JP2003145633A - Method for manufacturing composite precise optical element, and composite precise optical element - Google Patents

Method for manufacturing composite precise optical element, and composite precise optical element

Info

Publication number
JP2003145633A
JP2003145633A JP2001343278A JP2001343278A JP2003145633A JP 2003145633 A JP2003145633 A JP 2003145633A JP 2001343278 A JP2001343278 A JP 2001343278A JP 2001343278 A JP2001343278 A JP 2001343278A JP 2003145633 A JP2003145633 A JP 2003145633A
Authority
JP
Japan
Prior art keywords
light
transmitting portion
optical element
transmitting
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001343278A
Other languages
Japanese (ja)
Inventor
Toshihiro Kanematsu
俊宏 金松
Hidenobu Kishi
秀信 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001343278A priority Critical patent/JP2003145633A/en
Publication of JP2003145633A publication Critical patent/JP2003145633A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily and surely manufacture an array-like plastic optical element comprising a light transmission part having a high light utility ratio (brightness) a high resolution with a lens pitch size of 1 m or less, an open area ratio of 90% or more and a shape accuracy of a lens of 0.1 μm or less and a non-light transmission part, and to devise a method for manufacturing for reducing the manufacturing cost as low as possible. SOLUTION: The method for manufacturing the composite precise optical element having the light transmission part having a mirror surface and the non-light transmission part for absorbing a light between the adjacent light transmission parts and its periphery comprises a step (primary working step) of forming a substantially final shape, and a step (secondary working step) of simultaneously performing narrowing the non-light transmission part and transferring the mirror surface shape to the surface of the light transmission part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、複数の部材で構成さ
れる高精度なプラスチック成形品(特にマルチなレン
ズ、ミラー等の光学素子)に関するものであり、複写
機、ファクシミリ、固体走査型プリンタ等の光走査系に
用いられるプラスチックレンズ及び光伝送の導波路等に
応用可能なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-precision plastic molded product composed of a plurality of members (in particular, optical elements such as multi-lens and mirror), and is a copying machine, a facsimile, a solid scanning printer. The present invention can be applied to a plastic lens used in an optical scanning system such as the above and an optical transmission waveguide.

【0002】[0002]

【従来の技術】レンズ等が複数あるアレイ状光学素子に
おいて、更なる高解像度と高光利用率(明るさ)化が求
められている。それらを満たすには、レンズ間の狭ピッ
チ化、高開口率化、高形状精度化が必要である。レンズ
の開口率を高めるには、アパーチャ部分(遮光部の一
部)を狭める必要があるが、アパーチャ部分を狭める
と、光学素子内部の非透過部に光が照射されて全反射が
起きてしまう(図1、ゴースト光の発生参照)。これを
なくすためには光学機能を有する光透過部と非光透過部
との屈折率差を極めて小さくする必要がある。例えば入
射角度を1度とした場合、その屈折率差は0.0002
以内が必要である。これぐらい微小に屈折率が違う種類
の樹脂の組み合わせはほとんど無い(表1参照)。 逆に言うと同じ種類の樹脂を使用する必要があり、例え
ば、光透過材料にPC(ポリカーボネイト)を使用した
場合は、非光透過材にもPC(カーボンブラック含有)
を使用する方が良い。
2. Description of the Related Art In arrayed optical elements having a plurality of lenses and the like, higher resolution and higher light utilization rate (brightness) are required. To meet these requirements, it is necessary to reduce the pitch between lenses, increase the aperture ratio, and improve the shape accuracy. In order to increase the aperture ratio of the lens, it is necessary to narrow the aperture part (a part of the light shielding part), but if the aperture part is narrowed, the non-transmissive part inside the optical element is irradiated with light and total reflection occurs. (See Figure 1, Generation of Ghost Light). In order to eliminate this, it is necessary to make the difference in refractive index between the light transmitting portion having an optical function and the non-light transmitting portion extremely small. For example, when the incident angle is 1 degree, the difference in refractive index is 0.0002.
Must be within. There are almost no combinations of resins with such minute differences in refractive index (see Table 1). Conversely, it is necessary to use the same type of resin. For example, when PC (polycarbonate) is used as the light transmitting material, PC (containing carbon black) is also used as the non-light transmitting material.
Better to use.

【0003】狭ピッチ化、高開口率化について 狭ピッチ化することにより、同じ寸法あるいは面積に多
くのレンズを有することになる。例えば、1次元に配置
したレンズピッチ間寸法が1mmとし開口率を90%と
すると、非光透過部の厚さは0.1mmとなる。上記の
ように、光透過部材と非光透過部材の材料は同種類が最
も良いが、反面、同材料を使用すると、光透過部形状を
作り込んだ後に非光透過部材をインサートして射出成形
する必要が出てくる(なお、フィルム状非透過部材を挿
入しても良いが、この場合は時間を要するので非効率的
である)。しかしながら、射出成形で実現可能な非光透
過部の厚さは0.1mmが限界であり、これ以下にする
加工は非常に困難である。したがって、これ以上の狭ピ
ッチ化、高開口率化はほとんど不可能である。レンズの
形状精度については、例えば寸法300mm、厚み2m
mのアレイ状光学素子を射出成形した場合、精度が低い
箇所で0.2μmであり、これ以上の高精度は射出成形
ではほとんど不可能である。
Narrow pitch and high aperture ratio By narrowing the pitch, many lenses are provided in the same size or area. For example, when the dimension between lens pitches arranged one-dimensionally is 1 mm and the aperture ratio is 90%, the thickness of the non-light-transmitting portion is 0.1 mm. As mentioned above, it is best to use the same material for the light-transmissive member and the non-light-transmissive member, but if you use the same material, insert the non-light-transmissive member after injection molding the shape of the light-transmissive part. (In addition, a film-shaped non-transmissive member may be inserted, but in this case, it takes time, which is inefficient.) However, the thickness of the non-light-transmitting portion that can be realized by injection molding is limited to 0.1 mm, and it is very difficult to process the thickness less than this. Therefore, it is almost impossible to further reduce the pitch and increase the aperture ratio. Regarding the shape accuracy of the lens, for example, the dimension is 300 mm and the thickness is 2 m.
When an m-shaped arrayed optical element is injection-molded, the precision is 0.2 μm at a low position, and a higher precision than this is almost impossible by injection molding.

【0004】次いで、従来技術の具体例について説明す
る。特開2000−227505号公報に記載されたレ
ンズアレイの製造方法においては、先ずレンズを成形
し、次いで遮光部に黒色塗装を施す方法である。同公報
にはレンズ成形方法についての記載はないが、射出成形
であれば、高精度なものは得られない。また、遮光部に
黒色塗装を施すが、その屈折率が同じになるように材料
を調合するのは非常にコストがかかってしまう。また
は、開口率が低く光有効利用率が低い光学素子しか得ら
れない欠点がある。
Next, a specific example of the prior art will be described. In the lens array manufacturing method described in Japanese Patent Laid-Open No. 2000-227505, the lens is first molded, and then the light-shielding portion is painted black. Although there is no description of a lens molding method in the publication, highly accurate molding cannot be obtained by injection molding. Further, although black coating is applied to the light-shielding portion, it is very costly to mix the materials so that the refractive indexes are the same. Alternatively, there is a drawback that only an optical element having a low aperture ratio and a low light effective utilization rate can be obtained.

【0005】これに対して、特開昭55−90923号
公報に示す方法では、次の1乃至3の問題がある。 1.アクリル層及び遮光板を交互に積層して接着または
融着させてできたブロックをコンプレッション(加熱加
圧)成形する方法では、薄い遮光部を形成することが可
能であり、高精度なレンズの成形も可能であり、また、
レンズ間ピッチを小さくすることもでき、高精度な光学
素子を得ることができる。しかし、交互に積層する方法
は非常に長時間を要するので、加工効率(加工時間)が
悪いという問題がある。例えば、全長300mm、1m
mピッチの場合、積層部が600箇所にもなる(図2参
照)。 2.アクリル樹脂(非光透過部材)をインジェクション
(射出成形)してレンズ支持体(非光透過部)を覆い、
コンプレッション成形(もっぱらレンズ成形のための加
熱加圧)により製造する方法である。これは、射出成形
を使用しているため、非光透過部の厚さを0.1mm以
下にすることは実際上できないので、それ以上開口率を
高めることはできない(図3参照)。 3.レンズピッチ間に切削加工又はレーザー加工による
切込みを入れ、その切り込み部分に不透明板又は墨入れ
等により、遮光層を形成し、コンプレッション成形を行
う製造方法は、切削加工による切込みのため、加工に長
時間を要し、切削速度を上げると材料が溶着し、また、
切りくずの処理等の問題がある。また、レーザー加工に
よる切込みは、加工に長時間を要し、材料の熱膨張で寸
法精度が悪化し、直線加工しかできない等の問題があ
り、他方、不透明板を入れる方法は、挿入に長時間を要
するという問題があり、墨入れは上記のような問題があ
る(図4参照)。
On the other hand, the method disclosed in JP-A-55-90923 has the following problems 1 to 3. 1. In the method of compression-molding a block made by alternately laminating acrylic layers and light-shielding plates and adhering or fusing them together, it is possible to form a thin light-shielding part and to form a highly accurate lens. Is also possible, and also
It is also possible to reduce the pitch between the lenses and obtain a highly accurate optical element. However, the method of stacking layers alternately requires a very long time, and thus has a problem that processing efficiency (processing time) is poor. For example, total length 300mm, 1m
In the case of the m pitch, there are 600 laminated portions (see FIG. 2). 2. Acrylic resin (non-light transmitting member) is injected (injection molding) to cover the lens support (non-light transmitting portion),
This is a method of manufacturing by compression molding (heating and pressurization for lens molding). Since this uses injection molding, it is practically impossible to reduce the thickness of the non-light-transmitting portion to 0.1 mm or less, so that the aperture ratio cannot be further increased (see FIG. 3). 3. A manufacturing method in which a notch is formed between the lens pitches by cutting or laser processing, a light-shielding layer is formed on the notched portion by an opaque plate or inking, and compression molding is performed It takes time, the material is welded when cutting speed is increased,
There are problems such as chip disposal. In addition, cutting by laser processing has a problem that it takes a long time to process, the dimensional accuracy deteriorates due to thermal expansion of the material, and only linear processing is possible, while the method of inserting an opaque plate requires a long time for insertion. There is a problem that the black ink is required, and the black ink has the above problem (see FIG. 4).

【0006】[0006]

【解決しようとする課題】そこで、この発明は、レンズ
ピッチ間寸法が1mm以下、開口率を90%以上、レン
ズの形状精度0.1μm以下の高解像度と高光利用率
(明るさ)の光透過部と非光透過部とからなるアレイ状
のプラスチック光学素子を容易かつ確実に製造すること
ができ、かつその製造コストを可及的に低減できる製造
方法を工夫することをその課題とするものである。
Therefore, according to the present invention, a light transmission with a high resolution and a high light utilization rate (brightness) of a lens pitch dimension of 1 mm or less, an aperture ratio of 90% or more, and a lens shape accuracy of 0.1 μm or less. It is an object of the present invention to devise a manufacturing method capable of easily and reliably manufacturing an array-shaped plastic optical element consisting of a light-transmitting portion and a non-light-transmitting portion and reducing the manufacturing cost as much as possible. is there.

【0007】[0007]

【課題解決のために講じた手段】[Measures taken to solve the problem]

【解決手段1】(請求項1に対応)上記課題解決のため
に講じた手段1は、鏡面を有する光透過部と、その隣り
合う光透過部間及びその周囲に光を吸収する非光透過部
からなる複合精密光学素子の製造方法について、略最終
形状を形成する工程(1次加工工程)と、非光透過部領
域を狭窄することと光透過部表面に鏡面形状を転写する
こととを同時に行う工程(2次加工工程)とによるもの
にしたことである。
SOLUTION 1 (corresponding to claim 1) Means 1 taken for solving the above-mentioned problems is a light transmitting portion having a mirror surface, and a non-light transmitting portion that absorbs light between adjacent light transmitting portions and their surroundings. In a method for manufacturing a composite precision optical element including parts, a step of forming a substantially final shape (primary processing step), a narrowing of a non-light-transmitting portion region, and a mirror-like shape transfer to the surface of the light-transmitting portion. This is due to the simultaneous process (secondary processing process).

【0008】[0008]

【作用】1次加工品の非光透過部が鏡面転写加工時の加
熱加圧による光透過部の内圧によって、均等に狭窄され
て極めて薄くまで圧縮されるから、光透過部の開口率を
確実に90%以上にすることができる。また、1次加工
品についての、2次加工による鏡面転写加工と非光透過
部領域の狭窄加工とを一度に行うから、転写加工、成形
加工精度を高めることができ、非光透過部が光透過部の
圧力によって極めて薄く加工され、さらにこれらの加工
精度のバラツキが小さい。したがって、レンズピッチ間
寸法が1mm以下、開口率を90%以上、レンズの形状
精度0.1μm以下の高解像度と高光利用率(明るさ)
の光透過部と非光透過部とからなるアレイ状のプラスチ
ック光学素子を成形加工することが容易になり、また、
転写加工及び非光透過部領域の狭窄加工の加工サイクル
が短縮されるので、その加工能率が向上され、また、単
一の成形装置で2つの成形加工を行うので、これらの加
工を別々に行う場合に比してこれらの加工装置の設備コ
ストが低減される。なお、非光透過部の狭窄加工を行う
には、上記加熱加圧時において非光透過部が光透過部に
比して軟質であることは必ずしも必要不可欠ではない
が、この狭窄加工をスムーズに行うには、非光透過部が
光透過部に比して軟性であることが必要であり、そのた
めに、非光透過部の材質を光透過部よりも軟化点の低い
材質とするか、あるいは、非光透過部だけを特別に加熱
してこの部分の温度を光透過部よりも高くする方法が採
用される。
The non-light-transmitting portion of the primary processed product is uniformly narrowed and compressed to an extremely thin thickness by the internal pressure of the light-transmitting portion due to the heating and pressing during the mirror surface transfer processing, so that the aperture ratio of the light-transmitting portion can be ensured. Can be 90% or more. In addition, since the mirror surface transfer processing and the constriction processing of the non-light-transmitting portion area of the first-processed product are performed at the same time, the transfer processing and molding processing accuracy can be improved, and the non-light-transmitting portion can be processed by the optical processing. It is processed extremely thin by the pressure of the permeation part, and there is little variation in the processing accuracy. Therefore, the lens pitch is 1 mm or less, the aperture ratio is 90% or more, and the lens shape accuracy is 0.1 μm or less.
It becomes easy to mold and process the array-shaped plastic optical element consisting of the light-transmitting portion and the non-light-transmitting portion of
Since the processing cycle of the transfer processing and the constriction processing of the non-light-transmitting portion region is shortened, the processing efficiency is improved, and since two molding processes are performed by a single molding device, these processes are performed separately. Compared with the case, the equipment cost of these processing devices is reduced. In order to perform the narrowing of the non-light-transmitting portion, it is not essential that the non-light-transmitting portion is softer than the light-transmitting portion at the time of heating and pressurizing, but the narrowing can be performed smoothly. To do so, it is necessary that the non-light-transmitting portion is softer than the light-transmitting portion, and therefore, the material of the non-light-transmitting portion is a material having a lower softening point than the light-transmitting portion, or A method is adopted in which only the non-light-transmitting portion is specially heated so that the temperature of this portion is higher than that of the light-transmitting portion.

【0009】[0009]

【解決手段2】(請求項2に対応)解決手段2は、解決
手段1の製造方法において、(イ)その1次加工工程の
加工方法を、光透過部を射出成形(1次成形)した後
に、その1次成形品上に非光透過部を射出成形(2次成
形)するようにしたことである。
SOLUTION 2 (corresponding to claim 2) The solution means 2 is the manufacturing method of the solution means 1, in which (a) the processing method of the primary processing step is injection molding (primary molding) of a light transmitting portion. After that, the non-light-transmitting portion is injection-molded (secondary molding) on the primary molded product.

【0010】[0010]

【作用】非光透過部の材料を光透過部の材料よりも軟化
点の低い材料とする場合、軟化点が高い光透過部に対し
て軟化点が低い非光透過部が射出成形されることになる
から、非光透過部の射出成形による光透過部への熱的影
響が可及的に低減される。
When the material of the non-light-transmitting portion has a lower softening point than the material of the light-transmitting portion, the non-light-transmitting portion having a low softening point is injection-molded with respect to the light-transmitting portion having a high softening point. Therefore, the thermal influence on the light transmitting portion due to the injection molding of the non-light transmitting portion is reduced as much as possible.

【0011】[0011]

【解決手段3】(請求項3に対応)解決手段3は、解決
手段1において、その2次加工工程の加工方法を次の
(イ)(ロ)のとおりにしたことである。 (イ)その1次加工工程の後、光透過部と比較して低粘
度状態の非光透過部と軟化温度以上に加熱した光透過部
とを、鏡面を有する金型で光透過部を加圧することで、
光透過部を変形させてその領域を広め、当該光透過部の
変形によって非光透過部を延伸させてその領域を狭窄す
ること、(ロ)光透過部表面に鏡面形状を転写し、熱変
形温度以下に冷却した後に金型から取り出すこと。
Solution means 3 (corresponding to claim 3) Solution means 3 is that, in solution means 1, the processing method of the secondary processing step is as described in (a) and (b) below. (A) After the primary processing step, a non-light-transmitting portion having a lower viscosity than the light-transmitting portion and a light-transmitting portion heated to a softening temperature or higher are added to the light-transmitting portion with a mold having a mirror surface. By pressing
By deforming the light transmitting part to widen the area, and by deforming the light transmitting part to stretch the non-light transmitting part to narrow the area, (b) Transfer the mirror surface shape to the surface of the light transmitting part, and thermally deform Remove from mold after cooling below temperature.

【0012】[0012]

【作用】光透過部が軟化温度以上に加熱された状態で金
型で加圧されると、金型による転写加工が成されるとと
もに横方向に膨らみ、これによって低粘度状態の非光透
過部を横方向に加圧する。非光透過部に対するこの横方
向の加圧作用により非光透過部が容易に狭窄加工され
て、低加圧力で滑らかに縦方向に延伸される。したがっ
て、加圧力による非光透過部による光透過部の残留歪み
が可及的に低減され、高い成形精度、光学特性が得られ
る。
When the light transmitting part is heated by the mold while being heated above the softening temperature, the transfer process is performed by the mold and it swells in the lateral direction, whereby the non-light transmitting part in the low viscosity state. Is laterally pressurized. Due to this lateral pressing action on the non-light-transmitting portion, the non-light-transmitting portion is easily constricted and smoothly stretched in the longitudinal direction with a low pressure. Therefore, the residual distortion of the light transmitting part due to the non-light transmitting part due to the applied pressure is reduced as much as possible, and high molding accuracy and optical characteristics can be obtained.

【0013】[0013]

【解決手段4】(請求項4に対応)解決手段4は、解決
手段1において、その2次加工工程の加工方法を次の
(イ)(ロ)のとおりにしたことである。 (イ)光透過部と比較して非光透過部に吸収されて高温
に発熱する波長の光照射による加熱と金型からの接触加
熱とによって、光透過部と非光透過部とを軟化温度以上
に上昇させ、かつ、光透過部に比して非光透過部の温度
を高くし、鏡面を有する金型で光透過部を加圧すること
で、光透過部を変形させてその領域を拡張させ、当該拡
張によって非光透過部を延伸させてその領域を狭窄する
こと、(ロ)光透過部表面に鏡面形状を転写し、熱変形
温度以下に冷却した後に金型から取り出すこと。
Solution means 4 (corresponding to claim 4) Solution means 4 is that, in solution means 1, the processing method of the secondary processing step is as described in (a) and (b) below. (A) Softening temperature of the light-transmitting portion and the non-light-transmitting portion by heating by irradiation with light having a wavelength that is absorbed by the non-light-transmitting portion and generates heat at a high temperature as compared with the light-transmitting portion and by contact heating from the mold. By raising the temperature above and raising the temperature of the non-light-transmitting part compared to the light-transmitting part, and pressing the light-transmitting part with a mold having a mirror surface, the light-transmitting part is deformed and its area is expanded. Then, the non-light-transmitting portion is stretched by the expansion to narrow the area, and (b) the mirror-like shape is transferred to the surface of the light-transmitting portion and is taken out from the mold after being cooled to the heat deformation temperature or lower.

【0014】[0014]

【作用】光照射によって非光透過部を加熱し、また、金
型によって接触加熱することによって、光透過部と非光
透過部とを軟化温度以上に加熱するとともに、非光透過
部を光透過部よりも高温に加熱することができるので、
金型による光透過部に対する転写加工のための加圧力に
よって、非光透過部の狭窄加工がより容易かつ速やかに
遂行される。
[Function] The non-light-transmitting portion is heated by light irradiation, and the light-transmitting portion and the non-light-transmitting portion are heated above the softening temperature by heating the non-light-transmitting portion by contact with the mold, and the non-light-transmitting portion is light-transmitted. Since it can be heated to a higher temperature than the part,
The constriction processing of the non-light-transmitting portion can be performed more easily and quickly by the pressure applied to the light-transmitting portion by the mold for the transfer processing.

【0015】[0015]

【解決手段5】(請求項5に対応)解決手段5は、解決
手段4における光照射の方法が、非光透過部における吸
収性が高く発熱性が高い波長の光を光透過部を通過させ
て非光透過部へ照射させる方法であることである。
SOLUTION 5 (corresponding to claim 5) is a method of irradiating light in the solution means 4, in which light of a wavelength having high absorptivity and high exothermicity in a non-light-transmitting portion is transmitted through the light-transmitting portion. It is a method of irradiating the non-light transmitting portion.

【0016】[0016]

【作用】非光透過部に対する光照射加熱が、光透過部を
通過させて非光透過部へ照射する方法でなされるので、
光透過部間に挟まれている非光透過部の両端だけではな
く内部までほぼ均等に照射加熱されるから、非光透過部
の狭窄加工が均等に、かつ速やかになされ、当該狭窄加
工のバラツキに伴う内部歪みのバラツキが小さく、内部
歪みの不均等による光学特性への悪影響が回避される。
[Function] Since the non-light-transmitting portion is irradiated with light by heating, the non-light-transmitting portion is irradiated with the light so that the non-light-transmitting portion is irradiated.
Since not only both ends of the non-light-transmitting portion sandwiched between the light-transmitting portions but also the inside thereof are irradiated and heated almost uniformly, the narrowing of the non-light-transmitting portion is performed uniformly and quickly, and the variation of the narrowing processing is performed. Variations in internal distortion due to the above are small, and adverse effects on optical characteristics due to uneven internal distortion are avoided.

【0017】[0017]

【解決手段6】(請求項6に対応)解決手段6は、解決
手段1において、非光透過部を、光透過部と同材料に光
を吸収する材料を分散させた非光透過部材としたことで
ある。
SOLUTION 6 (corresponding to claim 6) In the solution means 6, in the solution means 1, the non-light-transmitting part is a non-light-transmitting member in which a material absorbing light is dispersed in the same material as the light-transmitting part. That is.

【0018】[0018]

【作用】非光透過部の基材が光透過部と同じであるか
ら、非光透過部と光透過部と熱特性が同じである。した
がって、光透過部と光非透過部における温度分布や内部
応力が生じ難く、それゆえ、高精度形状の鏡面転写が実
現される。また、光透過部と光非透過部はその屈折率が
同じであるから、光の入射角度の如何にかかわらず、光
学素子の内部反射(光透過部と光非透過部との境界面で
の反射)がほぼ完全に抑制される。さらに、光透過部と
光非透過部とは、その熱膨張係数、水分吸収量に違いは
ないから、温度や湿度などの環境条件の変動による光学
素子内部応力のバラツキが生ぜず、環境条件の変動に関
わらず高形状精度が維持される。なお、上記の「光を吸
収する材料」は、照射される光を効率的に吸収して、照
射発熱する材料であり、赤、黒などの光吸収性が高い各
種の顔料がこれに当たる。
Since the base material of the non-light transmitting portion is the same as that of the light transmitting portion, the non-light transmitting portion and the light transmitting portion have the same thermal characteristics. Therefore, the temperature distribution and the internal stress in the light transmitting portion and the light non-transmitting portion are unlikely to occur, and therefore highly precise mirror surface transfer is realized. Further, since the light transmitting portion and the light non-transmitting portion have the same refractive index, internal reflection of the optical element (at the boundary surface between the light transmitting portion and the light non-transmitting portion) is performed regardless of the incident angle of light. Reflection) is almost completely suppressed. Furthermore, since there is no difference in the thermal expansion coefficient and the moisture absorption amount between the light transmitting portion and the light non-transmitting portion, variations in the internal stress of the optical element due to changes in environmental conditions such as temperature and humidity do not occur, and High shape accuracy is maintained regardless of fluctuations. The "light absorbing material" described above is a material that efficiently absorbs irradiated light and generates heat by irradiation, and various pigments having high light absorbing properties such as red and black correspond to this.

【0019】[0019]

【解決手段7】(請求項7に対応)解決手段7は、解決
手段1において、非光透過部を、光透過部との屈折率差
が0.1以下の材料に光を吸収する材料を分散させた非
光透過部材としたことである。
SOLUTION 7 (corresponding to claim 7) In the solution means 7, the non-light-transmitting portion is made of a material having a refractive index difference of 0.1 or less with respect to the light-transmitting portion. That is, the non-light transmitting member is dispersed.

【0020】[0020]

【作用】屈折率が近似している材料は、その他の物性
(収縮率、熱伝導率、熱変形温度等)が近似しているの
で、光透過部、非光透過部間の温度分布や内部応力分布
のバラツキが生じにくく、したがって、高形状精度の鏡
面転写が実現される。また、光透過部、非光透過部の材
料の屈折率差が0.1以下であるから、入射角度を最小
限度で規制した開口形状にすることにより、光学素子の
内部反射をほぼ完全に抑制することができる。
[Function] Since materials having similar refractive indices are similar in other physical properties (shrinkage rate, thermal conductivity, thermal deformation temperature, etc.), the temperature distribution between the light transmitting portion and the non-light transmitting portion and the internal Variations in the stress distribution are unlikely to occur, and therefore high-precision mirror surface transfer is realized. Further, since the difference in the refractive index between the materials of the light transmitting portion and the non-light transmitting portion is 0.1 or less, the internal reflection of the optical element is almost completely suppressed by forming the aperture shape with the incident angle restricted to the minimum. can do.

【0021】[0021]

【解決手段8】(請求項8に対応)解決手段10は、解
決手段6又は解決手段7における非光透過部の材料に混
入する光吸収材料をカーボンブラック粉末にしたことで
ある。
SOLUTION 8 (corresponding to claim 8) A solution means 10 is that the light absorbing material mixed in the material of the non-light transmitting portion in the solution means 6 or the solution means 7 is carbon black powder.

【0022】[0022]

【作用】カーボンブラックは光吸収性が高く、またその
粉末は非光透過部の材料(プラスチック材)との相性が
よくて非光透過部に均等に分散されるから、非光透過部
の光照射発熱が均等にかつ最も効率的になされる。
[Function] Carbon black has a high light absorption property, and the powder thereof has a good compatibility with the material (plastic material) of the non-light-transmitting portion and is evenly dispersed in the non-light-transmitting portion. Irradiation heat generation is even and most efficient.

【0023】[0023]

【実施の形態】加工効率(加工時間)の観点からは、射
出成形での複合成形が最も良い。しかし、非光透過部が
厚くなり、光透過部の開口率が低下する。高形状精度の
加工の観点からすれば、1次加工で粗形状を形成し、こ
の1次加工品を軟化温度まで加熱加圧して鏡面を転写す
る2次工程からなる加工方法が好ましい。そこで、これ
ら工法の利点を生かして、二色射出成形にてレンズ部が
形成されていない光透過部と非光透過部とを有する1次
加工品を形成し、鏡面部を有する金型によって上記1次
加工品を加熱加圧してレンズ部を形成する2次加工工程
において非光透過部の厚さを小さくするような加工を施
す。
BEST MODE FOR CARRYING OUT THE INVENTION From the viewpoint of processing efficiency (processing time), composite molding by injection molding is the best. However, the non-light-transmitting portion becomes thick, and the aperture ratio of the light-transmitting portion decreases. From the viewpoint of processing with high shape accuracy, a processing method including a secondary step in which a rough shape is formed by primary processing and the primary processed product is heated and pressed to a softening temperature to transfer a mirror surface is preferable. Therefore, taking advantage of these construction methods, a primary processed product having a light-transmitting portion where a lens portion is not formed and a non-light-transmitting portion is formed by two-color injection molding, and the above-mentioned method is performed by a mold having a mirror surface portion. In the secondary processing step of heating and pressing the primary processed product to form the lens portion, processing is performed to reduce the thickness of the non-light-transmitting portion.

【0024】以下、この加工の構成と動作について説明
する。図6に示す方法は、略最終形状(鏡面には至らな
い形状)を形成する工程(1次加工工程)の後、非光透
過部領域を狭めることと光透過部表面を鏡面形状に転写
することとを同時に行う工程(2次加工工程)によって
複合精密光学素子を製造する方法である。非光透過部領
域を狭めることと光透過部表面を鏡面形状に転写するこ
との2つの成形加工を同時に行うので、加工サイクルが
短くなり、また、単一の成形装置で2つの成形加工を行
うので、別々の成形装置で行う場合に比して装置コスト
が低減される。鏡面転写加工のために必要な加熱温度、
加圧時間によって非光透過部領域の狭窄加工が十分完了
するように非光透過部の材料、加熱温度を選定すること
が必要である。
The structure and operation of this processing will be described below. The method shown in FIG. 6 narrows the non-light-transmitting portion area and transfers the light-transmitting portion surface to a mirror-like shape after the step (primary processing step) of forming a substantially final shape (shape not reaching the mirror surface). This is a method for manufacturing a composite precision optical element by a step (secondary processing step) that simultaneously performs the above. Since the two molding processes of narrowing the non-light-transmitting part region and transferring the surface of the light-transmitting part to a mirror surface shape are performed at the same time, the processing cycle is shortened, and two molding processes are performed by a single molding device. Therefore, the apparatus cost is reduced as compared with the case where the molding apparatuses are used separately. Heating temperature required for mirror surface transfer processing,
It is necessary to select the material and heating temperature of the non-light-transmitting portion so that the constriction processing of the non-light-transmitting portion region is sufficiently completed depending on the pressing time.

【0025】ここで、非光透過部の材料は光透過部材と
同じ、または、屈折率差が0.1%以下の材料に光を吸
収する材料(例えば、カーボンブラック粉末)を僅かに
(数重量%)分散させて得たものである。非光透過部材
の光透過部材との屈折率の差が0.1%以下の材料であ
れば、屈折率以外の物性(収縮率、熱伝導率、熱変形温
度等)はほぼ同じであるため、場所(光透過部、非光透
過部)による温度分布や内部応力のばらつきが生じにく
く、非常に高形状精度の鏡面転写ができる。光透過部材
と同じ材料であれば屈折率が同じであるので、光の入射
角度の如何によらず、光学素子内部の反射はほぼ完全に
抑えられる。また、光透過部材と同じ材料であれば線膨
張係数や水分吸収量がほぼ同じであるため、温度や湿度
変化による材料の膨張や収縮が同じであり、内部応力の
ばらつきが生じにくく、環境変化(温度や湿度)時にも
高形状精度を維持することができる。なお、屈折率が近
似した材料を用いた場合、入射角度を最小限度で規制し
た開口部形状にすることで光学素子内部の全反射が抑え
られる。
Here, the material of the non-light-transmitting portion is the same as that of the light-transmitting member, or a material (for example, carbon black powder) that absorbs light is slightly (several) in the material having a refractive index difference of 0.1% or less. % By weight). As long as the material has a difference in the refractive index of the non-light-transmitting member from the light-transmitting member of 0.1% or less, the physical properties other than the refractive index (shrinkage rate, thermal conductivity, thermal deformation temperature, etc.) are almost the same. Moreover, variations in temperature distribution and internal stress due to locations (light-transmitting portion and non-light-transmitting portion) are unlikely to occur, and mirror surface transfer with extremely high shape accuracy can be performed. Since the same material as that of the light transmitting member has the same refractive index, reflection inside the optical element can be almost completely suppressed regardless of the incident angle of light. Moreover, if the same material as the light transmitting member is used, the coefficient of linear expansion and the amount of water absorption are almost the same, so the expansion and contraction of the material due to changes in temperature and humidity are the same, and variations in internal stress are less likely to occur, and environmental changes are less likely to occur. High shape accuracy can be maintained even at (temperature and humidity). When a material having a similar refractive index is used, the total internal reflection inside the optical element can be suppressed by forming the opening shape in which the incident angle is restricted to the minimum.

【0026】次に加工工程の詳細を説明する。 1次加工工程について、 1次加工工程は、光透過部を射出成形(1次成形)した
後に、その1次成形品上に非光透過部を射出成形(2次
成形)する。逆に、非光透過部形成の後、光透過部を射
出成形することも実際上は可能である。
Next, the details of the processing steps will be described. Regarding the primary processing step: In the primary processing step, after the light transmission portion is injection molded (primary molding), the non-light transmission portion is injection molded (secondary molding) on the primary molded product. On the contrary, it is actually possible to injection-mold the light-transmitting portion after forming the non-light-transmitting portion.

【0027】2次加工工程について(図5(b)参照) 1次加工工程の後、光透過部と比較して低粘度状態の非
光透過部と軟化温度以上に加熱した光透過部とを、鏡面
を有する金型で少なくとも光透過部を加圧することで、
光透過部を変形させてその領域を拡張させ、当該拡張に
よって非光透過部を挟窄させてその領域を狭める(薄く
する)とともに、光透過部表面を鏡面形状に転写成形
し、熱変形温度以下に冷却した後に金型から取り出す。
Secondary Processing Step (See FIG. 5B) After the primary processing step, a non-light-transmitting portion having a lower viscosity than the light-transmitting portion and a light-transmitting portion heated to a softening temperature or higher are provided. By pressing at least the light transmitting part with a mold having a mirror surface,
The light-transmitting portion is deformed to expand its area, and the non-light-transmitting portion is narrowed (thinned) by the expansion, and the surface of the light-transmitting portion is transfer-molded to have a mirror-like shape. After cooling to the following, it is taken out from the mold.

【0028】更に、非光透過部の粘度を低下させる方法
として、非光透過部に吸収されて高温に発熱する波長の
光を照射する。この方法は、加工サイクルを短縮するこ
とができ、また、装置コストを低減できるという利点は
有るが、反面、光透過部と非光透過部を同時に変形させ
て所定の形状に成形加工しなくてはならないところに難
しさがある。要するに、鏡面部を有する金型で、加熱加
圧し鏡面部を光透過部に転写すると同時に、当該加熱加
圧によって光透過部領域が均一に横方向に拡張される
(据え込まれて拡張される)ことである。図6に模式的
に示すように、非常に抵抗が小さいとき(非光透過部が
無いか、又は、非光透過部の粘度が極端に低いとき)
は、光透過部断面は中心部が膨らんで太鼓状になる。ま
た、抵抗が大きいとき(非光透過部粘度が高いとき)
は、非光透過部が変形せず、光透過部領域の端部が非光
透過部を包み込むような形状に変形する(図7参照)。
光透過部領域を均一に横方向に拡張させるには、非光透
過部の粘度を適切に制御する必要がある。そしてそのた
めには非光透過部の温度を高くすればよい。解決手段4
は、非光透過部を高く発熱させる方法として、長波長の
光照射を行う方法を採用したものである。ここで、非光
透過部を発熱させるには、図8に模式的に示すように長
波長の光(例えば赤外線)を照射して、これを非光透過
部に吸収させて加熱することである。光照射によって非
光透過部を予め高温に加熱しておいて、その後、転写成
形金型で加熱加圧して、光学面を鏡面に転写加工すると
ともに、非光透過部を狭窄加工(又は延伸加工)し、そ
の後、冷却する。
Further, as a method of lowering the viscosity of the non-light-transmitting portion, light having a wavelength which is absorbed by the non-light-transmitting portion and generates heat at a high temperature is irradiated. This method has the advantage that the processing cycle can be shortened and the cost of the device can be reduced, but on the other hand, it is not necessary to deform the light transmitting portion and the non-light transmitting portion at the same time to form a predetermined shape. There is difficulty where it cannot be done. In short, a mold having a mirror surface portion is heated and pressed to transfer the mirror surface portion to the light transmitting portion, and at the same time, the light transmitting portion region is uniformly expanded in the lateral direction by the heat and pressure (installed and expanded. That is. As shown schematically in FIG. 6, when the resistance is very low (when there is no non-light-transmitting portion or when the viscosity of the non-light-transmitting portion is extremely low)
In the cross section of the light transmitting portion, the central portion swells and becomes a drum shape. When the resistance is high (when the viscosity of the non-light transmitting part is high)
The non-light-transmitting portion is not deformed, and the end portion of the light-transmitting portion region is deformed into a shape wrapping the non-light-transmitting portion (see FIG. 7).
In order to uniformly expand the light transmitting area in the lateral direction, it is necessary to appropriately control the viscosity of the non-light transmitting area. For that purpose, the temperature of the non-light transmitting portion may be raised. Solution 4
Adopts a method of irradiating light of a long wavelength as a method of causing the non-light transmitting portion to generate high heat. Here, in order to generate heat in the non-light-transmitting portion, as shown schematically in FIG. 8, long-wavelength light (for example, infrared rays) is irradiated, and this is absorbed by the non-light-transmitting portion and heated. . The non-light-transmitting part is preheated to a high temperature by light irradiation, and then it is heated and pressed by a transfer molding die to transfer the optical surface to a mirror surface, and the non-light-transmitting part is narrowed (or stretched). ) And then cool.

【0029】光透過部は透明なプラスチックであるが、
表1に示す様にその種類は限られている。そして、これ
らの材料には遠赤外線を吸収する材料が無いではない
が、近赤外線を効率的に吸収するような材料はない。こ
れに対して、非光透過部に混入させて用いているカーボ
ンブラックは、近赤外線領域でも光をよく吸収して効率
的に発熱する。近赤外線等を照射することによって、非
光透過部は光透過部より温度が上昇し、粘度が低下す
る。この状態では、非光透過部は小さな圧力で簡単に流
動するので、選択的に非光透過部を挟窄させることがで
きる。このとき、近赤外線を、光透過部を通過させて非
光透過部まで届くように斜めから照射することによっ
て、より効率的に加熱して温度を高めることができる。
The light transmitting portion is a transparent plastic,
As shown in Table 1, the types are limited. And, although there is no material that absorbs far infrared rays among these materials, there is no material that efficiently absorbs near infrared rays. On the other hand, the carbon black used by being mixed in the non-light-transmitting portion absorbs light well in the near infrared region and efficiently generates heat. By irradiating near-infrared rays or the like, the temperature of the non-light-transmitting portion is higher than that of the light-transmitting portion and the viscosity is lowered. In this state, the non-light-transmitting portion easily flows with a small pressure, so that the non-light-transmitting portion can be selectively narrowed. At this time, by irradiating the near-infrared rays obliquely so as to pass through the light transmitting portion and reach the non-light transmitting portion, it is possible to heat more efficiently and raise the temperature.

【0030】その他、非光透過部の粘度を下げる手段と
して、軟化温度が低い材料を用い、非光透過部を金型と
接触させてその軟化温度まで上昇させる方法もある。鏡
面転写においては、均一な温度分布となるので、高精度
な転写を行うことができる。また、余圧が逃げる機構
(レンズ以外の部分に隙間を設ける)にすることで、加
熱加圧時の圧力分布を小さくして、高精度な転写を行う
ことができる。また、その材料の熱変形温度まで低下さ
せて取り出すことで、取り出し時の摩擦抵抗等による変
形を防ぐことができる。以上の製造方法を用いて、非光
透過部の厚さを小さくすることで相対的に光透過部面積
が大きくなり、光の有効利用率が高くなり、明るい光学
素子が得られる。また、レンズ部の形状を転写する工程
と非光透過部を狭窄して延伸させる工程が同時に行われ
るので、工程時間がそれほど長くならず、その加工コス
トが低減される。
In addition, as a means for decreasing the viscosity of the non-light-transmitting portion, there is also a method of using a material having a low softening temperature and bringing the non-light-transmitting portion into contact with a mold to raise the softening temperature. Since a uniform temperature distribution is obtained in mirror surface transfer, highly accurate transfer can be performed. Further, by adopting a mechanism (a gap is provided in a portion other than the lens) for allowing the residual pressure to escape, the pressure distribution during heating and pressurization can be reduced, and highly accurate transfer can be performed. Further, by lowering the material to a thermal deformation temperature and then taking it out, it is possible to prevent the material from being deformed due to frictional resistance at the time of taking it out. By using the above manufacturing method to reduce the thickness of the non-light-transmitting portion, the area of the light-transmitting portion is relatively increased, the effective utilization rate of light is increased, and a bright optical element is obtained. Moreover, since the step of transferring the shape of the lens portion and the step of narrowing and stretching the non-light-transmitting portion are performed at the same time, the process time is not so long and the processing cost thereof is reduced.

【0031】[0031]

【実施例】図9乃至図11を参照して実施例を説明す
る。この実施例は、2つのレンズ1,2と1つのプリズ
ム3からなる光透過部10とその周りに光を吸収する非
光透過部11とからなり(1セット)、それが複数配置
された複合精密光学素子である。そして、そのレンズ間
の間隔、すなわち1ピッチ(レンズ−レンズ間)は0.
8mmであり、0.8mm×約400セットの全長は約
320mmである。光透過性プラスチックによる1次成
形によって光透過部10を成形し(射出成形)、次いで
非光透過性プラスチックによる2次成形によって非光透
過部11を成形(射出成形)することによって1次加工
品を成形し、次いで、1次加工品を加熱加圧してレンズ
面、プリズム面を転写加工するとともにレンズ間の非光
透過部(遮光部)を狭窄する。このとき、レンズ間の非
光透過部11は、1次加工品において0.15mm以上
のものから、2次加工で0.08mm以下に狭窄され
る。この実施例における光透性プラスチックはシクロオ
レフィン系樹脂であり、非光透過性プラスチックは、上
記ポリオレフィン系樹脂(透明樹脂)にカーボンブラッ
ク粉末を5重量%含有させたものである。
EXAMPLE An example will be described with reference to FIGS. In this embodiment, a light-transmitting portion 10 composed of two lenses 1 and 2 and one prism 3 and a non-light-transmitting portion 11 that absorbs light around the light-transmitting portion 10 (one set) are arranged in a plurality. It is a precision optical element. The distance between the lenses, that is, one pitch (between the lenses and the lens) is 0.
8 mm, and the total length of 0.8 mm × about 400 sets is about 320 mm. Primary processed product by molding the light-transmitting portion 10 by primary molding using light-transmitting plastic (injection molding) and then molding the non-light-transmitting portion 11 by secondary molding using non-light-transmitting plastic (injection molding). Then, the primary processed product is heated and pressed to transfer-process the lens surface and the prism surface, and the non-light-transmitting portion (light-shielding portion) between the lenses is narrowed. At this time, the non-light-transmitting portion 11 between the lenses is narrowed from 0.15 mm or more in the primary processed product to 0.08 mm or less in the secondary processed product. The light-transmissive plastic in this example is a cycloolefin resin, and the non-light-transmissive plastic is the above polyolefin resin (transparent resin) containing 5% by weight of carbon black powder.

【0032】そして、1次加工品においては、2次工程
の加圧時に非光透過部が狭窄・延伸されるように、レン
ズ側端部、プリズム側端部において空隙、すなわち逃げ
部11aを残してある。1次加工工程は、光透過部を射
出成形(1次成形)後、その1次成形品上に非光透過部
を射出成形(2次成形)する成形工程であり、その射出
温度、射出圧力などの射出成形条件は従来のそれと特に
異なるものではない。
In the primary processed product, a gap, that is, an escape portion 11a is left at the lens-side end and the prism-side end so that the non-light-transmitting part is narrowed / stretched during pressurization in the secondary process. There is. The primary processing step is a molding step in which the light-transmitting portion is injection-molded (primary molding), and then the non-light-transmitting portion is injection-molded (secondary molding) on the primary molded product. The injection molding conditions such as are not particularly different from the conventional ones.

【0033】2次加工工程では、1次加工品をガラス転
移点近傍(140℃)まで予備加熱して後、非光透過部
を近赤外線照射によって発熱させ、180〜220℃ま
で加熱する。その後、瞬時に金型と1次加工工程を接触
させて加熱し、光透過部が軟化温度以上(160℃)に
なった時点で、レンズ面を有する金型(レンズ鏡面駒)
15、プリズム面を有する金型(プリズム鏡面駒)16
で光透過部10を加圧して、その加圧力で光透過部10
を変形させてその領域を横方向に膨らませ、この光透過
部10の横方向への拡張(膨らみ)によって非光透過部
11を横方向に狭窄して縦方向に延伸させ、これによっ
て非光透過部11の領域を狭めるとともに、光透過部表
面を鏡面形状に転写加工する。この場合、非光透過部1
1は、例えば、厚さ0.15mmが0.08mmに狭窄
され、この間に長さ1.2mmが1.5mmに延伸され
る。この非光透過部11の長さの差が、上下の上記逃げ
部11a、11aの長さの和に等しい。その後、熱変形
温度以下(120℃以下)に冷却した後に金型から取り
出す。
In the secondary processing step, the primary processed product is preheated to a temperature near the glass transition point (140 ° C.), and then the non-light-transmitting portion is heated by irradiation of near-infrared rays and heated to 180 to 220 ° C. After that, the mold and the primary processing step are instantly brought into contact with each other to heat the mold, and when the light transmitting part reaches the softening temperature or higher (160 ° C.), the mold having the lens surface (lens mirror surface piece)
15, a mold having a prism surface (prism mirror surface piece) 16
The light transmitting portion 10 is pressed with, and the pressure is applied to the light transmitting portion 10.
Are deformed to swell the region in the lateral direction, and the non-light-transmitting portion 11 is laterally narrowed and stretched in the longitudinal direction by the lateral expansion (bulging) of the light-transmitting portion 10. The area of the portion 11 is narrowed, and the surface of the light transmitting portion is transferred to a mirror surface shape. In this case, the non-light transmitting portion 1
1, the thickness of 0.15 mm is narrowed to 0.08 mm, and the length of 1.2 mm is stretched to 1.5 mm. The difference in length of the non-light-transmitting portion 11 is equal to the sum of the lengths of the upper and lower relief portions 11a and 11a. After that, it is taken out from the mold after being cooled to the heat distortion temperature or lower (120 ° C. or lower).

【0034】鏡面転写加工の加熱加圧力、加圧時間は所
定の鏡面加工などの光透過部の成形精度、光学特性の確
保の観点から設定されるから、その加圧力、加圧時間で
非光透過部が予定通りに挟窄されるように、光照射によ
る非光透過部の予備加熱温度が調整されなければならな
い。そして必要な予備加熱温度は、その材料の如何、レ
ンズ厚さの如何等の様々な条件に左右されるから、個々
の複合精密光学素子について実験的に検証して調整する
他はない。また、非光透過部の材料としては、シクロオ
レフィンに粒径0.24μmのカーボンブラック粉末を
5重量%含有させたものを採用することができる。ま
た、光透過部の材料と非光透過部の材料との組み合わせ
として光透過部材:PC、非光透過部材:PSを採用す
ることもできる。また、この発明を適用するのに最も好
ましい、複合精密光学素子としては、精密レンズアレイ
の他に2次元の精密レンズアレイ等がある。
The heating pressure and the pressing time for the mirror surface transfer processing are set from the viewpoint of securing the molding accuracy and the optical characteristics of the light transmitting portion such as a predetermined mirror surface processing. The preheating temperature of the non-light-transmitting portion due to light irradiation should be adjusted so that the transmitting portion is constricted as planned. Since the necessary preheating temperature depends on various conditions such as the material and the lens thickness, there is no choice but to experimentally verify and adjust each complex precision optical element. As the material of the non-light-transmitting portion, cycloolefin containing 5% by weight of carbon black powder having a particle diameter of 0.24 μm can be used. Further, as a combination of the material of the light transmitting portion and the material of the non-light transmitting portion, the light transmitting member: PC and the non light transmitting member: PS can be adopted. In addition to the precision lens array, there is a two-dimensional precision lens array or the like as the complex precision optical element most suitable for applying the present invention.

【0035】[0035]

【発明の効果】この発明の効果を、主な請求項に係る発
明毎に整理すれば次のとおりである。 1.請求項1に係る発明の効果 1次加工品の非光透過部が鏡面転写加工時の加熱加圧に
よる光透過部の内圧によって狭窄して均一に薄くするこ
とができるので、光透過部の開口率を確実に90%以上
にすることができる。また、1次加工品についての、2
次加工による鏡面転写加工と非光透過部領域の狭窄加工
とを一度に行うから、転写加工、成形加工精度を高める
ことができる。そして、これらの加工精度が高度でかつ
バラツキが小さく、したがって、レンズピッチ間寸法が
1mm以下、開口率を90%以上、レンズの形状精度
0.1μm以下の高解像度と高光利用率(明るさ)の光
透過部と非光透過部とからなるアレイ状のプラスチック
光学素子における上記光透過部の成形加工を高度に、か
つ容易に行うことができ、また、転写加工及び非光透過
部領域の狭窄加工の加工サイクルが短縮されるのでその
加工能率が向上され、さらに、単一の成形装置で2つの
成形加工を行うのでこれらの加工装置の設備コストを低
減することができる。
The effects of the present invention are summarized as follows according to the inventions according to the main claims. 1. Effect of the Invention According to Claim 1 Since the non-light-transmitting portion of the primary processed product can be narrowed and uniformly thinned by the internal pressure of the light-transmitting portion due to the heating and pressing during the mirror surface transfer processing, the opening of the light-transmitting portion can be made uniform. The rate can be certainly increased to 90% or more. Regarding the primary processed products, 2
Since the mirror surface transfer processing by the next processing and the narrowing processing of the non-light transmitting portion area are performed at the same time, the transfer processing and molding processing accuracy can be improved. The processing precision of these is high and the variations are small. Therefore, the lens pitch is 1 mm or less, the aperture ratio is 90% or more, and the lens shape accuracy is 0.1 μm or less, high resolution and high light utilization rate (brightness). The above-mentioned light-transmitting portion in the array-shaped plastic optical element composed of the light-transmitting portion and the non-light-transmitting portion can be highly and easily molded, and the transfer processing and the narrowing of the non-light-transmitting portion region can be performed. Since the processing cycle of processing is shortened, the processing efficiency is improved, and since two molding processes are performed by a single molding device, the equipment cost of these processing devices can be reduced.

【0036】2.請求項2に係る発明の効果 非光透過部の材料を光透過部の材料よりも軟化点の低い
材料とする場合、軟化点が高い光透過部に対して軟化点
が低い非光透過部が、射出成形で積層成形されることに
なるから、非光透過部の積層成形による光透過部への熱
的影響が可及的に抑制され、それだけ複合精密光学素子
の品質が向上される。
2. When the material of the non-light transmitting portion has a lower softening point than the material of the light transmitting portion, the non-light transmitting portion having a lower softening point is higher than the light transmitting portion having a higher softening point. Since it is laminated by injection molding, the thermal influence on the light transmitting portion due to the lamination molding of the non-light transmitting portion is suppressed as much as possible, and the quality of the composite precision optical element is improved accordingly.

【0037】3.請求項3に係る発明の効果 光透過部が軟化温度以上に加熱された状態で金型で加圧
されると、金型による転写加工が成されるとともに、横
方方向の膨らみ、これによって低粘度状態の非光透過部
を横方向に圧迫する。非光透過部に対するこの横方向の
圧迫作用により非光透過部が均等に狭窄され、低加圧力
で縦方向に滑らかに延伸される。したがって、加圧力に
よる非光透過部による光透過部の残留歪みが可及的に低
減され、高い成形精度、光学特性を備えた複合精密光学
素子が得られる。
3. The effect of the invention according to claim 3 When the light transmitting portion is pressed by the mold while being heated to the softening temperature or higher, the transfer process is performed by the mold and the lateral bulge causes a decrease. The non-light transmitting part in the viscous state is laterally pressed. This lateral compression on the non-light-transmitting portion uniformly narrows the non-light-transmitting portion, so that the non-light-transmitting portion is smoothly stretched in the longitudinal direction with a low pressure. Therefore, the residual strain of the light transmitting portion due to the non-light transmitting portion due to the applied pressure is reduced as much as possible, and a composite precision optical element having high molding accuracy and optical characteristics can be obtained.

【0038】4.請求項4に係る発明の効果 光照射によって非光透過部を所要温度まで予備加熱し、
その後、金型により接触加熱することによって、光透過
部と非光透過部とを軟化温度以上に加熱するとともに、
非光透過部を光透過部よりも高温に加熱することができ
るので、金型による光透過部に対する転写加工時に、低
抵抗の下で非光透過部が容易かつ滑らかに狭窄される。
4. The effect of the invention according to claim 4 preheats the non-light-transmitting portion to a required temperature by irradiation with light,
Then, by contact heating with a mold, while heating the light-transmissive portion and the non-light-transmissive portion above the softening temperature,
Since the non-light-transmitting portion can be heated to a temperature higher than that of the light-transmitting portion, the non-light-transmitting portion can be easily and smoothly constricted under low resistance during transfer processing to the light-transmitting portion by the mold.

【0039】5.請求項5に係る発明の効果 光照射による非光透過部の予備加熱が効果的になされる
ので、この予備加熱による光透過部の温度上昇をできる
だけ抑制しつつ、非光透過部を速やかに所定温度に加熱
することができる。したがって、予備加熱サイクルが短
縮され、生産性が向上する。
5. Advantageous Effects of the Invention According to Claim 5, Pre-heating of the non-light-transmitting portion due to light irradiation is effectively performed, and therefore, the non-light-transmitting portion can be swiftly specified while suppressing the temperature rise of the light-transmitting portion due to the pre-heating as much as possible. It can be heated to temperature. Therefore, the preheating cycle is shortened and the productivity is improved.

【0040】6.請求項6に係る発明の効果 非光透過部の基材が光透過部と同じであるから、光透過
部と非光透過部における温度分布や内部応力のバラツキ
が生じ難く、したがって、高精度高形状の鏡面転写が実
現される。また、光透過部と非光透過部との屈折率に違
いがないから、光の入射角度の如何にかかわらず、光学
素子の内部反射(光透過部と非光透過部との境界面での
反射)がほぼ完全に抑制される。さらに、光透過部と非
光透過部とはその熱膨張係数、水分吸収量に違いがない
から、温度や湿度などの環境条件の変動による光学素子
内部応力のバラツキが生じない。したがって、環境条件
の変動に関わらず形状精度が高い複合精密光学素子を得
ることができる。
6. Effect of the Invention According to Claim 6 Since the base material of the non-light-transmitting portion is the same as that of the light-transmitting portion, variations in temperature distribution and internal stress between the light-transmitting portion and the non-light-transmitting portion are less likely to occur, and therefore high precision and high accuracy are achieved. Mirror transfer of the shape is realized. In addition, since there is no difference in the refractive index between the light transmitting portion and the non-light transmitting portion, internal reflection of the optical element (at the boundary surface between the light transmitting portion and the non-light transmitting portion) is performed regardless of the incident angle of light. Reflection) is almost completely suppressed. Furthermore, since there is no difference in the coefficient of thermal expansion and the amount of absorbed water between the light transmitting portion and the non-light transmitting portion, variations in internal stress of the optical element due to changes in environmental conditions such as temperature and humidity do not occur. Therefore, it is possible to obtain a complex precision optical element having high shape accuracy regardless of changes in environmental conditions.

【0041】7.請求項7に係る発明の効果 屈折率が近似している材料は、その他の物性(収縮率、
熱伝導率、熱変形温度等)が近似しているので、光透過
部、非光透過部とは、屈折率が近似しており、したがっ
て、その他の物性(収縮率、熱伝導率、熱変形温度等)
も近似している。それゆえ、両者間の温度分布や内部応
力分布のバラツキが生じにくく、それだけ、高精度形状
の鏡面転写加工がなされる。また、光透過部、非光透過
部の材料の屈折率差が0.1以下であるから、入射角度
を最小限度に規制した開口形状にすることにより、光学
素子の内部反射をほぼ完全に抑制することができる。
7. The material of which the effect of the invention according to claim 7 is similar to the refractive index is other physical properties (shrinkage rate,
Since the thermal conductivity and the thermal deformation temperature are similar, the refractive index is similar to that of the light transmitting part and the non-light transmitting part. Therefore, other physical properties (shrinkage rate, thermal conductivity, thermal deformation) are similar. Temperature etc.)
Is also close. Therefore, variations in the temperature distribution and the internal stress distribution between the two are unlikely to occur, and as a result, the mirror surface transfer processing of a highly accurate shape is performed. Further, since the difference in the refractive index between the materials of the light transmitting portion and the non-light transmitting portion is 0.1 or less, the internal reflection of the optical element is almost completely suppressed by forming the aperture shape with the incident angle being restricted to the minimum. can do.

【0042】8.請求項8に係る発明の効果 カーボンブラック粉末は、光の吸収性が高いので非光透
過部の光照射による発熱効果が高い。またプラスチック
材との相性がよいので、均一に分散、混合されるから、
光照射発熱が均一であり、またカーボンブラック粉末を
混入させることによって、流動性が増すので、非光透過
部の挟窄加工が円滑化される。
8. The effect of the invention according to claim 8 Since the carbon black powder has high light absorption, the heat generation effect by the light irradiation of the non-light transmitting portion is high. Also, because it has a good compatibility with plastic materials, it is uniformly dispersed and mixed,
The heat generated by light irradiation is uniform, and since the carbon black powder is mixed, the fluidity is increased, so that the constriction processing of the non-light-transmitting portion is facilitated.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、従来の複合精密光学素子における内部反射
の様子を模式的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a state of internal reflection in a conventional complex precision optical element.

【図2】は、従来の複合精密光学素子の成形加工過程に
おける光透過部と非光透過部との配列を示す斜視図であ
る。
FIG. 2 is a perspective view showing an arrangement of light transmitting portions and non-light transmitting portions in a molding process of a conventional composite precision optical element.

【図3】は、従来技術による複合精密光学素子の斜視図
である。
FIG. 3 is a perspective view of a composite precision optical element according to the prior art.

【図4】は、他の従来技術による複合精密光学素子の斜
視図である。
FIG. 4 is a perspective view of another prior art compound precision optical element.

【図5】は、この発明の2工程加工を模式的に示す複合
光学部材の斜視図である。
FIG. 5 is a perspective view of a composite optical member schematically showing the two-step processing of the present invention.

【図6】は、この発明の第2次加工工程による加工の様
子を模式的に示す断面図である。
FIG. 6 is a cross-sectional view schematically showing the manner of working in the second working process of the present invention.

【図7】は、この発明の第2次加工工程による加工の他
の様子を模式的に示す断面図である。
FIG. 7 is a cross-sectional view schematically showing another aspect of processing by the secondary processing step of the present invention.

【図8】は、光照射による非光透過部の加熱法を用いる
場合の、第2次加工工程による加工の様子を模式的に示
す断面図である。
FIG. 8 is a cross-sectional view schematically showing the manner of processing in the secondary processing step when the method of heating the non-light-transmitting portion by light irradiation is used.

【図9】は、この発明の実施例の加工工程を示す斜視図
である。
FIG. 9 is a perspective view showing a processing step of the embodiment of the present invention.

【図10】は、実施例の精密複合精密光学素子の斜視図
である。
FIG. 10 is a perspective view of a precision composite precision optical element of the example.

【図11】(a)は、実施例における第2次加工工程に
おける加圧方向を模式的に示す斜視図であり、(b)は
上記第2次加工工程の光照射における加熱状態を示す断
面図であり、(c)は上記第2次加工工程の加圧状態を
示す断面図である。
11A is a perspective view schematically showing a pressing direction in a secondary processing step in the example, and FIG. 11B is a cross-sectional view showing a heating state during light irradiation in the secondary processing step. It is a figure and (c) is sectional drawing which shows the pressurization state of the said secondary process process.

【符号の説明】[Explanation of symbols]

1,2:レンズ 3:プリズム 10:光透過部 11:非光透過部 11a:逃がし部 15:レンズ鏡面駒 16:プリズム鏡面駒 1,2: Lens 3: Prism 10: Light transmission part 11: Non-light transmitting part 11a: relief section 15: Lens mirror piece 16: Prism mirror surface piece

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H042 AA03 AA09 AA15 AA24 AA29 4F204 AA12 AH74 AH75 FA01 FB01 FF01 FN01 4F213 AD05 AH73 WA04 WA05 WA53 WA58 WB01    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2H042 AA03 AA09 AA15 AA24 AA29                 4F204 AA12 AH74 AH75 FA01 FB01                       FF01 FN01                 4F213 AD05 AH73 WA04 WA05 WA53                       WA58 WB01

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】鏡面を有する光透過部と、隣り合う光透過
部間及びその周囲に光を吸収する非光透過部からなる複
合精密光学素子の製造方法であって、略最終形状を形成
する工程(1次加工工程)と、非光透過部領域を狭窄す
ることと光透過部表面に鏡面形状を転写することとを同
時に行う工程(2次加工工程)とによる複合精密光学素
子の製造方法。
1. A method of manufacturing a precision composite optical element comprising a light-transmitting portion having a mirror surface and a non-light-transmitting portion for absorbing light between adjacent light-transmitting portions and around the light-transmitting portion, wherein a substantially final shape is formed. Method of manufacturing complex precision optical element by step (primary processing step) and step (secondary processing step) of simultaneously constricting the non-light-transmitting portion region and transferring the mirror surface shape to the light-transmitting portion surface .
【請求項2】上記1次加工工程の加工方法が、光透過部
を射出成形(1次成形)した後に、その1次成形品上に
非光透過部を射出成形(2次成形)する方法である請求
項1の複合精密光学素子の製造方法。
2. The method of processing in the above-mentioned primary processing step is a method of injection-molding (primary molding) a light-transmitting portion and then injection-molding (secondary molding) a non-light-transmitting portion on the primary molded product. 2. The method for manufacturing a complex precision optical element according to claim 1.
【請求項3】上記2次加工工程の加工方法が、1次加工
工程の後、光透過部と比較して低粘度状態の非光透過部
と軟化温度以上に加熱した光透過部とを、鏡面を有する
金型で光透過部を加圧することで、光透過部を変形させ
てその領域を広め、当該光透過部の変形によって非光透
過部を延伸させてその領域を狭窄するとともに、光透過
部表面に鏡面形状を転写し、熱変形温度以下に冷却した
後に金型から取り出す方法である請求項1の複合精密光
学素子の製造方法。
3. The processing method of the secondary processing step comprises: after the primary processing step, a non-light-transmitting portion having a lower viscosity than the light-transmitting portion and a light-transmitting portion heated to a softening temperature or higher, By pressing the light-transmitting portion with a mold having a mirror surface, the light-transmitting portion is deformed to widen the area, and the non-light-transmitting portion is stretched by the deformation of the light-transmitting portion to narrow the area, and 2. The method for producing a complex precision optical element according to claim 1, wherein the method is a method of transferring a mirror surface shape to the surface of the transmission part, cooling the surface to a temperature not higher than the thermal deformation temperature, and then taking it out from the mold.
【請求項4】上記2次加工工程の加工方法が、非光透過
部に吸収されて高温に発熱する波長の光照射による加熱
と金型からの接触加熱とによって、光透過部と非光透過
部とを軟化温度以上に上昇させ、かつ、光透過部に比し
て非光透過部の温度を高くし、鏡面を有する金型で少な
くとも光透過部を加圧することで、光透過部を変形させ
てその領域を拡張させ、当該拡張によって非光透過部を
延伸させてその領域を狭窄するとともに、光透過部表面
に鏡面形状を転写し、熱変形温度以下に冷却した後に金
型から取り出す方法である請求項1の複合精密光学素子
の製造方法。
4. The processing method of the secondary processing step is such that the light-transmitting portion and the non-light-transmitting portion are heated by irradiation with light having a wavelength that is absorbed by the non-light-transmitting portion and generates heat at a high temperature and contact heating from a mold. The light-transmitting portion is deformed by increasing the temperature above the softening temperature and increasing the temperature of the non-light-transmitting portion compared to the light-transmitting portion, and pressing at least the light-transmitting portion with a mold having a mirror surface. Then, the region is expanded, the non-light-transmitting part is stretched by the expansion to narrow the region, and a mirror-like shape is transferred to the surface of the light-transmitting part, cooled to a temperature below the heat deformation temperature, and then taken out from the mold. 2. The method for manufacturing a complex precision optical element according to claim 1.
【請求項5】上記光照射の方法が、非光透過部における
吸収性が高く発熱作用が高い波長の光を光透過部を通過
させて非光透過部へ照射させる方法である請求項4の複
合精密光学素子の製造方法。
5. The method of irradiating light is a method of irradiating the non-light-transmitting portion with light having a wavelength having a high absorptivity in the non-light-transmitting portion and having a high heat generation effect. Manufacturing method of complex precision optical element.
【請求項6】上記非光透過部が、光透過部と同材料に光
を吸収する材料を分散させた非光透過部材であることを
特徴とした請求項1の複合精密光学素子の製造方法。
6. The method for manufacturing a complex precision optical element according to claim 1, wherein the non-light-transmitting portion is a non-light-transmitting member in which a material that absorbs light is dispersed in the same material as the light-transmitting portion. .
【請求項7】上記非光透過部が、光透過部との屈折率差
が0.1以下の材料に光を吸収する材料を分散させた非
光透過部材であることを特徴とした請求項1の複合精密
光学素子の製造方法。
7. The non-light transmissive portion is a non-light transmissive member in which a material that absorbs light is dispersed in a material having a refractive index difference from the light transmissive portion of 0.1 or less. 1. A method for manufacturing the composite precision optical element of 1.
【請求項8】上記非光透過部に分散させた光を吸収する
材料がカーボンブラック粉末である請求項6又は請求項
7の複合精密光学素子の製造方法。
8. The method for manufacturing a complex precision optical element according to claim 6, wherein the material that absorbs light dispersed in the non-light transmitting portion is carbon black powder.
【請求項9】請求項1乃至請求項8の製造方法によって
製造した複合精密光学素子。
9. A composite precision optical element manufactured by the manufacturing method according to claim 1.
【請求項10】鏡面を有する光透過部と、隣り合う光透
過部間及びその周囲に光を吸収する非光透過部からなる
複合精密光学素子であって、上記非光透過部の厚さが
0.08mm以下である複合精密光学素子。
10. A composite precision optical element comprising a light-transmitting portion having a mirror surface and a non-light-transmitting portion that absorbs light between adjacent light-transmitting portions and its periphery, wherein the thickness of the non-light-transmitting portion is large. A complex precision optical element having a diameter of 0.08 mm or less.
JP2001343278A 2001-11-08 2001-11-08 Method for manufacturing composite precise optical element, and composite precise optical element Pending JP2003145633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001343278A JP2003145633A (en) 2001-11-08 2001-11-08 Method for manufacturing composite precise optical element, and composite precise optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001343278A JP2003145633A (en) 2001-11-08 2001-11-08 Method for manufacturing composite precise optical element, and composite precise optical element

Publications (1)

Publication Number Publication Date
JP2003145633A true JP2003145633A (en) 2003-05-20

Family

ID=19156992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001343278A Pending JP2003145633A (en) 2001-11-08 2001-11-08 Method for manufacturing composite precise optical element, and composite precise optical element

Country Status (1)

Country Link
JP (1) JP2003145633A (en)

Similar Documents

Publication Publication Date Title
JP5449148B2 (en) Exterior parts
US6786599B2 (en) Polarized lens of plastic lamination and the production method of the same
TW200815176A (en) Optical element and production device for producing same
US8357317B2 (en) Fabrication of optically smooth light guide
CN1918503A (en) Microlens array
JP2004258071A (en) Optical component and method for manufacturing same, and image projection screen
KR101204628B1 (en) Wafer lens and manufacturing method for wafer lens
KR101141969B1 (en) Mold for lens, method for manufacturing the same and lens using the mold for lens
JP2003145633A (en) Method for manufacturing composite precise optical element, and composite precise optical element
US20060126186A1 (en) Lenticular lens sheet, rear projection type screen, and rear projection type projector, and lenticular lens sheet producing method
JPH07248404A (en) Resin lens array and its production
JP2003279708A (en) Composite optical element and manufacturing method thereof
JP2004110069A (en) Resin lens array
JP4147973B2 (en) Lens sheet molding method
US20090261489A1 (en) Method for making lenses
KR20140097639A (en) Glass surface forming device and manufacturing method thereof
TW201941913A (en) Resin-stacked optical body and method of manufacture therefor
JP2005205860A (en) Method for production of optical element
JPH02196201A (en) Production of microlens array
JP2008129229A (en) Composite optical element and method of manufacturing composite optical element
JPH06114860A (en) Production of lens sheet
JPS6195912A (en) Molding method of microlens
JPH07159901A (en) Transmission projection screen and its production
JPH0890664A (en) Lenticular plate and manufacture thereof
TW200944365A (en) Method for manufacturing a microlens