JP2003147427A - Blowing method in converter - Google Patents

Blowing method in converter

Info

Publication number
JP2003147427A
JP2003147427A JP2001341146A JP2001341146A JP2003147427A JP 2003147427 A JP2003147427 A JP 2003147427A JP 2001341146 A JP2001341146 A JP 2001341146A JP 2001341146 A JP2001341146 A JP 2001341146A JP 2003147427 A JP2003147427 A JP 2003147427A
Authority
JP
Japan
Prior art keywords
blowing
slag
mgo
converter
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001341146A
Other languages
Japanese (ja)
Other versions
JP3902446B2 (en
Inventor
Yuichi Kanzaki
祐一 神崎
Ikuo Hoshikawa
郁生 星川
Takashi Fujita
藤田  貴
Takashi Inaba
岳志 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001341146A priority Critical patent/JP3902446B2/en
Publication of JP2003147427A publication Critical patent/JP2003147427A/en
Application granted granted Critical
Publication of JP3902446B2 publication Critical patent/JP3902446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To control ferro-oxide quantity in slag when blowing is completed for reduction of a cost and improvement of a quality degradation caused by the ferro-oxide securing dephosphorizing performance of the ferro-oxide in the slag in a converter. SOLUTION: At the blowing time, when a temperature in the completion of blowing reaches to 1650 deg.C, the slag quantity in the converter and MgO concentration in the slag at the completion of blowing satisfies following formula (1) 3.0<=0.0045 (WSLAG-200) [(MgO)-21]<=8.0. In this furmula, WSLAG shows the slag quantity (kg/t) in the converter at the completion of blowing and (MgO) shows the MgO concentration (mass%) in the slag in the converter at the completion of blowing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、転炉における吹錬
に際し、転炉内スラグ中の鉄系酸化物量を制御する転炉
吹錬方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a converter blowing method for controlling the amount of iron-based oxide in the slag in the converter during blowing in the converter.

【0002】[0002]

【従来の技術】転炉にて高炉で製造された溶銑に、上吹
ランスまたは炉底に設置された羽口を介して多量の酸素
を高速で供給するのは、溶銑中に3.8〜4.8質量%
程度含まれているC量を、鋼種に応じて0.03〜0.
8質量%程度にまで低減することを最大の目的とする
他、溶銑中の不純物(C、Si、P)を酸化除去し、か
つこれらの不純物の酸化熱を利用して所定の温度にまで
溶鋼の温度を上昇させて、鋳造するのに必要な温度を確
保することを目的とする。
2. Description of the Related Art It is necessary to supply a large amount of oxygen at a high speed to hot metal produced in a blast furnace in a converter through a top blowing lance or tuyeres installed at the bottom of the furnace. 4.8% by mass
The amount of C included in the range of 0.03 to 0.
The maximum purpose is to reduce the content to about 8% by mass, and the impurities (C, Si, P) in the hot metal are oxidized and removed, and the heat of oxidation of these impurities is used to bring the molten steel to a predetermined temperature. The purpose of this is to raise the temperature of and to secure the temperature required for casting.

【0003】この様に多量の酸素を供給して不純物を酸
化除去するため、一般に吹錬終了時の転炉内スラグ(以
下、単に「スラグ」ということがある)は酸化度が高く
なっている。スラグの酸化度を表す指標として、一般に
該スラグ中のFeO、Fe2O3およびFe3O4に占めるFe量を示
す(T.Fe)[単位:質量%]が用いられており、通常、
吹錬終了時の(T.Fe)は15〜25質量%程度である。
Since a large amount of oxygen is supplied to oxidize and remove the impurities, the slag in the converter (hereinafter sometimes simply referred to as "slag") at the end of blowing has a high degree of oxidation. . As an index showing the oxidation degree of slag, FeO, Fe 2 O 3 and Fe 3 O 4 in the slag, which generally represent the amount of Fe (T.Fe) [unit: mass%], are generally used, and
(T.Fe) at the end of blowing is about 15 to 25% by mass.

【0004】尚、転炉スラグ中の鉄系酸化物は、一般に
前記FeO、Fe2O3およびFe3O4のうちFeOが主体であること
から、以下では(T.Fe)について転炉スラグ中のFeOを
中心に話を進めることとする。
The iron-based oxide in the converter slag is generally FeO out of FeO, Fe 2 O 3 and Fe 3 O 4 , so that (T.Fe) will be described below. The discussion will focus on FeO inside.

【0005】ところで吹錬では、生石灰や軽焼ドロマイ
トなどの副原料を溶銑に加え、溶銑中のりん分をスラグ
へ移行させて脱りん処理を行う。この脱りん処理では、
下記反応式(3)に示す様にFeOが反応に必要とされ
る。
By the way, in the smelting process, an auxiliary material such as quick lime or light burned dolomite is added to the hot metal, and the phosphorus content in the hot metal is transferred to slag for dephosphorization. In this dephosphorization treatment,
FeO is required for the reaction as shown in the following reaction formula (3).

【0006】 2P+5FeO+3CaO=3(CaO・P2O5)+5Fe(l) …(3) 一方(T.Fe)が過剰になると、転炉操業コストおよび製
品品質に多大な悪影響を及ぼす。コスト面では転炉寿命
が低下し取替えが頻繁となることが挙げられるが、これ
はFeOが低融点でかつその他の酸化物を該FeO中に溶解さ
せやすいことから、スラグ中のFeO濃度[以下(FeO)と
示すことがある]が高いと、転炉の内張り耐火物を構成
する酸化物が溶解、即ち耐火物が溶損することによる。
特に、高温かつ酸化性雰囲気の精錬反応に耐えられるよ
う高価なMgO−C等を前記耐火物に使用する場合には、
コストアップに拍車を掛けることとなる。
2P + 5FeO + 3CaO = 3 (CaO.P 2 O 5 ) + 5Fe (l) (3) On the other hand, when (T.Fe) becomes excessive, the converter operating cost and product quality are greatly adversely affected. In terms of cost, converter life may be shortened and replacement may be frequent, but this is because FeO has a low melting point and other oxides are easily dissolved in the FeO, so the FeO concentration in the slag [below (Sometimes referred to as FeO)] is high, the oxides forming the refractory lining of the converter are dissolved, that is, the refractory is melted and damaged.
In particular, when expensive MgO-C or the like is used for the refractory so as to endure refining reaction under high temperature and oxidizing atmosphere,
It will spur the cost increase.

【0007】また品質面に及ぼす悪影響として、アルミ
ナ系介在物の多量析出に起因する製品欠陥の増加が挙げ
られる。これは、吹錬後の溶鋼を取鍋に移し替える際に
転炉スラグも溶鋼に随伴して流出するが、該スラグ中の
FeO濃度が高いと、吹錬終了後に脱酸材として添加する
Al合金が該FeOにより酸化され、多量のアルミナ系介
在物を生成させることによる。
Further, as an adverse effect on the quality, there is an increase in product defects due to a large amount of precipitation of alumina-based inclusions. This is because the converter slag also flows out with the molten steel when the molten steel after blowing is transferred to the ladle.
This is because when the FeO concentration is high, the Al alloy added as a deoxidizing material after the completion of blowing is oxidized by the FeO, and a large amount of alumina-based inclusions are generated.

【0008】この様に吹錬終了時の(T.Fe)はある程度
確保する必要があるものの、その濃度が高いと製造コス
トおよび品質に深刻な悪影響を及ぼすことから、(T.F
e)を低位に制御した吹錬方法が提案されつつあり、そ
の代表的なものとして次の2種類の方法が挙げられる。
Although it is necessary to secure a certain amount of (T.Fe) at the end of blowing as described above, a high concentration has a serious adverse effect on manufacturing cost and quality.
A blowing method in which e) is controlled to a low level is being proposed, and the following two types of methods are typical of them.

【0009】第一の方法は、転炉の炉底から一酸化炭
素、アルゴン、窒素等のガスを単独または複数を組み合
わせて吹き込み、鋼浴の攪拌を強化することでFeOの生
成を抑制するといった方法であり、第二の方法は、吹錬
末期における上吹酸素流量を低減するといった方法であ
る。これらは、(T.Fe)低減の点で効果的であることか
ら近年普及してきた方法であり、いずれも次に示すよう
なFeOの生成および脱炭の反応機構の推定に基づき導か
れた技術である。
The first method is to blow the gas such as carbon monoxide, argon, nitrogen, etc. singly or in combination with each other from the bottom of the converter to enhance the stirring of the steel bath to suppress the generation of FeO. The second method is to reduce the upper blowing oxygen flow rate in the final stage of blowing. These are methods that have become popular in recent years because they are effective in reducing (T.Fe), and all of them are techniques derived based on the estimation of the reaction mechanism of FeO production and decarburization as shown below. Is.

【0010】下記反応式(4)で示される転炉での脱炭
反応は、その律速段階が吹錬時期によって二通りあると
考えられている。吹錬の初期段階および中期段階では、
吹き込まれる酸素量に対して溶鋼中のC量が多く、供給
された酸素のほぼ全量が溶鋼中のCとの反応に消費され
るため、前記脱炭反応の律速段階は酸素の供給にあると
いえる。
It is considered that the decarburizing reaction in the converter represented by the following reaction formula (4) has two rate controlling steps depending on the blowing timing. In the early and middle stages of blowing,
Since the amount of C in the molten steel is large relative to the amount of oxygen blown in, and almost all of the supplied oxygen is consumed in the reaction with C in the molten steel, the rate-determining step of the decarburization reaction is the supply of oxygen. I can say.

【0011】一方、吹錬の末期段階には溶鋼中のCが
0.2〜0.4質量%程度にまで低減されているので、
下記反応式(4)で示される脱炭反応は抑制され、供給
された酸素は下記反応式(5)に示すFeとの酸化反応
に消費される。従って吹錬末期には脱炭反応とFe酸化
反応との競合反応が生じることから、下記反応式(4)
に示す脱炭反応の律速段階は、酸素が鋼浴に衝突する火
点などの脱炭反応サイトへのC供給にあるといえる。
On the other hand, since C in the molten steel is reduced to about 0.2 to 0.4 mass% at the final stage of blowing,
The decarburization reaction represented by the following reaction formula (4) is suppressed, and the supplied oxygen is consumed by the oxidation reaction with Fe represented by the following reaction formula (5). Therefore, in the final stage of blowing, a competing reaction between the decarburization reaction and the Fe oxidation reaction occurs. Therefore, the following reaction formula (4)
It can be said that the rate-determining step of the decarburization reaction shown in (1) is the supply of C to the decarburization reaction site such as the fire point where oxygen collides with the steel bath.

【0012】 C + 1/2 O2(g) = CO(g) …(4) Fe(l) + 1/2 O2(g) =FeO …(5) そして、前記第一の方法(底吹ガスによる強攪拌)によ
れば、効率よく脱炭反応サイトへCを供給して脱炭反応
の効率を向上させる、即ち、前記式(4)の反応を促進
させて前記反応式(5)のFe酸化反応を抑制すること
ができ、(T.Fe)を低位とすることができるのである。
例えば第100・101回西山記念技術講座(昭和59年、第176
頁)や「鉄と鋼」(第76年 (1990) 第11号 第1793頁)に
は、この様な技術を用いて(T.Fe)を低位とすることが
示されている。
C + 1/2 O 2 (g) = CO (g) (4) Fe (l) + 1/2 O 2 (g) = FeO (5) And the first method (bottom) According to the strong stirring with a blowing gas), C is efficiently supplied to the decarburization reaction site to improve the efficiency of the decarburization reaction, that is, the reaction of the above formula (4) is promoted to promote the above reaction formula (5). Fe oxidation reaction can be suppressed, and (T.Fe) can be lowered.
For example, the 100th and 101st Nishiyama Memorial Technical Lectures (1984, 176th)
P.) And "Iron and Steel" (No. 76 (1990) No. 11, p. 1793), it is shown that (T.Fe) is lowered by using such a technique.

【0013】また、前記第2の方法(吹錬末期における
上吹酸素流量の低減)は、前記反応式(4)および反応
式(5)にて使用される酸素の供給量を減少させ、結果
として生成するFeO量を減少させることで(T.Fe)を低
位とするといったものであり、例えば「鉄と鋼」(第70
年 (1984) S248)には、300トン転炉にて吹錬末期に
酸素流量を低下させることで(T.Fe)を低減できたこと
が示されている。
The second method (reduction of the upper blowing oxygen flow rate at the final stage of blowing) reduces the supply amount of oxygen used in the reaction equations (4) and (5), resulting in (T.Fe) is lowered by decreasing the amount of FeO generated as
(1984) S248) shows that (T.Fe) could be reduced by lowering the oxygen flow rate at the end of blowing in a 300-ton converter.

