JP2003144150A - Method and apparatus for refining/isolating nucleic acid - Google Patents

Method and apparatus for refining/isolating nucleic acid

Info

Publication number
JP2003144150A
JP2003144150A JP2001349567A JP2001349567A JP2003144150A JP 2003144150 A JP2003144150 A JP 2003144150A JP 2001349567 A JP2001349567 A JP 2001349567A JP 2001349567 A JP2001349567 A JP 2001349567A JP 2003144150 A JP2003144150 A JP 2003144150A
Authority
JP
Japan
Prior art keywords
nucleic acid
temperature
solution
organic solvent
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001349567A
Other languages
Japanese (ja)
Other versions
JP3644426B2 (en
JP2003144150A5 (en
Inventor
Kyoko Kojima
恭子 小島
Osamu Ozawa
理 小澤
Hideki Hasegawa
英樹 長谷川
Shinichi Fukuzono
真一 福薗
Takayuki Kanda
隆之 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001349567A priority Critical patent/JP3644426B2/en
Publication of JP2003144150A publication Critical patent/JP2003144150A/en
Publication of JP2003144150A5 publication Critical patent/JP2003144150A5/ja
Application granted granted Critical
Publication of JP3644426B2 publication Critical patent/JP3644426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for refining/isolating a nucleic acid stably in high yield. SOLUTION: This method comprises the steps of (1) adding an organic solvent at -5 to 55 deg.C to a solution containing the nucleic acid and a high-concentration salt and (2) adsorbing the nucleic acid to a carrier, thus improving the collection yield of the nucleic acid with slight variation in its collection.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,核酸を有する生体
試料から核酸を溶出させて,核酸を精製して分離する核
酸の精製分離方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for purifying and separating nucleic acid, in which nucleic acid is eluted from a biological sample containing nucleic acid to purify and separate the nucleic acid.

【0002】[0002]

【従来の技術】従来技術に於ける有効な核酸の精製分離
方法は,カオトロピック塩の存在下で核酸をガラスやシ
リカゲル粒子へ吸着させ核酸を回収する原理に基づいて
いる(従来技術−1:Vogelstein,B. and Gillespie,D.
(1979);「アガロースからのDNAの調製的及び分解的
精製」,Proc.Natl.Acad.Sci.USA 76:615-619,従来技
術−2:Boom,R.(1990);「核酸の迅速で簡易な精製
法」,J.Clin.Microbiol.28:495-503)。従来技術−
1,2によれば,ヨウ化ナトリウム,過塩素酸ナトリウ
ム,又はグアニジンチオシアン酸塩等の高濃度のカオト
ロピック塩を用いると,DNAがアガロースから単離,
精製され,あるいは,RNA又はDNAが種々の混合物
から単離,精製される。
2. Description of the Related Art An effective method for purifying and separating nucleic acids in the prior art is based on the principle of adsorbing nucleic acids to glass or silica gel particles in the presence of a chaotropic salt to recover the nucleic acids (Prior Art-1: Vogelstein). , B. And Gillespie, D.
(1979); "Preparative and Degradative Purification of DNA from Agarose", Proc. Natl. Acad. Sci. USA 76: 615-619, Prior Art-2: Boom, R. (1990); And simple purification method ”, J. Clin. Microbiol. 28: 495-503). Conventional technology −
1, 2, using high concentrations of chaotropic salts such as sodium iodide, sodium perchlorate, or guanidine thiocyanate, DNA was isolated from agarose,
Purified, or RNA or DNA is isolated and purified from various mixtures.

【0003】核酸は精製の後に,ポリメラーゼ連鎖反応
(PCR)(Polymerase chain reaction)に使用され
ることが多い。PCRでは,核酸は配列に特異的に増幅
できるので,遺伝子診断等に広く応用されている。PC
R法を日常的に臨床で使用する際に,いくつかの問題が
ある。核酸の精製時に除去できなかった阻害物質の影響
で,PCRが阻害される事が知られている。阻害物質と
して,ヘモグロビン,核酸の抽出工程で使用される界面
活性剤等が知られている。このため,核酸の抽出,精製
工程は,重要であることが指摘されている(従来技術−
3:大島他,JJCL A,22(2),145-150(1997))。
Nucleic acids are often used in a polymerase chain reaction (PCR) after purification. In PCR, a nucleic acid can be specifically amplified in a sequence, and thus is widely applied to gene diagnosis and the like. PC
There are some problems in routine clinical use of the R method. It is known that PCR is inhibited by the influence of an inhibitor that could not be removed during the purification of nucleic acid. Known inhibitory substances include hemoglobin and surfactants used in the nucleic acid extraction step. Therefore, it has been pointed out that the steps of extracting and purifying nucleic acids are important (prior art-
3: Oshima et al., JJCL A, 22 (2), 145-150 (1997)).

【0004】従来,抽出工程は手作業でなされてきた
が,操作が煩雑で熟練性を要することから,装置による
自動化が望まれている。また,自動化に適した抽出法
(使用する試薬を含む)の開発が要求されている。
Conventionally, the extraction process has been performed manually, but since the operation is complicated and requires skill, automation by an apparatus is desired. Further, development of an extraction method (including reagents used) suitable for automation is required.

【0005】特開平11−127854号公報(従来技
術−4),特開平11−266864号公報(従来技術
−5)に,自動化に適した核酸の抽出法,核酸捕捉用チ
ップが記載されている。また,特表平8−501321
号公報(従来技術−6)に,自動化装置による核酸の抽
出に適した試薬の記載があり,高濃度の塩(イオン強度
が大)及び高濃度のアルコールを含む溶液中に存在する
分離精製すべき核酸を,抽出用チップ内の吸着担体に接
触させて吸着させ,次いで,より低濃度の塩(イオン強
度が小)を含む溶液を用いて,吸着担体から核酸を遊離
させて,目的の核酸を得ている。
JP-A-11-127854 (Prior Art-4) and JP-A-11-266864 (Prior Art-5) describe nucleic acid extraction methods and nucleic acid-capturing chips suitable for automation. . In addition, the special table 8-501321
Japanese Unexamined Patent Publication (Prior Art-6) describes a reagent suitable for extraction of nucleic acid by an automated device, and separates and purifies a reagent containing a high-concentration salt (high ionic strength) and a high-concentration alcohol. The nucleic acid to be adsorbed by contacting it with the adsorption carrier in the extraction chip, and then using a solution containing a lower concentration of salt (small ionic strength) to release the nucleic acid from the adsorption carrier, Is getting

【0006】全血からの核酸の抽出は,以下のようにし
て行われる。蛋白分解酵素と血球溶解のためのバッファ
ーを全血に加え攪拌後,56°C又は70°Cで10分
間インキュベーションする。インキュベーション後,エ
タノールを添加し,核酸を含む溶液を吸着カラムに通
す。エタノールを含むバッファーでカラムを洗浄した
後,核酸回収用バッファーにより,カラムに吸着した核
酸を回収する(従来技術−7:QIAamp DNA Mini Kit an
d QIAamp DNA Blood Mini Kit Handbook,及び,QIAamp
DNA Blood Midi/Maxi Kit Handbook,QIAGEN)。
Extraction of nucleic acid from whole blood is performed as follows. A proteolytic enzyme and a buffer for hemolysis are added to whole blood, stirred, and then incubated at 56 ° C or 70 ° C for 10 minutes. After incubation, add ethanol and pass the solution containing nucleic acid through the adsorption column. After washing the column with a buffer containing ethanol, the nucleic acid adsorbed on the column is recovered with a nucleic acid recovery buffer (Prior Art-7: QIAamp DNA Mini Kit an
d QIAamp DNA Blood Mini Kit Handbook and QIAamp
DNA Blood Midi / Maxi Kit Handbook, QIAGEN).

【0007】[0007]

【発明が解決しようとする課題】従来技術−6に記載の
試薬を用いた核酸の精製分離方法では,核酸の回収の収
率が低いという課題があった。また,従来技術−4に記
載の抽出用チップを用いた方法では,核酸回収量のばら
つきが大きいという課題があった。
The method for purifying and separating nucleic acid using the reagent described in Prior Art-6 has a problem that the yield of nucleic acid recovery is low. Further, the method using the extraction chip described in Related Art-4 has a problem that the amount of nucleic acid recovered varies greatly.

【0008】本発明の目的は,核酸回収量のばらつきが
小さく,安定して高い核酸回収量が得られる核酸の精製
分離方法及び装置を提供することにある。
An object of the present invention is to provide a method and a device for purifying and separating nucleic acids, in which variations in the amount of recovered nucleic acids are small and a high amount of recovered nucleic acids can be stably obtained.

【0009】[0009]

【課題を解決するための手段】本発明の核酸の精製分離
方法では,(工程1)核酸と高濃度の塩とを含む溶液
(以下,核酸遊離溶液という)に有機溶剤を添加し,
(工程2)有機又は無機の担体に核酸を吸着させ,(工
程3)水溶液からなる回収液を用いて,有機又は無機担
体から核酸を脱離させて回収する。必要に応じて,(工
程3)の前に,洗浄液を用いて担体を洗浄して核酸以外
の成分を取り除く工程を実行する。有機溶剤の添加直前
の核酸遊離溶液の温度を有機溶剤の温度にほぼ同じくし
て,温度T(°C)の有機溶剤の添加直前の核酸遊離溶
液の温度をT±(2〜3)°Cとする。なお,以下の説
明で,温度T(°C)とほぼ同じ温度とは,T±(2〜
3)°Cの温度をいう。また,核酸遊離溶液の温度と有
機溶剤の温度とを異ならせても良い。核酸は,例えば,
全血の白血球に由来する。
In the method for purifying and separating a nucleic acid according to the present invention, (step 1) an organic solvent is added to a solution containing a nucleic acid and a high-concentration salt (hereinafter referred to as a nucleic acid releasing solution),
(Step 2) Nucleic acid is adsorbed on an organic or inorganic carrier, and (Step 3) nucleic acid is desorbed from the organic or inorganic carrier and recovered using a recovery solution composed of an aqueous solution. If necessary, before step (step 3), a step of washing the carrier with a washing solution to remove components other than the nucleic acid is performed. The temperature of the nucleic acid releasing solution just before the addition of the organic solvent is made substantially the same as the temperature of the organic solvent, and the temperature of the nucleic acid releasing solution immediately before the addition of the organic solvent at the temperature T (° C) is T ± (2 to 3) ° C. And In the following description, the temperature that is almost the same as the temperature T (° C) means T ± (2
3) It means a temperature of ° C. Further, the temperature of the nucleic acid-releasing solution may be different from the temperature of the organic solvent. Nucleic acid is, for example,
Derived from white blood cells of whole blood.

【0010】核酸収量は,最大核酸収量を100%とす
る相対核酸収量により比較される。
Nucleic acid yields are compared by relative nucleic acid yield with a maximum nucleic acid yield of 100%.

【0011】本発明では,(工程1)で,−5°C〜5
5°Cの範囲の温度に保持された,エタノール,1−プ
ロパノール,2−プロパノール,ジエチレングリコール
ジメチルエーテル,乳酸エチルの何れかを添加すること
により,80%以上の相対核酸収量が得られ,また,
(工程1)で,0°C〜50°Cの範囲の温度に保持さ
れた,ジエチレングリコールジメチルエーテル又は乳酸
エチルを添加することにより,80%以上の相対核酸収
量が得られる。
In the present invention, in (step 1), -5 ° C to 5 ° C
By adding any of ethanol, 1-propanol, 2-propanol, diethylene glycol dimethyl ether, and ethyl lactate, which were kept at a temperature in the range of 5 ° C, a relative nucleic acid yield of 80% or more was obtained, and
In (Step 1), the relative nucleic acid yield of 80% or more is obtained by adding diethylene glycol dimethyl ether or ethyl lactate, which is kept at a temperature in the range of 0 ° C to 50 ° C.

【0012】より好ましくは,(工程1)で,0°C〜
50°Cの範囲の温度に保持された,エタノール,1−
プロパノール,2−プロパノール,乳酸エチルの何れか
を添加することにより,90%以上の相対核酸収量が得
られ,また,(工程1)で,0°C〜40°Cの範囲の
温度に保持された,ジエチレングリコールジメチルエー
テル又は乳酸エチルを添加することにより,90%以上
の相対核酸収量が得られる。
More preferably, in (step 1), the temperature is from 0 ° C to
Ethanol, 1-, kept at a temperature in the range of 50 ° C
By adding any of propanol, 2-propanol and ethyl lactate, a relative nucleic acid yield of 90% or more was obtained, and in (step 1), the temperature was kept in the range of 0 ° C to 40 ° C. Moreover, by adding diethylene glycol dimethyl ether or ethyl lactate, a relative nucleic acid yield of 90% or more is obtained.

【0013】更に好ましくは,(工程1)で,10°C
〜35°Cの範囲の温度に保持された,エタノール,1
−プロパノール,2−プロパノール,ジエチレングリコ
ールジメチルエーテル,乳酸エチルの何れかを添加する
ことにより,95%以上の相対核酸収量が得られる。
More preferably, in (step 1), 10 ° C.
Ethanol, 1 kept at a temperature in the range of ~ 35 ° C
-By adding any of propanol, 2-propanol, diethylene glycol dimethyl ether and ethyl lactate, a relative nucleic acid yield of 95% or more is obtained.

【0014】本発明の核酸の精製分離方法では,(工程
1)核酸と高濃度の塩とを含み,0°C〜50°Cの範
囲の温度Tに保持された溶液に,温度Tとほぼ同じ温度
に保持された有機溶剤を添加し,(工程2)担体に核酸
を吸着させる。有機溶剤として,エタノール,1−プロ
パノール,2−プロパノール,乳酸エチルの何れかを用
いることにより,90%以上の相対核酸収量が得られ
る。
In the method for purifying and separating a nucleic acid of the present invention (step 1), a solution containing a nucleic acid and a high-concentration salt and kept at a temperature T in the range of 0 ° C. to 50 ° C. An organic solvent kept at the same temperature is added (step 2) to adsorb the nucleic acid on the carrier. By using any of ethanol, 1-propanol, 2-propanol and ethyl lactate as the organic solvent, a relative nucleic acid yield of 90% or more can be obtained.

【0015】本発明の核酸の精製分離方法では,(工程
1)核酸と高濃度の塩とを含み,0°C〜40°Cの範
囲の温度Tに保持された溶液に,温度Tとほぼ同じ温度
に保持された有機溶剤を添加し,(工程2)担体に核酸
を吸着させる。有機溶剤として,ジエチレングリコール
ジメチルエーテル又は乳酸エチルを使用することによ
り,90%以上の相対核酸収量が得られる。
In the method for purifying and separating nucleic acid according to the present invention (step 1), a solution containing nucleic acid and a high-concentration salt and kept at a temperature T in the range of 0 ° C. to 40 ° C. An organic solvent kept at the same temperature is added (step 2) to adsorb the nucleic acid on the carrier. By using diethylene glycol dimethyl ether or ethyl lactate as the organic solvent, a relative nucleic acid yield of 90% or more can be obtained.

【0016】本発明の核酸の精製分離方法は,以下の特
徴を有する。 (A)(1)核酸と高濃度の塩とを含み,10°C〜4
0°Cの範囲の温度Tに保持された溶液に,前記温度T
とほぼ同じ温度に保持された有機溶剤を添加する工程
と,(2)担体に前記核酸を吸着させる工程とを有する
ことを特徴とする核酸の分離精製方法。 (B)(A)に記載の核酸の分離精製方法に於いて,前
記有機溶剤が,エタノール,ジエチレングリコールジメ
チルエーテル,乳酸エチルの何れかであることを特徴と
する核酸の分離精製方法。(A)及び(B)の方法で
は,95%以上の相対核酸収量が得られる。 (C)(1)核酸と高濃度の塩とを含み,20°C〜3
6°Cの範囲の温度Tに保持された溶液に,前記温度T
とほぼ同じ温度に保持された有機溶剤を添加する工程
と,(2)前記温度Tとほぼ同じ温度で担体に前記核酸
を吸着させる工程とを有することを特徴とする。 (D)(C)に記載の核酸の分離精製方法に於いて,前
記温度Tが22°C〜32°Cの範囲の温度に設定され
ることを特徴とする核酸の分離精製方法。(C)の方法
では,80%以上の相対核酸収量が得られ,(D)の方
法では,95%以上の相対核酸収量が得られる。
The method for purifying and separating nucleic acid of the present invention has the following features. (A) (1) Containing nucleic acid and high-concentration salt, 10 ° C to 4
The temperature T in the range of 0 ° C
A method for separating and purifying nucleic acid, comprising: a step of adding an organic solvent maintained at about the same temperature as that of (1); and (2) a step of adsorbing the nucleic acid on a carrier. (B) The method for separating and purifying nucleic acid as described in (A), wherein the organic solvent is any one of ethanol, diethylene glycol dimethyl ether and ethyl lactate. The methods (A) and (B) give a relative nucleic acid yield of 95% or more. (C) (1) Containing nucleic acid and high concentration of salt, 20 ° C to 3
The solution maintained at a temperature T in the range of 6 ° C was
And a step of (2) causing the carrier to adsorb the nucleic acid at a temperature substantially the same as the temperature T. (D) The method for separating and purifying nucleic acid as described in (C), wherein the temperature T is set to a temperature in the range of 22 ° C to 32 ° C. The method (C) gives a relative nucleic acid yield of 80% or more, and the method (D) gives a relative nucleic acid yield of 95% or more.

【0017】本発明の精製分離方法を自動的に実行する
核酸の精製分離装置は,以下の特徴を有する。 (1)核酸と高濃度の塩とを含む溶液に有機溶剤を添加
した後,担体に前記核酸を吸着させる核酸の分離精製装
置に於いて,前記溶液を0°C〜40°Cの範囲の温度
に保持する手段を有することを特徴とする核酸の分離精
製装置。 (2)(1)に記載の核酸の分離精製装置に於いて,前
記有機溶剤が0°C〜40°Cの範囲の温度に保持され
ることを特徴とする核酸の分離精製装置。 (3)(1)に記載の核酸の分離精製装置に於いて,前
記溶液の温度と前記有機溶剤の温度がほぼ同じであるこ
とを特徴とする核酸の分離精製装置。 (4)(1)に記載の核酸の分離精製装置に於いて,前
記溶液の温度と前記有機溶剤の温度が異なることを特徴
とする核酸の分離精製装置。(1)から(4)の装置で
は,90%以上の相対核酸収量が得られる。 (5)核酸と高濃度の塩とを含む溶液に有機溶剤を添加
した後,担体に前記核酸を吸着させる核酸の分離精製装
置に於いて,前記有機溶剤及び前記溶液の温度を,20
°C〜36°Cの範囲の温度Tに保持する手段を有し,
前記温度Tの前記溶液に,前記温度Tの前記有機溶剤を
添加した後に,前記温度Tとほぼ同じ温度で前記担体に
前記核酸を吸着させることを特徴とする核酸の分離精製
装置。 (6)(5)に記載の核酸の分離精製装置に於いて,前
記温度Tが22°C〜32°Cの範囲の温度に設定され
ることを特徴とする核酸の分離精製装置。(5)の装置
では,80%以上の相対核酸収量が得られ,(6)の装
置では,95%以上の相対核酸収量が得られる。
The nucleic acid purifying / separating apparatus for automatically executing the purifying / separating method of the present invention has the following features. (1) In a nucleic acid separating and purifying apparatus in which an organic solvent is added to a solution containing a nucleic acid and a high-concentration salt, the carrier is adsorbed on the carrier in a temperature range of 0 ° C to 40 ° C. An apparatus for separating and purifying nucleic acid, characterized by having a means for maintaining the temperature. (2) The apparatus for separating and purifying nucleic acid as described in (1), wherein the organic solvent is maintained at a temperature in the range of 0 ° C to 40 ° C. (3) The apparatus for separating and purifying nucleic acid as described in (1), wherein the temperature of the solution and the temperature of the organic solvent are substantially the same. (4) The apparatus for separating and purifying nucleic acid as described in (1), wherein the temperature of the solution is different from the temperature of the organic solvent. With the devices (1) to (4), a relative nucleic acid yield of 90% or more can be obtained. (5) In the apparatus for separating and purifying nucleic acid, which comprises adsorbing the nucleic acid on a carrier after adding the organic solvent to a solution containing the nucleic acid and a high-concentration salt, the temperature of the organic solvent and the solution is adjusted to 20
A means for holding the temperature T in the range of ° C to 36 ° C,
An apparatus for separating and purifying nucleic acid, comprising adding the organic solvent at the temperature T to the solution at the temperature T and adsorbing the nucleic acid on the carrier at about the same temperature as the temperature T. (6) The apparatus for separating and purifying nucleic acid as described in (5), wherein the temperature T is set to a temperature in the range of 22 ° C to 32 ° C. The device of (5) gives a relative nucleic acid yield of 80% or more, and the device of (6) gives a relative nucleic acid yield of 95% or more.

【0018】本発明の装置では,Tを−20°Cから8
0°Cの間において任意の温度として,核酸遊離溶液を
温度Tに保持する手段,及び,温度Tとほぼ同じ温度に
有機又は無機の担体を保持する手段ととして,共通の加
熱冷却温度制御回路を使用する。加熱冷却温度制御回路
は,温度センサ,ペルチェ素子,及びペルチェ素子の制
御回路を組み合わせて構成され,温度制御対象を一定の
温度に保持する。このような構成によれば,温度制御を
高速に行なうことができる。また,加熱冷却温度制御回
路を,温度センサ,循環水冷装置,及び循環水冷装置の
制御回路を組み合わせて構成してもよい。
In the apparatus of the present invention, T is set to -20 ° C to 8 ° C.
A common heating / cooling temperature control circuit as a means for holding the nucleic acid-releasing solution at a temperature T as an arbitrary temperature between 0 ° C. and a means for holding an organic or inorganic carrier at a temperature substantially the same as the temperature T. To use. The heating / cooling temperature control circuit is configured by combining a temperature sensor, a Peltier element, and a Peltier element control circuit, and holds the temperature control target at a constant temperature. With such a configuration, temperature control can be performed at high speed. Further, the heating / cooling temperature control circuit may be configured by combining a temperature sensor, a circulating water cooling device, and a controlling circuit for the circulating water cooling device.

【0019】また,PCRを行うサーマルサイクラ部が
組み込まれた本発明の装置では,核酸の精製分離の後,
直ちに,自動的にPCRを実行させることができるの
で,例えば,遺伝子検査を高速に行なうことが可能とな
る。
Further, in the apparatus of the present invention in which the thermal cycler section for carrying out PCR is incorporated, after purification and separation of nucleic acid,
Since the PCR can be immediately and automatically executed, for example, genetic testing can be performed at high speed.

【0020】以下,本発明の核酸の精製分離方法,及び
装置で好適に使用される試薬,構成要素について説明す
る。
The reagents and constituents preferably used in the method and apparatus for purifying and separating nucleic acid of the present invention will be described below.

【0021】塩としてカオトロピック塩を1M〜8Mの
濃度範囲で使用する。例えば,グアニジン塩酸塩,グア
ニジンチオシアン酸塩,ヨウ化カリウムの何れかを使用
する。
As the salt, chaotropic salt is used in the concentration range of 1M to 8M. For example, any one of guanidine hydrochloride, guanidine thiocyanate, and potassium iodide is used.

【0022】有機溶剤として,2から10の範囲の炭素
数を持つ化合物を使用する。化合物は,脂肪族アルコー
ル,脂肪族エーテル,脂肪族エステル,脂肪族ケトンか
ら選択される。1つの化合物,又は,複数の化合物の混
合物が,有機溶剤として使用される。有機溶剤は,その
濃度が5容量%〜50容量%となるように添加すると良
い。
As the organic solvent, a compound having a carbon number in the range of 2 to 10 is used. The compound is selected from aliphatic alcohols, aliphatic ethers, aliphatic esters, aliphatic ketones. One compound or a mixture of compounds is used as the organic solvent. The organic solvent is preferably added so that the concentration thereof is 5% by volume to 50% by volume.

【0023】脂肪族アルコールの代表的な例として,エ
タノール(EtOH),1−プロパノール(PrO
H),2−プロパノール(i−PrOH)がある。
Typical examples of the aliphatic alcohol include ethanol (EtOH) and 1-propanol (PrO).
H), 2-propanol (i-PrOH).

【0024】脂肪族エーテルの代表的な例として,エチ
レングリコールジメチルエーテル,エチレングリコール
ジエチルエーテル(EGDE),プロピレングリコール
ジメチルエーテル(PGDME),プロピレングリコー
ルジメチルエーテル,プロピレングリコールジエチルエ
ーテル(PGDEE),ジエチレングリコールジメチル
エーテル(DIGLYME),ジエチレングリコールジ
エチルエーテル(DGDEE),テトラヒドロフラン
(THF),1,4−ジオキサン(DX)がある。
As typical examples of the aliphatic ethers, ethylene glycol dimethyl ether, ethylene glycol diethyl ether (EGDE), propylene glycol dimethyl ether (PGDME), propylene glycol dimethyl ether, propylene glycol diethyl ether (PGDEE), diethylene glycol dimethyl ether (DIGLYME), There are diethylene glycol diethyl ether (DGDEE), tetrahydrofuran (THF), 1,4-dioxane (DX).

【0025】脂肪族エステルの代表的な例として,プロ
ピレングリコールモノメチルアセテート(PGME
A),乳酸エチル(EL)がある。
As a typical example of the aliphatic ester, propylene glycol monomethyl acetate (PGME
A) and ethyl lactate (EL).

【0026】脂肪族ケトンの代表的な例として,ヒドロ
キシアセトン(HAC),アセトン(AC),メチルエ
チルケトン(MEK)がある。
Representative examples of aliphatic ketones are hydroxyacetone (HAC), acetone (AC), and methyl ethyl ketone (MEK).

【0027】無機担体として,シリカ,アルミナ,ゼオ
ライト,二酸化チタンからなる多孔性材料又は非多孔性
材料を使用する。
As the inorganic carrier, a porous material or non-porous material made of silica, alumina, zeolite, titanium dioxide is used.

【0028】洗浄液は,アルコール等の有機溶剤を高濃
度に含み,吸引又は遠心分離操作により,有機又は無機
の担体を複数回洗浄して,核酸以外の成分を取り除く。
The washing liquid contains an organic solvent such as alcohol at a high concentration, and the organic or inorganic carrier is washed a plurality of times by suction or centrifugation to remove components other than nucleic acid.

【0029】回収液は,低濃度の塩を含む水溶液であ
り,有機又は無機の担体と接触させることにより,有機
又は無機の担体に吸着していた核酸を溶出させる。
The recovery liquid is an aqueous solution containing a low concentration of salt, and the nucleic acid adsorbed on the organic or inorganic carrier is eluted by contacting with the organic or inorganic carrier.

【0030】本発明では,核酸と高濃度の塩とを含む溶
液に,0.1容量%〜50容量%の界面活性剤を添加す
る。好ましくは,界面活性剤として,0.1容量%〜5
容量%の消泡剤を使用すると良い。
In the present invention, 0.1% by volume to 50% by volume of a surfactant is added to a solution containing nucleic acid and a high concentration of salt. Preferably, the surfactant is 0.1% by volume to 5%.
It is advisable to use a volume% defoamer.

【0031】[0031]

【発明の実施の形態】図1は,本発明の実施例での核酸
の抽出プロセスを説明する図である。図2は,本発明の
実施例で用いる全血の構成を説明する図である。図3か
ら図5は,従来技術−4に記載される図1の方法に基づ
く,本発明の核酸の精製分離方法に於ける,核酸抽出試
薬を用いた全血からの核酸抽出の手順を説明する図であ
る。以下の説明では,100μLのヒト全血からの核酸
抽出を例にとる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram for explaining a nucleic acid extraction process according to an embodiment of the present invention. FIG. 2 is a diagram for explaining the constitution of whole blood used in the examples of the present invention. 3 to 5 explain the procedure of nucleic acid extraction from whole blood using a nucleic acid extraction reagent in the method for purifying and separating nucleic acid of the present invention based on the method of FIG. 1 described in Prior Art-4. FIG. In the following description, nucleic acid extraction from 100 μL of whole human blood is taken as an example.

【0032】図1に示す核酸の抽出プロセスは,従来技
術−4に記載される6つの工程から構成される。核酸抽
出の手順は,核酸を含有する材料(試料)から核酸を遊
離させる第1工程501,第1工程501で得られる遊
離した核酸を含む核酸遊離溶液に,核酸の固相への結合
を促進させる添加液(アルコール系,エステル系,エー
テル系等の有機溶剤)を添加して混合する第2工程50
2,第2工程502で得られた混合液と核酸結合性固相
(核酸を吸着する担体)とを接触させる第3工程50
3,核酸が結合した固相と液体とを分離する第4工程5
04,核酸が結合した固相を塩を含む溶液により洗浄す
る第5工程,核酸が結合した固相から核酸を遊離させる
第6工程から構成される。以上の工程により,核酸を含
有する材料(試料)から,精製状態の核酸が得られる。
The nucleic acid extraction process shown in FIG. 1 is composed of six steps described in Prior Art-4. The nucleic acid extraction procedure promotes the binding of the nucleic acid to the solid phase in the nucleic acid releasing solution containing the released nucleic acid obtained in the first step 501 and the first step 501 for releasing the nucleic acid from the nucleic acid-containing material (sample). Second step 50 of adding and mixing an additive liquid (alcohol-based, ester-based, ether-based organic solvent, etc.)
2. Third step 50 of bringing the mixed solution obtained in the second step 502 into contact with the nucleic acid-binding solid phase (carrier for adsorbing nucleic acid)
3, Fourth step 5 for separating a solid phase bound with nucleic acid and a liquid
04, a fifth step of washing the nucleic acid-bonded solid phase with a solution containing a salt, and a sixth step of releasing the nucleic acid from the nucleic acid-bonded solid phase. Through the above steps, the purified nucleic acid can be obtained from the material (sample) containing the nucleic acid.

【0033】以下,第1工程と第2工程を合わせて分解
工程と呼び,第3工程と第4工程を合わせて吸着工程と
呼ぶ。
Hereinafter, the first step and the second step are collectively called a decomposition step, and the third step and the fourth step are collectively called an adsorption step.

【0034】図2に示すように,ヒト全血1の中には,
赤血球2,白血球3等の成分が含まれており,核酸は主
に白血球3の核4に存在している。
As shown in FIG. 2, in human whole blood 1,
Components such as red blood cells 2 and white blood cells 3 are included, and nucleic acids are mainly present in the nucleus 4 of the white blood cells 3.

【0035】図3は,本発明の実施例での,全血からの
核酸抽出の手順を説明する図である。先ず,チューブ5
に10μLのProteinase K(6)を注入する。次に,チ
ューブ5に100μLの全血1を加える(全血の添加1
01)。次に,100μLの反応液(1M〜8Mのカオ
トロピック塩と50%以下の界面活性剤を含む)を加え
て攪拌する(反応液の添加及び攪拌102)。チューブ
5の溶液を70°Cで10分間インキュベートする(イ
ンキュベート103)ことにより,白血球が破壊され,
核4内の核酸が溶液内に出る(添加液の添加前の核酸遊
離溶液を得る)。その後,この核酸遊離溶液に,核酸の
固相への結合を促進させる添加液(アルコール系,エス
テル系,エーテル系等の有機溶剤)を100μL加えて
攪拌する(添加液の添加と攪拌104)と,混合液7が
得られる。混合液7を得るまでの工程が分解工程であ
る。
FIG. 3 is a diagram for explaining the procedure of nucleic acid extraction from whole blood in the embodiment of the present invention. First, tube 5
Inject 10 μL of Proteinase K (6) into the tube. Next, add 100 μL of whole blood 1 to the tube 5 (addition of whole blood 1
01). Next, 100 μL of a reaction solution (containing 1M to 8M chaotropic salt and 50% or less of a surfactant) is added and stirred (addition of reaction solution and stirring 102). Incubating the solution in tube 5 at 70 ° C for 10 minutes (incubation 103) destroys leukocytes,
The nucleic acid in the nucleus 4 comes out in the solution (a nucleic acid releasing solution before addition of the additive solution is obtained). Thereafter, 100 μL of an additive solution (organic solvent such as alcohol, ester or ether) that promotes the binding of the nucleic acid to the solid phase is added to the nucleic acid releasing solution and stirred (addition solution and stirring 104). A mixed solution 7 is obtained. The process until the mixed liquid 7 is obtained is a decomposition process.

【0036】この分解工程以降に行なう数種類の核酸回
収法がある。何れの方法も,吸着工程,洗浄工程,回収
工程からなる。代表的な例として,スピンカラム法,吸
引吐出法がある。
There are several types of nucleic acid recovery methods performed after this decomposition step. Both methods include an adsorption process, a cleaning process, and a recovery process. Typical examples are a spin column method and a suction discharge method.

【0037】図4は,本発明の実施例での,全血からの
第1の核酸回収方法(スピンカラム法)の手順を説明す
る図である。先ず,チューブ5中の混合液7を,スピン
カラム8の中へ移す。スピンカラム8の底部には非常に
細かいシリカ又はガラス繊維からなる濾紙状の吸着担体
9が充填されている。
FIG. 4 is a diagram for explaining the procedure of the first method for recovering nucleic acid from whole blood (spin column method) in the example of the present invention. First, the mixed solution 7 in the tube 5 is transferred into the spin column 8. The bottom of the spin column 8 is filled with a filter paper-like adsorption carrier 9 made of very fine silica or glass fiber.

【0038】添加液を含む混合液7を,吸引により吸着
担体9内を通過させて,核酸を吸着担体9に吸着させる
(吸着工程7:吸引による核酸吸着工程105)。その
後,アルコール等の有機溶剤を20%〜80%含む50
0μLの洗浄液11を,スピンカラム8に注入する(洗
浄液のカラムへの添加106)。
The mixed solution 7 containing the additive is passed through the adsorption carrier 9 by suction to adsorb the nucleic acid to the adsorption carrier 9 (adsorption step 7: nucleic acid adsorption step 105 by suction). After that, 50% containing 20% to 80% of an organic solvent such as alcohol.
0 μL of the washing liquid 11 is injected into the spin column 8 (addition of washing liquid to column 106).

【0039】次に,吸引により吸着担体9を洗浄し,核
酸以外の成分を取り除く(洗浄工程107)。この洗浄
工程は2回繰り返すが,吸着担体に吸着した核酸は洗浄
工程により溶離しない。その後,低塩濃度の溶出液12
を添加して2分間から5分間静置する(溶出液の添加と
静置108)。核酸を吸着担体から溶離させ,最後に,
吸引により,チューブ10に回収する(溶出工程:核酸
の回収109)。代表的な溶出液12の組成は,50m
mol/LのTris/HCl(pH8.5)+0.1
mmol/LのEDTA・2Naである。
Next, the adsorption carrier 9 is washed by suction to remove components other than nucleic acid (washing step 107). This washing step is repeated twice, but the nucleic acid adsorbed on the adsorption carrier is not eluted by the washing step. Then, the low salt concentration eluate 12
Is added and the mixture is allowed to stand for 2 to 5 minutes (addition of eluate and standing 108). The nucleic acid is eluted from the adsorption carrier and finally
It is collected in the tube 10 by suction (elution step: nucleic acid collection 109). The composition of the typical eluate 12 is 50 m
mol / L Tris / HCl (pH 8.5) +0.1
It is EDTA.2Na of mmol / L.

【0040】図5は,本発明の実施例での,全血からの
第2の核酸回収方法(吸引吐出法)の手順を説明する図
である。吸引吐出法では,吸着担体13としてガラス,
石英等の繊維を低密度に充填した円筒型中空カラム14
を使用する。カラム14を使用して,チューブ5中の混
合液7の吸引吐出を,複数回繰り返し,吸着担体13に
核酸を吸着させる(吸着工程:吸引吐出による核酸吸着
110)。続いて,500μLのアルコール等の有機溶
剤を20%〜80%含む洗浄液15を入れた別のチュー
ブ16を使用して,吸引吐出を行ない,核酸以外の成分
を取り除く(洗浄工程)。この洗浄工程は,2回以上行
う。その後,予め70°Cに加熱したチューブ17内の
溶出液16(100μL)を,カラム14内の吸着担体
13に接触する位置まで吸い上げた状態で約2分間静止
する(溶出液の吸上げと静置111)。この操作によ
り,核酸が吸着担体13から溶出液18に溶離する。溶
出液18を吐出させて,チューブ17に核酸を回収する
(核酸の回収112)。代表的な溶出液の組成は,50
mmol/LのTris/HCl(pH8.5)+0.
1mmol/LのEDTA・2Naである。
FIG. 5 is a diagram for explaining the procedure of the second method for recovering nucleic acid from whole blood (suction / ejection method) in the embodiment of the present invention. In the suction discharge method, glass is used as the adsorption carrier 13,
Cylindrical hollow column 14 in which fibers such as quartz are packed at low density
To use. Using the column 14, suction and discharge of the mixed liquid 7 in the tube 5 are repeated a plurality of times to adsorb the nucleic acid to the adsorption carrier 13 (adsorption step: nucleic acid adsorption 110 by suction and ejection). Then, suction and discharge are performed using another tube 16 containing 500 μL of the washing liquid 15 containing 20% to 80% of an organic solvent such as alcohol to remove components other than nucleic acid (washing step). This cleaning process is performed twice or more. Then, the eluate 16 (100 μL) in the tube 17 heated in advance to 70 ° C. is sucked up to a position where it comes into contact with the adsorption carrier 13 in the column 14 and then rested for about 2 minutes (absorption and suction of the eluent). 111). By this operation, the nucleic acid is eluted from the adsorption carrier 13 into the eluate 18. The eluate 18 is discharged to collect the nucleic acid in the tube 17 (nucleic acid recovery 112). A typical eluent composition is 50
mmol / L Tris / HCl (pH 8.5) +0.
It is 1 mmol / L of EDTA.2Na.

【0041】以下,実施例で使用する材料,薬品,試料
について詳細に説明する。 1. 核酸吸着材料及びカラム 1.1 スピンカラム:例えば,3層のガラス繊維濾紙
(Whatman社製)を,遠心分離クロマトグラフィ
カラム(スピンカラム)に固定した。スピンカラムは,
図3,図4に示すスピンカラム法のプロトコルにて使用
した。 1.2 核酸捕捉用カラム:従来技術−5に記載の核酸
捕捉用チップ(カラム)に,直径0.5μm〜30μm
の石英繊維(東ソー・クオーツ株式会社製又は東芝セラ
ミックス株式会社製)を充填した。核酸捕捉用チップ
は,図3,図5に示す吸引吐出法のプロトコルにて使用
した。 2. 核酸を含有する試料 2.1 血液(ヒト):採血直後の血液,又は,−20
°Cで凍結保存した血液を使用した。 2.2 組織:新鮮組織又は凍結保存した組織を使用し
た。 2.3 植物:植物を液体窒素下で乳鉢ですりつぶし直
接使用,又は,凍結保存した後用いた。 2.4 細胞:単離,又は単離/培養された細胞を直接
使用,又は凍結保存していた細胞を用いた。 3. 試薬 3.1 反応液:反応液は,以下に示すカオトロピック
塩,界面活性剤,消泡剤,その他塩成分を含む。 3.1.1 カオトロピック塩:ヨウ化カリウム(K
I),グアニジン塩酸塩(GuHCl),グアニジンチ
オシアン酸塩(GuHSCN)の何れかを使用した。 3.1.2 界面活性剤:ポリオキシエチレン(20)
ソルビタンモノラウレート(Tween20),ポリオ
キシエチレン(20)ソルビタンモノパルミレート(T
ween40),ポリオキシエチレン(10)イソオク
チルフェニルエーテル(TritonX−100)の何
れかを使用した。 3.1.3 消泡剤:CE−457(日本油脂株式会社
製の消泡剤ディスホーム,ポリアルキレングリコール誘
導体) 3.1.4 その他の塩:エチレンジアミン四酢酸・二
ナトリウム塩(EDTA・2Na),トリス(ヒドロキ
シメチル)アミノメタン(Tris) 3.2 添加液:PGDME,PGDEE,DIGLY
ME,DGDEE,THF,DX,PGMEA,EL,
HAC,AC,MEK,EtOH,PrOH,i−Pr
OHの何れかの有機溶剤を使用した。 3.3 洗浄液:25mmol/Lの酢酸カリウム+7
0容量%エタノール(W1),25mmol/Lの酢酸
カリウム+50容量%エタノール(W2),10mmo
l/LのTris/HCl(pH8.5)+0.1mm
ol/LのEDTA・2Na+50容量%エタノール
(W3)の何れかの組成を用いた。 3.4 溶出液:水(100%,pH8.0)(E
1),10mmol/LのTris/HCl(pH8.
5)+0.1mmolのEDTA・2Na(E2),5
0mmol/LのTris/HCl(pH8.5)+
0.1mmol/LのEDTA・2Na(E3)の何れ
かの組成を用いた。 3.5. 酵素:タンパク分解酵素プロテアーゼ(prot
ease),アルカリ性プロテイナーゼK(proteinase K)
の何れかの酵素を用いた。 実施例1:全血からの核酸抽出(その1) 図3及び図5に示された方法に従って,100μLのヒ
ト全血1から核酸抽出を行った。分解工程では,10μ
Lのproteinase K(6)を入れたチューブ5に,100
μLの全血1及び100μLの反応液(濃度3Mのグア
ニジン塩酸塩,5容量%のTween40を含む)を添
加,攪拌した。チューブ5の溶液を70°Cで10分間
インキュベートして,核酸遊離溶液を得た。核酸遊離溶
液に,EL,DIGLYME,EtOH,PrOH,i
−PrOHから選ばれた添加液(100μL)を加え攪
拌して,混合液7を得た。
Materials, chemicals and samples used in the examples will be described in detail below. 1. Nucleic acid adsorbing material and column 1.1 Spin column: For example, a three-layer glass fiber filter paper (manufactured by Whatman) was fixed to a centrifugal chromatography column (spin column). The spin column is
It was used in the spin column protocol shown in FIGS. 1.2 Nucleic acid capture column: the nucleic acid capture chip (column) described in Related Art-5 has a diameter of 0.5 μm to 30 μm.
Of quartz fiber (manufactured by Tosoh Quartz Co., Ltd. or Toshiba Ceramics Co., Ltd.). The nucleic acid-capturing chip was used in the suction / ejection protocol shown in FIGS. 2. Sample containing nucleic acid 2.1 Blood (human): Blood immediately after blood collection or -20
Blood cryopreserved at ° C was used. 2.2 Tissues: Fresh tissues or frozen tissues were used. 2.3 Plants: The plants were ground in liquid mortar in a mortar and used directly or after frozen storage. 2.4 Cells: The isolated or isolated / cultured cells were used directly, or the cells that had been cryopreserved were used. 3. Reagent 3.1 Reaction liquid: The reaction liquid contains the following chaotropic salt, surfactant, antifoaming agent and other salt components. 3.1.1 Chaotropic salt: potassium iodide (K
I), guanidine hydrochloride (GuHCl), or guanidine thiocyanate (GuHSCN) was used. 3.1.2 Surfactant: polyoxyethylene (20)
Sorbitan monolaurate (Tween 20), polyoxyethylene (20) sorbitan monopalmilate (T
Either ween 40) or polyoxyethylene (10) isooctyl phenyl ether (Triton X-100) was used. 3.1.3 Defoaming agent: CE-457 (defoaming agent home made by NOF CORPORATION, polyalkylene glycol derivative) 3.1.4 Other salts: ethylenediaminetetraacetic acid / disodium salt (EDTA / 2Na) ), Tris (hydroxymethyl) aminomethane (Tris) 3.2 Additives: PGDME, PGDEE, DIGLY
ME, DGDEE, THF, DX, PGMEA, EL,
HAC, AC, MEK, EtOH, PrOH, i-Pr
Any organic solvent of OH was used. 3.3 Washing solution: 25 mmol / L potassium acetate +7
0% by volume ethanol (W1), 25 mmol / L potassium acetate + 50% by volume ethanol (W2), 10 mmo
1 / L Tris / HCl (pH 8.5) + 0.1 mm
Either composition of ol / L EDTA.2Na + 50% by volume ethanol (W3) was used. 3.4 Eluent: water (100%, pH 8.0) (E
1), 10 mmol / L Tris / HCl (pH 8.
5) +0.1 mmol of EDTA.2Na (E2), 5
0 mmol / L Tris / HCl (pH 8.5) +
Any composition of 0.1 mmol / L EDTA.2Na (E3) was used. 3.5. Enzyme: Proteolytic enzyme Protease (prot
ease), alkaline proteinase K
Either enzyme was used. Example 1 Nucleic Acid Extraction from Whole Blood (Part 1) According to the method shown in FIGS. 3 and 5, 100 μL of human whole blood 1 was subjected to nucleic acid extraction. In the disassembly process, 10μ
Tube 100 containing L proteinase K (6)
1 μL of whole blood and 100 μL of reaction solution (containing guanidine hydrochloride having a concentration of 3M and 5% by volume of Tween 40) were added and stirred. The solution in tube 5 was incubated at 70 ° C for 10 minutes to obtain a nucleic acid releasing solution. EL, DIGLYME, EtOH, PrOH, i
An additive solution (100 μL) selected from —PrOH was added and stirred to obtain a mixture solution 7.

【0042】吸着工程では,石英ウール吸着担体13
(東芝セラミックス株式会社製)を充填したカラム14
を用いて,混合液7の吸引及び吐出の操作を,温度25
°Cにて10回繰り返し行った。
In the adsorption step, the quartz wool adsorption carrier 13
Column 14 filled with (Toshiba Ceramics Co., Ltd.)
The operation of sucking and discharging the mixed liquid 7 is performed at a temperature of 25
Repeated 10 times at ° C.

【0043】洗浄工程では,別のチューブ16に入れた
洗浄液(W1)15の吸引吐出の操作を3回繰り返し行
った。
In the cleaning step, the operation of sucking and discharging the cleaning liquid (W1) 15 contained in another tube 16 was repeated three times.

【0044】回収工程では,別のチューブ17に入れた
溶出液18を,吸着担体13の全体が浸漬する位置まで
吸上げて2分間静止した。その後,溶出液18を吐出
し,核酸を含む溶液を回収した。回収した核酸は,良好
な純度を有し,沈殿,精製等の工程無しで,次のPCR
等の反応や分析に使用できた。
In the collecting step, the eluate 18 contained in another tube 17 was sucked up to a position where the entire adsorption carrier 13 was immersed, and was left still for 2 minutes. Then, the eluate 18 was discharged and the solution containing nucleic acid was recovered. The recovered nucleic acid has a good purity and is subjected to the next PCR without any steps such as precipitation and purification.
Etc. could be used for reaction and analysis.

【0045】図6は,本発明の実施例1に於いて,添加
液としてELを用いて,温度T(°C)の添加液を同じ
温度Tの核酸遊離溶液に添加した時の,温度Tと相対核
酸収量の関係を示す図である。
FIG. 6 shows the temperature T when the additive solution at the temperature T (° C.) was added to the nucleic acid releasing solution at the same temperature T using EL as the additive solution in Example 1 of the present invention. It is a figure which shows the relationship between a relative nucleic acid yield.

【0046】以下の説明では,温度Tと相対核酸収量の
関係を求める場合には,温度T以外の化学反応条件を同
一として,温度Tを変化させた時の核酸収量を,最大核
酸収量を100%とする相対核酸収量により比較する。
In the following description, when the relationship between the temperature T and the relative nucleic acid yield is obtained, the nucleic acid yield when the temperature T is changed under the same chemical reaction conditions except the temperature T, and the maximum nucleic acid yield is 100 Comparison is made by relative nucleic acid yield in%.

【0047】図6,図7,図8,図11に於いて,横軸
の温度は,温度T(°C)の添加液をほぼ同じ温度Tの
核酸遊離溶液に添加する時の温度Tを示し,縦軸は,温
度Tを変化させた時に得られた相対核酸収量を示す。
6, FIG. 7, FIG. 8 and FIG. 11, the temperature on the horizontal axis is the temperature T when the additive solution at temperature T (° C.) is added to the nucleic acid releasing solution at substantially the same temperature T. The vertical axis represents the relative nucleic acid yield obtained when the temperature T was changed.

【0048】図6に示すように,温度Tが−5°C〜5
5°Cの時,目標とした80%以上の相対核酸収量が得
られた。また,温度Tが0°C〜50°Cの時,90%
以上の好適な相対核酸収量が得られた。更に,温度Iが
10°C〜40°Cの時,95%以上のより好適な相対
核酸収量が得られた。
As shown in FIG. 6, the temperature T is -5 ° C to 5 ° C.
At 5 ° C, the target relative nucleic acid yield of 80% or more was obtained. When the temperature T is 0 ° C to 50 ° C, 90%
The above preferable relative nucleic acid yields were obtained. Furthermore, when the temperature I was 10 ° C to 40 ° C, a more preferable relative nucleic acid yield of 95% or more was obtained.

【0049】ELと同様に使用できるエステル系有機溶
剤として,PGMEAがある。
PGMEA is an ester organic solvent that can be used in the same manner as EL.

【0050】図7は,本発明の実施例1に於いて,添加
液としてDIGLYMEを用いて,温度T(°C)の添
加液を同じ温度Tの核酸遊離溶液に添加した時の,温度
Tと相対核酸収量の関係を示す図である。図7に示すよ
うに,温度Tが−5°C〜55°Cの時,目標とした8
0%以上の相対核酸収量が得られた。また,温度Tが0
°C〜45°Cの時,90%以上の好適な相対核酸収量
が得られた。更に,温度Tが10°C〜40°Cの時,
95%以上のより好適な相対核酸収量が得られた。
FIG. 7 shows the temperature T when the additive solution at the temperature T (° C) was added to the nucleic acid releasing solution at the same temperature T using DIGLYME as the additive solution in Example 1 of the present invention. It is a figure which shows the relationship between a relative nucleic acid yield. As shown in FIG. 7, when the temperature T is −5 ° C. to 55 ° C.
A relative nucleic acid yield of 0% or more was obtained. Also, the temperature T is 0
Suitable relative nucleic acid yields of 90% or higher were obtained between ° C and 45 ° C. Furthermore, when the temperature T is 10 ° C to 40 ° C,
A better relative nucleic acid yield of 95% or higher was obtained.

【0051】DIGLYMEと同様に使用できるエーテ
ル系有機溶剤として,EGDME,EGDEE,PGD
ME,PGDEE,DGDEE,THF,DXがある。
EDGME, EGDEE, PGD can be used as an ether type organic solvent which can be used similarly to DIGLYME.
ME, PGDEE, DGDEE, THF, DX.

【0052】図8は,本発明の実施例1に於いて,添加
液としてEtOHを用いて,温度T(°C)の添加液を
同じ温度Tの核酸遊離溶液に添加した時の,温度Tと相
対核酸収量の関係を示す図である。図8に示すように,
温度Tが−5°C〜55°Cの時,目標とした80%以
上の相対核酸収量が得られた。また,温度Tが0°C〜
50°Cの時,90%以上の好適な相対核酸収量が得ら
れた。更に,温度Tが10°C〜40°Cの時,95%
以上のより好適な相対核酸収量が得られた。
FIG. 8 shows the temperature T when the additive solution at temperature T (° C) was added to the nucleic acid releasing solution at the same temperature T using EtOH as the additive solution in Example 1 of the present invention. It is a figure which shows the relationship between a relative nucleic acid yield. As shown in FIG.
When the temperature T was -5 ° C to 55 ° C, the target relative nucleic acid yield of 80% or more was obtained. Further, the temperature T is 0 ° C to
At 50 ° C, a good relative nucleic acid yield of 90% or more was obtained. Further, when the temperature T is 10 ° C to 40 ° C, 95%
The more preferable relative nucleic acid yield was obtained.

【0053】EtOHと同様に使用できるアルコール系
有機溶剤として,PrOH,i−PrOHがある。添加
液としてPrOH,i−PrOHの何れかを使用して,
温度T(°C)の添加液を同じ温度Tの核酸遊離溶液に
添加した時の,温度Tと相対核酸収量の関係を調べた結
果,温度Tが−5°C〜55°Cの時,目標とした80
%以上の相対核酸収量が得られた。また,温度Tが0°
C〜50°Cの時,90%以上の好適な相対核酸収量が
得られた。
As the alcoholic organic solvent which can be used similarly to EtOH, there are PrOH and i-PrOH. Using either PrOH or i-PrOH as the additive liquid,
As a result of investigating the relationship between the temperature T and the relative nucleic acid yield when the additive solution at the temperature T (° C) was added to the nucleic acid releasing solution at the same temperature T, when the temperature T was -5 ° C to 55 ° C, Targeted 80
A relative nucleic acid yield of>% was obtained. Also, the temperature T is 0 °
Suitable relative nucleic acid yields of 90% or higher were obtained at C-50 ° C.

【0054】アルコール系有機溶剤を用いた場合には,
エーテル系有機溶剤を用いた場合よりも,やや広い温度
範囲で高い相対核酸収量が得られた。 実施例2:全血からの核酸抽出(その2) 図3及び図5に示された方法に従って,1mLのヒト全
血1から核酸抽出を行った。分解工程では,100μL
のprotease(6)を入れたチューブ5に,1mLの全血
1及び1mLの反応液(濃度3Mのグアニジン塩酸塩,
5容量%のTritonX−100を含む)を添加,攪
拌した。チューブ5の溶液を70°Cで10分間インキ
ュベートした後,20°Cまで冷却して核酸遊離溶液を
得た。EGDME,EGDEE,PGDME,PGDE
E,DIGLYME,DGDEE,THF,DX,PG
MEA,EL,HAC,AC,MEK,EtOH,Pr
OH,i−PrOHから選ばれた添加液8(1mL)を
チューブ5に加え,攪拌して,混合液7を得た。
When an alcoholic organic solvent is used,
Higher relative nucleic acid yields were obtained over a slightly wider temperature range than when using ether organic solvents. Example 2: Extraction of nucleic acid from whole blood (Part 2) According to the method shown in FIGS. 3 and 5, nucleic acid was extracted from 1 mL of human whole blood 1. 100 μL in the decomposition process
1 ml of whole blood 1 and 1 ml of reaction solution (concentration of 3M guanidine hydrochloride,
5% by volume of Triton X-100 was included) and stirred. The solution in tube 5 was incubated at 70 ° C for 10 minutes and then cooled to 20 ° C to obtain a nucleic acid-releasing solution. EGDME, EGDEE, PGDME, PGDE
E, DIGLYME, DGDEE, THF, DX, PG
MEA, EL, HAC, AC, MEK, EtOH, Pr
Additive liquid 8 (1 mL) selected from OH and i-PrOH was added to tube 5 and stirred to obtain mixed liquid 7.

【0055】吸着工程では,20°Cに於いて,スピン
カラム8に混合液7を注ぎ,卓上遠心機を用いて1分間
の遠心処理(回転数6000rpm)を行った。
In the adsorption step, the mixed solution 7 was poured into the spin column 8 at 20 ° C. and a centrifugal process (rotation speed 6000 rpm) was performed for 1 minute using a tabletop centrifuge.

【0056】洗浄工程では,スピンカラム8に500μ
Lの洗浄液(W2)11を注ぎ,1分間の遠心処理(回
転数6000rpm)を行った。
In the washing process, the spin column 8 is set to 500 μm.
L of the cleaning liquid (W2) 11 was poured, and the centrifugal treatment (rotation speed 6000 rpm) was performed for 1 minute.

【0057】回収工程では,スピンカラム8に100μ
Lの溶出液(E2)12を注ぎ,2分間室温(25°
C)で放置した後,1分間の遠心処理(回転数6000
rpm)を行って,核酸を回収し,定量,純度評価を行
った。回収した核酸は,PCRに使用することが可能で
あった。
In the recovery step, 100 μ was applied to the spin column 8.
Pour L eluate (E2) 12 and let it stand for 2 minutes at room temperature (25 °
After leaving it in C), centrifuge for 1 minute (rotation speed 6000
rpm) was performed to recover the nucleic acid, and quantification and purity evaluation were performed. The recovered nucleic acid could be used for PCR.

【0058】図9は,本発明の実施例2に於いて,異な
る種類の添加液を加えた時に得られた核酸収量を示す図
である。核酸遊離溶液の温度を20°Cとして,核酸遊
離溶液に20°Cの添加液を添加した。吸着工程は20
°Cで行なった。目標とする核酸収量は15μgである
が,何れの種類の添加液を用いた場合にも,目標とする
核酸収量以上の値が得られた。 実施例3:全血からの核酸抽出(その3) 100μLのヒト全血1からの核酸抽出を行った。
FIG. 9 is a diagram showing the nucleic acid yields obtained when different types of additive solutions were added in Example 2 of the present invention. The temperature of the nucleic acid-releasing solution was set to 20 ° C., and the additive solution at 20 ° C. was added to the nucleic acid-releasing solution. 20 adsorption steps
It was performed at ° C. The target nucleic acid yield was 15 μg, but a value higher than the target nucleic acid yield was obtained regardless of which type of additive solution was used. Example 3: Extraction of nucleic acid from whole blood (3) Extraction of nucleic acid from 100 μL of human whole blood 1 was performed.

【0059】分解工程では,10μLのproteinase K
(6)を入れたチューブ5に,100μLの全血1及び
100μLの反応液(濃度4Mのグアニジン塩酸塩,5
容量%のTween20を含む)を分注,攪拌した。チ
ューブ5の溶液を70°Cで10分間インキュベートし
た。
In the decomposition step, 10 μL of proteinase K was used.
In a tube 5 containing (6), 100 μL of whole blood 1 and 100 μL of reaction liquid (concentration of 4 M guanidine hydrochloride, 5
Volume% Tween 20 was included) was dispensed and stirred. The solution in tube 5 was incubated at 70 ° C for 10 minutes.

【0060】図10は,本発明の実施例3で,インキュ
ベートに用いた反応槽の構造を示す図である。全血1及
び反応液が入ったサンプルチューブ251は,ヒートブ
ロック254上で加熱される。温度センサ259により
計測された温度に基づいて温度制御回路255により生
成される,加熱冷却基板256のための温度制御信号
が,制御線260を通して加熱冷却基板256に付与さ
れ,ヒートブロック254の温度が,調整される。加熱
冷却基板256の下部に,加熱,冷却を加速するため
に,放熱ファン257が取り付けられている。放熱ファ
ン257の動作は,制御線261を通して,温度制御回
路255により制御されている。ヒートブロック254
の外側は,温度制御を安定して行なうために,断熱材2
53で覆われている。断熱材253はカバー252で覆
われている。反応槽の全体は支柱258によって支えら
れている。
FIG. 10 is a diagram showing the structure of the reaction tank used for incubation in Example 3 of the present invention. The sample tube 251 containing the whole blood 1 and the reaction solution is heated on the heat block 254. The temperature control signal for the heating / cooling substrate 256, which is generated by the temperature control circuit 255 based on the temperature measured by the temperature sensor 259, is applied to the heating / cooling substrate 256 through the control line 260, and the temperature of the heat block 254 is changed. , Adjusted. A heat radiating fan 257 is attached to the bottom of the heating / cooling substrate 256 to accelerate heating and cooling. The operation of the heat radiation fan 257 is controlled by the temperature control circuit 255 through the control line 261. Heat block 254
The outside of the heat insulating material 2 is used for stable temperature control.
Covered with 53. The heat insulating material 253 is covered with a cover 252. The entire reaction tank is supported by columns 258.

【0061】インキュベート後,サンプルチューブ25
1の溶液の温度を20°Cまで冷却して,核酸遊離溶液
を得た。サンプルチューブ251に,EL,DIGLY
ME,EtOH,PrOH,i−PrOHから選ばれた
添加液(100μL)を加え,振とう攪拌して,混合液
7を得た。
After incubation, sample tube 25
The temperature of the solution of 1 was cooled to 20 ° C. to obtain a nucleic acid releasing solution. EL, DIGLY on the sample tube 251
An additive solution (100 μL) selected from ME, EtOH, PrOH, and i-PrOH was added, and the mixture was shaken and stirred to obtain a mixed solution 7.

【0062】吸着工程では,スピンカラム8を用いて混
合液7を真空ポンプにより吸引濾過した。
In the adsorption step, the spin column 8 was used to suction-filter the mixed solution 7 with a vacuum pump.

【0063】洗浄工程では,スピンカラム8に500μ
Lの洗浄液(W3)11を注ぎ,真空ポンプにより吸引
濾過した。
In the washing process, the spin column 8 is set to 500 μm.
The washing liquid (W3) 11 of L was poured and suction filtration was performed with a vacuum pump.

【0064】回収工程では,スピンカラム8に溶出液
(E3)18を注ぎ2分間静置した。その後,真空ポン
プを用いて吸引濾過し,核酸を含む溶液を回収した。回
収した核酸は,十分な収量であり,純度も良好であり,
PCRに使用することが可能であった。
In the recovery step, the eluate (E3) 18 was poured into the spin column 8 and left standing for 2 minutes. Then, suction filtration was performed using a vacuum pump to collect a solution containing nucleic acid. The recovered nucleic acid has sufficient yield and good purity,
It was possible to use it for PCR.

【0065】図11は,本発明の実施例3に於いて,添
加液としてDIGLYMEを用いて,温度T(°C)の
添加液を同じ温度Tの核酸遊離溶液に添加した時の,温
度Tと相対核酸収量の関係を示す図である。図11に示
すように,温度Tが−5°C〜45°Cの時,目標とし
た80%以上の相対核酸収量が得られた。また,温度T
が0°C〜40°Cの時,90%以上の好適な相対核酸
収量が得られた。更に,温度Tが10°C〜35°Cの
時,95%以上のより好適な相対核酸収量が得られた。
FIG. 11 shows that, in Example 3 of the present invention, DIGLYME was used as the additive solution and the additive solution at the temperature T (° C) was added to the nucleic acid releasing solution at the same temperature T. It is a figure which shows the relationship between a relative nucleic acid yield. As shown in FIG. 11, when the temperature T was −5 ° C. to 45 ° C., the target relative nucleic acid yield of 80% or more was obtained. Also, the temperature T
A suitable relative nucleic acid yield of 90% or more was obtained when the temperature was from 0 ° C to 40 ° C. Furthermore, when the temperature T was 10 ° C to 35 ° C, a more preferable relative nucleic acid yield of 95% or more was obtained.

【0066】また,添加液としてELを用いて,温度T
(°C)の添加液を同じ温度Tの核酸遊離溶液に添加し
た時の,温度Tと相対核酸収量の関係を調べた結果,温
度Tが−5°C〜45°Cの時,目標とした80%以上
の相対核酸収量が得られた。また,温度Tが0°C〜4
0°Cの時,90%以上の好適な相対核酸収量が得られ
た。
Further, using EL as an additive liquid, the temperature T
As a result of investigating the relationship between the temperature T and the relative nucleic acid yield when the addition solution of (° C) was added to the nucleic acid releasing solution of the same temperature T, when the temperature T was -5 ° C to 45 ° C, A relative nucleic acid yield of 80% or more was obtained. Further, the temperature T is 0 ° C to 4
At 0 ° C, a good relative nucleic acid yield of over 90% was obtained.

【0067】更に,添加液としてEtOH,PrOH,
i−PrOHの何れかを用いて,温度T(°C)の添加
液を同じ温度Tの核酸遊離溶液に添加した時の,温度T
と相対核酸収量の関係を調べた結果,温度Tが−5°C
〜55°Cの時,目標とした80%以上の相対核酸収量
が得られた。また,温度Tが0°C〜50°Cの時,9
0%以上の好適な相対核酸収量が得られた。
Further, as an additive liquid, EtOH, PrOH,
The temperature T when the additive solution at the temperature T (° C) is added to the nucleic acid releasing solution at the same temperature T using any of i-PrOH
As a result of investigating the relationship between the relative nucleic acid yield and the
At ˜55 ° C., the targeted relative nucleic acid yield of 80% or more was obtained. When the temperature T is 0 ° C to 50 ° C, 9
Suitable relative nucleic acid yields of 0% and above were obtained.

【0068】アルコール系有機溶剤を用いた場合には,
エステル系有機溶剤又はエーテル系有機溶剤を用いた場
合よりも,やや広い温度範囲で高い相対核酸収量が得ら
れた。 実施例4:自動化された装置による全血からの核酸抽出
(その1) 図12は,本発明の実施例4での自動化された核酸の精
製分離装置206の構成を示すブロック図である。図1
2に示す装置206では,実施例1で説明した方法を自
動的に実行する。制御部201によって,装置の運転を
制御する。装置206は,抽出カラムを備え,核酸を分
離する分離部202,試薬の分注を行なう分注部20
4,検体,反応容器,保存容器,核酸捕捉用チップ,試
薬容器等が配置される架設部203,反応容器内の液の
温度を制御してPCRを行なうサーマルサイクラ部20
5を有している。核酸抽出の操作手順は図3及び図5に
従って,自動的に実行される。
When an alcoholic organic solvent is used,
Higher relative nucleic acid yields were obtained over a slightly wider temperature range than when ester-based organic solvents or ether-based organic solvents were used. Example 4 Nucleic Acid Extraction from Whole Blood by Automated Apparatus (Part 1) FIG. 12 is a block diagram showing the configuration of the automated nucleic acid purification / separation apparatus 206 in Example 4 of the present invention. Figure 1
The device 206 shown in FIG. 2 automatically executes the method described in the first embodiment. The controller 201 controls the operation of the device. The device 206 includes an extraction column, a separation unit 202 that separates nucleic acids, and a dispensing unit 20 that dispenses a reagent.
4, a construction unit 203 in which a sample, a reaction container, a storage container, a nucleic acid-capturing chip, a reagent container, and the like are arranged, and a thermal cycler unit 20 that controls the temperature of the liquid in the reaction container to perform PCR
Have five. The procedure of nucleic acid extraction is automatically performed according to FIGS. 3 and 5.

【0069】図13は,本発明の実施例4での自動化さ
れた核酸の精製分離装置206の構成要素の配置を示す
平面図である。検体架設部223には,血液等の検体が
置かれる。反応容器架設部224,225には,反応容
器が置かれている。保存容器架設部226,227,2
28,229には,反応後の溶液を保存する保存容器が
置かれている。試薬架設部218には,装置206で使
用する薬品が置かれている。サーマルサイクラ部22
2,230では,反応容器内の液の温度を制御してPC
Rを行なう。エタノール等の洗浄液は,廃液口212,
221から廃液用容器に排出される。チップ架設部21
3,214,215,216,217,219には,チ
ップ又はカラムが置かれている。使用済のチップ又はカ
ラムは,チップ廃棄口211,220から廃棄用の容器
に廃棄される。
FIG. 13 is a plan view showing the arrangement of the components of the automated nucleic acid purification / separation device 206 according to the fourth embodiment of the present invention. A sample such as blood is placed in the sample erection unit 223. A reaction container is placed in the reaction container installation parts 224 and 225. Storage container installation parts 226, 227, 2
28 and 229 are provided with storage containers for storing the solution after the reaction. The chemicals used in the device 206 are placed in the reagent installation section 218. Thermal cycler section 22
In 2,230, the temperature of the liquid in the reaction vessel is controlled to control the PC.
Perform R. The cleaning liquid such as ethanol is used for the waste liquid outlet 212,
It is discharged from 221 to the waste liquid container. Chip installation part 21
Chips or columns are placed at 3,214, 215, 216, 217, and 219. The used chips or columns are discarded from the chip disposal ports 211 and 220 into a disposal container.

【0070】検体の血液は検体架設部223に設置され
ている。装置206では,分解工程及び吸着工程は同じ
温度で実行される。図12,図13に示す装置206を
用いて,100μLのヒト全血1からの核酸抽出を行っ
た。核酸抽出に使用する試薬は,実施例1で説明した試
薬と同様である。
The sample blood is placed in the sample erection section 223. In the device 206, the decomposition process and the adsorption process are performed at the same temperature. Nucleic acid was extracted from 100 μL of human whole blood 1 using the device 206 shown in FIGS. 12 and 13. The reagents used for nucleic acid extraction are the same as the reagents described in Example 1.

【0071】分解工程は,反応容器架設部224で行っ
た。分注部204で,100μLのproteinase K(6)
を分注したチューブ5に,1mLの全血1及び1mLの
反応液を添加,攪拌した。チューブ5の溶液を30°C
で10分間インキュベートして,核酸遊離溶液を得た。
チューブ5に,EL,EtOH,DIGLYMEから選
ばれた添加液(1mL)を加え,攪拌して,混合液7を
得た。
The disassembling process was performed in the reaction container erection section 224. 100 μL of proteinase K (6) in the dispensing unit 204
1 mL of whole blood 1 and 1 mL of the reaction solution were added to the tube 5 into which Tube 5 solution at 30 ° C
Incubation was carried out for 10 minutes to obtain a nucleic acid releasing solution.
An additive solution (1 mL) selected from EL, EtOH, and DIGLYME was added to the tube 5 and stirred to obtain a mixed solution 7.

【0072】吸着工程は,反応容器架設部224で行っ
た。分離部202には,石英ウール製の吸着担体13
(東芝セラミックス株式会社製)を充填したカラム14
が装着されている。駆動ポンプによる混合液7の吸引及
び吐出の操作を30°Cで10回繰り返し行った。
The adsorption process was carried out in the reaction container installation section 224. The separation unit 202 includes an adsorption carrier 13 made of quartz wool.
Column 14 filled with (Toshiba Ceramics Co., Ltd.)
Is installed. The operation of sucking and discharging the mixed liquid 7 by the drive pump was repeated 10 times at 30 ° C.

【0073】洗浄工程は,分離部202を反応容器架設
部225に移動して行った。別のチューブ16が反応容
器架設部225に設置されている。チューブ16に入れ
た1mLの洗浄液(W1)15の吸引吐出の操作を3回
繰り返し行った。
The cleaning step was carried out by moving the separating section 202 to the reaction container erection section 225. Another tube 16 is installed in the reaction container installation section 225. The operation of sucking and discharging 1 mL of the cleaning liquid (W1) 15 contained in the tube 16 was repeated three times.

【0074】回収工程は,分離部202を保存容器架設
部227に移動して行った。保存容器架設部227には
ヒータが配置されている。保存容器架設部227に設置
されたチューブ17には1mLの溶出液18が分注され
ており,予め70°Cに加熱された。チューブ17に入
れた溶出液18を,吸着担体13の全体が浸漬する位置
まで吸上げて2分間静止した。その後,溶出液18を吐
出し,核酸を含む溶液を回収した。
The recovery step was carried out by moving the separation section 202 to the storage container installation section 227. A heater is arranged in the storage container installation section 227. 1 mL of the eluate 18 was dispensed into the tube 17 installed in the storage container erection section 227 and preheated to 70 ° C. The eluate 18 contained in the tube 17 was sucked up to a position where the entire adsorption carrier 13 was dipped, and was left still for 2 minutes. Then, the eluate 18 was discharged and the solution containing nucleic acid was recovered.

【0075】次に,保存容器架設部228で核酸を含む
溶出液18の分注を行ない,分注さた核酸を含む溶出液
に,dNTP,塩化マグネシウム,DNAポリメラー
ゼ,及びPCR用緩衝溶液を調合した後,反応容器をサ
ーマルサイクラ部230に移し,PCRを行うことがで
きた。
Next, the eluate 18 containing the nucleic acid is dispensed in the storage container erection section 228, and the dispensed eluate containing the nucleic acid is mixed with dNTP, magnesium chloride, DNA polymerase, and a buffer solution for PCR. After that, the reaction container was transferred to the thermal cycler unit 230, and PCR could be performed.

【0076】図14は,本発明の実施例4に於いて,添
加液としてDIGLYMEを用いて,温度T(°C)の
添加液を同じ温度Tの核酸遊離溶液に添加した後に,同
じ温度Tで吸着工程を実行した時の,温度Tと相対核酸
収量の関係を示す図である。分解工程及び吸着工程は,
反応容器架設部224で実行され,反応容器架設部22
4の温度は温度Tに保持されている。図14は,温度T
(図14の横軸)を変化させた時の相対核酸収量(図1
4の縦軸)を調べた結果を示す。分解工程及び吸着工程
に於ける反応容器架設部の温度が20°C〜35°Cの
時,目標とした80%以上の相対核酸収量が得られた。
FIG. 14 shows that in Example 4 of the present invention, DIGLYME was used as the additive solution, and the additive solution at the temperature T (° C.) was added to the nucleic acid releasing solution at the same temperature T, followed by the same temperature T. It is a figure which shows the relationship between temperature T and the relative nucleic acid yield at the time of performing an adsorption process by. The decomposition process and adsorption process are
The reaction container installation unit 224 executes the reaction container installation unit 22.
The temperature of 4 is maintained at the temperature T. FIG. 14 shows the temperature T
Relative nucleic acid yield when changing (horizontal axis in FIG. 14) (FIG. 1)
4 shows the results of examining (4 vertical axis). The target relative nucleic acid yield of 80% or more was obtained when the temperature of the reaction vessel installation portion in the decomposition step and the adsorption step was 20 ° C to 35 ° C.

【0077】図15は,本発明の実施例4に於いて得ら
れた核酸を鋳型として,p53遺伝子のエキソン8部位
のPCRを行って得られたPCR産物のアガロース電気
泳動の結果を示す図である。レーン−1(301),及
びレーン−2(302)でPCR産物の泳動を泳動方向
304で行なった。レーン−3(303)でDNA分子
量マーカーの泳動を行なった。図15から明らかなよう
に,鎖長200塩基対のPCR産物が確認できた。 実施例5:自動化された装置による全血からの核酸抽出
(その2) 実施例4と同様に,図12,図13に示す装置206を
用いて,100μLのヒト全血1からの核酸抽出を行っ
た。核酸抽出に使用する試薬は,実施例1で説明した試
薬と同様である。検体の血液は検体架設部223に設置
されている。
FIG. 15 is a diagram showing the result of agarose electrophoresis of the PCR product obtained by PCR of the exon 8 site of the p53 gene using the nucleic acid obtained in Example 4 of the present invention as a template. is there. The lane-1 (301) and the lane-2 (302) were subjected to migration of PCR products in the migration direction 304. Migration of DNA molecular weight markers was performed in Lane-3 (303). As is clear from FIG. 15, a PCR product having a chain length of 200 base pairs was confirmed. Example 5: Extraction of Nucleic Acid from Whole Blood by Automated Device (Part 2) Similarly to Example 4, the device 206 shown in FIGS. 12 and 13 was used to extract nucleic acid from 100 μL of human whole blood 1. went. The reagents used for nucleic acid extraction are the same as the reagents described in Example 1. The sample blood is placed in the sample erection unit 223.

【0078】分解工程は,反応容器架設部224で行っ
た。分注部204で,100μLのproteinase K(6)
を分注したチューブ5に,1mLの全血1及び1mLの
反応液を添加,攪拌した。チューブ5の溶液を70℃で
10分間インキュベートした後,25°Cに冷却して核
酸遊離溶液を得た。
The disassembling process was performed in the reaction container erection section 224. 100 μL of proteinase K (6) in the dispensing unit 204
1 mL of whole blood 1 and 1 mL of the reaction solution were added to the tube 5 into which The solution in tube 5 was incubated at 70 ° C for 10 minutes and then cooled to 25 ° C to obtain a nucleic acid-releasing solution.

【0079】図16は,本発明の実施例5で使用する反
応容器架設部224の構成を示す図である。反応容器架
設部224では,温度センサにより検知された温度に基
づいて,自動的に有機溶剤の供給を行なう。
FIG. 16 is a diagram showing the structure of the reaction container installation section 224 used in the fifth embodiment of the present invention. In the reaction container installation section 224, the organic solvent is automatically supplied based on the temperature detected by the temperature sensor.

【0080】全血1及び反応液を含む溶液403が入っ
たチューブ5は,ヒートブロック414に設置されてい
る。温度制御プログラムが組み込まれた計測制御部40
7は,支持台420に組み込まれている。計測制御部4
07は,ヒートブロック414に組み込まれた温度セン
サ406により検出された温度に基づいて,ヒートブロ
ック414に組み込まれたペルチェ素子405を駆動し
て,ヒートブロック414の温度制御を行なう。
The tube 5 containing the solution 403 containing the whole blood 1 and the reaction solution is installed in the heat block 414. Measurement control unit 40 incorporating a temperature control program
7 is incorporated in the support base 420. Measurement control unit 4
Reference numeral 07 drives the Peltier element 405 incorporated in the heat block 414 based on the temperature detected by the temperature sensor 406 incorporated in the heat block 414 to control the temperature of the heat block 414.

【0081】チューブ5の溶液403の70°Cでのイ
ンキュベート終了後,ペルチェ素子405によりヒート
ブロック414を冷却する。温度センサ406が,ヒー
トブロック414の温度が25°Cになった時点を検知
すると,有機溶剤(添加液)409の添加を開始を行な
う試薬供給命令が,コントロールライン415を経由し
てポンプ410に送られ,支柱421に組み込まれたポ
ンプ410が駆動される。ノズル408から吸上げられ
た有機溶剤409は,試薬供給路411を経由して,ア
ーム422に配置された試薬供給ノズル402よりチュ
ーブ5に添加される。
After the incubation of the solution 403 in the tube 5 at 70 ° C. is completed, the heat block 414 is cooled by the Peltier device 405. When the temperature sensor 406 detects the time when the temperature of the heat block 414 reaches 25 ° C., a reagent supply command for starting the addition of the organic solvent (addition liquid) 409 is sent to the pump 410 via the control line 415. The pump 410, which is sent and is incorporated in the support 421, is driven. The organic solvent 409 sucked up from the nozzle 408 is added to the tube 5 from the reagent supply nozzle 402 arranged on the arm 422 via the reagent supply passage 411.

【0082】図16に示す構成により,反応容器架設部
224の温度を25°Cに下げた後,添加液として1m
LのDIGLYMEを自動で加え,混合液7を得た。
With the structure shown in FIG. 16, after the temperature of the reaction vessel erection section 224 was lowered to 25 ° C.
L of DIGLYME was automatically added to obtain a mixed solution 7.

【0083】吸着工程は,反応容器架設部224上で行
った。分離部202には,石英ウール製の吸着担体13
(東芝セラミックス株式会社製)を充填したカラム14
が装着されている。駆動ポンプによる混合液7の吸引及
び吐出の操作を25°Cで10回繰り返し行った。
The adsorption process was performed on the reaction container erection section 224. The separation unit 202 includes an adsorption carrier 13 made of quartz wool.
Column 14 filled with (Toshiba Ceramics Co., Ltd.)
Is installed. The operation of sucking and discharging the mixed liquid 7 by the drive pump was repeated 10 times at 25 ° C.

【0084】洗浄工程は,分離部202を反応容器架設
部225に移動して行った。別のチューブ16が反応容
器架設部225に設置されている。チューブ16に入れ
た1mLの洗浄液(W2)15の吸引吐出の操作を3回
繰り返し行った。
The cleaning step was carried out by moving the separating section 202 to the reaction container erection section 225. Another tube 16 is installed in the reaction container installation section 225. The operation of sucking and discharging 1 mL of the cleaning liquid (W2) 15 contained in the tube 16 was repeated three times.

【0085】回収工程は,分離部202を保存容器架設
部227に移動して行った。保存容器架設部227には
ヒータが配置されている。保存容器架設部227に設置
されたチューブ17には,1mLの溶出液18が分注さ
れており,予め70°Cに加熱された。チューブ17に
入れた溶出液18を,吸着担体13の全体が浸漬する位
置まで吸上げて2分間静止した。その後,溶出液18を
吐出,回収し,25μgの核酸を得た。
The collecting step was performed by moving the separating section 202 to the storage container erection section 227. A heater is arranged in the storage container installation section 227. 1 mL of the eluate 18 was dispensed into the tube 17 installed in the storage container erection section 227 and preheated to 70 ° C. The eluate 18 contained in the tube 17 was sucked up to a position where the entire adsorption carrier 13 was dipped, and was left still for 2 minutes. Then, the eluate 18 was discharged and collected to obtain 25 μg of nucleic acid.

【0086】次に,保存容器架設部228で核酸を含む
溶出液18の分注を行ない,分注さた核酸を含む溶出液
に,dNTP,塩化マグネシウム,DNAポリメラー
ゼ,及びPCR用緩衝溶液を調合した後,反応容器をサ
ーマルサイクラ部230に移し,PCRを行うことがで
きた。 実施例6:組織からの核酸抽出1 チューブ内で,25mgの肝臓組織(ラット)と80μ
LのPBS(phosphate buffered saline)を混合し,
機械的にホモジナイズした。チューブに,20μLのPr
oteinase Kを添加して攪拌した後,チューブの溶液を,
組織が溶解するまで56°Cに加熱した。チューブに,
200μLの反応液(濃度3Mのグアニジン塩酸塩,5
容量%のTween80を含む)を添加して攪拌した
後,チューブの溶液を,70°Cで10分間加熱した。
水冷により,チューブの溶液を25°Cに冷却して,核
酸遊離溶液を得た。チューブに200μLのDIGLY
MEを添加し混合して,混合液7を得た。以上が分解工
程である。
Next, the eluate 18 containing nucleic acid is dispensed in the storage container erection section 228, and dNTP, magnesium chloride, DNA polymerase, and PCR buffer solution are prepared in the dispensed eluate containing nucleic acid. After that, the reaction container was transferred to the thermal cycler unit 230, and PCR could be performed. Example 6 Nucleic Acid Extraction from Tissue 1 In a tube, 25 mg of liver tissue (rat) and 80 μm
L of PBS (phosphate buffered saline) is mixed,
Mechanically homogenized. Add 20 μL of Pr to the tube.
After adding oteinase K and stirring, the solution in the tube was
Heat to 56 ° C until the tissue has dissolved. On the tube,
200 μL of reaction mixture (concentration of 3M guanidine hydrochloride, 5
After addition of 10% by volume Tween 80) and stirring, the solution in the tube was heated at 70 ° C. for 10 minutes.
The solution in the tube was cooled to 25 ° C by water cooling to obtain a nucleic acid-releasing solution. 200 μL DIGLY in the tube
ME was added and mixed to obtain a mixed solution 7. The above is the decomposition step.

【0087】吸着工程では,スピンカラム8に混合液7
を注ぎ,卓上遠心機を用いて,1分間の遠心処理(回転
数6000rpm)を行った。
In the adsorption step, the mixed solution 7 is put on the spin column 8.
Was poured and a centrifugal process (rotation speed 6000 rpm) was performed for 1 minute using a tabletop centrifuge.

【0088】洗浄工程では,スピンカラム8に500μ
Lの洗浄液(W3)を注ぎ,1分間の遠心処理(回転数
6000rpm)を行った。
In the washing step, the spin column 8 is set to 500 μm.
The washing liquid (W3) of L was poured, and the centrifugal treatment (rotation speed 6000 rpm) was performed for 1 minute.

【0089】回収工程では,スピンカラム8に,E1,
E2及びE3から選ばれた溶出液13(100μL)を
注ぎ,2分間室温(25°C)で放置した後,1分間の
遠心処理(回転数6000rpm)を行って核酸を回収
し,定量して純度の評価を行った。その結果,A260
/A280が1.8の高純度の核酸が得られ,PCRに
使用することが可能であった。なお,A260は,核酸
を含む溶液の波長260nmに於ける吸光度を示し,A
280は,核酸を含む溶液の波長280nmに於ける吸
光度を示す。 実施例7:組織からの核酸抽出2 20mgのぼうこう組織(ラット)から,実施例6と同
様の方法により,核酸抽出を行った。その結果,A26
0/A280が1.7の高純度の核酸が得られ,PCR
に使用することが可能であった。 実施例8:尿からの核酸抽出 20mLの尿検体を含むチューブを,5分間の遠心処理
(回転数14000rpm)した。チューブから上清を
除去し,尿沈査を分離した。チューブ内に得られた尿沈
査に,20μLのproteinase Kと,200μLの反応液
(濃度3Mのグアニジン塩酸塩,5容量%のTrito
nX−100を含む)を添加し,攪拌した。チューブの
溶液を70°Cで10分間加熱した後,放令により25
°Cに冷却して核酸遊離溶液を得た。チューブに,20
0μLのEtOHを添加し,混合して,混合液7を得
た。以上が分解工程である。
In the recovery step, E1,
Eluate 13 (100 μL) selected from E2 and E3 was poured, left at room temperature (25 ° C.) for 2 minutes, and then centrifuged for 1 minute (rotation speed 6000 rpm) to recover and quantify nucleic acid. The purity was evaluated. As a result, A260
A high-purity nucleic acid having a / A280 of 1.8 was obtained and could be used for PCR. A260 represents the absorbance of the solution containing nucleic acid at a wavelength of 260 nm,
280 indicates the absorbance of the solution containing the nucleic acid at a wavelength of 280 nm. Example 7: Nucleic acid extraction from tissue 2 Nucleic acid was extracted from 20 mg of bladder tissue (rat) by the same method as in Example 6. As a result, A26
High-purity nucleic acid with 0 / A280 of 1.7 was obtained, and PCR was performed.
It was possible to use Example 8: Extraction of nucleic acid from urine A tube containing 20 mL of a urine sample was subjected to a centrifugal treatment for 5 minutes (rotation speed 14000 rpm). The supernatant was removed from the tube and the urine sediment was separated. For the urine sediment obtained in the tube, 20 μL of proteinase K and 200 μL of reaction solution (concentration of 3M guanidine hydrochloride, 5% by volume of Trito) were added.
(including nX-100) was added and stirred. After heating the solution in the tube at 70 ° C for 10 minutes, the
The solution was cooled to ° C to obtain a nucleic acid-releasing solution. Tube, 20
0 μL of EtOH was added and mixed to obtain a mixed solution 7. The above is the decomposition step.

【0090】吸着工程では,スピンカラム8に混合液7
を注ぎ,卓上遠心機を用いて,1分間の遠心処理(回転
数6000rpm)を行った。
In the adsorption step, the mixed solution 7 is put on the spin column 8.
Was poured and a centrifugal process (rotation speed 6000 rpm) was performed for 1 minute using a tabletop centrifuge.

【0091】洗浄工程では,スピンカラム8に,500
μLの洗浄液(W4)12を注ぎ,1分間の遠心処理
(回転数6000rpm)を行った。
In the washing process, the spin column 8 is set to 500
μL of the washing solution (W4) 12 was poured, and centrifugation treatment (rotation speed: 6000 rpm) was performed for 1 minute.

【0092】回収工程では,スピンカラム8に,100
μLの溶出液(E3)13を注ぎ,2分間室温(25°
C)で放置した後,1分間の遠心処理を行って核酸を回
収し,定量し,純度の評価を行った。その結果,A26
0/A280が1.8の高純度の核酸が得られ,PCR
に使用することが可能であった。 実施例9:細胞からの核酸抽出 チューブ内で,10個のHeLa細胞を,100μL
のPBSに分散させた後,チューブに,20μLのprot
einase Kと,200μLの反応液(濃度3Mのグアニジ
ン塩酸塩,5容量%のTritonX−100を含む)
を添加し,攪拌した。チューブの溶液を70°Cで10
分間加熱した後,水冷により,25°Cに冷却して核酸
遊離溶液を得た。チューブに,200μLのDIGLY
MEを添加し,混合して,混合液7を得た。以上が分解
工程である。
In the recovery step, 100 is applied to the spin column 8.
Pour the eluate (E3) 13 of μL into the well and incubate it at room temperature (25 °
After being left in C), centrifugation was performed for 1 minute to recover the nucleic acid, which was quantified and the purity was evaluated. As a result, A26
High-purity nucleic acid with 0 / A280 of 1.8 was obtained, and PCR was performed.
It was possible to use Example 9: 100 μL of 10 6 HeLa cells in a tube for nucleic acid extraction from cells
After dispersing in PBS, add 20 μL of prot to the tube.
Einase K and 200 μL of reaction solution (concentration of 3M guanidine hydrochloride and 5% by volume of Triton X-100 included)
Was added and stirred. Tube of solution at 70 ° C for 10
After heating for 1 minute, the solution was cooled with water to 25 ° C. to obtain a nucleic acid-releasing solution. Add 200 μL DIGLY to the tube.
ME was added and mixed to obtain a mixed solution 7. The above is the decomposition step.

【0093】吸着工程では,スピンカラム8に混合液7
を注ぎ,卓上遠心機を用いて,1分間の遠心処理(回転
数6000rpm)を行った。
In the adsorption step, the mixed solution 7 is put on the spin column 8.
Was poured and a centrifugal process (rotation speed 6000 rpm) was performed for 1 minute using a tabletop centrifuge.

【0094】洗浄工程では,スピンカラム8に,500
μLの洗浄液(W2)11を注ぎ,1分間の遠心処理
(回転数6000rpm)を行った。
In the washing process, the spin column 8 is set to 500
μL of the washing liquid (W2) 11 was poured, and the centrifugal treatment (rotation speed 6000 rpm) was performed for 1 minute.

【0095】回収工程では,スピンカラム8に,100
μLの溶出液(E1)12を注ぎ,2分間室温(25°
C)で放置した後,1分間の遠心処理(回転数6000
rpm)を行って核酸を回収し,定量して,純度の評価
を行った。その結果,A260/A280が1.8の高
純度の核酸が得られ,PCRに使用することが可能であ
った。 実施例10:全血からの核酸抽出(その4) 図3及び図5に示された方法に従って,100μLのヒ
ト全血1から核酸抽出を行った。分解工程では,10μ
Lのproteinase K(6)を入れたチューブ5に,100
μLの全血1及び100μLの反応液(濃度4Mのグア
ニジン塩酸塩,5容量%のTween20を含む)を添
加,攪拌した。チューブ5の溶液を70°Cで10分間
インキュベートして,核酸遊離溶液を得た。チューブ5
に,EL,EtOH,DIGLYMEの中から選ばれた
添加液(100μL)を加え,攪拌して,混合液7を得
た。
In the recovery process, 100 is applied to the spin column 8.
Pour μL of Eluent (E1) 12 and let it stand for 2 minutes at room temperature (25 °
After leaving it in C), centrifuge for 1 minute (rotation speed 6000
rpm) was performed to recover the nucleic acid, and the nucleic acid was quantified to evaluate the purity. As a result, a high-purity nucleic acid with A260 / A280 of 1.8 was obtained and could be used for PCR. Example 10: Nucleic acid extraction from whole blood (4) Nucleic acid was extracted from 100 μL of human whole blood 1 according to the method shown in FIGS. 3 and 5. In the disassembly process, 10μ
Tube 100 containing L proteinase K (6)
1 μL of whole blood 1 and 100 μL of a reaction solution (containing guanidine hydrochloride having a concentration of 4M and 5% by volume of Tween 20) were added and stirred. The solution in tube 5 was incubated at 70 ° C for 10 minutes to obtain a nucleic acid releasing solution. Tube 5
To the above, an additive solution (100 μL) selected from EL, EtOH, and DIGLYME was added and stirred to obtain a mixed solution 7.

【0096】吸着工程では,石英ウール吸着担体13
(東芝セラミックス株式会社製)を充填したカラム14
を用いて,混合液7の吸引及び吐出の操作を,温度25
°Cにて10回繰り返し行った。
In the adsorption step, the quartz wool adsorption carrier 13
Column 14 filled with (Toshiba Ceramics Co., Ltd.)
The operation of sucking and discharging the mixed liquid 7 is performed at a temperature of 25
Repeated 10 times at ° C.

【0097】洗浄工程では,別のチューブ16に入れた
洗浄液(W1)15の吸引吐出の操作を3回繰り返し行
った。
In the cleaning step, the operation of sucking and discharging the cleaning liquid (W1) 15 contained in another tube 16 was repeated three times.

【0098】回収工程では,別のチューブ17に入れた
溶出液18を,吸着担体13の全体が浸漬する位置まで
吸上げて2分間静止した。その後,溶出液18を吐出
し,核酸を含む溶液を回収した。回収した核酸は,良好
な純度を有し,沈殿,精製等の工程無しで,次のPCR
等の反応や分析に使用できた。
In the collecting step, the eluate 18 contained in another tube 17 was sucked up to a position where the entire adsorption carrier 13 was immersed, and was left still for 2 minutes. Then, the eluate 18 was discharged and the solution containing nucleic acid was recovered. The recovered nucleic acid has a good purity and is subjected to the next PCR without any steps such as precipitation and purification.
Etc. could be used for reaction and analysis.

【0099】図17は,本発明の実施例10に於いて,
添加液としてEtOHを用いて,20°Cの添加液を温
度T(°C)の核酸遊離溶液に添加した時の温度Tと相
対核酸収量の関係を示す図である。温度Tの核酸遊離溶
液に,20°CのEtOHが添加されて混合液7が調製
される。図17,図18に於いて,横軸は,添加液が添
加される核酸遊離溶液の温度Tを示し,縦軸は,最大核
酸収量を100%として相対核酸収量を示す。図17に
示すように,核酸遊離溶液の温度Tが−5°C〜60°
Cの時,目標とした80%以上の相対核酸収量が得られ
た。また,核酸遊離溶液の温度Tが0°C〜50°Cの
時,90%以上の好適な相対核酸収量が得られた。更
に,核酸遊離溶液の温度Tが10°C〜45°Cの時,
95%以上のより好適な相対核酸収量が得られた。
FIG. 17 shows the tenth embodiment of the present invention.
It is a figure which shows the relationship between temperature T and relative nucleic acid yield when EtOH is used as an addition liquid and the addition liquid of 20 degreeC is added to the nucleic acid free solution of temperature T (degreeC). The mixed solution 7 is prepared by adding EtOH at 20 ° C. to the nucleic acid releasing solution at the temperature T. In FIGS. 17 and 18, the horizontal axis represents the temperature T of the nucleic acid releasing solution to which the additive solution is added, and the vertical axis represents the relative nucleic acid yield with the maximum nucleic acid yield being 100%. As shown in FIG. 17, the temperature T of the nucleic acid releasing solution was −5 ° C. to 60 °
At C, a target relative nucleic acid yield of 80% or higher was obtained. Further, when the temperature T of the nucleic acid-releasing solution was 0 ° C to 50 ° C, a suitable relative nucleic acid yield of 90% or more was obtained. Furthermore, when the temperature T of the nucleic acid releasing solution is 10 ° C to 45 ° C,
A better relative nucleic acid yield of 95% or higher was obtained.

【0100】EtOHと同様に使用できるアルコール系
有機溶剤として,PrOH,i−PrOHがある。
As an alcoholic organic solvent which can be used similarly to EtOH, there are PrOH and i-PrOH.

【0101】図18は,本発明の実施例10に於いて,
添加液としてDIGLYMEを用いて,20°Cの添加
液を温度T(°C)の核酸遊離溶液に添加した時の温度
Tと相対核酸収量の関係を示す図である。温度Tの核酸
遊離溶液に,20°CのDIGLYMEが添加されて混
合液7が調製される。図18に示すように,核酸遊離溶
液の温度Tが−5°C〜50°Cの時,目標とした80
%以上の相対核酸収量が得られた。また,核酸遊離溶液
の温度Tが,温度が10°C〜45°Cの時,90%以
上の好適な相対核酸収量が得られた。更に,核酸遊離溶
液の温度Tが,温度が20°C〜40°Cの時,95%
以上のより好適な相対核酸収量が得られた。
FIG. 18 shows the tenth embodiment of the present invention.
It is a figure which shows the relationship between the temperature T and the relative nucleic acid yield when DIGLYME is used as an addition liquid and the addition liquid of 20 degreeC is added to the nucleic acid free solution of temperature T (degreeC). The mixed solution 7 is prepared by adding DIGLYME at 20 ° C. to the nucleic acid releasing solution at the temperature T. As shown in FIG. 18, when the temperature T of the nucleic acid releasing solution was −5 ° C. to 50 ° C.
A relative nucleic acid yield of>% was obtained. When the temperature T of the nucleic acid-releasing solution was 10 ° C to 45 ° C, a suitable relative nucleic acid yield of 90% or more was obtained. Furthermore, the temperature T of the nucleic acid releasing solution is 95% when the temperature is 20 ° C to 40 ° C.
The more preferable relative nucleic acid yield was obtained.

【0102】本発明では,以上説明した実験結果に基づ
いて,核酸と高濃度の塩とを含む核酸遊離溶液に添加す
るエタノール等の有機溶媒の温度,及び,核酸遊離溶液
と有機溶媒との混合液の温度が,核酸の回収量に及ぼす
影響を検討した結果,これら温度と核酸の回収量との間
に密接な関係が存在することを見い出した。核酸の回収
量のばらつきを低減させるには,これらの温度の制御が
重要であるとの結論に至った。
In the present invention, based on the above-described experimental results, the temperature of the organic solvent such as ethanol added to the nucleic acid releasing solution containing the nucleic acid and the high-concentration salt, and the mixing of the nucleic acid releasing solution and the organic solvent. As a result of examining the influence of the temperature of the liquid on the recovery amount of nucleic acid, it was found that there is a close relationship between these temperatures and the recovery amount of nucleic acid. It was concluded that controlling these temperatures is important to reduce the variation in the amount of nucleic acid recovered.

【0103】[0103]

【発明の効果】発明の方法によれば,核酸の回収の収率
を向上でき,核酸回収量のばらつきが小さく,安定して
高い核酸回収量が得られる核酸の精製分離方法及び装置
を提供できる。
Industrial Applicability According to the method of the present invention, it is possible to provide a method and an apparatus for purifying and separating nucleic acid, which can improve the yield of nucleic acid recovery, have a small variation in nucleic acid recovery amount, and stably obtain a high nucleic acid recovery amount. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例での核酸の抽出プロセスを説明
する図。
FIG. 1 is a diagram illustrating a nucleic acid extraction process according to an example of the present invention.

【図2】本発明の実施例で用いる全血の構成を説明する
図。
FIG. 2 is a view for explaining the constitution of whole blood used in the examples of the present invention.

【図3】本発明の実施例での,全血からの核酸抽出の手
順を説明する図。
FIG. 3 is a view for explaining the procedure of nucleic acid extraction from whole blood in the example of the present invention.

【図4】本発明の実施例での,全血からの第1の核酸回
収方法の手順を説明する図。
FIG. 4 is a view for explaining the procedure of the first method for recovering nucleic acid from whole blood in the example of the present invention.

【図5】本発明の実施例での,全血からの第2の核酸回
収方法の手順を説明する図。
FIG. 5 is a view for explaining the procedure of the second method for recovering nucleic acid from whole blood in the example of the present invention.

【図6】本発明の実施例1に於いて,添加液としてEL
を用いて,温度T(°C)の添加液を同じ温度Tの核酸
遊離溶液に添加した時の,温度Tと相対核酸収量の関係
を示す図。
FIG. 6 shows an EL as an additive liquid in Example 1 of the present invention.
The figure which shows the relationship between temperature T and the relative nucleic acid yield when the addition liquid of temperature T (° C) is added to the nucleic acid release solution of the same temperature T using.

【図7】本発明の実施例1に於いて,添加液としてDI
GLYMEを用いて,温度T(°C)の添加液を同じ温
度Tの核酸遊離溶液に添加した時の,温度Tと相対核酸
収量の関係を示す図。
FIG. 7 shows DI as an additive liquid in Example 1 of the present invention.
The figure which shows the relationship between temperature T and the relative nucleic acid yield when the addition liquid of temperature T (degreeC) is added to the nucleic acid free solution of the same temperature T using GLYME.

【図8】本発明の実施例1に於いて,添加液としてEt
OHを用いて,温度T(°C)の添加液を同じ温度Tの
核酸遊離溶液に添加した時の,温度Tと相対核酸収量の
関係を示す図。
FIG. 8 shows Et as an additive liquid in Example 1 of the present invention.
The figure which shows the relationship between temperature T and relative nucleic acid yield when the addition liquid of temperature T (° C) is added to the nucleic acid free solution of the same temperature T using OH.

【図9】本発明の実施例2に於いて,異なる種類の添加
液を加えた時に得られた核酸収量を示す図。
FIG. 9 is a diagram showing the nucleic acid yields obtained when different types of additive solutions were added in Example 2 of the present invention.

【図10】本発明の実施例3で用いた反応槽の構造を示
す図。
FIG. 10 is a diagram showing the structure of a reaction tank used in Example 3 of the present invention.

【図11】本発明の実施例3に於いて,添加液としてD
IGLYMEを用いて,温度T(°C)の添加液を同じ
温度Tの核酸遊離溶液に添加した時の,温度Tと相対核
酸収量の関係を示す図。
FIG. 11 shows D as an additive liquid in Example 3 of the present invention.
The figure which shows the relationship between temperature T and relative nucleic acid yield when the addition liquid of temperature T (degreeC) is added to the nucleic acid free solution of the same temperature T using IGLYME.

【図12】本発明の実施例4での自動化された核酸の精
製分離装置の構成を示すブロック図。
FIG. 12 is a block diagram showing the configuration of an automated nucleic acid purification / separation apparatus according to a fourth embodiment of the present invention.

【図13】本発明の実施例4での自動化された核酸の精
製分離装置の構成要素の配置を示す平面図。
FIG. 13 is a plan view showing the arrangement of components of an automated nucleic acid purification / separation device according to a fourth embodiment of the present invention.

【図14】本発明の実施例4に於いて,添加液としてD
IGLYMEを用いて,温度T(°C)の添加液を同じ
温度Tの核酸遊離溶液に添加した後に,同じ温度Tで吸
着工程を実行した時の,温度Tと相対核酸収量の関係を
示す図。
FIG. 14 shows D as an additive liquid in Example 4 of the present invention.
FIG. 7 is a diagram showing the relationship between temperature T and relative nucleic acid yield when an adsorption step is performed at the same temperature T after adding an additive solution at temperature T (° C) to a nucleic acid releasing solution at the same temperature T using IGLYME. .

【図15】本発明の実施例4に於けるアガロース電気泳
動の結果を示す図。
FIG. 15 is a view showing the results of agarose electrophoresis in Example 4 of the present invention.

【図16】本発明の実施例5で使用する反応容器架設部
224の構成を示す図。
FIG. 16 is a diagram showing a configuration of a reaction container installation section 224 used in Example 5 of the present invention.

【図17】本発明の実施例10に於いて,添加液として
EtOHを用いて,20°Cの添加液を温度T(°C)
の核酸遊離溶液に添加した時の温度Tと相対核酸収量の
関係を示す図。
FIG. 17 is a graph of Example 10 of the present invention, wherein EtOH is used as an additive liquid and the additive liquid at 20 ° C. is heated to a temperature T (° C.).
FIG. 6 is a graph showing the relationship between the temperature T and the relative nucleic acid yield when added to the nucleic acid releasing solution of.

【図18】本発明の実施例10に於いて,添加液として
DIGLYMEを用いて,20°Cの添加液を温度T
(°C)の核酸遊離溶液に添加した時の温度Tと相対核
酸収量の関係を示す図。
FIG. 18 In Example 10 of the present invention, using DIGLYME as an additive liquid, adding the additive liquid at 20 ° C. to a temperature T
The figure which shows the relationship between temperature T and relative nucleic acid yield when it adds to the nucleic acid free solution of (degree C).

【符号の説明】[Explanation of symbols]

1…ヒト全血,2…赤血球,3…白血球,4…核,5,
10,16,17…チューブ,6…Proteinase K,7…
混合液,8…スピンカラム,9,13…吸着担体,1
1,15…洗浄液,12,18…溶出液,14…カラ
ム,101…全血の添加,102…反応液の添加及び攪
拌,103…インキュベート,104…添加液の添加と
攪拌,105…吸引による核酸吸着,106…洗浄液の
カラムへの添加,107…洗浄工程,108…溶出液の
添加と静置,109…核酸の回収,110…吸引吐出に
よる核酸吸着,111…溶出液の吸上げと静置,112
…核酸の回収,201…制御部,202…分離部,20
3…架設部,204…分注部,205…サーマルサイク
ラ部,206…核酸の精製分離装置,211,220…
チップ廃棄口,212,221…廃液口,213,21
4,215,216,217,219…チップ架設部,
218…試薬架設部,222,230…サーマルサイク
ラ部,223…検体架設部,224,225…反応容器
架設部,226,227,228,229…保存容器架
設部,251…サンプルチューブ,252…カバー,2
53…断熱材,254…ヒートブロック,255…温度
制御回路,256…加熱冷却基板,257…放熱ファ
ン,258…支柱,259…温度センサ,260,26
1…制御線,301…レーン−1,302…レーン−
2,303…レーン−3,304…泳動方向,305…
鎖長200塩基対のバンド,402…試薬供給ノズル,
403…全血及び反応液を含む溶液,405…ペルチェ
素子,406…温度センサ,407…計測制御部,40
8…ノズル,409…有機溶剤,410…ポンプ,41
1…試薬供給路,414…ヒートブロック,415…コ
ントロールライン,420…支持台,421…支柱,4
22…アーム,501…第1工程,502…第2工程,
503…第3工程,504…第4工程,505…第5工
程,506…第6工程。
1 ... Human whole blood, 2 ... Red blood cells, 3 ... White blood cells, 4 ... Nucleus, 5,
10, 16, 17 ... Tube, 6 ... Proteinase K, 7 ...
Mixed liquid, 8 ... Spin column, 9, 13 ... Adsorption carrier, 1
1, 15 ... Wash solution, 12, 18 ... Eluate, 14 ... Column, 101 ... Addition of whole blood, 102 ... Addition and stirring of reaction solution, 103 ... Incubation, 104 ... Addition and stirring of addition solution, 105 ... By suction Nucleic acid adsorption, 106 ... Addition of washing solution to column, 107 ... Washing step, 108 ... Addition and standing of eluate, 109 ... Recovery of nucleic acid, 110 ... Adsorption of nucleic acid by suction and ejection, 111 ... Suction and rest of eluate Location, 112
... recovery of nucleic acid, 201 ... control unit, 202 ... separation unit, 20
3 ... Erection part, 204 ... Dispensing part, 205 ... Thermal cycler part, 206 ... Nucleic acid purification / separation device, 211, 220 ...
Chip waste port, 212, 221 ... Waste liquid port, 213, 21
4, 215, 216, 217, 219 ... Chip installation section,
218 ... Reagent installation section, 222, 230 ... Thermal cycler section, 223 ... Sample installation section, 224, 225 ... Reaction container installation section, 226, 227, 228, 229 ... Storage container installation section, 251 ... Sample tube, 252 ... Cover , 2
53 ... Insulating material, 254 ... Heat block, 255 ... Temperature control circuit, 256 ... Heating / cooling substrate, 257 ... Radiating fan, 258 ... Post, 259 ... Temperature sensor, 260, 26
1 ... Control line, 301 ... Lane-1, 302 ... Lane-
2, 303 ... Lane-3, 304 ... Migration direction, 305 ...
Band with a chain length of 200 base pairs, 402 ... Reagent supply nozzle,
403 ... Solution containing whole blood and reaction solution, 405 ... Peltier element, 406 ... Temperature sensor, 407 ... Measurement control section, 40
8 ... Nozzle, 409 ... Organic solvent, 410 ... Pump, 41
DESCRIPTION OF SYMBOLS 1 ... Reagent supply path, 414 ... Heat block, 415 ... Control line, 420 ... Support stand, 421 ... Support post, 4
22 ... Arm, 501 ... 1st process, 502 ... 2nd process,
503 ... Third step, 504 ... Fourth step, 505 ... Fifth step, 506 ... Sixth step.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 英樹 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 福薗 真一 茨城県ひたちなか市市毛882番地 株式会 社日立製作所計測器グループ内 (72)発明者 神田 隆之 茨城県ひたちなか市市毛882番地 株式会 社日立製作所計測器グループ内 Fターム(参考) 4B024 AA20 CA01 HA11 HA19    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hideki Hasegawa             1-280, Higashi Koikekubo, Kokubunji, Tokyo             Central Research Laboratory, Hitachi, Ltd. (72) Inventor Shinichi Fukuzono             882 Ichimo, Hitachinaka City, Ibaraki Stock Association             Company Hitachi Ltd. measuring instrument group (72) Inventor Takayuki Kanda             882 Ichimo, Hitachinaka City, Ibaraki Stock Association             Company Hitachi Ltd. measuring instrument group F-term (reference) 4B024 AA20 CA01 HA11 HA19

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】(1)核酸と高濃度の塩とを含む溶液に,
−5°C〜55°Cの範囲の温度の有機溶剤を添加する
工程と,(2)担体に前記核酸を吸着させる工程とを有
することを特徴とする核酸の分離精製方法。
1. A solution containing a nucleic acid and a high-concentration salt,
A method for separating and purifying nucleic acid, comprising: a step of adding an organic solvent at a temperature in the range of -5 ° C to 55 ° C; and (2) a step of adsorbing the nucleic acid on a carrier.
【請求項2】請求項1に記載の核酸の分離精製方法に於
いて,前記有機溶剤が,エタノール,1−プロパノー
ル,2−プロパノール,ジエチレングリコールジメチル
エーテル,乳酸エチルの何れかであることを特徴とする
核酸の分離精製方法。
2. The method for separating and purifying nucleic acid according to claim 1, wherein the organic solvent is ethanol, 1-propanol, 2-propanol, diethylene glycol dimethyl ether, or ethyl lactate. Method for separating and purifying nucleic acid.
【請求項3】請求項1に記載の核酸の分離精製方法に於
いて,−5°C〜45°Cの範囲の温度の前記有機溶剤
を添加することを特徴とする核酸の分離精製方法。
3. The method for separating and purifying nucleic acid according to claim 1, wherein the organic solvent at a temperature in the range of −5 ° C. to 45 ° C. is added.
【請求項4】請求項3に記載の核酸の分離精製方法に於
いて,前記有機溶剤が,ジエチレングリコールジメチル
エーテル又は乳酸エチルであることを特徴とする核酸の
分離精製方法。
4. The method for separating and purifying nucleic acid according to claim 3, wherein the organic solvent is diethylene glycol dimethyl ether or ethyl lactate.
【請求項5】請求項1に記載の核酸の分離精製方法に於
いて,0°C〜50°Cの範囲の温度の前記有機溶剤を
添加することを特徴とする核酸の分離精製方法。
5. The method for separating and purifying nucleic acid according to claim 1, wherein the organic solvent at a temperature in the range of 0 ° C. to 50 ° C. is added.
【請求項6】請求項5に記載の核酸の分離精製方法に於
いて,前記有機溶剤が,エタノール,1−プロパノー
ル,2−プロパノール,乳酸エチルの何れかであること
を特徴とする核酸の分離精製方法。
6. The method for separating and purifying nucleic acid according to claim 5, wherein the organic solvent is any one of ethanol, 1-propanol, 2-propanol and ethyl lactate. Purification method.
【請求項7】請求項1に記載の核酸の分離精製方法に於
いて,0°C〜40°Cの範囲の温度の前記有機溶剤を
添加することを特徴とする核酸の分離精製方法。
7. The method for separating and purifying nucleic acid according to claim 1, wherein the organic solvent at a temperature in the range of 0 ° C. to 40 ° C. is added.
【請求項8】請求項7に記載の核酸の分離精製方法に於
いて,前記有機溶剤が,ジエチレングリコールジメチル
エーテル又は乳酸エチルであることを特徴とする核酸の
分離精製方法。
8. The method for separating and purifying nucleic acid according to claim 7, wherein the organic solvent is diethylene glycol dimethyl ether or ethyl lactate.
【請求項9】請求項1に記載の核酸の分離精製方法に於
いて,10°C〜35°Cの範囲の温度の前記有機溶剤
を添加することを特徴とする核酸の分離精製方法。
9. The method for separating and purifying nucleic acid according to claim 1, wherein the organic solvent at a temperature in the range of 10 ° C. to 35 ° C. is added.
【請求項10】請求項1に記載の核酸の分離精製方法に
於いて,前記溶液の温度と前記有機溶剤の温度がほぼ同
じであることを特徴とする核酸の分離精製方法。
10. The method for separating and purifying nucleic acid according to claim 1, wherein the temperature of the solution and the temperature of the organic solvent are substantially the same.
【請求項11】請求項1に記載の核酸の分離精製方法に
於いて,前記溶液の温度と前記有機溶剤の温度が異なる
ことを特徴とする核酸の分離精製方法。
11. The method for separating and purifying nucleic acid according to claim 1, wherein the temperature of the solution is different from the temperature of the organic solvent.
【請求項12】(1)核酸と高濃度の塩とを含み,0°
C〜50°Cの範囲の温度に保持された溶液に,前記温
度とほぼ同じ温度に保持された有機溶剤を添加する工程
と,(2)担体に前記核酸を吸着させる工程とを有する
ことを特徴とする核酸の分離精製方法。
(1) A nucleic acid and a high-concentration salt are included, and the temperature is 0 °.
A step of adding an organic solvent maintained at a temperature substantially the same as the above temperature to a solution maintained at a temperature in the range of C to 50 ° C, and (2) a step of adsorbing the nucleic acid on a carrier. A method for separating and purifying a featured nucleic acid.
【請求項13】請求項12に記載の核酸の分離精製方法
に於いて,前記有機溶剤が,エタノール,1−プロパノ
ール,2−プロパノール,乳酸エチルの何れかであるこ
とを特徴とする核酸の分離精製方法。
13. The method for separating and purifying nucleic acid according to claim 12, wherein the organic solvent is any one of ethanol, 1-propanol, 2-propanol and ethyl lactate. Purification method.
【請求項14】(1)核酸と高濃度の塩とを含み,0°
C〜40°Cの範囲の温度に保持された溶液に,前記温
度とほぼ同じ温度に保持された有機溶剤を添加する工程
と,(2)担体に前記核酸を吸着させる工程とを有する
ことを特徴とする核酸の分離精製方法。
(1) A nucleic acid and a high-concentration salt are contained, and the temperature is 0 °.
A step of adding an organic solvent maintained at a temperature substantially the same as the above temperature to a solution maintained at a temperature in the range of C to 40 ° C, and (2) a step of adsorbing the nucleic acid onto a carrier. A method for separating and purifying a featured nucleic acid.
【請求項15】請求項14に記載の核酸の分離精製方法
に於いて,前記有機溶剤が,ジエチレングリコールジメ
チルエーテル又は乳酸エチルであることを特徴とする核
酸の分離精製方法。
15. The method for separating and purifying nucleic acid according to claim 14, wherein the organic solvent is diethylene glycol dimethyl ether or ethyl lactate.
JP2001349567A 2001-11-15 2001-11-15 Method and apparatus for purifying and separating nucleic acids Expired - Fee Related JP3644426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001349567A JP3644426B2 (en) 2001-11-15 2001-11-15 Method and apparatus for purifying and separating nucleic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001349567A JP3644426B2 (en) 2001-11-15 2001-11-15 Method and apparatus for purifying and separating nucleic acids

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004270673A Division JP3823992B2 (en) 2004-09-17 2004-09-17 Method and apparatus for purifying and separating nucleic acids

Publications (3)

Publication Number Publication Date
JP2003144150A true JP2003144150A (en) 2003-05-20
JP2003144150A5 JP2003144150A5 (en) 2005-03-10
JP3644426B2 JP3644426B2 (en) 2005-04-27

Family

ID=19162217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001349567A Expired - Fee Related JP3644426B2 (en) 2001-11-15 2001-11-15 Method and apparatus for purifying and separating nucleic acids

Country Status (1)

Country Link
JP (1) JP3644426B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026347A1 (en) * 2003-09-09 2005-03-24 Fuji Photo Film Co., Ltd. Method for isolating and purifying a nucleic acid
JP2005287498A (en) * 2003-09-09 2005-10-20 Fuji Photo Film Co Ltd Method for separating and purifying nucleic acid
JP2006087394A (en) * 2004-09-27 2006-04-06 Wako Pure Chem Ind Ltd Method for extracting nucleic acid and kit for extracting nucleic acid
WO2006080579A1 (en) * 2005-01-31 2006-08-03 Fujifilm Corporation Method for preparing sample solution and sample solution preparing apparatus
JP2007174935A (en) * 2005-12-27 2007-07-12 Hitachi Software Eng Co Ltd Method for extracting biological polymer
JPWO2005078088A1 (en) * 2004-02-12 2007-08-30 ジーエルサイエンス株式会社 Mechanism for separation and purification of DNA, etc.
JP2010233579A (en) * 2010-06-17 2010-10-21 Gl Sciences Inc Separating and purification mechanism for dna or the like
CN112722589A (en) * 2020-12-23 2021-04-30 贵州金域医学检验中心有限公司 Respiratory tract virus detection kit prepared based on antibacterial material and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026347A1 (en) * 2003-09-09 2005-03-24 Fuji Photo Film Co., Ltd. Method for isolating and purifying a nucleic acid
JP2005287498A (en) * 2003-09-09 2005-10-20 Fuji Photo Film Co Ltd Method for separating and purifying nucleic acid
US7572578B2 (en) 2003-09-09 2009-08-11 Fujifilm Corporation Method for isolating and purifying a nucleic acid
JPWO2005078088A1 (en) * 2004-02-12 2007-08-30 ジーエルサイエンス株式会社 Mechanism for separation and purification of DNA, etc.
JP4597870B2 (en) * 2004-02-12 2010-12-15 ジーエルサイエンス株式会社 Mechanism for separation and purification of DNA, etc.
US8586350B2 (en) 2004-02-12 2013-11-19 Gl Sciences Incorporated Mechanism of separating and purifying DNA and the like
JP2006087394A (en) * 2004-09-27 2006-04-06 Wako Pure Chem Ind Ltd Method for extracting nucleic acid and kit for extracting nucleic acid
WO2006080579A1 (en) * 2005-01-31 2006-08-03 Fujifilm Corporation Method for preparing sample solution and sample solution preparing apparatus
JP2007174935A (en) * 2005-12-27 2007-07-12 Hitachi Software Eng Co Ltd Method for extracting biological polymer
JP2010233579A (en) * 2010-06-17 2010-10-21 Gl Sciences Inc Separating and purification mechanism for dna or the like
CN112722589A (en) * 2020-12-23 2021-04-30 贵州金域医学检验中心有限公司 Respiratory tract virus detection kit prepared based on antibacterial material and preparation method thereof

Also Published As

Publication number Publication date
JP3644426B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
JP3602071B2 (en) Purification and separation method of nucleic acid
JP3663207B2 (en) Nucleic acid recovery instrument and method
US5596092A (en) Extraction of genomic DNA from blood using cationic detergents
ES2535809T3 (en) Methods to isolate nucleic acids
JP4440458B2 (en) Methods for isolation and purification of nucleic acids on surfaces
US5972613A (en) Methods of nucleic acid isolation
US20020094565A1 (en) Method for purifying nucleic acid and apparatus using the same
JPH1192494A (en) Isolation of dna
JP2002360245A5 (en)
JP3425902B2 (en) Sample pretreatment device
JP3644426B2 (en) Method and apparatus for purifying and separating nucleic acids
US20220073965A1 (en) Method for quickly extracting long-fragment genomic dna by single reaction tube, and kit
JP4241183B2 (en) Nucleic acid recovery method and nucleic acid recovery kit
JPH11127854A (en) Recovering of nucleic acid and equipment therefor
JP3823992B2 (en) Method and apparatus for purifying and separating nucleic acids
JP2002191351A (en) Apparatus for purifying nucleic acid and chip for capturing nucleic acid
CA2348054C (en) Processes and means for the isolation and purification of nucleic acids at surfaces
JP2004215676A (en) Method of purification and separation of nucleic acid
JP2001333763A (en) Automatic separation and extraction apparatus and extraction method using the apparatus
US20060210988A1 (en) Method for isolating nucleic acid and, for nucleic acid isolation, kit and apparatus
CN114891778A (en) Method and kit for full-automatic extraction of DNA of paraffin-embedded tissue section
CN112126643A (en) Method for separating ecDNA (deoxyribose nucleic acid) in exosome based on magnetic beads
JP2001083050A (en) Nucleic acid recovering method and reagent kit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040407

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040407

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees