JP2003142680A - Isotope silicon nanowire and method of manufacturing the same - Google Patents

Isotope silicon nanowire and method of manufacturing the same

Info

Publication number
JP2003142680A
JP2003142680A JP2001333257A JP2001333257A JP2003142680A JP 2003142680 A JP2003142680 A JP 2003142680A JP 2001333257 A JP2001333257 A JP 2001333257A JP 2001333257 A JP2001333257 A JP 2001333257A JP 2003142680 A JP2003142680 A JP 2003142680A
Authority
JP
Japan
Prior art keywords
isotope
silicon
isotope silicon
producing
silicon nanowire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001333257A
Other languages
Japanese (ja)
Inventor
Tetsuji Noda
哲二 野田
Masatoshi Ko
全利 胡
Kokukei Ri
国慶 李
Yutaka Suzuki
裕 鈴木
Hiroshi Araki
弘 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Japan Science and Technology Corp filed Critical National Institute for Materials Science
Priority to JP2001333257A priority Critical patent/JP2003142680A/en
Publication of JP2003142680A publication Critical patent/JP2003142680A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an isotope silicon nanowire which makes the realization of a high-performance quantum device more realistic by suppressing the content of an impurity metal to an inevitable level, and also to provide a method of manufacturing the same. SOLUTION: Either one of isotopes 28Si , 29Si , and 30Si is condensed from a natural isotope composition. At the same time, either an isotope silicon flake or isotope silicon powder including at least either oxygen or fluorine and containing impurities only at an inevitable level is molded into the shape of a rod. From the molding, an isotope silicon nanowire having a diameter in the order of nanometers is fabricated by zone melting.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この出願の発明は、同位体シ
リコンナノワイヤーとその製造方法に関するものであ
る。さらに詳しくは、この出願の発明は、量子細線とし
て電子、光学素子への適用が期待される同位体シリコン
ナノワイヤーとこれを作製することのできる作製方法に
関するものである。
TECHNICAL FIELD The present invention relates to an isotope silicon nanowire and a method for producing the same. More specifically, the invention of this application relates to an isotope silicon nanowire expected to be applied to an electron or an optical element as a quantum wire and a manufacturing method capable of manufacturing the same.

【0002】[0002]

【従来の技術とその課題】直径がナノメートルオーダー
にあるシリコンナノワイヤーは、近年、量子細線とし
て、電子、光学素子への適用が期待されている。その作
製方法については、気相蒸発法、レーザ法などの各種の
方式がこれまでに提案されているが、いずれの方式にお
いても、細線を成長させるために鉄や金などの金属核が
必要となっており、シリコン(Si)のみで細線を作製す
ることは実現されていない。
2. Description of the Related Art Silicon nanowires having a diameter on the order of nanometers are expected to be applied to electronic and optical devices as quantum wires in recent years. Various methods such as vapor-phase evaporation method and laser method have been proposed so far, but in any method, metal nuclei such as iron and gold are required to grow thin wires. Therefore, it has not been realized to fabricate a thin wire only with silicon (Si).

【0003】一方、同位体がそろった、すなわち特定の
一つの同位体が濃縮した同位体シリコンのナノワイヤー
は、原子レベルでの構造制御が容易であり、たとえば、
高濃度の28Siは、29Siからの核スピン効果を除くことが
できるため、そのナノワイヤーは、量子コンピュータ素
子のより一層の実現に有望視される。また、同位体をそ
ろえることは、熱伝導度の飛躍的向上も望めるため、高
性能の量子素子への応用が期待される。
On the other hand, isotope silicon nanowires having a uniform isotope, that is, enriched with one specific isotope, are easy to control the structure at the atomic level.
Since high concentration of 28 Si can eliminate the nuclear spin effect from 29 Si, its nanowires are promising for further realization of quantum computer devices. In addition, it is expected that application of isotopes to high-performance quantum devices can be expected because the thermal conductivity can be dramatically improved.

【0004】このような高純度の同位体シリコンナノワ
イヤーを作製する上でシリコン以外の金属は、当然、不
純物であり、前述の金属核を使用する方式により作製さ
れる同位体シリコンナノワイヤー中の不純物金属の含有
量は比較的高くなっており、したがって、前述の方式に
替わる新しい同位体シリコンナノワイヤーの作製方法の
開発が急務である。
In producing such a high-purity isotope silicon nanowire, metals other than silicon are impurities as a matter of course, and in the isotope silicon nanowire produced by the above-mentioned method using a metal nucleus. Since the content of impurity metals is relatively high, there is an urgent need to develop a new method for producing isotope silicon nanowires, which is an alternative to the above method.

【0005】この出願の発明は、このような事情に鑑み
てなされたものであり、不純物金属の含有を不可避的な
含有にまで抑え、高性能量子素子の実現をより現実的な
ものとする同位体シリコンナノワイヤーとその作製方法
を提供することを解決すべき課題としている。
The invention of this application has been made in view of such circumstances, and is an equalizer that suppresses the content of an impurity metal to an unavoidable content and makes the realization of a high-performance quantum device more realistic. It is an object to be solved to provide a body silicon nanowire and a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】この出願の発明の発明者
らは、以上の課題を解決するために鋭意検討した結果、
この出願の発明者らが先に提案している同位体濃縮ガス
から作製した、不純物金属をほとんど含まず、不可避的
な含有にまで抑えた同位体シリコンフレーク(特開2000
-345342号公報)をロッド状に成形し、この成形物に対
し、よく知られているが、これまでに全く適用が考慮さ
れていなかった帯域溶融法を適用したところ、溶融部の
上部に綿状の物質が生成し、この生成物を電子顕微鏡で
観察した結果、生成物が、直径がナノメートルオーダー
にある同位体シリコンナノワイヤーの集合体であること
を見出し、この出願の発明を完成した。
Means for Solving the Problems The inventors of the invention of this application have made extensive studies to solve the above problems.
The isotope silicon flakes produced from the isotope-enriched gas previously proposed by the inventors of the present application and containing almost no impurity metal and suppressed to unavoidable inclusion (JP 2000
-345342) was formed into a rod shape, and a well-known method was applied to this molded article. -Like substance was produced, and as a result of observing this product with an electron microscope, it was found that the product was an assembly of isotope silicon nanowires having a diameter on the order of nanometers, and completed the invention of this application. .

【0007】すなわち、この出願の発明は、28Si、29S
i、又は30Siのいずれか一つの同位体が自然同位体組成
より濃縮され、不純物金属の含有が不可避的のみに抑え
られた、直径がナノメートルオーダーにあることを特徴
とする同位体シリコンナノワイヤー(請求項1)を提供
する。
That is, the invention of this application is 28 Si, 29 S
Isotopic silicon nano-particles characterized by having a diameter on the order of nanometers, in which either one of i and 30 Si isotopes is enriched from the natural isotopic composition and the content of impurity metals is unavoidably suppressed. A wire (claim 1) is provided.

【0008】またこの出願の発明は、28Si、29Si、又は
30Siのいずれか一つの同位体が自然同位体組成より濃縮
されるとともに、少なくとも酸素若しくはフッ素のいず
れかを含む一方、不純物金属の含有は不可避的のみとさ
れた同位体シリコンフレーク若しくは同位体シリコン粉
末のいずれかをロッド状に成形した後、帯域溶融法によ
り、その成形物から直径がナノメートルオーダーの同位
体シリコンナノワイヤーを作製することを特徴とする同
位体シリコンナノワイヤーの作製方法こと(請求項2)
を提供する。
The invention of this application also provides 28 Si, 29 Si, or
30 Isotope silicon flakes or isotope silicon in which one of the isotopes of Si is enriched from the natural isotope composition and contains at least either oxygen or fluorine, but the inclusion of impurity metals is unavoidable. A method for producing an isotope silicon nanowire, which comprises producing an isotope silicon nanowire having a diameter of nanometer order from the formed article by a zone melting method after shaping one of the powders into a rod shape ( Claim 2)
I will provide a.

【0009】そして、この出願の発明の同位体シリコン
ナノワイヤーの作製方法では、帯域溶融法において、希
ガス雰囲気下で、溶融温度を1500〜1700Kとすること
(請求項3)を一態様として提供する。
In the method for producing an isotope silicon nanowire according to the invention of this application, the melting temperature is set to 1500 to 1700K in a rare gas atmosphere in the zone melting method (claim 3). To do.

【0010】以下、実施例を示しつつ、この出願の発明
の同位体シリコンナノワイヤーとその作製方法について
さらに詳しく説明する。
Hereinafter, the isotope silicon nanowires of the invention of this application and a method for producing the same will be described in more detail with reference to Examples.

【0011】[0011]

【発明の実施の形態】前述の通り、この出願の発明の同
位体シリコンナノワイヤーは、28Si、29Si、又は30Siの
いずれか一つの同位体が自然同位体組成より濃縮され、
不純物金属の含有が不可避的のみに抑えられた、直径が
ナノメートルオーダーにある同位体シリコンナノワイヤ
ーである。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, the isotope silicon nanowire of the invention of the present application is such that any one isotope of 28 Si, 29 Si, or 30 Si is enriched from the natural isotope composition,
It is an isotope silicon nanowire with a diameter on the order of nanometers, in which the content of impurity metals is unavoidably suppressed.

【0012】この出願の発明の同位体シリコンナノワイ
ヤーを作製する際には、28Si、29Si、又は30Siのいずれ
か一つの同位体が自然同位体組成より濃縮されるととも
に、少なくとも酸素若しくはフッ素のいずれかを含む一
方、不純物金属の含有は不可避的のみとされた同位体シ
リコンフレーク若しくは同位体シリコン粉末のいずれか
をロッド状に成形した後、帯域溶融法により、その成形
物から直径がナノメートルオーダーの同位体シリコンナ
ノワイヤーを作製する。
In producing the isotope silicon nanowire of the invention of this application, any one isotope of 28 Si, 29 Si or 30 Si is enriched from the natural isotope composition and at least oxygen or While containing either of fluorine, the inclusion of the impurity metal is inevitable only isotope silicon flakes or isotope silicon powder is molded into a rod shape, then the diameter from the molded product by the zone melting method. Fabricate nanometer-order isotope silicon nanowires.

【0013】帯域溶融法は、金属の精錬などによく用い
られている方法であり、棒状の材料の一部分だけを溶融
して幅狭の溶融帯を形成させた後、この溶融帯をゆっく
り移動させるという方法である。
The zone melting method is a method often used for refining metals, for example, after melting a part of a rod-shaped material to form a narrow melting zone, the melting zone is slowly moved. Is the method.

【0014】具体的には、この出願の発明の同位体シリ
コンナノワイヤーの作製方法では、図1に示したような
帯域溶融装置において、本体(1)の内部に設けた試料
受け部(2)に種結晶(3)及び前述のロッド状に成形
された試料(4)を取り付けた後、本体(1)の内部を
真空排気し、アルゴン(Ar)などの希ガス(5)を導入
する。希ガス(5)は、本体(1)の下部から上部へ流
通させることにより本体(1)の内部に導入することが
できる。この時の希ガス流量は10SCCM以上、希ガス圧力
は20Torr以上がたとえば例示される。
Specifically, in the method for producing isotope silicon nanowires of the invention of this application, in the zone melting apparatus as shown in FIG. 1, the sample receiving portion (2) provided inside the main body (1). After the seed crystal (3) and the above-mentioned rod-shaped sample (4) are attached to the above, the inside of the main body (1) is evacuated and a rare gas (5) such as argon (Ar) is introduced. The rare gas (5) can be introduced into the main body (1) by flowing from the lower part to the upper part of the main body (1). The rare gas flow rate at this time is 10 SCCM or more, and the rare gas pressure is 20 Torr or more, for example.

【0015】そして、本体(1)の外部に配置すること
のできるキセノン(Xe)ランプ(6)を点灯し、同じく
本体(1)の外部に設けることのできるレンズ(7)に
より種結晶(3)と試料(4)との境界域に光照射し、
加熱して溶融域(8)を形成する。この時の溶融温度は
1500〜1700Kがたとえば好ましく例示される。次いで、
試料(4)を下方へ移動させ、溶融域(8)を上方に移
動させる。この時の帯域移動速度は20mm以上がたとえば
例示される。
Then, a xenon (Xe) lamp (6) which can be arranged outside the main body (1) is turned on, and a seed crystal (3) is also provided by a lens (7) which can also be provided outside the main body (1). ) And the sample (4) are irradiated with light,
Heat to form a melt zone (8). The melting temperature at this time is
1500-1700K is preferably exemplified. Then
The sample (4) is moved downwards and the melting zone (8) is moved upwards. The band moving speed at this time is, for example, 20 mm or more.

【0016】帯域溶融装置の本体(1)の内部には、ま
た、所定位置に、微細孔を有するナノワイヤー収集板
(9)を配置することができ、溶融域(8)の通過にと
もない、直径がナノメートルオーダーの同位体シリコン
ナノワイヤーが、ナノワイヤー収集板(9)に捕捉され
る。
Inside the main body (1) of the zone melting apparatus, a nanowire collecting plate (9) having fine holes can be arranged at a predetermined position, and with passage of the melting zone (8), Isotopic silicon nanowires with a diameter on the order of nanometers are trapped in the nanowire collecting plate (9).

【0017】なお、この出願の発明の同位体シリコンナ
ノワイヤーの作製方法において、同位体シリコンフレー
ク若しくは同位体シリコン粉末に含まれる酸素若しくは
フッ素は、たとえば数質量%程度の微量とし、また、不
純物金属の含有量はたとえばppmオーダーの不可避的な
含有に抑え、同位体シリコンを高濃度としておくことが
肝要である。
In the method for producing an isotope silicon nanowire of the invention of this application, the oxygen or fluorine contained in the isotope silicon flakes or the isotope silicon powder is, for example, in a trace amount of about several mass%, and the impurity metal It is important to keep the content of the isotope inevitable in the order of ppm, for example, and keep the isotope silicon at a high concentration.

【0018】たとえば以上に例示されるこの出願の発明
の同位体シリコンワイヤーとその作製方法により、同位
体がそろい、しかも不純物金属の含有が不可避的のみに
抑えられた高濃度の同位体シリコンのナノワイヤーが、
帯域溶融法により得られる。このため、量子コンピュー
タ素子、高熱伝導性高性能半導体などの実現がより現実
的なものとなる。また、帯域溶融法には特別の処理およ
び特殊な装置が必要ないことから、同位体シリコンナノ
ワイヤーの作製は容易であり、しかも量産化可能とな
る。
For example, according to the isotope silicon wire of the invention of the present application and the method for producing the same as described above, a high concentration of isotope silicon nano-particles having a uniform isotope and in which the content of impurity metals is unavoidably suppressed. Wire
Obtained by the zone melting method. Therefore, the realization of quantum computer devices, high-thermal-conductivity, high-performance semiconductors, etc. becomes more realistic. In addition, since the zone melting method does not require any special treatment and no special equipment, the isotope silicon nanowires can be easily produced and can be mass-produced.

【0019】[0019]

【実施例】28Siを95質量%、フッ素及び水素を合計で数
質量%、不可避的不純物金属を2ppm以下含有する同位体
シリコンフレークを6mmφ×50mmのロッド状に固めた。
この成形物を真空中において、約1423K、3時間で加熱
し、形が崩れない程度に軽く焼結した後、図1に示した
帯域溶融装置の試料受け部(2)に試料(4)として取
り付け、本体(1)の内部を真空排気後、アルゴンガス
を、流量10〜30SCCM、圧力20〜400Torrで、本体(1)
の内部に下部から上部へ流通させることにより導入し
た。そして、試料(4)を、キセノンランプ(6)の点
灯により1500〜1700Kで溶融させるとともに、20〜40mm/
hの帯域移動速度で下方に移動させた。
[Examples] Isotope silicon flakes containing 95% by mass of 28 Si, several% by mass of fluorine and hydrogen, and 2 ppm or less of unavoidable impurity metals were solidified into rods of 6 mmφ × 50 mm.
This molded product was heated in vacuum at about 1423K for 3 hours, and was lightly sintered to the extent that the shape did not collapse. Then, it was used as a sample (4) in the sample receiver (2) of the zone melting apparatus shown in FIG. After mounting and evacuating the inside of the main body (1), argon gas at a flow rate of 10 to 30 SCCM and a pressure of 20 to 400 Torr is used for the main body (1).
It was introduced by circulating it from the lower part to the upper part. Then, the sample (4) is melted at 1500 to 1700 K by turning on the xenon lamp (6), and at the same time, 20 to 40 mm /
The band was moved downward at a band moving speed of h.

【0020】すると、試料(4)の溶融部の上部に、図
2に示したような黄色の綿状物質が生成した。この黄色
の綿状物質を電子顕微鏡で観察したところ、図3に示し
たように、ナノワイヤーの集合体であることが確認され
た。ナノワイヤーは、直径が5〜50nm、長さが0.1μm〜3
mmであり、電子線回折により同定した結果、単結晶のSi
であることが確認された。また、X線分析の結果からも
ナノワイヤーがSiからなるものであることが確認され
た。
Then, a yellow cotton-like substance as shown in FIG. 2 was formed on the upper portion of the fusion zone of the sample (4). When this yellow cotton-like substance was observed with an electron microscope, it was confirmed that it was an aggregate of nanowires, as shown in FIG. Nanowires have a diameter of 5 to 50 nm and a length of 0.1 μm to 3
mm, and as a result of identification by electron diffraction, single crystal Si
Was confirmed. Moreover, it was confirmed from the result of X-ray analysis that the nanowire was made of Si.

【0021】なお、ナノワイヤーの収率は3mg/hであっ
た。
The yield of nanowires was 3 mg / h.

【0022】もちろん、この出願の発明は、以上の実施
形態によって限定されるものではない。同位体シリコン
の種類、組成、帯域溶融法における各種条件などの細部
については様々な態様が可能であることはいうまでもな
い。
Of course, the invention of this application is not limited to the above embodiments. Needless to say, various aspects are possible in details such as the type and composition of isotope silicon and various conditions in the zone melting method.

【0023】[0023]

【発明の効果】以上詳しく説明した通り、この出願の発
明によって、量子細線として電子、光学素子への適用が
期待される同位体シリコンナノワイヤーが、不純物金属
の含有が不可避的な含有にまで抑えられて実現され、ま
た、その作製は、容易かつ量産化可能となる。
As described in detail above, according to the invention of this application, the isotope silicon nanowires, which are expected to be applied to electronic devices and optical elements as quantum wires, are controlled to contain unavoidable impurities. In addition, it can be easily manufactured and mass-produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この出願の発明の同位体シリコンナノワイヤー
の作製方法における帯域溶融法の実施に適用可能な帯域
溶融装置を例示した概略断面図である。
FIG. 1 is a schematic cross-sectional view illustrating a zone melting apparatus applicable to the zone melting method in the method for producing isotope silicon nanowires according to the invention of this application.

【図2】95%28Si濃縮シリコンナノワイヤーの集合体を
示した、図面に代わる電子顕微鏡写真である。
FIG. 2 is an electron micrograph, instead of a drawing, showing an aggregate of 95% 28 Si-enriched silicon nanowires.

【図3】95%28Si濃縮シリコンナノワイヤーを示した、
図面に代わる電子顕微鏡拡大写真と電子回折像である。
FIG. 3 shows a 95% 28 Si-enriched silicon nanowire,
It is an electron microscope enlarged photograph and an electron diffraction image which substitute for a drawing.

【符号の説明】[Explanation of symbols]

1 本体 2 試料受け部 3 種結晶 4 試料 5 希ガス 6 キセノンランプ 7 レンズ 8 溶融域 9 ナノワイヤー収集板 1 body 2 Sample receiver 3 seed crystals 4 samples 5 rare gas 6 xenon lamp 7 lenses 8 melting zone 9 Nanowire collecting plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 胡 全利 茨城県つくば市千現1丁目2番1号 独立 行政法人物質・材料研究機構内 (72)発明者 李 国慶 茨城県つくば市千現1丁目2番1号 独立 行政法人物質・材料研究機構内 (72)発明者 鈴木 裕 茨城県つくば市千現1丁目2番1号 独立 行政法人物質・材料研究機構内 (72)発明者 荒木 弘 茨城県つくば市千現1丁目2番1号 独立 行政法人物質・材料研究機構内 Fターム(参考) 4G072 AA01 BB03 BB05 DD09 GG03 HH01 LL03 NN05 TT30 UU30   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hu Zenli             1-2-1 Sengen, Tsukuba-shi, Ibaraki Independent             National Institute for Materials Science (72) Inventor Lee Kunqing             1-2-1 Sengen, Tsukuba-shi, Ibaraki Independent             National Institute for Materials Science (72) Inventor Yu Suzuki             1-2-1 Sengen, Tsukuba-shi, Ibaraki Independent             National Institute for Materials Science (72) Inventor Hiroshi Araki             1-2-1 Sengen, Tsukuba-shi, Ibaraki Independent             National Institute for Materials Science F term (reference) 4G072 AA01 BB03 BB05 DD09 GG03                       HH01 LL03 NN05 TT30 UU30

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 28Si、29Si、又は30Siのいずれか一つの
同位体が自然同位体組成より濃縮され、不純物金属の含
有が不可避的のみに抑えられた、直径がナノメートルオ
ーダーにあることを特徴とする同位体シリコンナノワイ
ヤー。
1. A 28 Si, 29 Si, or 30 Si isotope enriched from a natural isotope composition, and the content of impurity metals is inevitably suppressed, and the diameter is on the order of nanometers. An isotope silicon nanowire characterized by the above.
【請求項2】 28Si、29Si、又は30Siのいずれか一つの
同位体が自然同位体組成より濃縮されるとともに、少な
くとも酸素若しくはフッ素のいずれかを含む一方、不純
物金属の含有は不可避的のみとされた同位体シリコンフ
レーク若しくは同位体シリコン粉末のいずれかをロッド
状に成形した後、帯域溶融法により、その成形物から直
径がナノメートルオーダーの同位体シリコンナノワイヤ
ーを作製することを特徴とする同位体シリコンナノワイ
ヤーの作製方法。
2. The 28 Si, 29 Si, or 30 Si isotope is enriched from the natural isotope composition and contains at least either oxygen or fluorine, while inclusion of an impurity metal is unavoidable. Characterized by producing either isotope silicon flakes or isotope silicon powder that is regarded as only rod-shaped, and then using the zone melting method to produce isotope silicon nanowires with a diameter of nanometer order from the molded product. Method for producing isotope silicon nanowires.
【請求項3】 帯域溶融法において、希ガス雰囲気下
で、溶融温度を1500〜1700Kとする請求項2記載の同位
体シリコンナノワイヤーの作製方法。
3. The method for producing an isotope silicon nanowire according to claim 2, wherein the melting temperature is 1500 to 1700K in a rare gas atmosphere in the zone melting method.
JP2001333257A 2001-10-30 2001-10-30 Isotope silicon nanowire and method of manufacturing the same Pending JP2003142680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001333257A JP2003142680A (en) 2001-10-30 2001-10-30 Isotope silicon nanowire and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001333257A JP2003142680A (en) 2001-10-30 2001-10-30 Isotope silicon nanowire and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003142680A true JP2003142680A (en) 2003-05-16

Family

ID=19148556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001333257A Pending JP2003142680A (en) 2001-10-30 2001-10-30 Isotope silicon nanowire and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003142680A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057464A2 (en) * 2004-11-29 2006-06-01 Univ Tokyo Nat Univ Corp Process for producing silicon nanofilamentous form
CN1299327C (en) * 2004-10-21 2007-02-07 上海交通大学 Method for preparing large-area and height ordered nanometer silica quantum dot array
WO2007145407A1 (en) * 2006-06-15 2007-12-21 Electronics And Telecommunications Research Institute Method of manufacturing silicon nanowires using silicon nanodot thin film
CN100514185C (en) * 2006-04-18 2009-07-15 清华大学 Method for making polymer self-supporting nano-micron-line
KR101027315B1 (en) * 2009-02-27 2011-04-06 성균관대학교산학협력단 Method for manufacturing nano wire
JP2012041235A (en) * 2010-08-20 2012-03-01 Kyoto Univ Method for manufacturing silicon nanowire
KR20170030969A (en) * 2015-09-10 2017-03-20 삼성전자주식회사 Method of forming nanostructure, method of manufacturing semiconductor device using the same and semiconductor device including nanostructure

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299327C (en) * 2004-10-21 2007-02-07 上海交通大学 Method for preparing large-area and height ordered nanometer silica quantum dot array
JP5232991B2 (en) * 2004-11-29 2013-07-10 国立大学法人東京農工大学 Method for producing silicon nanowire and silicon nanowire
WO2006057464A3 (en) * 2004-11-29 2007-01-18 Univ Tokyo Nat Univ Corp Process for producing silicon nanofilamentous form
WO2006057464A2 (en) * 2004-11-29 2006-06-01 Univ Tokyo Nat Univ Corp Process for producing silicon nanofilamentous form
JPWO2006057464A1 (en) * 2004-11-29 2008-06-05 国立大学法人東京農工大学 Method for producing silicon nanowire and silicon nanowire
US7662355B2 (en) 2004-11-29 2010-02-16 National University Corporation Tokyo University Of Agriculture And Technology Silicon nanosized linear body and a method for producing a silicon nanosized linear body
CN100514185C (en) * 2006-04-18 2009-07-15 清华大学 Method for making polymer self-supporting nano-micron-line
WO2007145407A1 (en) * 2006-06-15 2007-12-21 Electronics And Telecommunications Research Institute Method of manufacturing silicon nanowires using silicon nanodot thin film
US7985666B2 (en) 2006-06-15 2011-07-26 Electronics And Telecommunications Research Institute Method of manufacturing silicon nanowires using silicon nanodot thin film
KR101027315B1 (en) * 2009-02-27 2011-04-06 성균관대학교산학협력단 Method for manufacturing nano wire
JP2012041235A (en) * 2010-08-20 2012-03-01 Kyoto Univ Method for manufacturing silicon nanowire
KR20170030969A (en) * 2015-09-10 2017-03-20 삼성전자주식회사 Method of forming nanostructure, method of manufacturing semiconductor device using the same and semiconductor device including nanostructure
KR102395778B1 (en) * 2015-09-10 2022-05-09 삼성전자주식회사 Method of forming nanostructure, method of manufacturing semiconductor device using the same and semiconductor device including nanostructure

Similar Documents

Publication Publication Date Title
Peng et al. Synthesis of oxygen-deficient indium− tin-oxide (ITO) nanofibers
Busch et al. Decomposition and primary crystallization in undercooled Zr41. 2Ti13. 8Cu12. 5Ni10. 0Be22. 5 melts
Yu et al. Bismuth, tellurium, and bismuth telluride nanowires
Huang et al. Controlled synthesis and field emission properties of ZnO nanostructures with different morphologies
Gole et al. Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates
JP5297977B2 (en) Method for producing metal oxide nanorods
CN108203582B (en) Method for preparing nano quantum dots, nano quantum dot material, application and quantum dot product
JPH09510829A (en) Group IV semiconductor thin film formed at low temperature using nanocrystal precursor
Chen et al. The influence of seeding conditions and shielding gas atmosphere on the synthesis of silver nanowires through the polyol process
DE112007002082T5 (en) One-dimensional metal and metal oxide nanostructures
Bakshi Room temperature surfactant assisted crystal growth of silver nanoparticles to nanoribbons
TW200526824A (en) Manufacturing method of silicon nanowire
JP2003142680A (en) Isotope silicon nanowire and method of manufacturing the same
Sun et al. Synthesis of germanium nanowires on insulator catalyzed by indium or antimony
Wang et al. Preparation of cobalt nanocrystals in the homogenous solution with the presence of a static magnetic field
Hao et al. Synthesis and properties of Au–Fe3O4 and Ag–Fe3O4 heterodimeric nanoparticles
JP3571287B2 (en) Method for producing silicon oxide nanowires
JP4016105B2 (en) Manufacturing method of silicon nanowires
KR100904204B1 (en) Ferromagnetic Single-crystalline Metal Nanowire and the Fabrication Method Thereof
KR20130112203A (en) Method of manufacturing gallium oxide nanowire comprising noble metal discontinously and gallium oxide nanowire using the same method
You et al. Controllable synthesis of pentagonal silver nanowires via a simple alcohol-thermal method
Dinan et al. One-dimensional oxide nanostructures produced by gas phase reaction
Zhang et al. Aligned three-dimensional prismlike magnesium nanostructures realized onto silicon substrate
JP3978490B2 (en) Silicon germanium nanowire assembly
KR100479844B1 (en) Appratus for making nano-particles and method of preparing nano-particles using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20031031

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A521 Written amendment

Effective date: 20040910

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20080805

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20081006

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310