【0014】[0014]

【発明が解決しようとする課題】前記第一の方法(底吹
ガスによる強攪拌)はスラグ中の(T.Fe)低減の観点か
らは有効であるものの、該底吹攪拌のみで(T.Fe)を所
望濃度にまで低減するには、約0.3Nm3/T・min以
上もの多量の底吹ガスを供給する必要があるが、底吹ガ
ス流量の多い領域ではスラグ中の(T.Fe)低減効果が小
さくなることから、更なるガス流量の増加を要する。従
って、この様な技術には底吹ガスや底吹設備にかかるコ
ストが増大するといった問題がある。
Although the first method (strong stirring by bottom blowing gas) is effective from the viewpoint of (T.Fe) reduction in slag, only the bottom blowing stirring (T. In order to reduce Fe) to the desired concentration, it is necessary to supply a large amount of bottom blowing gas of about 0.3 Nm 3 / T · min or more, but in the region where the bottom blowing gas flow rate is high, (T. Since the Fe) reduction effect becomes smaller, it is necessary to further increase the gas flow rate. Therefore, such a technique has a problem that the cost of bottom blowing gas and bottom blowing equipment increases.

【0015】更に、溶銑段階で脱りん処理を施した銑鉄
(脱りん銑)の吹錬を行う場合、該脱りん処理を施して
いない銑鉄の吹錬と比較してスラグ発生量が少ないの
で、上吹酸素流量が同一である場合には、却って(T.F
e)が増加する傾向にある。このため、該底吹技術の改
善だけでは(T.Fe)を所望濃度にまで低減するのは困難
である。
Further, in the case of performing the blowing of the dephosphorized pig iron (dephosphorized pig iron) in the hot metal stage, the amount of slag generated is smaller than that of the blowing of the pig iron not subjected to the dephosphorizing treatment. If the top blowing oxygen flow rate is the same, instead (TF
e) tends to increase. Therefore, it is difficult to reduce (T.Fe) to a desired concentration only by improving the bottom blowing technique.

【0016】また、前記第二の方法(吹錬末期の上吹酸
素流量の低減)は、上述の様にFeO発生量を低減させる
といった効果がある反面、吹錬時間の延長を招くことか
ら、転炉における生産性を阻害するといった問題が避け
られない。
The second method (reduction of the upper blowing oxygen flow rate in the final stage of blowing) has the effect of reducing the amount of FeO generated as described above, but on the other hand, it prolongs the blowing time. The problem of impeding productivity in the converter is inevitable.

【0017】本発明はこの様な事情に鑑みてなされたも
のであって、その目的は、底吹ガス流量を増加させずか
つ上吹酸素流量を低減させなくとも、吹錬終了時におけ
る(T.Fe)を低位とすることのできる有用な吹錬方法を
提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is (T) at the end of blowing without increasing the bottom blowing gas flow rate and reducing the top blowing oxygen flow rate. It is to provide a useful blowing method capable of lowering .Fe).

【0018】[0018]

【課題を解決するための手段】本発明にかかる転炉吹錬
方法とは、吹錬に際して、吹錬終了時の転炉内スラグ量
と該スラグ中のMgO濃度が下記式(1)を満たすよう
にするところに要旨を有するものである。
According to the converter blowing method of the present invention, the amount of slag in the converter at the end of blowing and the MgO concentration in the slag satisfy the following formula (1) during blowing. The point is to do so.

【0019】 3.0≦0.0045(WSLAG−200)[ (MgO)−21]≦8.0 …(1) [式中、WSLAGは吹錬終了時の転炉内スラグ量(kg/
t)を示し、(MgO)は吹錬終了時の転炉内スラグ中の
MgO濃度(質量%)を示す] また本発明は、吹錬に際して、吹錬終了時の転炉内スラ
グ量、スラグ中のMgO濃度および吹錬終了温度が下記
式(2)を満たすようにするところに要旨を有する転炉
吹錬方法も規定するものである。
3.0 ≦ 0.0045 (W SLAG −200) [(MgO) −21] ≦ 8.0 (1) [In the formula, W SLAG is the amount of slag in the converter at the end of blowing (kg /
t), and (MgO) indicates the MgO concentration (mass%) in the converter slag at the end of blowing.] The present invention also relates to the amount of slag in the converter at the end of blowing and the slag during blowing. It also defines a converter blowing method having a gist in that the MgO concentration in the inside and the blowing end temperature satisfy the following formula (2).

【0020】 −64.0≦0.0045(WSLAG−200)[ (MgO)−21]−0.040TTD≦−59.0 …(2) [式中、WSLAGは吹錬終了時の転炉内スラグ量(kg/
t)を示し、(MgO)は吹錬終了時の転炉内スラグ中の
MgO濃度(質量%)を示し、TTD(Temperatureat Tur
n Down)は吹錬終了温度(℃)を示す] 尚、前記吹錬終了温度とは、吹錬終了時の静止鋼浴面か
ら約500mm深さ点での溶鋼の温度をいうものとす
る。
−64.0 ≦ 0.0045 (W SLAG −200) [(MgO) −21] −0.040T TD ≦ −59.0 (2) [where W SLAG is the amount of slag in the converter at the end of blowing (kg /
t), (MgO) indicates the MgO concentration (mass%) in the converter slag at the end of blowing, and T TD (Temperatureat Tur)
n Down) indicates the blowing end temperature (° C.)] The blowing end temperature means the temperature of the molten steel at a depth of about 500 mm from the stationary steel bath surface at the end of blowing.

【0021】[0021]

【発明の実施の形態】本発明者らは、前述した様な状況
の下で、まず吹錬終了時の(T.Fe)の適正範囲につい
て、脱りん能の確保および品質・コスト面における影響
の観点から数々の実験を行い検討したところ、10〜1
5質量%の範囲内とするのがよいことが判明した。(T.
Fe)の下限を規定した具体的理由は次の通りである。即
ち、最近の溶銑技術では、溶銑中にりんの除去を行う溶
銑脱りん処理が一般に普及しており、転炉での脱りん操
業負荷がかなり軽減されている。この様に溶銑中のりん
が低濃度である場合に吹錬終了後の(T.Fe)が低すぎる
と、転炉内耐火物に付着している全チャージ分スラグ中
のP2O5が還元され、溶銑中のりん濃度(溶銑りん濃度)
よりも吹錬終了後のりん濃度(吹止りん濃度)の方が高
くなるといった、いわゆる復りん現象が生じる。図1
は、吹錬終了時の(T.Fe)と脱りん率との関係を調べた
もので、実験は、240トン転炉にて脱珪・脱りん処理
後の高炉溶銑に対して酸素吹錬を行ったものであり、
(T.Fe)は出鋼時に炉内の溶鋼上に浮かぶスラグを採取
し、冷却後に粉砕して蛍光X線分析法で測定し、吹錬開
始前の溶銑中のりん濃度および吹錬終了後の溶鋼中のり
ん濃度は、真空型光電測光式発光分光分析装置(カント
バック)にて測定した。
BEST MODE FOR CARRYING OUT THE INVENTION Under the circumstances as described above, the inventors of the present invention firstly investigated the appropriate range of (T.Fe) at the end of blowing and ensured the dephosphorization ability and the influence on quality and cost. From the viewpoint of
It has been found that it is preferable to set it within the range of 5% by mass. (T.
The specific reason for defining the lower limit of Fe) is as follows. That is, in the recent hot metal technology, the hot metal dephosphorization treatment for removing phosphorus in the hot metal is widely used, and the dephosphorization operation load in the converter is considerably reduced. In this way, when the phosphorus content in the hot metal is low and the (T.Fe) after the end of blowing is too low, the P 2 O 5 in the slag for the entire charge adhering to the refractory in the converter is Reduced and phosphorus concentration in hot metal (hot metal phosphorus concentration)
A so-called re-phosphorus phenomenon occurs in which the phosphorus concentration after the end of the blowing (the blowing phosphorus concentration) becomes higher than that. Figure 1
Is the relationship between (T.Fe) at the end of blowing and the dephosphorization rate. In the experiment, oxygen blowing is performed on the blast furnace hot metal after desiliconization and dephosphorization in a 240 ton converter. Was done,
(T.Fe) is the slag floating on the molten steel in the furnace at the time of tapping, collected after cooling, measured by fluorescent X-ray analysis, and measured by phosphorus X-ray analysis before the start of blowing and after the completion of blowing. The phosphorus concentration in the molten steel was measured by a vacuum photoelectric photometric emission spectrophotometer (Cantovac).

【0022】この図1に示す如く(T.Fe)が10質量%
未満になると復りん現象が発生するため、再度、脱りん
のための吹錬が必要となる。一方、(T.Fe)の上限を1
5質量%としたのは、図1に示す様に(T.Fe)が15質
量%を超えても脱りん率はほぼ一定であり、前述した様
に(T.Fe)が増加するほど品質面およびコスト面に与え
る悪影響が大きくなるからである。
As shown in FIG. 1, (T.Fe) is 10% by mass.
When the amount is less than the above value, a re-phosphorization phenomenon occurs, and therefore blowing again for dephosphorization is required. On the other hand, the upper limit of (T.Fe) is 1
5% by mass means that the dephosphorization rate is almost constant even if (T.Fe) exceeds 15% by mass as shown in Fig. 1, and as described above, the quality increases as (T.Fe) increases. This is because the adverse effect on the surface and cost will be great.

【0023】本発明者らは、この様に吹錬終了時の(T.
Fe)を10〜15質量%の範囲内とすべく、具体的な制
御方法について種々の実験を重ねた。その結果、吹錬終
了時のスラグ量と吹錬終了時のスラグ中のMgO濃度とが
ある一定の関係を満たすよう制御することが大変有効で
あることを見出した。以下、詳細に説明する。
The inventors of the present invention have thus described (T.
Various experiments were repeated for a specific control method so that Fe) was within the range of 10 to 15 mass%. As a result, we found that it is very effective to control the amount of slag at the end of blowing and the MgO concentration in the slag at the end of blowing to satisfy a certain relationship. The details will be described below.

【0024】吹錬終了時の(T.Fe)は、吹錬終了時のス
ラグ中のMgO濃度[以下(MgO)と示す]と相関関係があ
り、更にこの(T.Fe)と(MgO)の相関関係を一次式で
表した場合、その勾配が吹錬終了時のスラグ量の関数で
表されることを見出した。図2は、スラグ量等の異なる
種々の溶銑の吹錬を行い、吹錬終了時(吹錬終了温度:
1640〜1660℃)の(T.Fe)と(MgO)の関係を
スラグ量別に示したものである。実験は、240トン転
炉にて脱珪・脱りん処理後の高炉溶銑に対して酸素吹錬
を行い、(T.Fe)および(MgO)は吹錬終了後の炉内溶
鋼上から採取したスラグを蛍光X線分析に供して測定し
た。またスラグ量は、前記(T.Fe)および(MgO)と同
様の方法で求めた(CaO)と、吹錬開始前、吹錬中およ
び吹錬終了後出鋼前に炉内へ挿入した生石灰および軽焼
ドロマイト等のCaO分から計算した。
The (T.Fe) at the end of the blowing has a correlation with the MgO concentration in the slag at the end of the blowing [hereinafter referred to as (MgO)], and this (T.Fe) and (MgO) It was found that, when the correlation of the above was expressed as a linear expression, the gradient was expressed as a function of the slag amount at the end of blowing. In FIG. 2, various kinds of hot metal having different amounts of slag and the like are blown, and at the end of blowing (blowing end temperature:
The relationship between (T.Fe) and (MgO) at 1640 to 1660 ° C) is shown for each slag amount. In the experiment, blast furnace hot metal after desiliconization and dephosphorization treatment was oxygen-blown in a 240-ton converter, and (T.Fe) and (MgO) were collected from the molten steel in the furnace after the completion of blowing. The slag was subjected to fluorescent X-ray analysis and measured. The amount of slag was calculated by the same method as (T.Fe) and (MgO) above (CaO), and quick lime was inserted into the furnace before the start of blowing, during blowing and after the completion of blowing before tapping. Calculated from CaO content of light burned dolomite, etc.

【0025】この図2における関係を一次式として定式
化すると、吹錬終了時の(T.Fe)は、一般的な吹錬操業
の終了温度である約1650℃において、下記式(6)
に示す様に(MgO)およびスラグ量(WSLAG)の関数とし
て表される。
When the relationship in FIG. 2 is formulated as a linear expression, (T.Fe) at the end of blowing is about 1650 ° C. which is the end temperature of a general blowing operation, and the following expression (6) is given.
It is expressed as a function of (MgO) and slag amount (W SLAG ).

【0026】 (T.Fe)=0.0045(WSLAG−200)[ (MgO)−21]+7.1 …(6) [式中、WSLAGは吹錬終了時の転炉内スラグ量(kg/
t)を示し、(MgO)は吹錬終了時の転炉内スラグ中の
MgO濃度(質量%)を示す] 従って、吹錬終了時(吹錬終了温度:約1650℃)の
(T.Fe)を10〜15質量%の範囲内に制御するには、
吹錬終了時の(MgO)およびスラグ量が前記式(6)よ
り導かれる下記式(1)を満足するよう制御する必要が
ある。
(T.Fe) = 0.0045 (W SLAG −200) [(MgO) −21] +7.1 (6) [where W SLAG is the amount of slag in the converter at the end of blowing (kg /
t), and (MgO) indicates the MgO concentration (mass%) in the converter slag at the end of blowing.] Therefore, at the end of blowing (blowing end temperature: about 1650 ° C) (T.Fe ) Within the range of 10 to 15% by mass,
It is necessary to control so that (MgO) at the end of blowing and the amount of slag satisfy the following formula (1) derived from the above formula (6).

【0027】 3.0≦0.0045(WSLAG−200)[ (MgO)−21]≦8.0 …(1) [式中、WSLAGは吹錬終了時の転炉内スラグ量(kg/
t)を示し、(MgO)は吹錬終了時の転炉内スラグ中の
MgO濃度(質量%)を示す] 図3は、吹錬終了時のスラグ量(WSLAG)を横軸、(Mg
O)を縦軸に前記式(1)の範囲を示したものである。
吹錬終了温度約1650℃では、スラグ量と(MgO)の
関係が図3に示す範囲内となるようにすれば(T.Fe)を
適正範囲内とすることができるのである。
3.0 ≦ 0.0045 (W SLAG −200) [(MgO) −21] ≦ 8.0 (1) [where W SLAG is the amount of slag in the converter at the end of blowing (kg /
t), and (MgO) indicates the MgO concentration (mass%) in the converter slag at the end of blowing.] FIG. 3 shows the slag amount (W SLAG ) at the end of blowing on the horizontal axis, (Mg
The range of the above formula (1) is shown on the vertical axis of (O).
At a blowing end temperature of about 1650 ° C., if the relationship between the amount of slag and (MgO) is within the range shown in FIG. 3, (T.Fe) can be within the proper range.

【0028】前記式(6)について考察すると、スラグ
量は一般に20〜100kg/t程度であるので、前記
式(6)を(MgO)を変数とした1次式と考えるとその
勾配は負の値を示す。即ち、前記式(6)からは(MgO)
を増加させると(T.Fe)を低減できることが読み取れ
る。この様な傾向が生じる機構は以下の様に説明するこ
とができる。
Considering the equation (6), the amount of slag is generally about 20 to 100 kg / t. Therefore, if the equation (6) is considered as a linear equation with (MgO) as a variable, its gradient is negative. Indicates a value. That is, from the above formula (6), (MgO)
It can be read that (T.Fe) can be reduced by increasing. The mechanism that causes such a tendency can be explained as follows.

【0029】前述の通り、吹錬初期から中期にかけては
溶銑中にCが多量に存在するので、前記反応式(4)に
示す脱炭反応が主反応となる。しかし吹錬末期になると
溶銑中のCが減少するため、前記反応式(4)の脱炭反
応は抑制され、供給酸素は前記反応式(5)のFe酸化反
応に消費されるようになる。(T.Fe)は、前記反応式
(5)に示される酸化物生成反応と下記反応式(7)に
示される還元反応のバランスにより決まるが、吹錬末期
では、前記Fe酸化反応が下記反応式(7)に示す還元反
応よりも優位となるので(T.Fe)が増加する。
As described above, since a large amount of C is present in the hot metal from the early stage to the middle stage of blowing, the decarburization reaction represented by the above reaction formula (4) becomes the main reaction. However, since C in the hot metal decreases at the end of blowing, the decarburization reaction of the reaction formula (4) is suppressed, and the supplied oxygen is consumed in the Fe oxidation reaction of the reaction formula (5). (T.Fe) is determined by the balance between the oxide formation reaction shown in the reaction formula (5) and the reduction reaction shown in the reaction formula (7) below. (T.Fe) increases because it becomes more dominant than the reduction reaction shown in equation (7).

【0030】 FeO+C→ Fe + CO(g) …(7) この様な状況下、一般的な吹錬終了温度である1650
℃近傍において、MgOが飽和溶解度約7%を超えてスラ
グ中に存在する場合、溶解しきれず固体のままのMgOが
スラグ中に存在するのでスラグは固液共存状態となり、
(MgO)の増加に伴いスラグの粘性が増加することとな
る。スラグの粘性が増加すると前記反応式(5)にて生
成するFeOとスラグとの攪拌混合が十分でなくなり、ス
ラグ−溶鋼界面近傍に局所的に(FeO)の高い領域がで
きる。そして前記スラグ−溶鋼界面近傍ではFeOの還元
反応が促進されることから、スラグ中のFeOが低減され
て(T.Fe)が低位となるのである。
FeO + C → Fe + CO (g) (7) Under such circumstances, a typical blowing end temperature is 1650.
At around ℃, when MgO is present in the slag with a saturated solubility of more than about 7%, the slag is in a solid-liquid coexisting state because MgO that is not completely dissolved and remains solid is present in the slag.
The viscosity of slag increases with the increase of (MgO). When the viscosity of the slag increases, the stirring and mixing of FeO and slag generated in the reaction formula (5) become insufficient, and a region of high (FeO) locally occurs near the slag-molten steel interface. Then, since the reduction reaction of FeO is promoted near the slag-molten steel interface, FeO in the slag is reduced and (T.Fe) becomes low.

【0031】次に前記式(1)について考察する。前記
式(1)を(MgO)の1次式と考えた場合、勾配を示す
項がスラグ量の関数となっている。(MgO)が一定でス
ラグ量(WSLAG)が20〜100kg/tの範囲で変化
する場合、スラグ量が増加すると(T.Fe)は減少する。
またMgOによる(T.Fe)低減効果はスラグ量に影響を受
け、スラグ量が増加すると(MgO)が増加しても(T.F
e)低減効果は小さいことが分かった。これらの現象は
次のような機構によるものと考えられる。
Next, the equation (1) will be considered. When the above equation (1) is considered as a linear equation of (MgO), the term indicating the gradient is a function of the slag amount. When (MgO) is constant and the slag amount (W SLAG ) changes in the range of 20 to 100 kg / t, (T.Fe) decreases as the slag amount increases.
Moreover, the (T.Fe) reduction effect of MgO is affected by the amount of slag, and if the amount of slag increases (MgO) increases (TF
e) It was found that the reduction effect was small. It is considered that these phenomena are due to the following mechanism.

【0032】前記反応式(5)に示すFeO生成反応は酸
素供給が律速であるので、酸素供給量が同じであれば、
スラグ量が異なる場合であってもFeO生成量は等しい。
(T.Fe)は、FeO等に占めるFe量のスラグ量に対する割
合を表したものであるから、FeO生成量が同一(Fe量が
ほぼ同一)の場合にはスラグ量の増加に伴い(T.Fe)の
値が減少するのである。
In the FeO production reaction shown in the above reaction formula (5), the oxygen supply is rate-determining, so if the oxygen supply amount is the same,
Even if the slag amount is different, the FeO production amount is the same.
(T.Fe) represents the ratio of the amount of Fe in FeO to the amount of slag. Therefore, when the amount of FeO produced is the same (the amount of Fe is almost the same), the amount of slag increases (T.Fe). The value of .Fe) decreases.

【0033】またスラグ量が増加した場合、(MgO)が
増加しても(T.Fe)低減効果が小さいのは、スラグ量が
増加するとFeOが生成してもスラグにより希釈され、前
記スラグ−溶鋼界面近傍におけるFeO量が少なく、従っ
てFeOの還元速度が小さくなるためであると考えられ
る。
When the amount of slag increases, the effect of reducing (T.Fe) is small even if the amount of (MgO) increases. The reason is that even if FeO is generated when the amount of slag increases, the FeO is diluted by the slag. It is considered that this is because the amount of FeO in the vicinity of the molten steel interface is small and therefore the reduction rate of FeO is small.

【0034】以上では、一般的な吹錬操業での吹錬終了
温度である約1650℃にて(T.Fe)を制御することに
ついて検討してきたが、吹錬終了温度は、目的とする鋼
種の成分によって多少異なり、各鋼種の凝固温度に応じ
て大凡1610℃〜1700℃の範囲内で変化する。
In the above, control of (T.Fe) at about 1650 ° C., which is the blowing end temperature in a general blowing operation, has been examined, but the blowing end temperature is the target steel grade. It varies somewhat depending on the composition of No. 1, and changes in the range of approximately 1610 ° C to 1700 ° C depending on the solidification temperature of each steel type.

【0035】この様に吹錬終了温度が変化すると、図4
に示すようにスラグ中のMgO飽和溶解度が変化する。よ
ってスラグ中のMgO量が一定であっても、吹錬終了温度
が変化するとスラグの固相率が変化し、前記反応式
(5)にて生成するFeOのスラグ中への拡散速度が変化
するのである。吹錬終了温度が高く従ってスラグ中MgO
飽和溶解度が高い場合には、スラグの固相率が低いので
スラグ中へFeOが拡散しやすい。一方、吹錬終了温度が
低い場合には、スラグ中MgO飽和溶解度が低くスラグの
固相率が高くなるので、前記FeOは、スラグ中へ拡散し
にくくスラグ−溶鋼界面近傍に留まり、前記反応式
(7)に示す還元反応が生じて(T.Fe)が低減されると
いったことが生じる。
When the blowing end temperature changes in this way, FIG.
As shown in, the MgO saturation solubility in the slag changes. Therefore, even if the amount of MgO in the slag is constant, the solid fraction of the slag changes when the blowing end temperature changes, and the diffusion rate of FeO generated in the reaction formula (5) into the slag changes. Of. Blowing end temperature is high, therefore MgO in slag
When the saturated solubility is high, the solid phase ratio of slag is low, so that FeO easily diffuses into the slag. On the other hand, when the blowing end temperature is low, since the MgO saturated solubility in the slag is low and the solid fraction of the slag is high, the FeO hardly diffuses into the slag and remains near the slag-molten steel interface, and the reaction formula The reduction reaction shown in (7) occurs and (T.Fe) is reduced.

【0036】この様に吹錬終了時の(T.Fe)は、吹錬終
了時のスラグ量および(MgO)が一定であっても、吹錬
終了温度により変動することから、本発明者らは、(T.
Fe)をより高精度に制御するには、下記式(9)に示す
如く前記式(6)に吹錬終了温度の項を導入することが
有効であることを見出した。
As described above, since the (T.Fe) at the end of blowing varies depending on the end temperature of blowing, even if the slag amount and (MgO) at the end of blowing are constant, the present inventors Is (T.
In order to control Fe) with higher accuracy, it was found that it is effective to introduce the term of the blowing end temperature into the formula (6) as shown in the following formula (9).

【0037】 (T.Fe)=0.0045(WSLAG−200)[ (MgO)−21]−0.040TTD+74 …(8) [式中、WSLAGは吹錬終了時の転炉内スラグ量(kg/
t)を示し、(MgO)は吹錬終了時の転炉内スラグ中の
MgO濃度(質量%)を示し、TTDは吹錬終了温度
(℃)を示す] 前記式(8)から、吹錬終了時の(T.Fe)を10〜15
質量%に制御するための条件として下記式(2)を導く
ことができる。
(T.Fe) = 0.0045 (W SLAG −200) [(MgO) −21] −0.040T TD +74 (8) [wherein W SLAG is the amount of slag in the converter at the end of blowing ( kg /
t), (MgO) indicates the MgO concentration (mass%) in the slag in the converter at the end of blowing, and T TD indicates the blowing end temperature (° C.)] 10 to 15 (T.Fe) at the end of smelting
The following formula (2) can be derived as a condition for controlling the mass%.

【0038】 −64.0≦0.0045(WSLAG−200)[ (MgO)−21]−0.040TTD≦−59.0 …(2) [式中、WSLAGは吹錬終了時の転炉内スラグ量(kg/
t)を示し、(MgO)は吹錬終了時の転炉内スラグ中のM
gO濃度(質量%)を示し、TTDは吹錬終了温度(℃)を
示す] 図5および図6は、例として吹錬終了温度1620℃と
1680℃のそれぞれの場合について、吹錬終了時のス
ラグ量(WSLAG)を横軸、(MgO)を縦軸に前記式(2)
の範囲を示したものであり、吹錬終了温度1620℃お
よび1680℃では、スラグ量と(MgO)の関係がそれ
ぞれ図5または図6に示す領域を満たすようにすれば
(T.Fe)を10〜15質量%の範囲内とすることができ
るのである。
−64.0 ≦ 0.0045 (W SLAG −200) [(MgO) −21] −0.040T TD ≦ −59.0 (2) [where W SLAG is the amount of slag in the converter at the end of blowing (kg /
t), and (MgO) is M in the slag in the converter at the end of blowing.
gO concentration (mass%) is shown, and T TD shows the blowing end temperature (° C)] FIG. 5 and FIG. 6 are, for example, when the blowing end temperature is 1620 ° C. and 1680 ° C. Slag amount (W SLAG ) on the horizontal axis and (MgO) on the vertical axis in the above formula (2)
At the blowing end temperatures of 1620 ° C. and 1680 ° C., if the relationship between the amount of slag and (MgO) satisfies the regions shown in FIG. 5 or 6, respectively (T.Fe) It can be set within the range of 10 to 15% by mass.

【0039】本発明は、式(1)または式(2)を満た
すための具体的操業方法まで規定するものではなく種々
の操業方法を採用することができるが、目標値とする
(MgO)と吹錬終了温度(TTD)を設定し、スラグ量(W
SLAG)が式(1)または式(2)の範囲内となるよう、
添加する生石灰量、軽焼ドロマイト量および昇熱用Fe
Si量を計算し、挿入するといった方法が操業方法とし
て挙げられる。
The present invention does not specify a specific operating method for satisfying the expression (1) or the expression (2), and various operating methods can be adopted, but the target value (MgO) is used. Set the blowing end temperature (T TD ) and set the slag amount (W
SLAG ) is within the range of formula (1) or formula (2),
Amount of quicklime added, amount of lightly burnt dolomite and Fe for heating
A method of calculating the amount of Si and inserting it is an operation method.

【0040】[0040]

【実施例】以下、実施例を挙げて本発明をより具体的に
説明するが、本発明はもとより下記実施例によって制限
を受けるものではなく、前・後記の趣旨に適合し得る範
囲で適当に変更を加えて実施することも可能であり、そ
れらはいずれも本発明の技術的範囲に含まれる。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and may be appropriately applied within a range compatible with the gist of the preceding and the following. Modifications can be made and implemented, and all of them are included in the technical scope of the present invention.

【0041】実施例1 240トン転炉にて、脱珪・脱りん処理後の高炉溶銑を
用い、吹錬終了温度をほぼ1650℃とする吹錬実験を
行った。(T.Fe)および(MgO)は吹錬終了後の炉内溶
鋼上から採取したスラグを蛍光X線分析に供して測定し
た。吹錬終了時のスラグ量(WSLAG)は、前記(T.Fe)
および(MgO)と同様の方法で求めた(CaO)と、吹錬開
始前、吹錬中および吹錬終了後出鋼前に炉内へ挿入した
生石灰および軽焼ドロマイト等のCaO分から計算した。
また吹錬終了温度(TTD)、即ち吹錬終了時の静止鋼浴
面から約500mm深さ点での溶鋼の温度は、測温用の
熱電対が組み込まれたプローブを先端に装着したサブラ
ンスを溶鋼中に浸漬させて測定した。
Example 1 A blowing experiment was conducted in a 240 ton converter using blast furnace hot metal after desiliconization and dephosphorization at a blowing end temperature of about 1650 ° C. (T.Fe) and (MgO) were measured by subjecting the slag collected from the molten steel in the furnace after the completion of blowing to fluorescent X-ray analysis. The amount of slag (W SLAG ) at the end of blowing is the above (T.Fe)
And (MgO) were calculated by the same method as (CaO) and CaO contents of quicklime and light-burnt dolomite inserted into the furnace before the start of blowing, during blowing and after the end of blowing before tapping.
Further, the blowing end temperature (T TD ), that is, the temperature of the molten steel at a depth of about 500 mm from the stationary steel bath surface at the end of blowing is the sublance equipped with a probe incorporating a thermocouple for temperature measurement at the tip. Was immersed in molten steel for measurement.

【0042】前記吹錬終了時のスラグ量(WSLAG)、(M
gO)および(T.Fe)並びに吹錬終了温度(TTD)を測定
した結果を表1および表2に示す。
The amount of slag (W SLAG ) at the end of the blowing , (M
The results of measuring gO) and (T.Fe) and the blowing end temperature (T TD ) are shown in Tables 1 and 2.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】表1および表2より、前記式(1)を満た
すようスラグ量(WSLAG)および(MgO)を調整した表1
のNo.1〜15では、(T.Fe)を10〜15質量%の
範囲内とすることができたのに対し、スラグ量
(WSLAG)および(MgO)を制御しなかった表2のNo.
1〜13では、いずれも(T.Fe)が10〜15質量%の
範囲から外れていることがわかる。
From Tables 1 and 2, Table 1 in which the slag amounts (W SLAG ) and (MgO) were adjusted so as to satisfy the above formula (1)
No. In No. 1 to No. 15 of Table 2, (T.Fe) could be controlled within the range of 10 to 15% by mass, while the slag amount (W SLAG ) and (MgO) were not controlled.
It can be seen that in all of 1 to 13, (T.Fe) is out of the range of 10 to 15% by mass.

【0046】実施例2 240トン転炉にて、脱珪脱りん処理後の高炉溶銑を用
い、吹錬終了温度(T TD)を表3および表4に示すよう
に1610〜1700℃の間で変化させて吹錬実験を行
った。
[0046]Example 2 Uses blast furnace hot metal after desiliconization and dephosphorization in a 240 ton converter
The blowing end temperature (T TD) As shown in Tables 3 and 4
The blowing experiment was performed by changing the temperature between 1610 and 1700 ℃.
It was.

【0047】尚、吹錬終了時のスラグ量(WSLAG)、(M
gO)および(T.Fe)並びに吹錬終了温度(TTD)は前記
実施例1と同様にして測定した。
The amount of slag at the end of blowing (W SLAG ), (M
gO) and (T.Fe) and the blowing end temperature (T TD ) were measured in the same manner as in Example 1 above.

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【表4】 [Table 4]

【0050】表3および表4より、前記式(2)を満た
すようスラグ量(WSLAG)、(MgO)および吹錬終了温度
を調整した表3のNo.1〜15では、(T.Fe)を10
〜15質量%の範囲内とすることができたのに対し、ス
ラグ量(WSLAG)および(MgO)を制御しなかった表4の
No.1〜15では、いずれも(T.Fe)が10〜15質
量%の範囲から外れていることがわかる。
From Tables 3 and 4, the slag amounts (W SLAG ), (MgO) and the blowing end temperature were adjusted so as to satisfy the above expression (2). In 1 to 15, (T.Fe) is 10
The amount of slag (W SLAG ) and (MgO) were not controlled, while the amount could be within the range of 15 mass% to 15% by mass. It can be seen that in all of 1 to 15, (T.Fe) is out of the range of 10 to 15 mass%.

【0051】[0051]

【発明の効果】本発明によれば、従来技術の如く吹錬に
おいて底吹ガスによる強攪拌や吹錬末期における上吹酸
素供給量の低減を行わなくとも(T.Fe)を精度よく低位
に制御することができ、脱りん能を確保しつつ鋼材の品
質およびコストに悪影響を与えない範囲にまでスラグ中
の鉄系酸化物を低減できることとなった。
EFFECTS OF THE INVENTION According to the present invention, (T.Fe) can be accurately lowered to a low level without performing strong agitation by bottom blowing gas or reducing the amount of top blowing oxygen at the end of blowing in blowing as in the prior art. It has become possible to control the amount of iron-based oxides in the slag to the extent that it does not adversely affect the quality and cost of the steel material while maintaining the dephosphorization ability.

【図面の簡単な説明】[Brief description of drawings]

【図1】吹錬終了時の(T.Fe)と脱りん率の関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between (T.Fe) at the end of blowing and the dephosphorization rate.

【図2】吹錬終了時の(MgO)と(T.Fe)の関係をスラ
グ量別に示したグラフである。
FIG. 2 is a graph showing the relationship between (MgO) and (T.Fe) at the end of blowing by slag amount.

【図3】前記式(1)における本発明の規定範囲を例示
したグラフである。
FIG. 3 is a graph exemplifying the specified range of the present invention in the formula (1).

【図4】吹錬終了温度(TTD)とスラグ中MgO飽和溶解
度の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the blowing end temperature (T TD ) and the MgO saturated solubility in slag.

【図5】吹錬終了温度を1620℃とした場合の前記式
(2)における本発明の規定範囲を例示したグラフであ
る。
FIG. 5 is a graph exemplifying the specified range of the present invention in the formula (2) when the blowing end temperature is 1620 ° C.

【図6】吹錬終了温度を1680℃とした場合の前記式
(2)における本発明の規定範囲を例示したグラフであ
る。
FIG. 6 is a graph exemplifying the specified range of the present invention in the formula (2) when the blowing end temperature is 1680 ° C.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 貴 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 稲葉 岳志 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 Fターム(参考) 4K070 AB06 AB13 AB18 AC03 BC01 BE04 BE05 EA02 EA06 EA07   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takashi Fujita             1 Kanazawa Town, Kakogawa City, Hyogo Prefecture             To Steel Works, Kakogawa Works (72) Inventor Takeshi Inaba             1 Kanazawa Town, Kakogawa City, Hyogo Prefecture             To Steel Works, Kakogawa Works F-term (reference) 4K070 AB06 AB13 AB18 AC03 BC01                       BE04 BE05 EA02 EA06 EA07

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 吹錬に際して、吹錬終了時の転炉内スラ
グ量と該スラグ中のMgO濃度が下記式(1)を満たす
ようにすることを特徴とする転炉吹錬方法。 3.0≦0.0045(WSLAG−200)[ (MgO)−21]≦8.0 …(1) [式中、WSLAGは吹錬終了時の転炉内スラグ量(kg/
t)を示し、(MgO)は吹錬終了時の転炉内スラグ中の
MgO濃度(質量%)を示す]
1. A blowing method for a converter, wherein the amount of slag in the converter at the end of the blowing and the MgO concentration in the slag satisfy the following formula (1) during the blowing. 3.0 ≦ 0.0045 (W SLAG −200) [(MgO) −21] ≦ 8.0 (1) [In the formula, W SLAG is the amount of slag in the converter at the end of blowing (kg /
t), and (MgO) indicates the MgO concentration (mass%) in the converter slag at the end of blowing.]
【請求項2】 吹錬に際して、吹錬終了時の転炉内スラ
グ量、該スラグ中のMgO濃度および吹錬終了温度が下
記式(2)を満たすようにすることを特徴とする転炉吹
錬方法。 −64.0≦0.0045(WSLAG−200)[ (MgO)−21]−0.040TTD≦−59.0 …(2) [式中、WSLAGは吹錬終了時の転炉内スラグ量(kg/
t)を示し、(MgO)は吹錬終了時の転炉内スラグ中の
MgO濃度(質量%)を示し、TTDは吹錬終了温度
(℃)を示す]
2. A converter blower characterized in that upon blowing, the amount of slag in the converter at the end of blowing, the MgO concentration in the slag, and the blowing end temperature satisfy the following formula (2). Ren method. −64.0 ≦ 0.0045 (W SLAG −200) [(MgO) −21] −0.040T TD ≦ −59.0 (2) [W SLAG is the amount of slag in the converter at the end of blowing (kg /
t), (MgO) indicates the MgO concentration (mass%) in the converter slag at the end of blowing, and T TD indicates the blowing end temperature (° C)]
JP2001341146A 2001-11-06 2001-11-06 Converter blowing method Expired - Lifetime JP3902446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001341146A JP3902446B2 (en) 2001-11-06 2001-11-06 Converter blowing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001341146A JP3902446B2 (en) 2001-11-06 2001-11-06 Converter blowing method

Publications (2)

Publication Number Publication Date
JP2003147427A true JP2003147427A (en) 2003-05-21
JP3902446B2 JP3902446B2 (en) 2007-04-04

Family

ID=19155229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001341146A Expired - Lifetime JP3902446B2 (en) 2001-11-06 2001-11-06 Converter blowing method

Country Status (1)

Country Link
JP (1) JP3902446B2 (en)

Also Published As

Publication number Publication date
JP3902446B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
JP2013234379A (en) Method for melting extra-low phosphor and extra-low sulfur steel
RU2007118927A (en) AISI 4xx FERRITE STEEL GROUP STAINLESS STEEL PRODUCTION IN ACP CONVERTER
JP2006233264A (en) Method for smelting high-chromium molten steel
JP3885387B2 (en) Method for producing ultra-low sulfur steel with excellent cleanability
JP2015042777A (en) Method for smelting high nitrogen steel
JP2006206957A (en) Method for recovering manganese from slag produced when manufacturing manganese-based ferroalloy
JP4499969B2 (en) Desulfurization method by ladle refining of molten steel
JP2018100427A (en) Method for producing low sulfur steel
JP4687103B2 (en) Melting method of low carbon aluminum killed steel
Fruehan Overview of steelmaking processes and their development
JP2005015889A (en) Method for preventing effluence of slag in converter
JP4686917B2 (en) Melting method of molten steel in vacuum degassing equipment
JP2003147427A (en) Blowing method in converter
RU2465337C1 (en) Method of steelmaking in basic oxygen converter
JP4411934B2 (en) Method for producing low phosphorus hot metal
JP2002030330A (en) Method for heating molten steel in vacuum refining furnace
KR100977795B1 (en) Manufacturing method of clean steel
JP2004277830A (en) Steelmaking method in converter
JPH08104911A (en) Method for melting phosphorus-containing steel
JPH0925507A (en) Method for refining molten steel
RU2118376C1 (en) Method of producing vanadium slag and naturally vanadium-alloyed steel
JP3994641B2 (en) Manufacturing method of high clean ultra low carbon steel
JP3424163B2 (en) Method for producing ultra low carbon steel with low V content
JP3680385B2 (en) Demanganese process for hot metal
JPH06108137A (en) Method for melting low sulfur steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060705

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061228

R150 Certificate of patent or registration of utility model

Ref document number: 3902446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

EXPY Cancellation because of completion of term