JP2007174935A - Method for extracting biological polymer - Google Patents
Method for extracting biological polymer Download PDFInfo
- Publication number
- JP2007174935A JP2007174935A JP2005374984A JP2005374984A JP2007174935A JP 2007174935 A JP2007174935 A JP 2007174935A JP 2005374984 A JP2005374984 A JP 2005374984A JP 2005374984 A JP2005374984 A JP 2005374984A JP 2007174935 A JP2007174935 A JP 2007174935A
- Authority
- JP
- Japan
- Prior art keywords
- carrier
- extraction
- biopolymer
- sample solution
- rna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Abstract
Description
本発明は、DNA、RNA等の生体高分子を抽出する方法に関し、特に、生体高分子を吸着する担体を含む細管中で試料溶液等を操作することにより試料中の生体高分子を効率的に抽出する方法に関するものである。 The present invention relates to a method for extracting biopolymers such as DNA and RNA, and in particular, the biopolymer in a sample can be efficiently removed by manipulating a sample solution or the like in a thin tube containing a carrier that adsorbs the biopolymer. It relates to a method of extraction.
血液、体液、組織、細胞などの生体材料からDNAやRNAを抽出する方法として、最も用いられている方法は、カオトロピック塩(グアニジン塩酸塩等)存在下においてDNAやRNAをSiO2等からなる担体に吸着させ、洗浄により夾雑物(抽出対象とするDNAやRNA以外の物質)を取り除いた後、溶出溶液を加えてDNAやRNAを担体から溶出させて、DNAやRNAを含んだ溶出溶液を得る方法が一般的である(特許文献1等参照)。この抽出方法において、担体には、シリカ粒子、ガラス、石英ウールやポリマーなどを用いることができる。この抽出方法における抽出のメカニズムについては、カオトロピック塩存在下で生体材料が溶解した後、遊離したDNAやRNAが負に帯電している担体に対してカチオン交換により吸着するものと推測される。したがって、DNAやRNAの担体に対する吸着効率は、担体表面とDNAやRNAとの反応効率として考えることができる。 The most commonly used method for extracting DNA and RNA from biological materials such as blood, body fluids, tissues and cells is a carrier comprising DNA or RNA made of SiO 2 or the like in the presence of chaotropic salts (eg guanidine hydrochloride). After removing impurities (substances other than DNA and RNA to be extracted) by washing, the elution solution is added to elute the DNA and RNA from the carrier to obtain an elution solution containing DNA and RNA. The method is general (see Patent Document 1). In this extraction method, silica particles, glass, quartz wool, polymer, or the like can be used as the carrier. Regarding the extraction mechanism in this extraction method, it is presumed that after the biomaterial is dissolved in the presence of a chaotropic salt, the released DNA or RNA is adsorbed to a negatively charged carrier by cation exchange. Therefore, the adsorption efficiency of DNA or RNA on the carrier can be considered as the reaction efficiency between the carrier surface and DNA or RNA.
図4は、上記の抽出方法における作業手順を示す図である。図4示すように、担体3を含む抽出容器1に試料溶液を注入し、遠心機等によって試料溶液が抽出容器1から受容器2に向けて流動するよう遠心力を作用させて、担体3にDNAやRNAを吸着させている。図示しないが、その後、同様の操作によって夾雑物を取り除くための洗浄や、担体3に吸着したDNAやRNAの溶出といった作業を行うことができる。こうして、目的のDNAやRNAが溶出溶液とともに受容器2中に回収される。
FIG. 4 is a diagram showing a work procedure in the above extraction method. As shown in FIG. 4, the sample solution is injected into the
しかしながら、
上記の担体を用いた抽出方法では、DNAやRNAの担体に対する吸着効率によって抽出収量が決まるため、収量のばらつきが大きく、十分な収量が得られない場合も多くあった。抽出効率を向上させるためには、抽出対象ごとに最適な担体や試料溶液、反応条件を調整するなどといった、煩雑な作業が必要となっていた。
However,
In the extraction method using the above-mentioned carrier, the extraction yield is determined by the adsorption efficiency of DNA or RNA to the carrier, so that the variation in the yield is large and a sufficient yield cannot be obtained in many cases. In order to improve extraction efficiency, complicated operations such as adjusting the optimum carrier, sample solution, and reaction conditions for each extraction target have been required.
本発明は、このような実情に鑑みてなされたものであり、DNAやRNAなどの抽出対象が吸着する担体を用いた抽出効率の高い生体高分子抽出方法を提供しようとするものである。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a biopolymer extraction method having high extraction efficiency using a carrier to which an extraction target such as DNA or RNA is adsorbed.
上記解決課題に鑑みて鋭意研究の結果、本発明者は、担体を含む微細管中で試料溶液等が担体の前後を往復して通過するように操作することにより、試料中の生体高分子の担体に対する吸着量を増加させて、生体高分子の抽出効率的を向上させることができることに想到した。また、夾雑物除去のための洗浄や吸着した生体高分子の溶出の際にも同様の操作を行うことにより、洗浄効率や溶出効率を向上させることができることに想到した。 As a result of diligent research in view of the above-mentioned problems, the present inventor conducted an operation so that the sample solution and the like reciprocate through the carrier in a microtube containing the carrier, thereby It has been conceived that the extraction efficiency of the biopolymer can be improved by increasing the amount of adsorption to the carrier. In addition, it was conceived that the washing efficiency and the elution efficiency can be improved by performing the same operation during washing for removing impurities and elution of the adsorbed biopolymer.
すなわち、本発明は、試料溶液に含まれる生体高分子を抽出する抽出方法であって、抽出対象である生体高分子を吸着可能な担体を含んだ細管内に試料溶液を導入し、試料溶液が担体を1回以上通過するように前後に送液(往復送液)することを特徴とする生体高分子抽出方法を提供するものである。 That is, the present invention is an extraction method for extracting a biopolymer contained in a sample solution, wherein the sample solution is introduced into a capillary tube containing a carrier capable of adsorbing the biopolymer to be extracted. It is intended to provide a biopolymer extraction method characterized in that a liquid is fed back and forth (reciprocating liquid feed) so as to pass through a carrier at least once.
本発明の生体高分子抽出方法において、往復送液は、抽出対象である生体高分子を担体に吸着させる吸着過程、吸着後の担体を洗浄する洗浄過程、及び担体に吸着した生体高分子を溶出させる溶出過程のそれぞれにおいて行うこともできる。 In the biopolymer extraction method of the present invention, the reciprocating solution is an adsorption process for adsorbing the extraction target biopolymer to the carrier, a washing process for washing the adsorbed carrier, and a biopolymer adsorbed on the carrier. It can also be performed in each of the elution processes.
以上、説明したように、本発明の生体高分子抽出方法によれば、DNAやRNAなどの抽出対象が吸着する担体を用いて簡便な操作で効率的に生体高分子を抽出することができる。 As described above, according to the biopolymer extraction method of the present invention, a biopolymer can be efficiently extracted by a simple operation using a carrier to which an extraction target such as DNA or RNA is adsorbed.
以下、添付図面を参照しながら、本発明の生体高分子抽出方法を実施するための最良の形態を詳細に説明する。図1〜図3は、本発明の実施の形態を例示する図であり、これらの図において、同一の符号を付した部分は同一物を表わし、基本的な構成及び動作は同様であるものとする。 Hereinafter, the best mode for carrying out the biopolymer extraction method of the present invention will be described in detail with reference to the accompanying drawings. 1 to 3 are diagrams illustrating embodiments of the present invention. In these drawings, the same reference numerals denote the same components, and the basic configuration and operation are the same. To do.
図1は、本発明の生体高分子抽出方法を実施するための装置の構成例を示す図である。図1に示すように、本実施形態では、ガラスやプラスチック等の基板上に径が1mm〜0.1mmの微細な管状の流路(以下、「キャピラリー」と呼ぶ)を形成したMEMS(Micro Electro Mechanical Systems)チップを用いて試料溶液からの生体高分子抽出を行う。キャピラリー内には、抽出部として、抽出対象を吸着させるための担体が保持されており、キャピラリーの少なくとも一端には、試料溶液を送液するための圧力調整用ポンプが設けられている。担体としては、シリカモノリス、ガラス、ポリマーなどを用いることができる。 FIG. 1 is a diagram showing a configuration example of an apparatus for carrying out the biopolymer extraction method of the present invention. As shown in FIG. 1, in this embodiment, a MEMS (Micro Electrode) in which a fine tubular channel (hereinafter referred to as “capillary”) having a diameter of 1 mm to 0.1 mm is formed on a substrate such as glass or plastic. Mechanical systems) Biopolymer extraction from sample solution using a chip. In the capillary, a carrier for adsorbing an extraction target is held as an extraction unit, and at least one end of the capillary is provided with a pressure adjusting pump for feeding a sample solution. As the carrier, silica monolith, glass, polymer or the like can be used.
図1に示す装置において、まず、抽出対象のDNAやRNAなどを含む試料溶液をキャピラリー中に導入する。ポンプを作動して、試料溶液を抽出部に送り、図2に示すように担体を往復して通過するように前後に移動させる。その後、試料溶液をキャピラリーから排出する。続いて、抽出対象以外の夾雑物を取り除くための洗浄溶液をキャピラリー中に導入し、抽出部に送り、図2同様に担体を往復して通過するように前後に移動させる。その後、洗浄溶液をキャピラリーから排出する。続いて、担体に吸着した抽出対象を溶出させるための溶出液をキャピラリー中に導入し、抽出部に送り、図2同様に担体を往復して通過するように前後に移動させる。最後に、溶出溶液をキャピラリーから排出し、得られた溶出溶液内に抽出対象を得ることができる。 In the apparatus shown in FIG. 1, first, a sample solution containing DNA or RNA to be extracted is introduced into a capillary. By operating the pump, the sample solution is sent to the extraction unit and moved back and forth so as to pass back and forth through the carrier as shown in FIG. Thereafter, the sample solution is discharged from the capillary. Subsequently, a cleaning solution for removing impurities other than the extraction target is introduced into the capillary and sent to the extraction unit, and moved back and forth so as to pass back and forth through the carrier as in FIG. Thereafter, the washing solution is discharged from the capillary. Subsequently, an eluate for eluting the extraction target adsorbed on the carrier is introduced into the capillary and sent to the extraction unit, and moved back and forth so as to pass back and forth as in FIG. Finally, the elution solution is discharged from the capillary, and the extraction target can be obtained in the obtained elution solution.
図1に示す装置を用いて上記の操作を行うと、試料溶液を担体に対して往復送液することで抽出対象の担体に対する吸着量を増大させることができ、洗浄溶液を担体に対して往復送液することで洗浄効率を増大させることができ、溶出溶液を担体に対して往復送液することで抽出対象の溶出量を増大させることができる。したがって、本実施形態の生体高分子抽出方法によれば、抽出対象であるDNAやRNAなどの抽出効率及び収量を増大させることができることとなる。 When the above operation is performed using the apparatus shown in FIG. 1, the amount of adsorption to the extraction target carrier can be increased by reciprocating the sample solution to the carrier, and the cleaning solution is reciprocated with respect to the carrier. By feeding the solution, the cleaning efficiency can be increased, and the elution amount of the extraction target can be increased by reciprocating the elution solution to the carrier. Therefore, according to the biopolymer extraction method of this embodiment, the extraction efficiency and yield of DNA or RNA to be extracted can be increased.
一方で、図3に示すように、試料溶液からDNAやRNAなどの抽出対象を抽出するための抽出部と、これにより抽出された抽出対象を検出・測定するための検出部とを一体化したMEMSチップを構成することも可能である。このMEMSチップの抽出部には、図1に示すのと同様な抽出対象を吸着する担体を有するキャピラリーが形成されており、検出部には、複数のビーズチップを有するキャピラリーが形成されている。尚、検出部については、他の検出手段から構成してもよい。 On the other hand, as shown in FIG. 3, an extraction unit for extracting an extraction target such as DNA or RNA from a sample solution and a detection unit for detecting and measuring the extraction target extracted thereby are integrated. It is also possible to configure a MEMS chip. A capillary having a carrier that adsorbs an extraction target similar to that shown in FIG. 1 is formed in the extraction part of the MEMS chip, and a capillary having a plurality of bead chips is formed in the detection part. The detection unit may be composed of other detection means.
図4に示す従来の生体高分子検出方法を実施するためのキットが一般的に販売されている。このキットを用いた場合、遠心操作等により担体中に試料溶液を通過させるが、試料溶液が担体を一回しか通過しない上に、通過速度を最適とすることができない場合もあり、十分な収率を得ることはできなかった。これに対して、担体量を増加するといった対応をとることも可能であるが、キットの製造コストが高くなり、さらにMEMSを利用する場合には、送液圧力を大きくしなければならないという問題が生じてしまう。 Kits for carrying out the conventional biopolymer detection method shown in FIG. 4 are generally sold. When this kit is used, the sample solution is allowed to pass through the carrier by centrifugation or the like. However, the sample solution may pass only once through the carrier, and the passage speed may not be optimized. Could not get rate. On the other hand, it is possible to take measures such as increasing the amount of the carrier. However, there is a problem that the manufacturing cost of the kit is increased, and further, when the MEMS is used, the liquid feeding pressure must be increased. It will occur.
これに対して、本実施形態の生体高分子検出方法によれば、吸着、洗浄及び溶出の各過程において、担体に対して溶液を数回〜数十回にわたって往復送液することにより、MEMSチップ内の担体量を増加させずとも、高速かつ簡便な操作で、抽出対象の収率を向上することが可能である。 On the other hand, according to the biopolymer detection method of the present embodiment, the MEMS chip is obtained by reciprocating the solution several times to several tens of times with respect to the carrier in each process of adsorption, washing and elution. Even without increasing the amount of the carrier, it is possible to improve the yield of the extraction target by high-speed and simple operation.
本実施形態の生体高分子検出方法に従って、図3に示すMEMSチップを用いて血液サンプルから核酸を抽出し、その収率を従来の方法とで比較検討した結果、血液サンプルごとに個体差はあるものの、概して2〜5倍の収量および収率の増大が確認された。また、往復送液は、吸着、洗浄及び溶出の各過程において同数とする必要はなく、それぞれ変化させることでさらに効果を上げることができる。例えば、吸着過程:洗浄過程:溶出過程=10:2:5のように設定したり、あるいは、吸着過程:洗浄過程:溶出過程=10:1:5のように洗浄過程では往復送液を行わない設定としたりすればよい。 According to the biopolymer detection method of the present embodiment, nucleic acid is extracted from a blood sample using the MEMS chip shown in FIG. 3, and the yield is compared with a conventional method. As a result, there is an individual difference for each blood sample. However, a yield of 2 to 5 times and an increase in yield were confirmed. In addition, the number of reciprocating liquids does not need to be the same in each process of adsorption, washing, and elution, and the effect can be further improved by changing each. For example, the adsorption process: the washing process: the elution process = 10: 2: 5 is set, or the adsorption process: the washing process: the elution process = 10: 1: 5, and the reciprocating liquid feeding is performed in the washing process. It may be set to not.
尚、上記では試料溶液を血液とし抽出対象を核酸としているが、これに限らず他の生体高分子などについても、本実施形態の生体高分子検出方法を適用することができる。また、担体についても、抽出対象に適した材料からなる担体を適宜選択すればよい。また、試料は液体のみならず気体であっても、上記同様にして本実施形態の生体高分子検出方法を適用することができる。 In the above description, the sample solution is blood and the extraction target is nucleic acid. However, the present invention is not limited to this, and the biopolymer detection method of the present embodiment can be applied to other biopolymers. In addition, as for the carrier, a carrier made of a material suitable for the extraction target may be appropriately selected. Moreover, even if the sample is not only liquid but also gas, the biopolymer detection method of this embodiment can be applied in the same manner as described above.
以上、本発明の生体高分子抽出方法について、具体的な実施の形態を示して説明したが、本発明はこれらに限定されるものではない。当業者であれば、本発明の要旨を逸脱しない範囲内において、上記各実施形態又は他の実施形態にかかる発明の構成及び機能に様々な変更・改良を加えることが可能である。今後、診断・検査用途を主としてMEMSデバイスが利用されていくことが想定され、より簡便で高性能なデバイスによって実施できるという点から、本発明の生体高分子抽出方法は幅広い利用が想定される。 As mentioned above, although the specific embodiment was shown and demonstrated about the biopolymer extraction method of this invention, this invention is not limited to these. A person skilled in the art can make various changes and improvements to the configurations and functions of the invention according to the above-described embodiments or other embodiments without departing from the gist of the present invention. From now on, it is assumed that MEMS devices will mainly be used for diagnostic / test applications, and the biopolymer extraction method of the present invention is expected to be widely used because it can be implemented with simpler and higher performance devices.
1…抽出容器
2…受容器
3…担体
DESCRIPTION OF
Claims (1)
抽出対象である生体高分子を吸着可能な担体を含んだ細管内に試料溶液を導入し、
試料溶液が担体を1回以上通過するように前後に送液することを特徴とする生体高分子抽出方法。 An extraction method for extracting a biopolymer contained in a sample solution,
A sample solution is introduced into a capillary tube containing a carrier capable of adsorbing a biopolymer to be extracted,
A biopolymer extraction method comprising feeding a sample solution back and forth so that the sample solution passes through the carrier one or more times.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005374984A JP2007174935A (en) | 2005-12-27 | 2005-12-27 | Method for extracting biological polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005374984A JP2007174935A (en) | 2005-12-27 | 2005-12-27 | Method for extracting biological polymer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007174935A true JP2007174935A (en) | 2007-07-12 |
Family
ID=38300755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005374984A Pending JP2007174935A (en) | 2005-12-27 | 2005-12-27 | Method for extracting biological polymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007174935A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002000255A (en) * | 2000-06-22 | 2002-01-08 | Hitachi Ltd | Apparatus for extracting nucleic acid |
JP2002506384A (en) * | 1997-05-27 | 2002-02-26 | クイアーゲン ゲーエムベーハー | Device for selectively filtering sample liquid or droplets of sample liquid under reduced pressure and drying in vacuum, and use of the device |
WO2002097084A1 (en) * | 2001-05-25 | 2002-12-05 | Hitachi, Ltd. | Apparatus for purifying nucleic acid and method of purifying nucleic acid |
JP2002360245A (en) * | 2001-06-05 | 2002-12-17 | Hitachi Ltd | Method for refining/isolating nucleic acid |
JP2003144150A (en) * | 2001-11-15 | 2003-05-20 | Hitachi Ltd | Method and apparatus for refining/isolating nucleic acid |
-
2005
- 2005-12-27 JP JP2005374984A patent/JP2007174935A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002506384A (en) * | 1997-05-27 | 2002-02-26 | クイアーゲン ゲーエムベーハー | Device for selectively filtering sample liquid or droplets of sample liquid under reduced pressure and drying in vacuum, and use of the device |
JP2002000255A (en) * | 2000-06-22 | 2002-01-08 | Hitachi Ltd | Apparatus for extracting nucleic acid |
WO2002097084A1 (en) * | 2001-05-25 | 2002-12-05 | Hitachi, Ltd. | Apparatus for purifying nucleic acid and method of purifying nucleic acid |
JP2002360245A (en) * | 2001-06-05 | 2002-12-17 | Hitachi Ltd | Method for refining/isolating nucleic acid |
JP2003144150A (en) * | 2001-11-15 | 2003-05-20 | Hitachi Ltd | Method and apparatus for refining/isolating nucleic acid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2215103B1 (en) | Method for purifying nucleic acids | |
EP3350569B1 (en) | Flow cells utilizing surface-attached structures, and related systems and methods | |
JP2017079766A (en) | Microfluidic device for nucleic acid extraction and fractionation | |
JP4133803B2 (en) | Nucleic acid purification structure | |
JP4956727B2 (en) | RNA separation and purification method | |
JP2011530084A (en) | Methods and systems for selective isolation of target biological molecules in a universal system | |
JP2013217699A (en) | Nucleic acid extraction device, nucleic acid extraction kit, nucleic acid extraction apparatus, and nucleic acid extraction method | |
JP2007306867A (en) | Device and method for extracting nucleic acid | |
WO2014065758A1 (en) | A method of isolating nucleic acids in an aqueous sample using microfluidic device | |
JP2008072987A (en) | Micro channel, device for recovering nucleic acid and method for recovering nucleic acid | |
JP2006087372A (en) | Microdevice for separating and refining nucleic acid | |
JP2004138583A (en) | Micro-chip for measuring function of cell | |
US20150284710A1 (en) | Method of manipulating solid carriers and an apparatus of manipulating solid carriers | |
JP5880626B2 (en) | Simple and fast nucleic acid extraction method | |
JP2007174935A (en) | Method for extracting biological polymer | |
AU2019269296A1 (en) | Systems and methods for nucleic acid purification using flow cells with actuated surface-attached structures | |
JP2015019590A (en) | Nucleic acid amplification reaction apparatus | |
WO2024013952A1 (en) | Method for controlling liquid transport in flow path of biomolecule analyzer using computer, and biomolecule purification system | |
JP2010200661A (en) | Simple and rapid method for extracting nucleic acid | |
WO2017029582A1 (en) | Method and system for isolation of nucleic acids | |
WO2024107932A1 (en) | Methods and systems for sample processing and optical pcr | |
WO2018042725A1 (en) | System for analyzing single cell | |
JP2015019632A (en) | Nucleic acid amplification reaction apparatus, and nucleic acid amplification method | |
JP2005137298A (en) | Method for separating and purifying nucleic acid | |
JP2005168449A (en) | Method for separation and purification of nucleic acid and cartridge and waste liquid container therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080701 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111018 |