014]
Therefore, for titanium materials that have already been discolored after being applied as building materials in this way, means other than removing the surface discolored portions by cleaning or polishing including the discolored portions of the titanium materials. No.
[0015]
[Problems to be solved by the invention]
However, there has been no established cleaning technology for discolored titanium materials. That is, in the cleaning of the discolored titanium material, in order to guarantee the above-described glossy metallic color surface (aesthetic appearance or design surface), which is the reason for adopting the titanium material, it is composed of fine irregularities on the surface even after cleaning. It is necessary to eliminate the surface discoloration part while keeping the rough surface. Even if the surface discoloration portion disappears due to cleaning, if the rough surface consisting of fine irregularities on the surface disappears, the metal color surface with less gloss is lost, and the same glossy surface as stainless steel or aluminum alloy material. turn into. This means that the reason and significance of the use of the titanium material are lost.
[0016]
In various building material cleaning techniques that have been widely used so far, as a cleaning target such as removal of dirt, of course, titanium materials applied to buildings and structures are included. However, it was not possible to eliminate the surface discoloration part which is a problem while maintaining the rough surface.
[0017]
The reason for this is that, as described above, the direct cause of discoloration is due to the thickness of the surface oxide film or the surface oxide film, which corresponds to dirt in normal cleaning. Accordingly, in order to eliminate the surface discoloration portion of the titanium material, the surface oxide film is removed and uniformized including the discoloration portion, regardless of whether the discoloration is partially or entirely, or the surface It is necessary to make the thickness uniform by shaving the oxide film. However, as described above, the surface oxide film of the titanium material is extremely hard compared to the titanium substrate, is chemically very stable, and dissolves only in a strong acid such as a mixture of hydrofluoric acid and nitric acid. It has unique properties not found in metal oxide films.
[0018]
Furthermore, as described above, the diameter of each concavo-convex portion constituting the rough surface is about 20 to 50 μm, which is significantly thicker than the wrinkle level thickness of the surface oxide film. For this reason, irregularities of about 20 to 50 μm are inevitably attached to the surface oxide film layer.
[0019]
As a result, even if physical cleaning, chemical cleaning, or a combination of these cleaning methods is used, if the surface oxide film of the titanium material is to be removed, the surface of the titanium base material is inevitably scraped, and fine surface irregularities are removed. The rough surface will be lost. On the other hand, if the titanium substrate is to be protected, the surface oxide film of the titanium material cannot be removed.
[0020]
For example, in the physical cleaning, high pressure water cleaning can remove a part of the adhered particles and oil, but the surface oxide film cannot be removed and cannot be applied.
[0021]
The same applies to the case where a cleaning agent containing abrasive particles (abrasive grains) is used. Cleaning agents containing abrasive grains are widely used for cleaning stainless steel building materials, for example. However, in the case of cleaning stainless steel building materials, it is mainly used to recover the metallic luster unique to stainless steel, and when used as it is for titanium materials, the rough surface consisting of fine irregularities on the surface is lost. This will increase the “dirty feeling”. Similarly, even when using abrasive grains and sandpaper, which are generally used as "rust rust" and "metal polishing", a significant increase in gloss results from the occurrence of darkening and the loss of rough surfaces with fine irregularities on the surface. This increases the “dirt feeling”.
[0022]
In the chemical cleaning type, the surface oxide film of titanium material is used for chemical cleaning type, which dissolves and removes dirt on the surface with chemicals containing acids, alkalis, enzymes, and surfactants mainly in water and solvents. Cannot be removed. Further, in the above-described mixed aqueous solution of hydrofluoric acid and nitric acid that can remove the surface oxide film of the titanium material, it is possible to remove the oxide film while maintaining a rough surface composed of fine irregularities on the surface. However, these chemical cleaning agents cannot be applied because they have fatal problems such as being harmful to the human body and the environment.
[0023]
  The present invention has been made paying attention to such a situation, and the object thereof is applied to a discolored titanium material having a roughened surface applied to a building or a structure. A method for cleaning titanium material that eliminates the surface discoloration of the titanium material while maintaining a rough surface.WashIt is intended to provide purified titanium material.
[0024]
[Means for Solving the Problems]
  In order to achieve this object, the gist of the cleaning method of the discolored titanium material of the present invention is that the surface is roughened to Ra in the range of 0.2 to 5.0 μm.It is used as a building material without paintingSurface oxide film of discolored titanium materialWithout using a mixed aqueous solution of hydrofluoric acid and nitric acidRemove,thisA cleaning method that eliminates the surface discoloration of the titanium material,thisWhen the surface oxide film of the titanium material is removed by polishing, the surface of the titanium material is polished with a detergent containing abrasive grains having an average particle diameter of 5 to 100 μm to form a rough surface of the titanium material surface Among the convex portions, a part of the convex portion is removed by polishing, while the concave portion is left to retain the rough surface.
[0025]
An object of the present invention is to maintain a rough surface of a titanium material even after polishing. Therefore, the titanium material whose surface is roughened by the present invention is roughened by intentionally creating fine irregularities on the surface, as described above, to give a metallic surface with less gloss. Finished titanium material. In this regard, a titanium material having no irregularities, such as a mirror-finished glossy surface (for example, use for preventing snow accumulation or utilizing the aesthetic appearance of the mirror surface) is not covered by the present invention. The roughening of the titanium material is performed by appropriate means such as rolling (using a roughening roll), light rolling such as skin pass rolling or dull rolling or surface polishing, and pickling (chemical surface treatment) or vacuum annealing. Is possible. In addition, the titanium material of the present invention is, for example, a rolled finish material (as-rolled material) or a rolled material, pickling finish, light rolling finish after pickling, vacuum annealing finish, light rolling finish after vacuum annealing. , Etc. are appropriately selected.
[0026]
As described above, the thickness of the surface oxide film or the surface oxide film is a direct cause of the discoloration of the roughened titanium material. Therefore, in order to eliminate the surface discoloration portion of the titanium material, the surface oxide film including this discoloration portion is removed by polishing to make the surface uniform regardless of whether the discoloration is partially or entirely. Alternatively, it is necessary to make the thickness of the surface oxide film uniform by polishing the surface oxide film.
[0027]
  Thus, when removing the surface oxide film of the titanium material by polishing, the present inventors removed a part of the convex portion of the concave portion and the convex portion of the titanium material surface constituting the rough surface, and the concave portion. The surface of the titanium material is polished so that it remains.FaceIt was found that the oxide film on the surface of the convex part and the surface of the concave part can be removed while holding, and the surface discoloration part of the titanium material can be eliminated.
[0028]
  Roughness of titanium material surfaceFaceIn order to hold, it is desirable to leave the concave and convex portions on the surface of the titanium material as they are even by polishing. However, the oxide film layer, which is a thin film of about several tens to several hundreds of millions constituting the rough surface of the roughened titanium material 1, also has crater-like unevenness corresponding to the diameter of the uneven portion. Yes.
[0029]
A cross-sectional view of the surface of the titanium material having a roughened surface is schematically shown in FIG. Fig. 4 shows a 150X electron microscope (SEM) photograph (drawn based on a 150X surface photograph of the actual titanium material surface) of the actual roughened titanium material surface. As shown in FIGS. 3 and 4, the oxide film layer 4, which is a thin film of about several tens to several hundreds of kilobytes constituting the rough surface of the roughened titanium material 1 shown in FIG. A crater-like unevenness of about 20-50 μm is attached.
[0030]
  Therefore, it is impossible to remove only the surface oxide film 4 of the titanium material while leaving the concave portion 3 and the convex portion 2 on the surface of the titanium material as they are. Therefore, in the present invention, in order to remove the surface oxide film 4, the surface of the titanium material is polished to such an extent that a part of the convex portion is removed from the concave portion and the convex portion on the surface of the titanium material constituting the rough surface. At the same time, the surface of the titanium material is rough.FaceIn order to hold, the surface of the titanium material is polished so that the recess remains.
[0031]
In normal polishing or cleaning without this concept, if the surface oxide film 4 of the titanium material is to be removed, the surface of the titanium material is inevitably scraped to a rough surface consisting of the concave portions 3 and the convex portions 2 on the titanium material surface. Is lost. On the other hand, if an attempt is made to maintain the rough surface of the titanium material by normal cleaning, the surface oxide film 4 of the titanium material cannot be removed and discoloration cannot be eliminated.
