TW200944365A - Method for manufacturing a microlens - Google Patents

Method for manufacturing a microlens Download PDF

Info

Publication number
TW200944365A
TW200944365A TW97114173A TW97114173A TW200944365A TW 200944365 A TW200944365 A TW 200944365A TW 97114173 A TW97114173 A TW 97114173A TW 97114173 A TW97114173 A TW 97114173A TW 200944365 A TW200944365 A TW 200944365A
Authority
TW
Taiwan
Prior art keywords
microlens
preforms
polymer
fabricating
optical layer
Prior art date
Application number
TW97114173A
Other languages
Chinese (zh)
Inventor
Tai-Cherng Yu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97114173A priority Critical patent/TW200944365A/en
Publication of TW200944365A publication Critical patent/TW200944365A/en

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

This present invention relates to a method for manufacturing a microlens. The method includes the following steps. An UV polymer is sprayed onto a first surface of a substrate using an ink jet process, thereby forming a number of first performs. A first stamper with a number of first micro-patterns is provided. Each of the first micro-patterns corresponds to each of the first performs. Each of the first micro-patterns is attached to each of the first performs. Meanwhile, the stamper is pressed, and the first performs are exposed by ultraviolet. Thus each of the first performs is solidified into a first optical layer. A size and a configuration of the first optical layer mate with those of the first micro-patterns. Each of the optical layers is cut along a boundary of a projection of each of the optical layers in the substrate, thereby obtaining a microlens.

Description

200944365 九、發明說明: ^【發明所屬之技術領域】 ^ 本發明涉及光學元件製造技術領域,尤其涉及一種微 透鏡之製作方法。 【先前技術】 微透鏡為一種尺寸極為微小之透鏡,其可應用於光電 元件如數位相機之影像感測機、手機數位光學模組或太陽 ❹能電池,用以聚焦所接收到之光束,或擴散光電元件所發 射之光束。 目前,應用於低解析度(小於300萬像素)之數位鏡 頭模組中之微透鏡主要以玻璃基片為中間層原料及紫外光 固化聚合物(ultraviolet polymer,UV聚合物)為位於中間層 相對兩表面之第一光學層及第二光學層之原料並按下述步 驟製得:(1)將UV聚合物塗佈於玻璃基板之第一表面;(2) &利用壓模壓印塗佈於玻璃基板第一表面之UV聚合物,以200944365 IX. Description of the invention: ^ [Technical field to which the invention pertains] ^ The present invention relates to the field of optical component manufacturing technology, and more particularly to a method of fabricating a microlens. [Prior Art] A microlens is an extremely small lens that can be applied to a photoelectric element such as a digital camera image sensor, a mobile phone digital optical module, or a solar energy battery to focus the received light beam, or Diffusion of the beam emitted by the optoelectronic component. At present, the microlens used in the low-resolution (less than 3 million pixels) digital lens module mainly uses a glass substrate as an intermediate layer material and an ultraviolet curing polymer (UV polymer) as a middle layer. The raw materials of the first optical layer and the second optical layer on both surfaces are prepared by: (1) applying a UV polymer to the first surface of the glass substrate; (2) & stamping with a stamper a UV polymer on the first surface of the glass substrate,

Q 達成將壓模之微結構轉移至該UV聚合物,並以紫外光固 化UV聚合物,使其形成與微結構一致之第一光學層;(3) 將UV聚合物塗佈於玻璃基板之與第一表面相對之第二表 面;(4)於第二表面與第一光學層相對處用壓模壓印UV 聚合物,以紫外光輻射UV聚合物,使其固化形成與壓模 之微結構一致之第二光學層,從而製得微透鏡陣列;(5) 將該微透鏡陣列切割成複數相互獨立之微透鏡。 然而,由於採用塗佈法於玻璃基板之表面塗佈UV聚 200944365 ^物’於使㈣觀印之過程巾,基板上與關之微結構 對應之uv聚合物極容易從微結構之邊緣處擠壓出來 起用於形成第-光學層及第二光學層之uv聚合物用料不 足,從而使得第-光學層及第二光學層之厚度小於壓模之 微結構之厚度’最料致製得之微透鏡之厚度小於設計 度’由此嚴重浪費生產原料,並提高了生產成本。Q: transferring the microstructure of the stamp to the UV polymer, and curing the UV polymer with ultraviolet light to form a first optical layer consistent with the microstructure; (3) coating the UV polymer on the glass substrate a second surface opposite to the first surface; (4) imprinting the UV polymer with a stamper at a position opposite to the first optical layer, irradiating the UV polymer with ultraviolet light, and solidifying it to form a microstructure of the stamper a uniform second optical layer to produce a microlens array; (5) cutting the microlens array into a plurality of mutually independent microlenses. However, since the coating method is applied to the surface of the glass substrate by UV coating, the uv polymer corresponding to the microstructure of the substrate is easily squeezed from the edge of the microstructure. The uv polymer material used for forming the first optical layer and the second optical layer is insufficient, so that the thickness of the first optical layer and the second optical layer is smaller than the thickness of the microstructure of the stamper. The thickness of the microlens is less than the design degree', thereby seriously wasting production raw materials and increasing production costs.

【發明内容】 有鑑於此,提供—種微透鏡之製作方法以提高產品精 度及降低成本實為必要。 -種微透鏡之製作方法’包括以下步驟:以噴墨法將 • 物喷射至基板之第—表面形成複數第—預成形 體,提供具有複數第-微結構之第一壓模,每個第一微結 構’、每個帛帛成形體相對應,將每個第—微結盘 預成形體對準,施予第一饜掇懕六 .Ab L ^ 卿丁弟壓模壓力,並以紫外光輻射,使 ❹得每個第-預成形體固化成與第—微結構尺寸及形狀一致 之第光子層,沿每個第一光學層於基板投影之邊緣切 割,從而製得複數微透鏡。 與先前技術相比,本技術方案之微透鏡之製作方法採 用喷墨法將UV聚合物均勾喷射至基板之特定設置,有效 避免了 >1印時與I模微結構對應< uv聚合物從微結構之 邊緣,愿出來’引起用於形成光學層之UV聚合物用料不 足、從而使彳于光學層之厚度小於壓模之微結構之厚度,進 而1^成後續製得之微透鏡之尺寸小於設計尺寸之缺陷。因 200944365 .此,使用本技術方案之微透鏡之製作方法製作微透鏡能提 南產品精度及節約生產成本。 【實施方式】 以下將結合附圖及實施例對本技術方案提供之微透鏡 之製作方法進行詳細說明。 請一併參閱圖1及圖2,本實施例待製作之微透鏡100 具有三層結構,即中間層110、第一光學層120及第二光學 ®層130,其中第一光學層120及第二光學層130分別位於中 間層110之相對兩表面,且以中間層110為對稱軸完全對 稱。當然,微透鏡100可藉由改變第一光學層120及第二 光學層130之形狀,而製成多種形狀,例如凹透鏡。微透 鏡100之材料根據產品所需之光學性能而定。對低解析度 (小於300萬像素)之微透鏡而言,為降低成本、縮小尺 寸及確保微透鏡經高溫製程前後尺寸穩定,目前業内通常 ❹選用透光性較好之UV聚合物製作第一光學層120及第二 光學層130,選用玻璃或石英製作中間層110。本實施例中, 待製作之微透鏡100之折射率為1.4至1.6。 微透鏡100可按下述步驟製得: 第一步,提供具有複數第一微結構210之第一壓模 200,每個第一微結構210之形狀及尺寸與第一光學層120 之形狀及尺寸匹配。 請參閱圖3,第一壓模200包括本體201、形成於本體 201表面之複數呈陣列排佈之第一微結構210。本實施例 200944365 中,第一微結構210為設於本體201表面之凹槽結構,其 • 形狀及尺寸與第一光學層120之形狀及尺寸匹配,且呈陣 ,列式排佈。 第一壓模200由本領域常見方法製作而成,具體地, 可按照以下方式製作:提供一模板,該模板材質可為石英 或其它常用材料;於模板之一表面鋪設光阻層,該光阻層 之厚度大於50微米,且大於第一微結構210之厚度;利用 雷射微影技術移除模板之預定部分,使其形成複數陣列排 y佈之凸結構;將矽膠均勻塗佈至模板之一表面,且使得該 矽膠填滿每個凸結構並覆蓋模板上方至一預定厚度;固化 該矽膠,將固化後之矽膠塊取出即可得到第一壓模200。當 然,還可包括採用低溫濺射工藝於第一壓模200之每個凹 槽結構内鍍上幾奈米厚之金屬層作為保護層,該金屬層可 為鎳或鋁層。 第二步,提供UV聚合物300及基板400,以喷墨法將 ❹UV聚合物300喷射至基板400之第一表面401以形成複數 第一預成形體410。 UV聚合物300須為透光性液狀材料,如環氧樹脂、光 學膠、聚曱基丙烯酸曱酯、聚氨酯、矽膠或其它本領域常 用材料,其用於製作微透鏡100之第一光學層120及第二 光學層130。本實施例中,UV聚合物300為聚曱基丙烯酸 曱酉旨。 基板400之材質為玻璃或石英,其用於製作微透鏡100 之中間層110。請一併參閱圖4及圖5,基板400具有第一 200944365 •表面401及與第一表面401相對之第二表面4〇2。 . 以喷墨法將UV聚合物300噴射至第一表面4〇1應使 -得每相鄰兩第一預成形體410之間距與每相鄰兩第一微結 構210之間距匹配,即,每個第一預成形體41〇與每個第 一微結構210 —一對應。優選地,每個第一預成形體4ι〇 之尺寸比每個第一微結構210之尺寸小〇至〇1毫米,以避 免後續屢印時UV聚合物從第一壓模2〇〇中擠壓出來。第 ❹一預成形體410於基板400之分佈可藉由相關軟體類比, 亦可直接借助喷射裝置之控製裝置預先設定,並藉由喷射 直接於第一表面401形成。本實施例中,第一預成形體41〇 呈陣列式排佈。 當然’以噴墨法將UV聚合物喷射至基板4〇〇之第一 表面401前,可於第一表面4〇1鍍上紅外過濾膜或紅外滲 透膜,如氬膜、鉻膜或鋁膜,或利用熱壓成型將紅外過濾 膜附於第一表面401,以增強後續製得之微透鏡ι〇〇之光學 ❹性能。 第二步’對準第一壓模2〇〇與基板4〇〇,使得每個第一 微結構210與每個第一預成形體41〇相對,施予第一壓模 200壓力’並以紫外光輻射基板400,以使第一預成形體410 固化成與第一微結構21〇形狀及尺寸一致之第一光學層 120 ° 參見圖5 ’於紫外光輻射下,由於第一壓模200與基板 400相互擠壓’與第一微結構210對應之第一預成形體410 將發生固化,從而形成與第一微結構21〇 一致之形狀,即 200944365 . 微透鏡100之第一光學層120。 • 第四步,以喷墨法將UV聚合物喷射至第二表面402, .形成複數與第一預成形體410對應之第二預成形體。 參見圖6,其為第一壓模200與基板400分離後之結構 圖。本實施例中,由於第一光學層120及第二光學層130 之形狀及尺寸相同,故需按與喷射UV聚合物至第一表面 401形成複數第一預成形體410相同之工藝參數將UV聚合 物300噴射至第二表面形成複數第二預成形體。 於以喷墨法將UV聚合物喷射至第二表面402前,可 於第二表面402鍍上紅外過濾膜或紅外滲透膜,如氬膜、 鉻膜或鋁膜,或利用熱壓成型將紅外過濾膜附於第二表面 402,以增強後續製得之微透鏡100之光學性能。 第五步,提供具有複數第二微結構之第二壓模,對準 第二壓模與基板,使得每個第二微結構與每個第二預成形 體相對,施以第二壓模壓力,並以紫外光輻射基板,以使 Q第二預成形體固化成與第二微結構一致之形狀,由此形成 第二光學層130。 本實施例中,由於第一光學層120及第二光學層130 之形狀及尺寸相同,即第二微結構與第一微結構210尺寸 及形狀相同,故直接利用第一壓模200壓印第二預成形體 即可形成第二光學層130。 第六步,分離第二壓模與基板400,製得微透鏡陣列 500,將微透鏡陣列500切割成複數相互獨立之微透鏡100。 參見圖7,切割微透鏡陣列500應沿第一光學層120 11 200944365 及第一光學層於中間 iiu技影之邊緣之連線進行, 從而得到複數微透鏡100。 進盯 田知用本實施例之微透鏡製作方法製作僅具有一面光 喷墨法將1"聚合物喷至第-表 一#輿| —表面402形成一層光學層120,然後沿每個第 與、12G於巾間層11G之投景彡邊緣切割即可製得複數 做透鏡。 ❹ ❹ 日、、'T、上所述,本發明確已符合發明專利之要件,遂依法 :出專利申兩。惟,以上所述者僅為本發明之較佳實施方 蓺自不此以此限製本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化,皆 應涵蓋於以下申請專利範圍内。 【圏式簡單說明】 圖1係本技術方案實施例提供之微透鏡之製作方法之 流程圖。 圖2係本技術方案實施例製得之微透鏡之放大示意圖。 圖3係本技術方案實施例提供之第一壓模之示意圖。 圖4係本技術方案實施例以喷墨法將uv聚合物噴射 至基板第一表面形成第一預成形體之示意圖。 圖5係本技術方案實施例利用壓模於第一預成形體壓 印之示意圖。 圖6係本技術方案實施例分離第一壓模及基板之示意 圖〇 圖7係切割本技術方案實施例製得之微透鏡陣列之示 12 200944365 意圖。 » ^【主要元件符號說明】 UV聚合物 300 微透鏡 100 中間層 110 第一光學層 120 第二光學層 130 ❹第-微結構 210 第一壓模 200 本體 201 基板 400 第·一表面 401 第一預成形體 410 第二表面 402 ^微透鏡陣列 500 13SUMMARY OF THE INVENTION In view of the above, it is necessary to provide a method for fabricating a microlens to improve product accuracy and reduce cost. - a method of fabricating a microlens' includes the steps of: ejecting a substance onto a first surface of a substrate by an ink jet method to form a plurality of first preforms, and providing a first stamper having a plurality of first-micro structures, each of A microstructure ", each of the bismuth shaped bodies, is aligned, and each of the first micro-knotted disk preforms is aligned, and the first 餍掇懕6.Ab L ^ 青丁弟压模压力, and ultraviolet The optical radiation is such that each of the first pre-forms is solidified into a photonic sub-layer conforming to the size and shape of the first microstructure, and is cut along the edge of the projection of the substrate along each of the first optical layers, thereby producing a plurality of microlenses. Compared with the prior art, the microlens manufacturing method of the present invention adopts an inkjet method to eject the UV polymer to a specific setting of the substrate, thereby effectively avoiding <1 printing and I mode microstructure corresponding < uv polymerization From the edge of the microstructure, it is desirable to 'cause the UV polymer used to form the optical layer to be insufficient, so that the thickness of the optical layer is smaller than the thickness of the microstructure of the stamper, and then the micro-structure is subsequently produced. The size of the lens is less than the size of the design. Because of the use of the microlens manufacturing method of the present technology, the microlens can improve the accuracy of the product and save the production cost. [Embodiment] Hereinafter, a method of manufacturing a microlens provided by the present technical solution will be described in detail with reference to the accompanying drawings and embodiments. Referring to FIG. 1 and FIG. 2 together, the microlens 100 to be fabricated in this embodiment has a three-layer structure, that is, an intermediate layer 110, a first optical layer 120, and a second optical layer 130, wherein the first optical layer 120 and the first The two optical layers 130 are respectively located on opposite surfaces of the intermediate layer 110, and are completely symmetrical with the intermediate layer 110 as an axis of symmetry. Of course, the microlens 100 can be formed into various shapes such as a concave lens by changing the shapes of the first optical layer 120 and the second optical layer 130. The material of the microlens 100 depends on the optical properties required for the product. For low resolution (less than 3 million pixels) microlens, in order to reduce the cost, reduce the size and ensure the dimensional stability of the microlens before and after the high temperature process, the industry generally uses the UV polymer with better light transmission. An optical layer 120 and a second optical layer 130 are made of glass or quartz to form the intermediate layer 110. In this embodiment, the microlens 100 to be fabricated has a refractive index of 1.4 to 1.6. The microlens 100 can be fabricated as follows: In a first step, a first stamper 200 having a plurality of first microstructures 210 is provided, the shape and size of each of the first microstructures 210 and the shape of the first optical layer 120 and Size matching. Referring to FIG. 3, the first stamper 200 includes a body 201, and a plurality of first microstructures 210 arranged in an array on the surface of the body 201. In the embodiment 200944365, the first microstructure 210 is a groove structure disposed on the surface of the body 201, and the shape and size thereof are matched with the shape and size of the first optical layer 120, and are arranged in a matrix and a column. The first stamper 200 is made by a method commonly used in the art. Specifically, it can be fabricated in the following manner: a template is provided, which can be quartz or other commonly used materials; a photoresist layer is disposed on one surface of the template, and the photoresist is The thickness of the layer is greater than 50 microns and greater than the thickness of the first microstructure 210; the predetermined portion of the template is removed by laser lithography to form a convex structure of the plurality of arrays of y cloth; the silicone is uniformly applied to the template a surface, and the silicone fills each convex structure and covers the top of the template to a predetermined thickness; curing the silicone, and removing the cured silicone block to obtain the first stamper 200. Of course, it may also include plating a metal layer of a few nanometers thick in each of the recess structures of the first stamper 200 as a protective layer by a low temperature sputtering process, and the metal layer may be a nickel or aluminum layer. In the second step, a UV polymer 300 and a substrate 400 are provided, and the ❹UV polymer 300 is sprayed onto the first surface 401 of the substrate 400 by an ink jet method to form a plurality of first preforms 410. The UV polymer 300 must be a light transmissive liquid material such as an epoxy resin, an optical glue, a polydecyl methacrylate, a polyurethane, a silicone or other materials commonly used in the art for forming the first optical layer of the microlens 100. 120 and second optical layer 130. In the present embodiment, the UV polymer 300 is a polyacrylic acid acrylate. The material of the substrate 400 is glass or quartz, which is used to fabricate the intermediate layer 110 of the microlens 100. Referring to FIG. 4 and FIG. 5 together, the substrate 400 has a first 200944365 surface 401 and a second surface 4〇2 opposite to the first surface 401. Spraying the UV polymer 300 to the first surface 4〇1 by the inkjet method should be such that the distance between each adjacent two first preforms 410 matches the distance between each adjacent two first microstructures 210, that is, Each of the first pre-formed bodies 41A corresponds to each of the first microstructures 210. Preferably, the size of each of the first preforms 4 〇 is less than 〇1 mm from the size of each of the first microstructures 210 to avoid the extrusion of the UV polymer from the first stamper 2 during subsequent printing. Press it out. The distribution of the first preform 410 on the substrate 400 can be analogized by the associated software, or can be directly set by the control means of the ejection device, and formed directly by the ejection from the first surface 401. In this embodiment, the first preforms 41 are arranged in an array. Of course, before the UV polymer is sprayed onto the first surface 401 of the substrate 4, an infrared filter film or an infrared permeable film such as an argon film, a chromium film or an aluminum film may be plated on the first surface 4〇1. Or attaching the infrared filter film to the first surface 401 by thermoforming to enhance the optical enthalpy performance of the subsequently produced microlens. The second step 'aligns the first stamper 2〇〇 with the substrate 4〇〇 such that each of the first microstructures 210 is opposed to each of the first pre-formed bodies 41〇, and the first stamper 200 is applied with pressure ' The substrate 400 is irradiated with ultraviolet light to cure the first pre-formed body 410 into a first optical layer 120° conforming to the shape and size of the first microstructure 21, see FIG. 5 'under ultraviolet light radiation, due to the first stamper 200 The first preform 410 corresponding to the first microstructure 210 will be solidified with the substrate 400 to form a shape conforming to the first microstructure 21, ie, 200944365. The first optical layer of the microlens 100 120. • In the fourth step, the UV polymer is sprayed onto the second surface 402 by an ink jet method to form a plurality of second preforms corresponding to the first preform 410. Referring to Fig. 6, there is shown a structural view of the first stamper 200 separated from the substrate 400. In this embodiment, since the shapes and sizes of the first optical layer 120 and the second optical layer 130 are the same, the UV is required to be the same as the process of forming the plurality of first preforms 410 by spraying the UV polymer to the first surface 401. The polymer 300 is sprayed onto the second surface to form a plurality of second preforms. Before the UV polymer is ejected to the second surface 402 by an inkjet method, an infrared filter film or an infrared osmosis film such as an argon film, a chromium film or an aluminum film may be plated on the second surface 402, or the infrared may be formed by hot press molding. A filter membrane is attached to the second surface 402 to enhance the optical properties of the subsequently produced microlens 100. In a fifth step, a second stamper having a plurality of second microstructures is provided, the second stamper and the substrate are aligned such that each second microstructure is opposite to each of the second preforms, and a second stamper pressure is applied And irradiating the substrate with ultraviolet light to cure the Q second preform into a shape conforming to the second microstructure, thereby forming the second optical layer 130. In this embodiment, since the shape and size of the first optical layer 120 and the second optical layer 130 are the same, that is, the second microstructure is the same size and shape as the first microstructure 210, the first stamper 200 is directly stamped. The second optical layer 130 can be formed by the two preforms. In the sixth step, the second stamper and the substrate 400 are separated to form a microlens array 500, and the microlens array 500 is cut into a plurality of mutually independent microlenses 100. Referring to Fig. 7, the dicing microlens array 500 should be along the line connecting the first optical layer 120 11 200944365 and the edge of the first optical layer at the intermediate iiu technique to obtain the complex microlens 100. In the microlens manufacturing method of the present embodiment, only one side of the optical inkjet method is used to spray 1" polymer onto the surface of the first surface to form an optical layer 120, and then along each of the first 12G can be made into a plurality of lenses by cutting the edge of the projection layer 11G of the towel layer 11G. ❹ ❹ 、, , 'T, above, the invention has indeed met the requirements of the invention patent, 遂 legal: two patent applications. However, the above description is only the preferred embodiment of the present invention, and the scope of the patent application of the present invention is not limited thereto. Equivalent modifications or variations made by persons skilled in the art in light of the present invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing a method of fabricating a microlens provided by an embodiment of the present technical solution. 2 is an enlarged schematic view of a microlens made in an embodiment of the present technical solution. FIG. 3 is a schematic diagram of a first stamper provided by an embodiment of the present technical solution. Fig. 4 is a schematic view showing an embodiment of the present invention for ejecting a uv polymer onto a first surface of a substrate by an ink jet method to form a first preform. Fig. 5 is a schematic view showing the stamping of the first preform using a stamper in the embodiment of the present invention. 6 is a schematic diagram of separating a first stamper and a substrate according to an embodiment of the present technical solution. FIG. 7 is a diagram showing a microlens array obtained by cutting an embodiment of the present technical solution. 12 200944365 Intent. » ^ [Main component symbol description] UV polymer 300 microlens 100 intermediate layer 110 first optical layer 120 second optical layer 130 ❹ first-microstructure 210 first stamper 200 body 201 substrate 400 first surface 401 first Preform 410 Second surface 402 ^Microlens array 500 13

Claims (1)

200944365 十、申請專利範圍: 1 .一種微透鏡之製作方法,其包括以下步驟. 以聚合物喷射至基板之第—表面形成複數第 一預成形體, 提供具有複數第-微結構之第-壓模,每個第1 每個第一預成形體相對應,將每個第一微結構與二成 形體對準,針第-壓模壓力,並以紫外光輻射,使得^200944365 X. Patent Application Range: 1. A method for fabricating a microlens, comprising the steps of: forming a plurality of first preforms by spraying a polymer onto a first surface of the substrate, providing a first pressure having a plurality of first-micro structures a mold, each of the first each of the first preforms, aligning each of the first microstructures with the two shaped bodies, the needle-pressing pressure, and irradiating with ultraviolet light, such that 個第一預成形體固化成與第一微結構尺寸及形狀— 一光學層; 弟 從而製得微透 沿每個第一光學層於基板投影之邊緣切割 鏡。 2·如申請專利範圍第1項所述之微透鏡之製作方法,其中, 該每個第一預成形體之尺寸比每個第一微結構之尺小 至0.1毫米。 3·如申請專利範圍第1項所述之微透鏡之製作方法其中, ❹該製作方法還包括以下步驟··於製作第一光學層後切割之 前以噴墨法將UV聚合物喷射至基板之第二表面,形成複 數與第一預成形體對應之第二預成形體,提供具有複數第 二微結構之第二壓模,每個第二微結構與每個第二預成形 ,相對應,將每個第二微結構與每個第二預成形體對準, 鈿予第二壓模壓力,並以紫外光輻射,使得每個第二預成 形體固化成與第二微結構形狀及尺寸一致之第二光學層。 4·如申請專利範圍第3項所述之微透鏡之製作方法,其中, 該每個第二預成形體之尺寸比每個第二微結構之尺寸小〇 14 200944365 ’ 至0.1毫米。 •J 5·如申請專利範圍第1項所述之微透鏡之製作方法,其中, 該製作方法還包括於噴射uv聚合物至第一表面前於第一 表面鑛紅外過濾膜或紅外滲透膜。 6·如申請專利範圍第3項所述之微透鏡之製作方法,其中, 該製作方法還包括於噴射uv聚合物至第二表面前於第二 表面鍍紅外過濾膜或紅外滲透膜。 — ❹7·如申請專利範圍第j項所述之微透鏡之製作方法,其 該UV聚合物選自環氧樹脂、光學膠、聚甲基丙婦 聚氨酯或矽膠。 9、 8.如申請專利範圍第i項所述之微透鏡之製作方法,其 該複數第一預成形體呈陣列式排佈。 /、,The first preforms are cured into a first microstructure size and shape - an optical layer; thereby producing a micro-perforation mirror along the edge of each of the first optical layers projected onto the substrate. The method of fabricating the microlens of claim 1, wherein each of the first preforms has a size smaller than 0.1 mm of each of the first microstructures. 3. The method for fabricating a microlens according to claim 1, wherein the method further comprises the steps of: ejecting the UV polymer to the substrate by an inkjet method before the first optical layer is formed and then cut. a second surface forming a plurality of second preforms corresponding to the first preform, providing a second stamp having a plurality of second microstructures, each second microstructure corresponding to each of the second preforms, Aligning each of the second microstructures with each of the second preforms, applying a second stamper pressure, and irradiating with ultraviolet light such that each of the second preforms is solidified into a second microstructure shape and size Consistent second optical layer. 4. The method of fabricating the microlens of claim 3, wherein the size of each of the second preforms is less than the size of each of the second microstructures by 14 200944365 ' to 0.1 mm. The method of fabricating the microlens of claim 1, wherein the method further comprises spraying the uv polymer onto the first surface before the first surface mineral infrared filter film or the infrared permeable film. 6. The method of fabricating a microlens according to claim 3, wherein the method further comprises plating an infrared filter film or an infrared permeable film on the second surface before ejecting the uv polymer to the second surface. The method for producing a microlens according to the invention of claim j, wherein the UV polymer is selected from the group consisting of epoxy resin, optical glue, polymethyl acrylate polyurethane or silicone rubber. 9. The method of fabricating a microlens according to claim i, wherein the plurality of first preforms are arranged in an array. /,, 1515
TW97114173A 2008-04-18 2008-04-18 Method for manufacturing a microlens TW200944365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97114173A TW200944365A (en) 2008-04-18 2008-04-18 Method for manufacturing a microlens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97114173A TW200944365A (en) 2008-04-18 2008-04-18 Method for manufacturing a microlens

Publications (1)

Publication Number Publication Date
TW200944365A true TW200944365A (en) 2009-11-01

Family

ID=44869316

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97114173A TW200944365A (en) 2008-04-18 2008-04-18 Method for manufacturing a microlens

Country Status (1)

Country Link
TW (1) TW200944365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482700B (en) * 2011-10-12 2015-05-01 Himax Tech Ltd Manufacture method of lens sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482700B (en) * 2011-10-12 2015-05-01 Himax Tech Ltd Manufacture method of lens sheet

Similar Documents

Publication Publication Date Title
EP2296018B1 (en) Method of manufacturing a wafer-level lens array
WO2019237618A1 (en) Manufacturing method for hydrophobic/light-trapping fly-eye lens array having micro-nano two-stage structure and application thereof
JP5611445B2 (en) Microlens manufacturing method and manufacturing apparatus
US8303866B2 (en) Mass production of micro-optical devices, corresponding tools, and resultant structures
JP2012529069A (en) Lens and manufacturing method thereof
US20170165931A1 (en) Method for manufacturing a lens structure
CN101900936A (en) Impression mould and production method thereof
KR20100029577A (en) Lens having nanopatterning and manufacturing method thereof
JP2011186306A (en) Wafer lens unit and method for manufacturing the same
NL2015330B1 (en) A method of fabricating an array of optical lens elements
CN102004274B (en) Micro lens structure, micro lens technology and bank pattern applied to micro lens technology
Luo et al. Rapid fabrication of curved microlens array using the 3D printing mold
KR20220164497A (en) Laminates with optical microstructures for ophthalmic lens integration
TWI402162B (en) Composite micro-lens and composite micro-lens array
TW200804870A (en) Method for fabricating an array of microlenses on an electro-optic device is disclosed
TW200944365A (en) Method for manufacturing a microlens
JP2011104811A (en) Master die, method of preparing master and the master
JP2012529070A (en) Lens and manufacturing method thereof
CN101607432A (en) The manufacture method of optical element
US20110221020A1 (en) Wafer lens array and method for manufacturing the same
US20120177819A1 (en) Method of manufacturing lens
KR20110138880A (en) Wafer lens and manufacturing method for wafer lens
JP2004110069A (en) Resin lens array
JP2011161727A (en) Molding die of optical molded product, method of molding optical molded product, and lens array
US20050151285A1 (en) Method for manufacturing micromechanical structures