[0032]
In contrast, as schematically shown in the cross-sectional view of the surface of the titanium material in FIG. 1 (a), for example, the titanium material constituting the rough surface when polishing using the abrasive grains 5a having an appropriate average particle diameter, etc. (1) The surface of the titanium material 1 is polished so that a part of the convex portion 2 is removed from the concave portion 3 and the convex portion 2 on the surface, and the concave portion 3 remains as much as possible. As shown in the surface contour line 6 later, and as shown in Fig. 2 (a) below, the surface of the titanium material after actual polishing (drawn based on a 150x surface photograph), the surface of the titanium material 1 The oxide film 4 between the surface of the convex portion 2 and the surface of the concave portion 3 can be removed while the concave portion 3 is basically held, and the surface discolored portion of the titanium material 1 can be eliminated.
[0033]
  Here, in order to hold the concave portion 3 on the surface of the titanium material 1, a part of the convex portion 2 constituting the contour of the concave portion 3 must naturally remain. In addition, the concave portion 3 is naturally partially removed by polishing, but the rough surface is used to secure a metal surface (silver color) with less gloss.surface ( Unevenness )The removal of the recess 3 is allowed to the extent that is retained.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Below, the embodiment of the washing | cleaning method of this invention discoloration titanium material is demonstrated.
[0035]
As described above, the average particle diameter of the abrasive grains used in the present invention is the effect of eliminating the surface discoloration portion of the titanium material while maintaining the rough surface of the surface against the discolored titanium material whose surface is roughened. It has a big effect on it. In order to exert this effect in the present invention, the average particle diameter range of the abrasive grains is set to 5 to 100 corresponding to the size of the protrusions and recesses on the surface of the titanium material, particularly the recesses to remain (diameter 20 to 50 μm). The range is μm. In general, the average particle size of the abrasive grains used for this type of polishing is a wide range from about 100 nm to about several hundred μm, although it varies depending on the application.
[0036]
When the average particle diameter of the abrasive grains is too small, for example, less than 5 μm, for example, when it is extremely small with respect to the oxide film thickness, the polishing rate is slow, which is not practical. For example, even if the polishing powder is larger than that, and the average particle size of the abrasive grains is less than 5 μm, the size of the recess 3 in the titanium substrate is as shown in the schematic cross-sectional view of the surface of the titanium material shown in FIG. Compared to (diameter 20-50μm), the polishing powder 5b is small, and as shown in the surface contour line 6 after polishing, both the concave portion 3 and the convex portion 2 on the surface of the titanium material 1 are scraped, and the concave portion 3 remains. It becomes difficult to hold the rough surface. For this reason, as shown in Fig. 2 (b) to be described later, the surface of the titanium material after actual polishing (drawn based on a 150x surface photograph) can eliminate the surface discoloration, but the rough surface It cannot be held, resulting in a surface close to a mirror surface. In addition, it becomes easy to have wrinkles 7 due to polishing on the surface. In addition, even after washing with water, the polishing powder tends to remain inside the recesses 3 on the surface of the titanium material 1, creating fine irregularities as compared to the original rough surface, and this part appears darker and dirty. Appears to appear.
[0037]
On the other hand, when the average particle diameter of the abrasive grains is too large exceeding 100 μm, the size of the concave portion 3 of the titanium substrate (diameter 20 to 50 μm) as shown in the cross-sectional schematic diagram of the titanium material surface shown in FIG. In comparison, the polishing powder 5b is too large, and as shown by the surface contour line 6 after polishing, both the concave portion 3 and the convex portion 2 on the surface of the titanium material 1 are also shaved, leaving the concave portion 3 and the rough surface. It becomes difficult to hold. Further, as shown in FIG. 2 (c) described later, the actual polished titanium material surface (drawn based on a 150 × surface photograph) is likely to have a large wrinkle 7 that is visible. This loses the commercial value of the polished titanium material.
[0038]
The material of the abrasive grains used in the present invention preferably contains silica. Examples of the abrasive grains include silica alone and alumina-silica composite. Abrasive grains containing silica have a polishing effect called so-called “mechanochemical polishing” in which Si in the abrasive grains forms a chemical bond with the titanium oxide Ti oxide, and has high polishing efficiency (speed). When cleaning the titanium material that has been made into building materials, there are some parts that are difficult to clean mechanically, and it is more practical that the polishing efficiency (speed) is higher even in the case of manual work. For example, in the case of abrasive grains made of other materials such as alumina and zirconia, the polishing efficiency (speed) is low.
[0039]
The crystal system of the abrasive grains is preferably quartz. Even with the same silica material, the higher crystallinity (= quartz) is harder than amorphous, so it is suitable for polishing a titanium oxide film that is significantly harder than the substrate. Yes.
[0040]
A polishing agent (abrasive fluid, medium) for dispersing abrasive grains (polishing powder) is water or a gel having a viscosity and water retention effect, or a mixture thereof. The viscosity and water retention are appropriately adjusted according to the application. Can be used. For example, for a vertical wall-shaped titanium material, a gel having a viscosity that does not flow down to some extent and a water retaining effect is preferable, and for a wide area titanium material such as a roof, a mixture having a low viscosity is preferable. Leave the detergent component in the range.
[0041]
In addition, if this cleaning agent contains a weak acid such as oxalic acid or acetic acid as an accessory component, the polishing action of the abrasive grains is promoted. That is, the weak acid soaked from the portion where the surface oxide film chemically chemically stable by the polishing powder has been damaged dissolves the titanium metal substrate. As a result, the active titanium metal side can be slightly dissolved by the weak acid, peeling occurs between the substrate and the oxide film, and the oxide film is more efficiently removed. In addition, it is allowed to add an appropriate chemical agent for other purposes and effects to the extent that the cleaning effect of the present invention is not impaired, such as adding a detergent such as a neutral detergent to remove normal dirt. The
[0042]
Next, an example of the procedure (step) of the cleaning method for the discolored titanium material of the present invention will be described.
First, a cleaning agent in which abrasive grains are dispersed is applied to the surface of the target discolored titanium material. At this time, if only the discolored portion is cleaned (polished), the thickness of the oxide film may be different from that of the non-cleaned (non-polished) portion, which may cause another color difference or cleanliness difference. Therefore, the surface to be cleaned of the discolored titanium material is appropriately selected including the discolored portion from this viewpoint.
[0043]
Next, the surface of the discolored titanium material is polished. Polishing can be performed by using a normal polishing means such as cloth, sponge, brush, or the like. However, it is preferable to rub the cleaning agent containing abrasive grains on the cleaning surface while applying vibration (using a vibrator). A cleaning method (for example, a rotary type) in which polishing is performed many times only in one direction loses a rough surface consisting of fine irregularities on the surface, and on the contrary, increases the “dirt feeling”. (Scratches) may occur, which is not preferable. Therefore, it is effective to move the cleaning surface uniformly while giving fine vibrations to a sponge or the like with a cleaning agent. When gel or the like is used as the cleaning agent, it is preferable to spray water so that the detergent does not dry during cleaning, for example, in summer.
[0044]
After the surface of the discolored titanium material is polished, the process proceeds to a cleaning process for removing excess or remaining cleaning agent and fine particles removed by polishing from the titanium surface. Although washing with water is indispensable for this washing process, as this pretreatment, removal of a physical washing agent such as wiping or rubbing off excess or remaining washing agent and fine particles that have been polished and removed from the titanium surface, neutrality, etc. Chemical cleaning such as application of chemicals such as detergents or chemical cleaning may be appropriately performed.
[0045]
The titanium material after washing with water is dried and finished. At this time, as a post-treatment, an oxidizing agent may be further applied to suppress re-discoloration. That is, the surface of the titanium material immediately after cleaning with a detergent containing an abrasive has only a partly active titanium base or an extremely thin oxide film, so that it is slightly recolored compared with a base that is slowly cured after the titanium material is manufactured. Tend to be encouraged. Therefore, in order to suppress this re-discoloration, it is also effective to lightly artificially promote oxidation by spraying chemicals such as hydrogen peroxide solution on the titanium material cleaning surface.
[0046]
In addition, the titanium material after washing is basically used without coating, but as a post-treatment, as a recoloration inhibitor, as a post-treatment, as long as it does not impair the design and surface design. Alternatively, a coupling agent may be applied to form a protective film on the surface of the cleaned titanium material to suppress reoxidation. As a specific example, it is effective to apply a titanate coupling agent or silane coupling agent on the surface and attach a protective film formed by chemical reaction. It is also effective to apply an inorganic paint such as an alkali silicate or metal alkoxide paint.
[0047]
Note that the series of cleaning operations in the present invention is mainly performed on the surface of the discolored titanium material already used as a building material such as a wall or a roof. For this reason, depending on the shape of the surface of the titanium material and the usage environment, there are many cases in which an automatic cleaning machine or the like cannot be used, and the main work is basically performed manually using a polishing tool or a cleaning tool. However, if possible, of course, a manual operation and an automatic cleaning machine may be appropriately combined by a cleaning operation, or a series of cleaning operations may be performed by an automatic cleaning machine.
[0048]
【Example】
Next, examples of the method of the present invention will be described.
5 years after installation as a building material on the front wall of the building roof in a seaside environment where iron powder and seawater are likely to adhere. Each surface of titanium material roughened to ~ 50μm2Was cleaned using the same cleaning agent with the same average particle size of the dispersed abrasive grains, and the other cleaning conditions were the same. The cleaning was performed with the titanium material used as a building material (attached).
[0049]
The discolored surface of the titanium material dried after washing was observed with a magnifying glass, and the surface roughness (Ra) and gloss (Gs 60 °) were measured. For reference, the surface roughness (Ra) and the glossiness (Gs60 °) of the surface of the original roughened titanium material (corresponding to FIG. 4) were also measured. Further, in some invention examples 4 and comparative examples 7 and 8, a part of the titanium material was taken as a sample, and the surface of the sample (titanium material) was observed by taking a 150 × electron microscope (SEM) photograph. These results are shown in Table 1 and FIGS. 2 (a), 2 (b), and 2 (c) (drawn based on a surface photograph of 150 times the actual polished titanium surface).
[0050]
As the abrasive grains, crystalline quartz made of silica was used. As a polishing detergent for dispersing abrasive grains, a gel whose water viscosity was adjusted by adding water was used, and 20 wt% of abrasive grains were dispersed in the detergent. Apply this cleaning agent evenly to the surface of the titanium material, and then apply vibration using a small vibrator (pressure 3 kgfmm2) The treatment of rubbing the cleaning agent on the surface of the titanium material with a cloth was performed on the entire surface of the titanium material so that the conditions were the same in each example. Further, after polishing, the remaining cleaning agent was wiped off with a brush, and then the cleaning agent was completely removed by washing with water using a hose, followed by natural drying.
[0051]
As is apparent from Table 1, Invention Examples 2 to 6 in which the surface of the titanium material was polished with a detergent containing abrasive grains having an average particle diameter of 5 to 100 μm are examples of titanium materials that are not discolored. Surface roughness (Ra) and glossiness (Gs60 °) are almost the same, and the surface condition is basically retained on the surface of the titanium material, while eliminating the surface discoloration of the titanium material. . This result is supported by the comparison between FIG. 2 (a) and FIG.
[0052]
However, Invention Example 2 having an average particle diameter of 5 μm and the lower limit of the abrasive grains is in comparison with Invention Examples 3, 4, 5 and Reference Example 1 using abrasive grains having an average particle diameter close to the size of the recesses on the surface. Thus, the surface roughness (Ra) is low, and the glossiness (Gs60 °) is higher than that of the reference example. In addition, Invention Example 6 having an average particle diameter of 100 μm and an upper limit is larger than Invention Examples 3, 4, 5 and Reference Examples using abrasive grains having an average particle diameter close to the size of the recesses on the surface. Again, the surface roughness (Ra) is low, and the glossiness (Gs60 °) is higher than that of the reference example.
[0053]
On the other hand, in the case of Comparative Example 7 in which the average particle diameter of the abrasive grains is too small as less than 5 μm, the surface discoloration portion can be eliminated, but the rough surface cannot be retained as shown in FIG. It becomes a surface close to a mirror surface. This is supported by the fact that the surface roughness (Ra) is remarkably lower than that of Reference Example 1, the glossiness (Gs 60 °) is remarkably higher than that of Reference Example, and a comparison with FIG.
[0054]
On the other hand, in Comparative Example 8 where the average particle size of the abrasive grains is too large exceeding 100 μm, the surface discoloration portion can be eliminated, but as shown in FIG. . In addition, the rough surface cannot be retained as compared with the inventive examples. This is supported by the low surface roughness (Ra) and high glossiness (Gs60 °) as compared to Reference Example 1. Therefore, from these results, the significance of the condition of the average grain size of the abrasive grains in the cleaning method of the present invention can be understood.
[0055]
Furthermore, after the titanium materials after cleaning in Invention Examples 2 to 6, as a post-treatment, 3 wt% hydrogen peroxide water was applied as an oxidizing agent to artificially promote oxidation, and then the iron powder and seawater adhered. Continued use of the roof of the building as a front wall building material in an easily accessible seaside environment, and as a result of observation for 6 months, no re-discoloration was observed.
[0056]
[Table 1]
Figure 0004072410
[0057]
【The invention's effect】
  According to the present invention, with respect to a discolored titanium material having a roughened surface applied to a building or structure, the surface discolored portion of the titanium material is eliminated while retaining the rough surface. , Cleaning method of titanium material andWashTitanium material that has undergone purification can be provided. As a result, the industrial value is great in that the discolored titanium material can be easily regenerated.
[Brief description of the drawings]
FIG. 1 schematically shows the relationship between the rough surface of the titanium material and the size of the abrasive grains, where (a) is a cross-sectional view showing an example of the invention and (b) and (c) showing comparative examples. is there.
FIG. 2 shows the surface of a titanium material after actual polishing (drawn based on a 150 × surface photograph), (a) is an example of the invention, and (b) and (c) are planes showing comparative examples, respectively. FIG.
FIG. 3 is a cross-sectional view schematically showing a roughened titanium material surface.
FIG. 4 is a plan view showing a roughened titanium material surface.
[Explanation of symbols]
1: Titanium material, 2 convex parts, 3: concave parts, 4: oxide film, 5: abrasive grains, 6: surface contour after polishing, 7: 疵

Claims (8)

表面がRaで0.2 〜5.0 μm の範囲に粗面化され、建材として無塗装使用されている変色チタン材の表面酸化皮膜をフッ酸と硝酸の混合水溶液を使用せずに除去し、このチタン材の表面変色部分を無くす洗浄方法であって、このチタン材の表面酸化皮膜を研磨にて除去する際に、平均粒子径が5〜100 μm の砥粒を含む洗剤を用いてチタン材表面を研磨し、前記チタン材表面の粗面を構成する凹部と凸部の内、凸部の一部を研磨にて除去する一方、凹部の方は残留させて前記表面の粗面を保持することを特徴とする変色チタン材の洗浄方法。  This titanium material is made by removing the surface oxide film of the discolored titanium material whose surface is roughened in the range of 0.2 to 5.0 μm with Ra and is used as a building material without using a mixed aqueous solution of hydrofluoric acid and nitric acid. In this cleaning method, the surface of the titanium material is polished with a detergent containing abrasive grains having an average particle diameter of 5 to 100 μm when the surface oxide film of the titanium material is removed by polishing. Of the concave and convex portions constituting the rough surface of the titanium material surface, a part of the convex portion is removed by polishing, while the concave portion remains to retain the rough surface of the surface. Cleaning method for discolored titanium material. 前記研磨の際に振動を加えながらチタン材表面を研磨する請求項1に記載の変色チタン材の洗浄方法。  The method for cleaning a discolored titanium material according to claim 1, wherein the surface of the titanium material is polished while applying vibration during the polishing. 前記研磨後にチタン材の表面を水洗する請求項1または2に記載の変色チタン材の洗浄方法。  The method for cleaning a discolored titanium material according to claim 1 or 2, wherein the surface of the titanium material is washed with water after the polishing. 前記水洗後にチタン材の表面を人工的に再酸化させる請求項3に記載の変色チタン材の洗浄方法。  The method for cleaning a discolored titanium material according to claim 3, wherein the surface of the titanium material is artificially reoxidized after the water washing. 前記再酸化に際して酸化剤を使用する請求項4に記載の変色チタン材の洗浄方法。  The method for cleaning a discolored titanium material according to claim 4, wherein an oxidizing agent is used for the reoxidation. 前記水洗後のチタン材の表面に保護膜を形成する請求項4または5に記載の変色チタン材の洗浄方法。  The method for cleaning a discolored titanium material according to claim 4 or 5, wherein a protective film is formed on the surface of the titanium material after the water washing. 前記保護膜がカップリング剤を含むものである請求項6に記載の変色チタン材の洗浄方法 The method for cleaning a discolored titanium material according to claim 6, wherein the protective film contains a coupling agent . 請求項1乃至7のいずれかの洗浄方法によって洗浄を受けた、表面変色部分が無いチタン材。A titanium material that has been cleaned by the cleaning method according to claim 1 and has no surface discoloration.
JP2002279576A 2002-09-25 2002-09-25 Method for cleaning discolored titanium material and titanium material Expired - Fee Related JP4072410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002279576A JP4072410B2 (en) 2002-09-25 2002-09-25 Method for cleaning discolored titanium material and titanium material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002279576A JP4072410B2 (en) 2002-09-25 2002-09-25 Method for cleaning discolored titanium material and titanium material

Publications (2)

Publication Number Publication Date
JP2004113908A JP2004113908A (en) 2004-04-15
JP4072410B2 true JP4072410B2 (en) 2008-04-09

Family

ID=32274532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002279576A Expired - Fee Related JP4072410B2 (en) 2002-09-25 2002-09-25 Method for cleaning discolored titanium material and titanium material

Country Status (1)

Country Link
JP (1) JP4072410B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306881A (en) * 1996-05-15 1997-11-28 Kobe Steel Ltd Silicon polishing liquid composition and polishing method
JP3521614B2 (en) * 1996-05-15 2004-04-19 株式会社神戸製鋼所 Polishing liquid composition for silicon
JP2002120495A (en) * 1997-01-14 2002-04-23 Seiko Epson Corp Method of surface treatment, decorated article and electronic equipment
JP3572180B2 (en) * 1997-09-29 2004-09-29 ユシロ化学工業株式会社 Abrasive grain dispersion medium composition for ingot cutting and cutting fluid for ingot cutting
JP2001110760A (en) * 1999-10-04 2001-04-20 Asahi Denka Kogyo Kk Polishing assistant for silicon wafer
JP2002180274A (en) * 2000-12-19 2002-06-26 Nippon Steel Corp Method for producing titanium whose discoloration hardly occurs in atmospheric environment
JP3849091B2 (en) * 2001-02-28 2006-11-22 Jsr株式会社 Aqueous dispersion for chemical mechanical polishing

Also Published As

Publication number Publication date
JP2004113908A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP2002517372A (en) Water repellent surface treatment
EP2275523B1 (en) Cleaning agent and cleaning method for ridding titanium and titanium alloy building materials of discoloration
JPS6191042A (en) Anti-fogging glass and its production
JPH09508177A (en) Method for removing smut from aluminum alloys with highly reflective surfaces
US3499780A (en) Method of making a coated aluminum reflector
JPH0493168A (en) Polishing method
JP4072410B2 (en) Method for cleaning discolored titanium material and titanium material
JPH11171594A (en) Water repellent glass article and its production
JP5001359B2 (en) How to clean aluminum workpieces
CN114405918B (en) Method for regenerating the liner of an etcher or PECVD apparatus
JP5357525B2 (en) Cleaning liquid and cleaning method
US3625737A (en) Protective coating and method of making
JP2003025209A (en) Polishing method for stainless steel
JP3175475B2 (en) Unpainted Al or Al alloy member, manufacturing method, cleaning method, stain resistance improving method, and surface coating method
JP3189841B2 (en) Aqueous paste-like composition, method for removing water-repellent film on glass surface using the same, and method for cleaning glass surface
JP3221303B2 (en) Titanium or titanium alloy member with beautiful surface and method of manufacturing the same
US20200270719A1 (en) Reduction and removal of process oxides on stainless steel
JPH0241705A (en) Manufacture of highly glossy aluminum sheet
JP2000262368A (en) Hydrophilic mirror, hydrophilizatopm method therefor and hydrophilizatopm method of glass
JP3771294B2 (en) Wafer cleaning method
JPS63191574A (en) Abrasive sheet for removing metallic rust
JP2657574B2 (en) Surface treatment method for aluminum alloy panels of automobiles
JP2000016838A (en) Plate glass on which rough surface is formed and which have stain resistance
JPH01243433A (en) Finishing agent for ceramic substrate
JP4006512B2 (en) Surface treatment method of surface coating layer with pure iron or steel or pure iron or steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070815

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4072410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees