JP2003142567A - Wafer mounting stage - Google Patents

Wafer mounting stage

Info

Publication number
JP2003142567A
JP2003142567A JP2001333583A JP2001333583A JP2003142567A JP 2003142567 A JP2003142567 A JP 2003142567A JP 2001333583 A JP2001333583 A JP 2001333583A JP 2001333583 A JP2001333583 A JP 2001333583A JP 2003142567 A JP2003142567 A JP 2003142567A
Authority
JP
Japan
Prior art keywords
base member
conductive base
adhesive layer
thickness
organic adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001333583A
Other languages
Japanese (ja)
Other versions
JP3978011B2 (en
Inventor
Junji Oe
純司 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001333583A priority Critical patent/JP3978011B2/en
Publication of JP2003142567A publication Critical patent/JP2003142567A/en
Application granted granted Critical
Publication of JP3978011B2 publication Critical patent/JP3978011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wafer mounting stage in which particles are not produced, an electrostatic chuck part and a conductive base member can be bonded accurately, sufficient insulation is ensured between an electrostatic attraction electrode and the conductive base member, and the bonded part is not stripped even if heat cycle is repeated. SOLUTION: When the wafer mounting stage 1 is manufactured by bonding the conductive base member 10 to the electrostatic chuck part 5 provided with an electrostatic attraction electrode 4 on the surface opposite to the wafer W mounting surface 3 of a planar ceramic body 2, an insulating film 7 having a thickness S of 5-100 μm is bonded to the lower surface of the electrostatic chuck part 5 to cover the electrostatic attraction electrode 4 through a first organic adhesive layer 6 of 5-50 μm thick having Young's modulus of 29. 4 MPa-100 GPa, the planarity of the insulating film on the electrostatic attraction electrode 4 is set not higher than 100 μm, and the insulating film 7 and the conductive base member 10 are bonded through a second organic adhesive layer 8 having a thickness R of 50-500 μm an Young's modulus of lower than 29.4 MPa.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、CVD、PVD、
スパッタリング等の成膜装置やエッチング装置などの加
工装置において、半導体ウエハ等の被吸着体を保持する
ウエハ載置ステージに関するものである。 【0002】 【従来の技術】従来、半導体集積回路素子の製造工程に
は、半導体ウエハ(以下、単にウエハという)に薄膜を
形成する成膜装置やエッチング加工を施すエッチング装
置等の半導体製造装置が用いられており、このような半
導体製造装置には半導体ウエハを保持するためにウエハ
載置ステージが用いられている。 【0003】図5に従来のウエハ載置ステージを備える
半導体製造装置の概略断面図を示す。 【0004】この半導体製造装置は、ウエハ載置ステー
ジ51を真空処理室70内にOリング72を介して気密
に設置したもので、ウエハ載置ステージ51は、セラミ
ックス板状体52の上面を、ウエハWを載せる載置面5
3とし、セラミックス板状体52の下面に一対の静電吸
着用電極54を備えた静電チャック部55と、上記セラ
ミックス板状体52の下面側に接合された導電性ベース
部材60とからなり、静電チャック部55に備える一対
の静電吸着用電極54に直流電源74を電気的に接続
し、両電極54間に正負の電圧を印加することにより静
電気力を発現させ、ウエハWを載置面53に吸着固定す
るようになっていた。 【0005】また、導電性ベース部材60の内部には冷
却通路61が形成されており、静電チャック部55に吸
着保持したウエハWに成膜やエッチング等の加工を施す
際に発生する熱によってウエハWが所定の加工温度以上
になることを防止するため、上記冷却通路61に熱媒体
を流すことによって、ウエハWの熱を静電チャック部5
5から導電性ベース部材60に逃がすことによりウエハ
Wの温度を所定の加工温度に保つようになっていた。 【0006】そして、このような半導体製造装置を用い
てウエハWに成膜やエッチング等の加工を施すには、上
述したようにウエハ載置ステージ51にウエハWを吸着
固定させた状態で真空処理室70の上方に備える対向電
極71と、ウエハ載置ステージ51の導電性ベース部材
60との間に、例えば13.56MHzの高周波を印加
することで真空処理室70内にプラズマを発生させると
ともに、真空処理室70内に成膜用ガスやエッチング用
ガスを供給することにより、ウエハWに成膜加工やエッ
チング加工を施すようになっていた。なお、図中、73
は対向電極71と導電性ベース部材60との間に高周波
を印加するための高周波電源、75は静電チャック部5
5と導電性ベース部材60との接合部が腐食性ガスより
直接曝されるのを保護する保護リングである。 【0007】また、ウエハ載置ステージ51を構成する
静電チャック部55と導電性ベース部材60は次のよう
な手段によって接合することが提案されている。 【0008】特開昭63−283037号公報には、図
6に示すように、静電チャック部55の載置面53と反
対側の表面に、静電吸着用電極54を覆うようにゴム状
の有機系接着剤層56を介して、炭化珪素やアルミナ等
のフィラーを混入して熱伝導性を高めたシリコンゴムあ
るいはフッ素ゴム等から成る厚さ0.2〜0.3mm程
度の弾性絶縁体57を接着し、さらにこの弾性絶縁体5
7と導電性ベース部材60とをゴム状の有機系接着剤層
56を介して接着した構造が提案されている。 【0009】また、特開平5−347352号公報に
は、図7に示すように、静電チャック部55の載置面5
3と反対側の表面に、静電吸着用電極54を覆うように
ポリイミド系樹脂からなる有機系接着剤層58を介して
厚み25μm程度のポリイミドフィルムからなる絶縁性
フィルム59を接着し、さらにこの絶縁性フィルム59
と導電性ベース部材60とをポリイミド系樹脂からなる
有機系接着剤層58を介して接着した構造が提案されて
いる。 【0010】 【発明が解決しようとする課題】ところが、特開昭63
−283037号公報に開示された技術のように、弾性
絶縁体57として厚みが0.2〜0.3mm程度のシリ
コンゴムやフッ素ゴムでは静電吸着用電極54と導電性
ベース部材60との間の耐電圧が小さく弾性絶縁体58
が破損し、静電気力やプラズマを発生させることができ
なくなるといった課題があった。 【0011】また、弾性絶縁体57を形成するシリコン
ゴムやフッ素ゴムは、成膜用ガスやエッチング用ガス中
に含まれているフッ素、酸素、塩素系の腐食性ガスと反
応して低沸点化合物となり、徐々に揮発するのである
が、その際、弾性絶縁体57中に混入させていた炭化珪
素やアルミナ等のフィラーが上記腐食性ガスと反応して
不揮発性物質となり、パーティクルとしてウエハを汚染
するといった課題もあった。 【0012】一方、特開平5−347352号公報に開
示された技術では、静電チャック部55と導電性ベース
部材60との間に厚さ25μm程度の絶縁性フィルム5
9を介在させてあることから、静電吸着用電極54と導
電性ベース部材60との間の充分な絶縁性は得られるも
のの、静電チャック部55と絶縁性フィルム59及び絶
縁性フィルム59と導電性ベース部材60が共に高ヤン
グ率のポリイミド系接着剤からなる有機系接着剤層58
を介して接着されているため、ウエハ載置ステージ51
に温度変化が生じると、静電チャック部55を形成する
セラミック板状体52と導電性ベース部材60との間の
熱膨張差により発生する応力によって静電チャック部5
5に反りが発生し、ウエハWを精度良く保持することが
できなくなるとともに、温度サイクルを繰り返すと、静
電チャック部55と有機系接着剤層58との間に剥離が
発生するといった課題があった。 【0013】 【課題を解決するための手段】そこで、本発明は上記課
題に鑑み、セラミック板状体の一方の主面を、ウエハを
載せる載置面とし、他方の主面に静電吸着用電極を備え
た静電チャック部と、上記セラミック板状体の他方の主
面側に接合された導電性ベース部材とからなるウエハ載
置ステージにおいて、上記セラミック板状体の他方の主
面に、上記静電吸着用電極を覆うように厚みが5〜50
μmで、かつヤング率が29.4MPa〜100GPa
である第一の有機系接着剤層を介して厚みが5〜100
μmの絶縁性フィルムを接着し、上記静電吸着用電極上
に位置する絶縁性フィルムの平面度を100μm以下と
するとともに、上記絶縁性フィルムと導電性ベース部材
とを厚みが50〜500μmで、かつヤング率が29.
4MPa未満である第二の有機系接着剤層を介して接着
したことを特徴とする。 【0014】 【発明の実施の形態】以下、本発明の実施形態について
説明する。 【0015】図1は本発明のウエハ載置ステージを備え
る半導体製造装置を示す概略断面図である。 【0016】この半導体製造装置は、真空処理室20内
にOリング22を介してウエハ載置ステージ1を気密に
設置したもので、ウエハ載置ステージ1は、静電チャッ
ク部5と、導電性ベース部材10とからなる。 【0017】静電チャック5部は、セラミック板状体2
の上面を、半導体ウエハ等のウエハWを載せる載置面3
とするとともに、上記セラミック板状体2の下面に導体
層よりなる一対の静電吸着用電極4を形成したものであ
る。 【0018】また、導電性ベース部材10は、アルミニ
ウムや超鋼、あるいはこれらの金属とセラミック材料と
の複合材からなり、その内部には冷却通路11を有する
とともに、静電吸着用電極4に接続されるリード線9を
取り出すための貫通孔12を形成してある。 【0019】そして、静電チャック部5の下面側には一
対の静電吸着用電極4を覆うように、第一の有機系接着
剤層6を介して絶縁性フィルム7を接着するとともに、
この絶縁性フィルム7と導電性ベース部材10を第二の
有機系接着剤8を介して接着することによりウエハ載置
ステージ1を構成してあり、上記絶縁性フィルム7によ
って静電吸着用電極4と導電性ベース部材10との間の
絶縁性を保つようになっている。 【0020】そして、一対の静電吸着用電極4をそれぞ
れ直流電源24に接続し、電圧を印加するとウエハWと
静電吸着用電極4の間に電位差が生じ、ウエハWを載置
面3に吸着固定することができるようになっている。 【0021】なお、13はウェハ載置ステージ1に形成
されたリフトピン挿入穴であり、載置面3上にウエハW
を載せたり、持ち上げるためのリフトピン26が突出可
能に配置されている。 【0022】また、ウェハ載置ステージ1の外周部に
は、有機系接着剤層6,8の露出面を包囲するように保
護リング25を設置してあり、有機系接着剤層6,8の
露出面がフッ素ガスや塩素ガス等の腐食性ガスやプラズ
マによって直接侵されるのを防止してある。 【0023】さらに、真空処理室20の内部上方には導
電性ベース部材10と対向する対向電極21を設置して
あり、高周波電源23より両者の間に例えば13.56
MHzの高周波を印加することで真空処理室20内にプ
ラズマを発生させることができ、また、同時に直流電圧
を印加することで、両者の間にバイアスをかけることが
できるようになっている。この時、プラズマに曝される
ことでウエハWに発生した熱は、静電チャック部5から
導電性ベース部材10に伝わり、冷却通路11に流す熱
媒体を介してウエハ載置ステージ1から外部に逃がし、
載置面3上に吸着固定したウェハWを効率良く冷却する
ようになっている。 【0024】また、図2に本発明のウエハ載置ステージ
1の要部を説明するための断面図を示すように、載置面
3にウエハWを吸着させるには、一対の静電吸着用電極
4間に100〜3kVの電圧を印加する。このため導電
性ベース部材10と静電吸着用電極4とは効率良く絶縁
されていなければならない。ただし、静電吸着用電極4
と導電性ベース部材10の間に絶縁体を塗布する方法で
は、塗布された絶縁体中に気泡などの欠陥が生じ易く、
気泡を基点として絶縁破壊を起こすために信頼性の点で
問題がある。その為、予めフィルム状に加工された絶縁
耐力の大きな絶縁性フィルム7を用いることが重要であ
る。 【0025】絶縁性フィルム7の材質としては、ポリイ
ミド、ポリカーボネート、ポリエチレンテレフタレー
ト、ポリブチレンテレフタレート、ポリアミドイミド、
ポリエーテルスルフォンなど100℃以上の耐熱性を有
し、絶縁耐圧が10kV/mm 2以上あって、機械的強
度及び剛性が大きいものが良く、これらの絶縁性フィル
ム7を用いれば、伸びが少なく、接着時の取り扱い時に
伸びることもないため、平坦に接着できるので好まし
い。 【0026】ただし、絶縁性フィルム7の厚みTが5μ
m未満となると、一対の静電吸着用電極4間に100V
の電圧を印加した時、絶縁フィルム7が絶縁破壊する恐
れがあり、また、絶縁性フィルム7の厚みTが100μ
mを超えると、セラミック板状体2との間の熱膨張差に
よって接着した際にセラミックス板状体2を変形させ、
絶縁性フィルム7の平面度が悪くなる。しかも、厚みT
が厚くなると熱伝達が悪くなり、ウエハWの冷却効率が
低下させる恐れがある。 【0027】その為、絶縁性フィルム7の厚みTは5〜
100μmとすることが良い。 【0028】また、絶縁フィルム7を接着した後の静電
吸着用電極4上に位置する絶縁性フィルム7の平面度は
100μm以下とすることが好ましい。 【0029】なぜなら、静電吸着用電極4上に位置する
絶縁性フィルム7の平面度が100μmを越えると、第
二の有機系接着剤層8を介して導電性ベース部材10を
接着する際、絶縁性フィルム5上の凹んだ部分にエアー
が溜まり易いため、接着不良を起こす恐れがあるから
で、接着不良が発生すると、熱サイクルによって部分的
に剥離し、最終的には剥がれてしまからである。なお、
好ましい絶縁性フィルム7の平面度は60μm以下であ
る。 【0030】また、第一の有機系接着剤層6の厚みSは
5〜50μmとすることが良い。この理由は、有機系接
着剤層6の厚みSが50μmを超えると、厚みSのバラ
ツキが大きくなり、貼り付けた絶縁性フィルム7の平面
度を100μm以下にすることが難しく、その結果、第
二の有機系接着剤層8を介して導電性ベース部材10を
接着する際、絶縁性フィルム5上の凹んだ部分にエアー
が溜まり易いため、接着不良を起こす恐れがあるから
で、接着不良が発生すると、熱サイクルによって部分的
に剥離し、最終的には剥がれてしまからである。また、
有機系接着剤層6の厚みSが5μm未満となると、第一
の有機系接着剤層6中に気泡が混入し易くなり、熱サイ
クルを繰り返すと、第一の有機系着剤層6が剥離するか
らである。 【0031】さらに、第一の有機系接着剤層6のヤング
率は29.4MPa〜100GPaとすることが良い。 【0032】即ち、有機系接着剤層6のヤング率が2
9.4MPa未満となると、絶縁性フィルム7を接着し
た後、第二の有機系接着剤層8を接着する際、第一の有
機系接着剤層6の剛性が小さいため、第二の有機系接着
剤層8の厚みRのバラツキを抑えることが難しく、その
結果、導電性ベース部材10から静電吸着用電極4まで
の距離のバラツキが大きくなるからであり、また、有機
系接着剤層6のヤング率が100GPaを越えると、セ
ラミック板状体2に絶縁性フィルム7を接着した際に両
者の間の熱膨張差によって、セラミックス板状体2が変
形し、絶縁性フィルム7の平面度が悪くなるからであ
る。 【0033】ところで、上述した特性を有する第一の有
機系接着剤層6としては、エポキシ接着剤等を用いるこ
とができる。 【0034】一方、本発明のウエハ載置ステージ1にお
いて第二の有機系接着剤層8は、導電性ベース部材10
とセラミック板状体2との間の熱膨張差を吸収する機能
を有し、熱サイクルが作用しても載置面3の平面度が変
化し難く、かつ剥離を防止するようになっており、その
ためには第二の有機系接着剤層8のヤング率を29.4
MPa以下とするとともに、その厚みRを50〜500
μmとすることが良い。 【0035】即ち、第二の有機系接着剤層8のヤング率
が29.4MPa以上になると、ウェハ載置ステージ1
の温度が変わると載置面3の平面度が変化したり、第二
の有機系接着剤層8の剥離が発生するからである。 【0036】また、第二の有機系接着剤層8の厚みRが
50μm未満となると、導電性ベース部材10とセラミ
ック板状体2との間の熱膨張差を充分に吸収することが
できず、熱サイクルによってセラミック板状体2が変形
することにより載置面3の平面度が変化するとともに、
有機系接着剤層8が破断して部分的に剥がれたり、最終
的には全面剥離してしまう恐れがあるからであり、逆に
第二の有機系接着剤層8の厚みRが500μmを超える
と、セラミック板状体2と導電性ベース部材10の間の
熱伝達率が小さくなり、ウエハWの温度を直ちに下げる
ことができないからであり、その結果、例えばエッチン
グ加工においては、エッチング加工のパターンを形成し
ているレジスト膜の焼き付きが生じ、エッチング加工後
にレジスト膜の剥離が行えなくなるなどの問題を生じる
からである。 【0037】ところで、上述した特性を有する第二の有
機系接着剤層8としては、シリコン接着剤、ゴム系接着
剤等を用いることができる。ただし、接着剤が縮合型の
場合、加水分解にて硬化が進行するが、ウエハ載置ステ
ージ1は接着面積が広いため、その中央まで加水分解が
行われず、完全硬化させることができない。このような
場合には、接着剤として熱硬化形を用いることが好まし
く、熱によって接着面の全面で反応硬化させることがで
きる。 【0038】このような条件にて接合することにより静
電チャック部5の静電吸着用電極4から導電性ベース部
材10までの距離のバラツキを100μm以下とするこ
とができ、静電チャック部5と導電性ベース部材10と
を精度良く接合することができる。 【0039】なお、本発明のウエハ載置ステージ1で
は、第一及び第二の有機系接着剤層6,8間の熱伝導性
を高めるため、第一又は第二の有機系接着剤層6,8中
に、炭化珪素、アルミナ、窒化アルミニウム等のフィラ
ーを添加したり、第一及び第二の有機系接着剤層6,8
の粘性や耐熱性を改善するために、炭酸ルシウム、シリ
カ、カーボン等のフィラーを添加しても良いが、これら
の添加量が多くなり過ぎると、第一及び第二の有機系接
着剤層6,8が腐食性ガスに曝されて揮発すると、パー
ティクルの原因となるため、1体積%以下の範囲で含有
すれば良い。 【0040】次に本発明のウェハ載置ステージ1の製造
方法について説明する。 【0041】先ず、静電チャック部5を製作するには、
セラミック板状体2を用意し、その上下面をラップ加工
を施して上面にウエハWを載せる載置面3を形成すると
ともに、下面を平面度80μm以下に仕上げる。ここ
で、セラミック板状体2の下面の平面度を80μmに仕
上げるのは、静電吸着用電極4と導電性ベース部材10
との距離のバラツキを100μm以下とするためであ
る。 【0042】次に、セラミック板状体2の下面に、蒸着
法、スパッターリング法、CVD法、メッキ法等により
図3に示すような半円状をした一対の静電吸着用電極4
を形成して静電チャック部5を製作する。 【0043】静電吸着用電極4の材料としては、セラミ
ック板状体2を形成する材料の体積固有抵抗より小さい
抵抗値であれば良く、Ni、Ti、Al、Au、Ag、
Cuなどの金属やカーボンあるいはDLCを用いること
ができる。また、MoやAgを用いたロウ付けやメタラ
イズにより形成しても構わない。 【0044】ただし、静電吸着用電極4の厚みQは0.
01〜100μmとすることが好ましい。即ち、静電吸
着用電極4の厚みQが0.01μm未満では、内部抵抗
が大きすぎ電極として用いることが難しいからであり、
また、静電吸着用電極4の厚みQが100μmを超える
と、一対の静電吸着用電極4の間に介在する第一の有機
系接着剤層6中に気泡等の欠陥が発生し易くなるからで
ある。なお、好ましい静電吸着用電極4の厚みQは0.
1μm〜10μmである。 【0045】一方、導電性ベース部材10を用意し、静
電チャック部5との接合面の平面度を80μm以下に仕
上げておく。この理由は、静電チャック部5の静電吸着
用電極4から導電性ベース部材10までの距離のバラツ
キを100μm以下とするためである。 【0046】次に、エポキシ接着剤等の第一の有機系接
着剤を容器に入れ、2700Pa以下の減圧下で15分
以上保持することにより接着剤の脱泡をした後、この接
着剤をセラミック板状体2の中央に一文字に垂らし、厚
み5〜100μmの絶縁性フィルム7を載せて絶縁性フ
ィルム7の中央から徐々に密着させる。この時、ゴム製
ローラーで絶縁性フィルム7の中央から外周へ接着剤を
掃き出すように押さえ付けて密着させれば良い。 【0047】次いで、絶縁性フィルム7上に厚み20m
m、平面度10μmのアルミナ製定盤を載せ、さらに重
しを載せた状態で、100℃の温度で約12時間程度加
熱することにより接着剤を硬化させ、厚みが5〜50μ
mでかつヤング率が29.4MPa〜100GPaであ
る第一の有機接着剤層6を介して絶縁フィルム7を接着
し、静電吸着用電極4上に位置する絶縁フィルム7の平
面度を100μm以下とする。 【0048】なお、絶縁性フィルム7及び第一の有機系
接着剤層6には透明又は半透明であるものを用いること
が好ましく、このように透明又は半透明であるものを用
いることにより第一の有機系接着剤層6中に残る気泡の
有無を確認することができ、絶縁不良を効果的に防止す
ることができる。 【0049】しかる後、導電性ベース部材10の接着面
にシリコン接着剤等の第二の有機接着剤をスクリーン印
刷した後、絶縁フィルム7を貼り付けた静電チャック部
5を載せ、静電チャック部5の載置面3に、厚み20m
m、平面度10μmのアルミナ製定盤を載せ、平板状の
重しを重ねて載せた状態で、2700Pa以下の真空中
で15分以上保持することにより第二の有機接着剤の脱
泡を行った後、100℃の温度で約12時間程度加熱し
て第二の接着剤を硬化させることにより、厚みが50〜
500μmでかつヤング率が29.4MPa未満である
第2の有機系接着剤層8を介して接着することにより図
1に示すウエハ載置ステージ1を製作することができ
る。 【0050】以上、本発明の実施形態について説明した
が、上述した実施形態だけに限定されるものではなく、
本発明の要旨を逸脱しない範囲で改良や変更できること
は言う迄もない。 【0051】 【実施例】(実施例1)図1に示すウエハ載置ステージ
1の絶縁フィルム7の厚みTを異ならせた時の静電吸着
用電極4から導電性ベース部材10までの距離のバラツ
キ、室温時及び加熱時の載置面3の平面度、冷却時の載
置面3の温度、及び接合部の絶縁性について調べる実験
を行った。 【0052】先ず、出発原料として、主成分であるアル
ミナ粉末に対し、TiO2:6重量%とMgO:3重量
%、SiO2:2重量%、CaO:3重量%の比率で配
合した原料粉末をボールミルで混合粉砕したものに、バ
インダー、トルエン、及び酢酸ブチル等を加えてスラリ
ーを製作した後、ドクターブレード法にて複数枚のグリ
ーンシートを成形し、これらのグリーンシートを積層し
た後、還元雰囲気で1600℃の温度で2時間焼成する
ことによりアルミナ質焼結体からなるセラミックスを製
作し、その後、ダイヤモンド砥石にて外径198mm、
厚み1mmに加工してセラミックス板状体2とした。 【0053】次に、セラミックス板状体2の上面にラッ
プ加工を施してウエハWの載置面3を形成するととも
に、下面にもラップ加工を施してその平面度を80μm
とした後、この下面に蒸着法にて図4に示すチタンから
なる一対の静電吸着用電極4を約0.3μmの厚みQで
形成した。 【0054】次いで、粘度50Pa・sで、硬化後のヤ
ング率が12GPaで、かつ伸び率6%のエポキシ接着
剤を容器に入れ、2700Pa以下の減圧下で15分以
上保持することにより接着剤の脱泡をした。その後、こ
の接着剤を、セラミックス板状体2の下面中央に一文字
に垂らし、厚みを表1のように異ならせたポリイミド製
の絶縁性フィルム7を載せた後、ゴム製ローラーで絶縁
性フィルム7の中央から外周へ接着剤を掃き出すように
押さえ付けて密着させた後、厚み20mm、平面度10
μmのアルミナ製定盤を絶縁フィルム7上に載せ、さら
に重しを載せた状態で、温度100℃のオーブンで30
分加熱し、接着剤を半硬化させた後、さらに温度100
℃のオーブンで12時間加熱して接着剤を硬化させ、厚
みが5〜50μmの第一の有機系接着剤層6を介して絶
縁フィルム7を接着した。 【0055】そして、この時の静電吸着用電極4上に位
置する絶縁性フィルム7の平面度を測定した。 【0056】次に、アルミニウム製の導電性ベース部材
10の接着面における平面度を80μm以下とした後、
この接着面に粘度が1300Pa・sで、硬化後のヤン
グ率が3MPaである熱硬化性シリコン接着剤をスクリ
ーン印刷した後、絶縁性フィルム7を備えた静電チャッ
ク部5を載せ、静電チャック部5の載置面3に、厚み2
0mm、平面度10μmのアルミナ製定盤を載せ、さら
に平板状の重しを載せた状態で、2700Pa以下の真
空中で15分以上保持することにより接着剤の脱泡をし
た。その後、温度100℃のオーブンで12時間加熱し
て接着剤を硬化させることにより厚みRが350μmで
ある第二の有機系接着剤層8を介して絶縁フィルム7と
導電性ベース部材10とを接着して試料としてのウエハ
載置ステージ1を製作した。 【0057】そして、製作したウェハ載置ステージ1の
静電吸着用電極4から導電性ベース部材10までの距離
のバラツキ及び載置面3の平面度をそれぞれ測定した。 【0058】なお、載置面3の平面度の測定にあたって
は京セラ製の平面度測定器ナノウェイにより測定し、ま
た、ウェハ載置ステージ1の静電吸着用電極4から導電
性ベース部材10までの距離のバラツキは、図4に示す
ように、ウエハ載置ステージ1を中央測定点を通る90
度の2方向に切断し、外径測定点4箇所、及び中間測定
点4箇所の合計8箇所の静電吸着用電極4から導電性ベ
ース部材10までの距離を工具顕微鏡で測定し、最大と
最小の差をバラツキとして測定した。 【0059】また、ウエハ載置ステージ1の載置面3か
ら50cm離した位置に500Wの赤外線ランプを配置
し、ランプを加熱させて載置面3を50℃に加熱した時
の載置面3の平面度を測定した。 【0060】さらに、ウエハ載置ステージ1の載置面3
を5時間加熱して載置面3の温度を70℃とした後、導
電性ベース部材10の冷却通路11に温度20℃の水を
6リットル/分の速度で通水し、5分後に載置面3の温
度を表面温度計で測定し、冷却特性を調べた。 【0061】次に、ウエハ載置ステージ1に静電気力と
プラズマを発生させた時を想定し、導電性ベース部材1
0と静電吸着電極4との間に5kVの電圧を加えた時の
絶縁性について調べる実験を行った。 【0062】結果は表1に示す通りである。 【0063】 【表1】【0064】表1より判るように、絶縁性フィルム7の
厚みTが3μmである試料No.1は、導電性ベース部
材10と静電吸着電極4との間に5kVの電圧を加えた
ところ、絶縁性フィルム7が破損した。 【0065】また、絶縁性フィルム7の厚みTが120
μmである試料No.7は、冷却時の載置面3の温度が
38.9℃と大きく、冷却速度に問題があった。 【0066】これに対し、絶縁性フィルム7の厚みTが
5〜100μmの範囲にある試料No.2〜6は、静電
吸着用電極4から導電性ベース部材10までの距離のバ
ラツキを70μm以下に抑えることができ、その結果、
載置面3の平面度を12μm以下とすることができた。 【0067】また、加熱後の載置面3の平面度を見る
と、変形が大きいもので24μmと2倍程度で済み、セ
ラミック板状体2と導電性ベース部材10との間の熱膨
張差による応力を効果的に吸収できることが判る。しか
も、加熱後の冷却時には載置面3の温度を35℃以下に
まで冷却することができ、静電チャック部5と導電性ベ
ース部材10との間で優れた熱伝達特性が得られ、かつ
導電性ベース部材10と静電吸着電極4との間に5kV
の電圧を加えても絶縁フィルム7の破損はなく、十分な
絶縁性を維持することができた。 (実施例2)次に、絶縁性フィルム7の厚みTを25μ
mに固定し、第一の有機系接着剤を履き出す圧力を変え
て第一の有機系接着剤層6の厚みSを異ならせる以外は
実施例1と同様の条件にて製作したウエハ載置ステージ
1を用い、静電吸着用電極4から導電性ベース部材10
までの距離のバラツキ、室温時及び加熱時の載置面3の
平面度、及び冷却時の載置面3の温度を実施例1と同じ
条件で測定するとともに、さらに熱サイクルをかけた時
の接合部の剥離の有無について調べる実験を行った。 【0068】なお、熱サイクルをかけた時の接合部の剥
離の有無については、製作したウェハ載置ステージ1を
1℃/分の速度で加熱と冷却を繰り返し、−50〜15
0℃の冷熱サイクルを加えた。そして、50サイクル毎
に第一及び第二の有機系接着剤層6,8を超音波探傷に
より観察し、剥がれの有無を確認した。 【0069】結果は表2に示す通りである。 【0070】 【表2】【0071】表2により判るように、第一の有機系接着
剤層6の厚みTが3μmである試料No.21は、厚み
Tが薄いために第一の有機系接着剤層6中に気泡が入り
易く、この気泡が原因で熱サイクルを繰り返すと、20
0サイクルで第一の有機系接着剤層6が剥離した。 【0072】また、第一の有機系接着剤層8の厚みTが
100μmを超える試料No.26,27では、絶縁性
フィルム7の平面度が100μmを超え、その結果、第
二の有機系接着剤層8を介して導電性ベース部材10を
接合しようとしても剥離し、ウエハ載置ステージ1を形
成することができなかった。 【0073】これに対し、第一の有機系接着剤層8の厚
みTが5〜100μmの範囲にある試料No.22〜2
5は、静電吸着用電極4から導電性ベース部材10まで
の距離のバラツキを70μm以下に抑えることができ、
その結果、載置面3の平面度を12μm以下とすること
ができた。 【0074】また、加熱後の載置面3の平面度を見る
と、変形が大きいもので20μmと小さく、セラミック
板状体2と導電性ベース部材10との間の熱膨張差によ
る応力を効果的に吸収できることが判る。しかも、加熱
後の冷却時には載置面3の温度を35℃以下にまで冷却
することができ、静電チャック部5と導電性ベース部材
10との間で優れた熱伝達特性が得られた。 【0075】さらに、熱サイクルを繰り返しても第一の
有機系接着剤層6に剥離は見られる長期間にわたって使
用することができた。 (実施例3)次に、絶縁性フィルム7の厚みTを25μ
mとするとともに、第一の有機系接着剤6の厚みSを5
〜50μmの範囲で設定し、第二の有機系接着剤8を履
き出す圧力を変えて第ニの有機系接着剤層8の厚みRを
異ならせる以外は実施例2と同様の条件にて製作したウ
エハ載置ステージ1を用いて実施例2と同様の実験を行
った。 【0076】結果は表3に示す通りである。 【0077】 【表3】【0078】表3により判るように、第二の有機系接着
剤層8の厚みRが40μmである試料No.31は、セ
ラミック板状体2と導電性ベース部材10との間の熱膨
張差による応力を緩和することができないため、加熱後
の載置面3の平面度が35μmと大きく変形していた。
しかも、熱サイクルを加えると、50サイクル程度で第
二の有機系接着剤層8の剥離が発生した。 【0079】また、第ニの有機系接着剤層8の厚みRが
500μmを超える試料No.38は、第二の有機系接
着剤層8の厚みが厚いため、冷却後の載置面3の温度が
41.9℃と大きく、冷却速度に問題があった。 【0080】これに対し、第二の有機系接着剤層8の厚
みRが50〜500μmの範囲にある試料No.32〜
37は、静電吸着用電極4から導電性ベース部材10ま
での距離のバラツキを70μm以下に抑えることがで
き、その結果、載置面3の平面度を12μm以下とする
ことができた。 【0081】また、加熱後の載置面3の平面度を見る
と、変形が大きいもので26μmと小さく、セラミック
板状体2と導電性ベース部材10との間の熱膨張差によ
る応力を効果的に吸収できることが判る。しかも、加熱
後の冷却時には載置面3の温度を35℃以下にまで冷却
することができ、静電チャック部5と導電性ベース部材
10との間で優れた熱伝達特性が得られた。 【0082】さらに、熱サイクルを繰り返しても第二の
有機系接着剤層8に剥離は見られる長期間にわたって使
用することができた。 (実施例4)次に、絶縁性フィルム7の厚みTを25μ
mとするとともに、第一の有機系接着剤層6の厚みSを
5〜50μmの範囲で設定し、かつ第二の有機系接着剤
層8の厚みを50〜500μmの範囲で設定し、第一の
有機系接着剤層6のヤング率を異ならせる以外は実施例
2と同様の条件にて製作したウエハ載置ステージ1を用
いて実施例2と同様の実験を行った。 【0083】結果は表4に示す通りである。 【0084】 【表4】【0085】表4より判るように、第一の有機系接着剤
層6のヤング率が29.4MPa未満である試料No.
41は、絶縁性フィルム7を接着した後、第二の有機系
接着剤層8を接着する際、第一の有機系接着剤層6の剛
性が小さいため、第二の有機系接着剤層8の厚みRのバ
ラツキを抑えることが難しく、その結果、静電吸着用電
極4から導電性ベース部材10までの距離のバラツキが
81μmと大きかった。 【0086】また、第一の有機系接着剤層6のヤング率
が100GPaを越える試料No.46は、セラミック
板状体2に絶縁性フィルム7を接着した際に両者の間の
熱膨張差によって、セラミックス板状体2が変形し、絶
縁性フィルム7の平面度が100μmを超えた。その結
果、導電性ベース部材10を第二の有機系接着剤層8に
て接合しようとしても剥離し、ウエハ載置ステージ1を
製作することができなかった。 【0087】これに対し、第一の有機系接着剤層6のヤ
ング率が29.4MPa〜100GPaの範囲にある試
料No.42〜45は、静電吸着用電極4から導電性ベ
ース部材10までの距離のバラツキを70μm以下に抑
えることができ、その結果、載置面3の平面度を12μ
m以下とすることができた。 【0088】また、加熱後の載置面3の平面度を見る
と、変形が大きいもので26μmと小さく、セラミック
板状体2と導電性ベース部材10との間の熱膨張差によ
る応力を効果的に吸収できることが判る。しかも、加熱
後の冷却時には載置面3の温度を35℃以下にまで冷却
することができ、静電チャック部5と導電性ベース部材
10との間で優れた熱伝達特性が得られた。 【0089】さらに、熱サイクルを繰り返しても第二の
有機系接着剤層8に剥離は無く長期間にわたって使用す
ることができた。 (実施例5)次に、絶縁性フィルム7の厚みTを25μ
mとするとともに、第一の有機系接着剤層6のヤング率
を12GPaとし、第一の有機系接着剤層6の厚みSを
5〜50μmの範囲で設定し、かつ第二の有機系接着剤
層8の厚みを50〜500μmの範囲で設定し、第二の
有機系接着剤層8のヤング率を異ならせる以外は実施例
2と同様の条件にて製作したウエハ載置ステージ1を用
いて実施例2と同様の実験を行った。 【0090】結果は表5に示す通りである。 【0091】 【表5】【0092】表5より判るように、第二の有機系接着剤
層8のヤング率が29.4MPaを超える試料No.4
7では、セラミック板状体2と導電性ベース部材10と
の間の熱膨張差による応力を十分に緩和することができ
ず、加熱時の載置面3の平面度が48μmと大きく変形
した。しかも、熱サイクル試験において、50回の熱サ
イクルによって第二の有機系接着剤層8の剥離が発生し
た。 【0093】これに対し、第二の有機系接着剤層8のヤ
ング率が29.4MPa以下である試料No.48〜5
0は、静電吸着用電極4から導電性ベース部材10まで
の距離のバラツキを70μm以下に抑えることができ、
その結果、載置面3の平面度を12μm以下とすること
ができた。 【0094】また、加熱後の載置面3の平面度を見る
と、変形が大きいもので20μmと小さく、セラミック
板状体2と導電性ベース部材10との間の熱膨張差によ
る応力を効果的に吸収できることが判る。しかも、加熱
後の冷却時には載置面3の温度を35℃以下にまで冷却
することができ、静電チャック部5と導電性ベース部材
10との間で優れた熱伝達特性が得られた。 【0095】さらに、熱サイクルを繰り返しても第二の
有機系接着剤層8に剥離は見られる長期間にわたって使
用することができた。 【0096】尚、第二の有機系接着剤層8の厚みは、ウ
ェハ載置ステージ1を評価後に作製後のウェハ載置ステ
ージの中心を通る断面で切断し第二の有機系接着剤層8
の中央と第二の有機系接着剤層8の外周から10mmの
位置の5箇所について厚みを測定した。 【0097】なお、第一の有機系接着剤層7の厚みは、
セラミックス板状体2の中央と第一の有機系接着剤層7
の外周から10mmの位置の5箇所について測定した。
上記の絶縁フィルム7を接着した板状セラミック体全体
厚みからセラミックス板状体の厚みと絶縁フィルム7で
あるポリイミドシートの厚みを差し引いて求めた。 【0098】 【発明の効果】以上のように、本発明によれば、セラミ
ック板状体の一方の主面を、被吸着体を載せる載置面と
し、他方の主面に静電吸着用電極を備えた静電チャック
部と、上記セラミック板状体の他方の主面側に接合され
た導電性ベース部材とからなるウエハ載置ステージにお
いて、上記セラミック板状体の他方の主面に、上記静電
吸着用電極を覆うように厚みが5〜50μmで、かつヤ
ング率が29.4MPa〜100GPaである第一の有
機系接着剤層を介して厚みが5〜100μmの絶縁性フ
ィルムを接着し、上記静電吸着用電極上に位置する絶縁
性フィルムの平面度を100μm以下とするとともに、
上記絶縁性フィルムと導電性ベース部材とを厚みが50
〜500μmで、かつヤング率が29.4MPa未満で
ある第二の有機系接着剤層を介して接着したことによっ
て、パーティクルを発生することがなく、静電チャック
部と導電性ベース部材との間の十分な絶縁性を保つこと
ができる。 【0099】また、静電チャック部を導電性ベース部材
に対して精度良く接合することができるとともに、熱サ
イクルが作用しても接合層の剥離を生じることがなく、
載置面に載せたウエハを精度良く保持することができ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to CVD, PVD,
Addition of film forming equipment such as sputtering and etching equipment
Holds an object to be adsorbed such as a semiconductor wafer in a processing device
It relates to a wafer mounting stage. 2. Description of the Related Art Conventionally, a process for manufacturing a semiconductor integrated circuit
Has a thin film on a semiconductor wafer (hereinafter simply referred to as a wafer).
Film forming equipment to form and etching equipment to perform etching processing
Such semiconductor manufacturing equipment is used.
The semiconductor manufacturing wafer is held in the conductor manufacturing equipment.
A mounting stage is used. FIG. 5 shows a conventional wafer mounting stage.
1 shows a schematic sectional view of a semiconductor manufacturing apparatus. This semiconductor manufacturing apparatus includes a wafer mounting stay
The nozzle 51 is hermetically sealed in the vacuum processing chamber 70 via the O-ring 72.
The wafer mounting stage 51 is
The upper surface of the box-shaped body 52 is placed on the mounting surface 5 on which the wafer W is mounted.
3 and a pair of electrostatic absorption
An electrostatic chuck portion 55 having a wearing electrode 54;
A conductive base joined to the lower surface of the mixed plate 52
A pair comprising a member 60 and provided in the electrostatic chuck portion 55
DC power supply 74 is electrically connected to the electrostatic attraction electrode 54
Then, a positive and negative voltage is applied between
Generates electric force to attract and fix the wafer W to the mounting surface 53 by suction.
I was supposed to. [0005] The inside of the conductive base member 60 is cold.
A suction passage 61 is formed, and the suction
Applying processing such as film formation and etching to the wafer W that has been attached and held
The wafer W is at or above a predetermined processing temperature due to the heat generated
In order to prevent the cooling medium
Of heat, the heat of the wafer W is transferred to the electrostatic chuck portion 5.
5 to the conductive base member 60 to release the wafer.
The temperature of W was kept at a predetermined processing temperature. Then, using such a semiconductor manufacturing apparatus,
To apply processing such as film formation and etching to the wafer W,
As described above, the wafer W is attracted to the wafer mounting stage 51.
The counter electrode provided above the vacuum processing chamber 70 in a fixed state
The pole 71 and the conductive base member of the wafer mounting stage 51
A high frequency of 13.56 MHz is applied between 60 and 60
By generating plasma in the vacuum processing chamber 70
In both cases, a film forming gas and an etching gas
By supplying the gas, film formation processing and etching on the wafer W are performed.
It had to be subjected to ching processing. Note that in the figure, 73
Is a high frequency between the counter electrode 71 and the conductive base member 60.
A high frequency power supply for applying a voltage;
5 and the conductive base member 60 are made of a corrosive gas.
A protection ring that protects from direct exposure. Further, a wafer mounting stage 51 is formed.
The electrostatic chuck 55 and the conductive base member 60 are as follows.
It has been proposed to join by various means. Japanese Unexamined Patent Publication (Kokai) No. 63-283037 discloses FIG.
As shown in FIG. 6, the mounting surface 53 of the electrostatic chuck 55
On the opposite surface, a rubber-like
Through an organic adhesive layer 56 of silicon carbide, alumina, etc.
Silicone rubber with high thermal conductivity
Or about 0.2-0.3mm thick made of fluoro rubber etc.
The elastic insulator 57 is adhered, and the elastic insulator 5
7 and the conductive base member 60 are formed of a rubber-like organic adhesive layer.
A structure bonded through 56 has been proposed. Further, Japanese Patent Application Laid-Open No. 5-347352 discloses
The mounting surface 5 of the electrostatic chuck portion 55 as shown in FIG.
3 so as to cover the electrostatic attraction electrode 54 on the surface on the opposite side.
Through an organic adhesive layer 58 made of a polyimide resin
Insulation made of polyimide film about 25μm thick
The film 59 is adhered, and the insulating film 59
And the conductive base member 60 are made of a polyimide resin.
A structure in which the layers are bonded via an organic adhesive layer 58 has been proposed.
I have. [0010] However, Japanese Unexamined Patent Publication No. Sho 63
As disclosed in Japanese Patent Publication No.
The insulator 57 has a thickness of about 0.2 to 0.3 mm.
In the case of rubber and fluorine rubber, the electrode 54 for electrostatic adsorption and the conductivity
The withstand voltage between the base member 60 and the elastic insulator 58 is small.
Can damage and generate electrostatic force and plasma
There was a problem that it disappeared. Also, silicon forming the elastic insulator 57
Rubber and fluoro rubber are used in film forming gas and etching gas.
Reacts with fluorine, oxygen, and chlorine-based corrosive gases
In response, it becomes a low-boiling compound and evaporates gradually.
However, at this time, the silicon carbide mixed in the elastic insulator 57
Fillers such as silicon and alumina react with the above corrosive gas
Becomes nonvolatile and contaminates wafers as particles
There was also a problem to do. On the other hand, Japanese Patent Application Laid-Open No. 5-347352 discloses
In the technique shown, the electrostatic chuck 55 and the conductive base
Insulating film 5 having a thickness of about 25 μm between member 60
9 are interposed between the electrode 54 and the electrostatic attraction electrode 54.
Although sufficient insulation between the conductive base member 60 and the conductive base member 60 can be obtained.
However, the electrostatic chuck 55, the insulating film 59, and the
Both the edge film 59 and the conductive base member 60 are high
Adhesive layer 58 made of polyimide-based adhesive having a high rate
The wafer mounting stage 51
When the temperature changes, the electrostatic chuck 55 is formed.
Between the ceramic plate 52 and the conductive base member 60
The electrostatic chuck 5 is formed by the stress generated by the difference in thermal expansion.
5 is warped and the wafer W can be held accurately.
When the temperature cycle is repeated,
Peeling occurs between the electro-chuck portion 55 and the organic adhesive layer 58.
There was a problem that it occurred. [0013] Accordingly, the present invention relates to the above-mentioned section.
In consideration of the problem, one main surface of the ceramic plate
Equipped with an electrode for electrostatic attraction on the other main surface
And the other main part of the ceramic plate
Wafer mounting consisting of a conductive base member bonded to the surface side
In the placement stage, the other main plate of the ceramic plate
The surface has a thickness of 5 to 50 so as to cover the electrostatic attraction electrode.
μm and the Young's modulus is 29.4 MPa to 100 GPa
5 to 100 through the first organic adhesive layer
Adhesive insulating film of μm
The flatness of the insulating film located at
And the insulating film and the conductive base member
Having a thickness of 50 to 500 μm and a Young's modulus of 29.
Adhesion via a second organic adhesive layer of less than 4 MPa
It is characterized by having done. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described.
explain. FIG. 1 shows a wafer mounting stage according to the present invention.
1 is a schematic sectional view showing a semiconductor manufacturing apparatus according to the present invention. In this semiconductor manufacturing apparatus, a vacuum processing chamber 20 is provided.
The wafer mounting stage 1 is hermetically sealed via an O-ring 22
The wafer mounting stage 1 is an electrostatic chuck.
And a conductive base member 10. The electrostatic chuck 5 includes a ceramic plate 2
A mounting surface 3 on which a wafer W such as a semiconductor wafer is mounted.
And a conductor is provided on the lower surface of the ceramic plate 2
A pair of electrostatic attraction electrodes 4 composed of layers
You. The conductive base member 10 is made of aluminum.
Or super steel, or these metals and ceramic materials
And has a cooling passage 11 therein.
At the same time, lead wire 9 connected to electrode 4 for electrostatic attraction
A through hole 12 for taking out is formed. The lower surface of the electrostatic chuck 5 is
First organic adhesive so as to cover the pair of electrostatic adsorption electrodes 4
While bonding the insulating film 7 via the agent layer 6,
The insulating film 7 and the conductive base member 10 are
Wafer placement by bonding via organic adhesive 8
The stage 1 is constituted by the insulating film 7.
Between the electrostatic attraction electrode 4 and the conductive base member 10
It keeps insulation. Then, the pair of electrodes for electrostatic attraction 4 are respectively
Is connected to the DC power supply 24, and when a voltage is applied, the wafer W
A potential difference occurs between the electrodes 4 for electrostatic attraction, and the wafer W is mounted.
It can be fixed to the surface 3 by suction. Reference numeral 13 is formed on the wafer mounting stage 1.
Lift pin insertion hole, and the wafer W
Lift pins 26 for loading and lifting
Noh is arranged. Further, on the outer peripheral portion of the wafer mounting stage 1,
Is maintained so as to surround the exposed surfaces of the organic adhesive layers 6 and 8.
Protection ring 25 is installed, and the organic adhesive layers 6 and 8
Exposed surface is corrosive gas such as fluorine gas or chlorine gas or plasma
It is prevented from being directly attacked by ma. Further, a guide is provided above the inside of the vacuum processing chamber 20.
The counter electrode 21 facing the conductive base member 10 is installed.
There is a high frequency power supply 23 between them, for example, 13.56.
By applying a high frequency of MHz to the vacuum processing chamber 20,
Can generate plasma, and at the same time,
By applying a bias between them
I can do it. At this time, it is exposed to plasma
The heat generated in the wafer W by the
Heat transmitted to the conductive base member 10 and flowing to the cooling passage 11
Escape from the wafer mounting stage 1 to the outside via the medium,
Efficiently cools the wafer W sucked and fixed on the mounting surface 3
It has become. FIG. 2 shows a wafer mounting stage according to the present invention.
As shown in the cross-sectional view for explaining the main part of FIG.
In order to adsorb the wafer W to the wafer 3, a pair of electrostatic attraction electrodes
A voltage of 100 to 3 kV is applied between four. Therefore conductive
Efficient insulation between the conductive base member 10 and the electrode 4 for electrostatic attraction
Must have been. However, the electrode 4 for electrostatic attraction
And applying an insulator between the conductive base member 10 and
Is likely to cause defects such as bubbles in the applied insulator,
In order to cause insulation breakdown based on bubbles,
There's a problem. Therefore, the insulation processed in advance into a film shape
It is important to use an insulating film 7 having a high proof stress.
You. The material of the insulating film 7 is
Mid, polycarbonate, polyethylene terephthalate
G, polybutylene terephthalate, polyamide imide,
Has heat resistance of 100 ° C or more such as polyether sulfone
And withstand voltage of 10 kV / mm Two Above, mechanical strength
The higher the degree and rigidity, the better
The use of the rubber 7 reduces the elongation,
Because it does not stretch, it can be bonded flat, so it is preferable
No. However, the thickness T of the insulating film 7 is 5 μm.
m, a voltage of 100 V is applied between the pair of electrostatic attraction electrodes 4.
When the voltage is applied, the insulation film 7 may be broken down.
And the thickness T of the insulating film 7 is 100 μm.
m, the difference in thermal expansion between the ceramic plate 2 and
Therefore, when bonded, the ceramic plate 2 is deformed,
The flatness of the insulating film 7 deteriorates. Moreover, the thickness T
When the thickness is large, the heat transfer becomes poor, and the cooling efficiency of the wafer W is reduced.
There is a risk of lowering. Therefore, the thickness T of the insulating film 7 is 5 to 5.
The thickness is preferably 100 μm. Also, after the insulating film 7 is bonded,
The flatness of the insulating film 7 located on the suction electrode 4 is
The thickness is preferably 100 μm or less. This is because it is located on the electrostatic attraction electrode 4.
If the flatness of the insulating film 7 exceeds 100 μm,
The conductive base member 10 is interposed via the second organic adhesive layer 8.
When bonding, air is applied to the concave portion on the insulating film 5.
Is likely to accumulate, which may cause poor adhesion.
In the event of poor adhesion, partial heat cycle
And finally peeled off. In addition,
The flatness of the preferred insulating film 7 is 60 μm or less.
You. The thickness S of the first organic adhesive layer 6 is
The thickness is preferably 5 to 50 μm. The reason for this is that
When the thickness S of the adhesive layer 6 exceeds 50 μm, the thickness S varies.
The roughness increases, and the flat surface of the attached insulating film 7
It is difficult to reduce the degree to 100 μm or less.
The conductive base member 10 is interposed via the second organic adhesive layer 8.
When bonding, air is applied to the concave portion on the insulating film 5.
Is likely to accumulate, which may cause poor adhesion.
In the event of poor adhesion, partial heat cycle
And finally peeled off. Also,
When the thickness S of the organic adhesive layer 6 is less than 5 μm, the first
Air bubbles easily enter the organic adhesive layer 6 of the
The first organic adhesive layer 6 peels off
It is. Further, the first organic adhesive layer 6
The rate is preferably set to 29.4 MPa to 100 GPa. That is, the Young's modulus of the organic adhesive layer 6 is 2
When the pressure is less than 9.4 MPa, the insulating film 7 is adhered.
Then, when bonding the second organic adhesive layer 8,
Since the rigidity of the mechanical adhesive layer 6 is low, the second organic adhesive
It is difficult to suppress the variation of the thickness R of the agent layer 8,
As a result, from the conductive base member 10 to the electrostatic attraction electrode 4
Because the variation in the distance of
If the Young's modulus of the adhesive layer 6 exceeds 100 GPa,
When the insulating film 7 is bonded to the lamic plate 2,
The ceramic plate 2 changes due to the difference in thermal expansion between the two.
And the flatness of the insulating film 7 deteriorates.
You. By the way, the first characteristic having the above-mentioned characteristics is provided.
For the mechanical adhesive layer 6, an epoxy adhesive or the like may be used.
Can be. On the other hand, the wafer mounting stage 1 of the present invention
The second organic adhesive layer 8 comprises a conductive base member 10
For absorbing the difference in thermal expansion between the ceramic and the ceramic plate 2
The flatness of the mounting surface 3 changes even when a heat cycle is applied.
It is difficult to change and it is designed to prevent peeling,
For this purpose, the Young's modulus of the second organic adhesive layer 8 is set to 29.4.
MPa or less and the thickness R is 50 to 500.
It is good to be μm. That is, the Young's modulus of the second organic adhesive layer 8
Is 29.4 MPa or more, the wafer mounting stage 1
When the temperature changes, the flatness of the mounting surface 3 changes,
This is because peeling of the organic adhesive layer 8 occurs. The thickness R of the second organic adhesive layer 8 is
When the thickness is less than 50 μm, the conductive base member 10 and the ceramic
It is possible to sufficiently absorb the difference in thermal expansion between the
No, the ceramic plate 2 is deformed by the heat cycle
This changes the flatness of the mounting surface 3 and
The organic adhesive layer 8 is broken and partially peeled off,
This is because there is a possibility that the entire surface will be peeled off.
The thickness R of the second organic adhesive layer 8 exceeds 500 μm
Between the ceramic plate 2 and the conductive base member 10
The heat transfer coefficient decreases, and the temperature of the wafer W is immediately lowered.
Because of the inability to do so, for example,
In the etching process, an etching pattern is formed.
Of the remaining resist film, and after etching
Problems such as the inability to remove the resist film
Because. By the way, the second characteristic having the above-mentioned characteristics is provided.
Silicone adhesive, rubber-based adhesive
Agents and the like can be used. However, if the adhesive is a condensation type
In this case, curing proceeds by hydrolysis, but the wafer
Since page 1 has a large bonding area, hydrolysis reaches the center.
It is not performed and cannot be completely cured. like this
In such cases, it is preferable to use a thermosetting type as the adhesive.
It can be cured by heat over the entire surface of the adhesive surface.
Wear. By joining under these conditions, static
From the electrostatic chucking electrode 4 of the electric chuck portion 5 to the conductive base portion
The variation in the distance to the material 10 should be 100 μm or less.
And the electrostatic chuck 5 and the conductive base member 10
Can be joined with high accuracy. Note that, in the wafer mounting stage 1 of the present invention,
Is the thermal conductivity between the first and second organic adhesive layers 6, 8
In order to enhance the quality of the first or second organic adhesive layer 6, 8,
And fillers such as silicon carbide, alumina, aluminum nitride, etc.
Or the first and second organic adhesive layers 6, 8
To improve the viscosity and heat resistance of
Although fillers such as mosquito and carbon may be added,
If the amount of added is too large, the first and second organic
When the adhesive layers 6 and 8 are exposed to corrosive gas and volatilized,
Contains up to 1% by volume to cause tickle
Just do it. Next, manufacture of the wafer mounting stage 1 of the present invention.
The method will be described. First, to manufacture the electrostatic chuck section 5,
Prepare a ceramic plate 2 and lap the upper and lower surfaces
To form the mounting surface 3 on which the wafer W is mounted on the upper surface.
In both cases, the lower surface is finished to a flatness of 80 μm or less. here
The flatness of the lower surface of the ceramic plate 2 to 80 μm.
What is raised is the electrode 4 for electrostatic attraction and the conductive base member 10.
In order to reduce the variation in the distance to 100 μm or less.
You. Next, vapor deposition is performed on the lower surface of the ceramic plate 2.
Method, sputtering method, CVD method, plating method, etc.
A pair of semi-circular electrodes 4 for electrostatic adsorption as shown in FIG.
Is formed to manufacture the electrostatic chuck portion 5. The material of the electrode 4 for electrostatic adsorption is a ceramic.
Smaller than the volume resistivity of the material forming the
Any resistance value may be used. Ni, Ti, Al, Au, Ag,
Use of metals such as Cu, carbon or DLC
Can be. In addition, brazing or metallurgy using Mo or Ag
It may be formed by a size. However, the thickness Q of the electrostatic attraction electrode 4 is set to be equal to 0.
The thickness is preferably from 01 to 100 μm. That is, electrostatic absorption
If the thickness Q of the worn electrode 4 is less than 0.01 μm, the internal resistance
Is too large to be used as an electrode,
In addition, the thickness Q of the electrostatic attraction electrode 4 exceeds 100 μm.
And a first organic material interposed between the pair of electrostatic adsorption electrodes 4
Since defects such as bubbles easily occur in the system-based adhesive layer 6,
is there. In addition, the preferable thickness Q of the electrode 4 for electrostatic attraction is 0.1.
It is 1 μm to 10 μm. On the other hand, the conductive base member 10 is prepared,
The flatness of the joint surface with the electric chuck part 5 is set to 80 μm or less.
I will raise it. The reason for this is that the electrostatic chuck 5
In the distance from the electrode 4 for use to the conductive base member 10
This is to reduce the key length to 100 μm or less. Next, a first organic adhesive such as an epoxy adhesive is used.
Put the adhesive in a container, 15 minutes under reduced pressure of 2700Pa or less
After defoaming the adhesive by holding
The adhesive is dripped at the center of the ceramic plate 2 in a single character.
A 5 to 100 μm insulating film 7 is placed on the
The film 7 is gradually brought into close contact with the center. At this time, rubber
Apply adhesive from the center to the outer periphery of the insulating film 7 with a roller
It is only necessary to press down and make close contact. Next, a 20 m thick
m, an alumina platen with a flatness of 10 μm
With the shim on, apply for about 12 hours at a temperature of 100 ° C.
The adhesive is cured by heating and has a thickness of 5 to 50 μm.
m and the Young's modulus is 29.4 MPa to 100 GPa.
Bonding the insulating film 7 via the first organic adhesive layer 6
The flat surface of the insulating film 7 located on the electrostatic attraction electrode 4
The flatness is set to 100 μm or less. The insulating film 7 and the first organic
Use a transparent or translucent adhesive layer 6
Preferably, a transparent or translucent material is used.
Of the air bubbles remaining in the first organic adhesive layer 6
The presence or absence can be checked to prevent insulation failure effectively.
Can be Thereafter, the bonding surface of the conductive base member 10
Screen with a second organic adhesive such as silicone adhesive
After printing, the electrostatic chuck part on which the insulating film 7 is attached
5 on the mounting surface 3 of the electrostatic chuck portion 5 and a thickness of 20 m.
m, a flat plate made of alumina with a flatness of 10 μm
In a vacuum of 2700 Pa or less with weights stacked
To remove the second organic adhesive by holding for 15 minutes or more.
After foaming, heat at 100 ° C for about 12 hours
By hardening the second adhesive, the thickness is 50 to
500 μm and Young's modulus is less than 29.4 MPa
FIG. 4 is a diagram showing a state in which the second organic adhesive layer 8 is used for bonding.
1 can be manufactured.
You. The embodiment of the present invention has been described above.
However, it is not limited to only the above-described embodiment,
Can be improved or changed without departing from the gist of the present invention
Needless to say. (Embodiment 1) A wafer mounting stage shown in FIG.
Electrostatic adsorption when the thickness T of the insulating film 7 is varied
In the distance from the electrode 4 for use to the conductive base member 10
G, flatness of the mounting surface 3 at room temperature and during heating, and mounting during cooling
An experiment to check the temperature of the mounting surface 3 and the insulation of the joint
Was done. First, as a starting material, the main component
For mina powder, TiO Two : 6% by weight and MgO: 3% by weight
%, SiO Two : 2% by weight, CaO: 3% by weight
The mixed raw material powder is mixed and ground with a ball mill,
Slurry by adding indder, toluene, butyl acetate, etc.
After fabricating the
Green sheets, and laminate these green sheets.
Baked at 1600 ° C. for 2 hours in a reducing atmosphere
Ceramics made of alumina sintered body
After that, the outer diameter is 198mm with a diamond whetstone,
It was processed to a thickness of 1 mm to obtain a ceramic plate 2. Next, the upper surface of the ceramic plate 2 is
To form the mounting surface 3 of the wafer W
And the lower surface is also wrapped to achieve a flatness of 80 μm.
After that, the titanium shown in FIG.
The pair of electrostatic attraction electrodes 4 having a thickness Q of about 0.3 μm
Formed. Next, at a viscosity of 50 Pa · s,
Bonding with 12GPa elongation and 6% elongation
Put the agent in a container and reduce the pressure to 2700 Pa or less for 15 minutes or more.
The adhesive was defoamed by holding it up. Then
Is applied to the center of the lower surface of the ceramic plate 2 by one letter.
Made of polyimide with different thickness as shown in Table 1
Insulation with rubber roller after placing insulating film 7
The adhesive from the center of the conductive film 7 to the periphery
After pressing down and making close contact, thickness 20mm, flatness 10
Place a μm alumina platen on the insulating film 7 and further
In a 100 ° C oven with a weight
After heating the adhesive for half an hour to cure the adhesive,
Heat in an oven for 12 hours to cure the adhesive.
Only through the first organic adhesive layer 6 of 5 to 50 μm.
The edge film 7 was adhered. The position on the electrostatic attraction electrode 4 at this time is
The flatness of the insulating film 7 to be placed was measured. Next, a conductive base member made of aluminum
After setting the flatness on the bonding surface of No. 10 to 80 μm or less,
The adhesive surface has a viscosity of 1300 Pa · s
Of a thermosetting silicone adhesive with a
After printing, the electrostatic chuck provided with the insulating film 7
On the mounting surface 3 of the electrostatic chuck portion 5,
Place an alumina platen of 0 mm and flatness of 10 μm,
With a flat weight placed on the
Degas the adhesive by holding it in the air for at least 15 minutes.
Was. Then, heat it in an oven at a temperature of 100 ° C for 12 hours.
The thickness R is 350 μm by curing the adhesive
With an insulating film 7 via a certain second organic adhesive layer 8
Wafer as sample by bonding to conductive base member 10
The mounting stage 1 was manufactured. Then, the wafer mounting stage 1
Distance from electrostatic attraction electrode 4 to conductive base member 10
And the flatness of the mounting surface 3 were measured. In measuring the flatness of the mounting surface 3,
Is measured with a Kyocera flatness meter Nanoway.
In addition, conductive from the electrostatic attraction electrode 4 of the wafer mounting stage 1
The variation in the distance to the conductive base member 10 is shown in FIG.
As shown in FIG.
Cut in two directions of degree, 4 outside diameter measurement points, and intermediate measurement
A total of eight electrostatic adsorption electrodes 4 at four points
The distance to the base member 10 is measured with a tool microscope, and
The smallest difference was measured as variation. The mounting surface 3 of the wafer mounting stage 1
500W infrared lamp placed 50cm away
When the mounting surface 3 is heated to 50 ° C.
The flatness of the mounting surface 3 was measured. Further, the mounting surface 3 of the wafer mounting stage 1
For 5 hours to bring the temperature of the mounting surface 3 to 70 ° C.
Water at a temperature of 20 ° C. is supplied to the cooling passage 11 of the conductive base member 10.
Water is passed at a rate of 6 liters / minute, and the temperature of the
The temperature was measured with a surface thermometer, and the cooling characteristics were examined. Next, the electrostatic force is applied to the wafer mounting stage 1.
Assuming that plasma is generated, the conductive base member 1
0 and a voltage of 5 kV between the electrostatic attraction electrode 4
An experiment for investigating the insulating properties was performed. The results are as shown in Table 1. [Table 1] As can be seen from Table 1, the insulating film 7
Sample No. having a thickness T of 3 μm. 1 is a conductive base part
A voltage of 5 kV was applied between the material 10 and the electrostatic attraction electrode 4
However, the insulating film 7 was damaged. When the thickness T of the insulating film 7 is 120
In Sample No. 7 having a thickness of μm, the temperature of the mounting surface 3 during cooling was
As large as 38.9 ° C., there was a problem with the cooling rate. On the other hand, the thickness T of the insulating film 7 is
Sample Nos. 2 to 6 in the range of 5 to 100 μm
The distance between the attraction electrode 4 and the conductive base member 10
The roughness can be suppressed to 70 μm or less, and as a result,
The flatness of the mounting surface 3 could be reduced to 12 μm or less. The flatness of the mounting surface 3 after the heating is checked.
With large deformation, it is only 24 μm, which is about twice as large.
Thermal expansion between the lamic plate 2 and the conductive base member 10
It can be seen that the stress due to the tension difference can be effectively absorbed. Only
Also, when cooling after heating, the temperature of the mounting surface 3 should be 35 ° C or less.
The electrostatic chuck 5 and the conductive base.
Excellent heat transfer characteristics with the base member 10, and
5 kV between the conductive base member 10 and the electrostatic chucking electrode 4
Even if the voltage is applied, the insulating film 7 is not damaged,
Insulation was able to be maintained. (Example 2) Next, the thickness T of the insulating film 7 was set to 25 μm.
m and change the pressure to put on the first organic adhesive
Except that the thickness S of the first organic adhesive layer 6 is changed
Wafer mounting stage manufactured under the same conditions as in Example 1.
1 and the conductive base member 10 from the electrode 4 for electrostatic attraction.
Of the mounting surface 3 at room temperature and during heating
The flatness and the temperature of the mounting surface 3 during cooling are the same as in the first embodiment.
When measuring under the conditions and further applying a thermal cycle
An experiment was conducted to check for the presence or absence of peeling at the joints of. It should be noted that the joint was peeled off when subjected to a heat cycle.
For the presence / absence of separation, the wafer mounting stage 1
Heating and cooling are repeated at a rate of 1 ° C./min, and
A cooling cycle of 0 ° C. was applied. And every 50 cycles
First and second organic adhesive layers 6, 8 for ultrasonic testing
More observation was made to confirm the presence or absence of peeling. The results are as shown in Table 2. [Table 2] As can be seen from Table 2, the first organic adhesive
Sample No. 3 in which the thickness T of the agent layer 6 was 3 μm. 21 is the thickness
Air bubbles enter the first organic adhesive layer 6 because T is thin.
It is easy to repeat the thermal cycle due to this bubble,
The first organic adhesive layer 6 was peeled off in 0 cycles. The thickness T of the first organic adhesive layer 8 is
Sample No. exceeding 100 μm. For 26 and 27, insulation
The flatness of the film 7 exceeds 100 μm, and as a result,
The conductive base member 10 is interposed via the second organic adhesive layer 8.
The wafer mounting stage 1 is peeled off even if it is bonded.
Could not be achieved. On the other hand, the thickness of the first organic adhesive layer 8
Sample No. T having only T in the range of 5 to 100 μm. 22-2
5 is from the electrode 4 for electrostatic attraction to the conductive base member 10
Can be suppressed to 70 μm or less,
As a result, the flatness of the mounting surface 3 should be 12 μm or less.
Was completed. The flatness of the mounting surface 3 after the heating is checked.
And large deformation, as small as 20 μm, ceramic
Due to the difference in thermal expansion between the plate 2 and the conductive base member 10,
It can be understood that the stress that can be effectively absorbed. And heating
During subsequent cooling, the temperature of the mounting surface 3 is cooled to 35 ° C or less.
The electrostatic chuck part 5 and the conductive base member
Excellent heat transfer characteristics were obtained when the ratio was 10 or less. Further, even if the heat cycle is repeated, the first
The organic adhesive layer 6 has been used for a long time
Could be used. (Example 3) Next, the thickness T of the insulating film 7 was set to 25 μm.
m and the thickness S of the first organic adhesive 6 is 5
5050 μm, and the second organic adhesive 8 is applied.
The thickness R of the second organic adhesive layer 8 by changing the pressure
C manufactured under the same conditions as in Example 2 except that they differ.
The same experiment as in Example 2 was performed using the EHA stage 1.
Was. The results are as shown in Table 3. [Table 3] As can be seen from Table 3, the second organic adhesive
The sample No. in which the thickness R of the agent layer 8 was 40 μm. 31 is
Thermal expansion between the lamic plate 2 and the conductive base member 10
Since the stress due to the tension difference cannot be relieved,
Of the mounting surface 3 was greatly deformed to 35 μm.
In addition, when a heat cycle is added, the first 50 cycles
Peeling of the second organic adhesive layer 8 occurred. The thickness R of the second organic adhesive layer 8 is
Sample No. exceeding 500 μm. 38 is the second organic system
Since the thickness of the adhesive layer 8 is large, the temperature of the mounting surface 3 after cooling is
As large as 41.9 ° C., there was a problem with the cooling rate. On the other hand, the thickness of the second organic adhesive layer 8
Sample No. R having a R of 50 to 500 μm. 32 ~
Reference numeral 37 denotes a portion extending from the electrostatic attraction electrode 4 to the conductive base member 10.
The variation in the distance at 70 μm or less
As a result, the flatness of the mounting surface 3 is set to 12 μm or less.
I was able to. The flatness of the mounting surface 3 after heating is checked.
And 26μm with large deformation, ceramic
Due to the difference in thermal expansion between the plate 2 and the conductive base member 10,
It can be understood that the stress that can be effectively absorbed. And heating
During subsequent cooling, the temperature of the mounting surface 3 is cooled to 35 ° C or less.
The electrostatic chuck part 5 and the conductive base member
Excellent heat transfer characteristics were obtained when the ratio was 10 or less. Further, even if the heat cycle is repeated, the second
Peeling is observed in the organic adhesive layer 8 for a long time.
Could be used. (Example 4) Next, the thickness T of the insulating film 7 was set to 25 μm.
m and the thickness S of the first organic adhesive layer 6
A second organic adhesive set within a range of 5 to 50 μm;
The thickness of the layer 8 is set in the range of 50 to 500 μm,
Example except that the Young's modulus of the organic adhesive layer 6 was changed.
Using wafer mounting stage 1 manufactured under the same conditions as
The same experiment as in Example 2 was performed. The results are as shown in Table 4. [Table 4] As can be seen from Table 4, the first organic adhesive
Sample No. 2 in which the Young's modulus of the layer 6 was less than 29.4 MPa.
Reference numeral 41 denotes a second organic system after bonding the insulating film 7.
When bonding the adhesive layer 8, the rigidity of the first organic adhesive layer 6
The second organic adhesive layer 8 has a thickness R
It is difficult to suppress the fluctuation, and as a result,
Variation in the distance from the pole 4 to the conductive base member 10
It was as large as 81 μm. The Young's modulus of the first organic adhesive layer 6
No. exceeds 100 GPa. 46 is ceramic
When the insulating film 7 is bonded to the plate 2,
Due to the difference in thermal expansion, the ceramic plate 2 is deformed,
The flatness of the edge film 7 exceeded 100 μm. The result
As a result, the conductive base member 10 is formed on the second organic adhesive layer 8.
Even when trying to join the wafer, the wafer mounting stage 1
I couldn't make it. On the other hand, the first organic adhesive layer 6
Testing rate is in the range of 29.4 MPa to 100 GPa.
Charge No. Reference numerals 42 to 45 denote a conductive base from the electrostatic attraction electrode 4.
Variation in the distance to the base member 10 is reduced to 70 μm or less.
As a result, the flatness of the mounting surface 3 is 12 μm.
m or less. The flatness of the mounting surface 3 after heating is checked.
And 26μm with large deformation, ceramic
Due to the difference in thermal expansion between the plate 2 and the conductive base member 10,
It can be seen that the effective stress can be effectively absorbed. And heating
During subsequent cooling, the temperature of the mounting surface 3 is cooled to 35 ° C or less.
The electrostatic chuck part 5 and the conductive base member
Excellent heat transfer characteristics were obtained when the ratio was 10 or less. Further, even if the heat cycle is repeated, the second
The organic adhesive layer 8 is used for a long time without peeling.
I was able to. (Example 5) Next, the thickness T of the insulating film 7 was set to 25 μm.
m and the Young's modulus of the first organic adhesive layer 6
Is 12 GPa, and the thickness S of the first organic adhesive layer 6 is
A second organic adhesive set within a range of 5 to 50 μm;
The thickness of the layer 8 is set in the range of 50 to 500 μm, and the second
Example except that the Young's modulus of the organic adhesive layer 8 was changed.
Using wafer mounting stage 1 manufactured under the same conditions as
The same experiment as in Example 2 was performed. The results are as shown in Table 5. [Table 5] As can be seen from Table 5, the second organic adhesive
Sample No. 8 in which the Young's modulus of the layer 8 exceeds 29.4 MPa 4
7, the ceramic plate 2 and the conductive base member 10
Stress due to the difference in thermal expansion between
And the flatness of the mounting surface 3 during heating was greatly deformed to 48 μm.
did. In addition, in the heat cycle test, 50 heat
The peeling of the second organic adhesive layer 8 occurs due to the cycle.
Was. On the other hand, the second organic adhesive layer 8
No. 2 having a modulus of 29.4 MPa or less. 48-5
0 is from the electrode 4 for electrostatic attraction to the conductive base member 10
Can be suppressed to 70 μm or less,
As a result, the flatness of the mounting surface 3 should be 12 μm or less.
Was completed. The flatness of the mounting surface 3 after heating is checked.
And large deformation, as small as 20 μm, ceramic
Due to the difference in thermal expansion between the plate 2 and the conductive base member 10,
It can be seen that the effective stress can be effectively absorbed. And heating
During subsequent cooling, the temperature of the mounting surface 3 is cooled to 35 ° C or less.
The electrostatic chuck part 5 and the conductive base member
Excellent heat transfer characteristics were obtained when the ratio was 10 or less. Further, even if the heat cycle is repeated, the second
Peeling is observed in the organic adhesive layer 8 for a long time.
Could be used. The thickness of the second organic adhesive layer 8 is
After the wafer mounting stage 1 is evaluated, the wafer mounting stage
Cut at a cross section passing through the center of the second organic adhesive layer 8
10 mm from the center and the outer periphery of the second organic adhesive layer 8.
The thickness was measured at five positions. The thickness of the first organic adhesive layer 7 is
The center of the ceramic plate 2 and the first organic adhesive layer 7
Were measured at five locations 10 mm from the outer circumference of the sample.
The whole plate-shaped ceramic body to which the above-mentioned insulating film 7 is bonded
From the thickness, the thickness of the ceramic plate and the insulating film 7
It was determined by subtracting the thickness of a certain polyimide sheet. As described above, according to the present invention, the ceramic
One main surface of the backing plate is used as the mounting surface on which the
And an electrostatic chuck having an electrostatic chucking electrode on the other main surface
Part and the other main surface side of the ceramic plate body
The wafer mounting stage consisting of the conductive base member
And the other main surface of the ceramic plate is
5 to 50 μm thick so as to cover the adsorption electrode
First rate of 29.4 MPa to 100 GPa
Insulating film having a thickness of 5 to 100 μm via a mechanical adhesive layer.
Glue the film and insulate it on the electrostatic attraction electrode
The flatness of the conductive film to 100 μm or less,
The insulating film and the conductive base member have a thickness of 50
500500 μm and Young's modulus is less than 29.4 MPa
By adhering via a certain second organic adhesive layer,
Without generating particles and electrostatic chuck
To maintain sufficient insulation between the part and the conductive base member
Can be. Further, the electrostatic chuck portion is formed of a conductive base member.
Can be joined with high accuracy
Even if the cycle acts, the peeling of the bonding layer does not occur,
The wafer placed on the mounting surface can be held accurately.
You.

【図面の簡単な説明】 【図1】本発明のウエハ載置ステージを備える半導体製
造装置を示す概略断面図である。 【図2】本発明のウエハ載置ステージの要部を説明する
ための断面図である。 【図3】本発明のウエハ載置ステージに備える静電吸着
用電極を示す平面図である。 【図4】実験において、ウエハ載置ステージにおける載
置面の温度を測定するための測定点を示す平面図であ
る。 【図5】従来のウエハ載置ステージを備える半導体製造
装置を示す概略断面図である。 【図6】従来のウエハ載置ステージの一例を示す断面図
である。 【図7】従来のウエハ載置ステージの他の例を示す断面
図である。 【符号の説明】 1:ウエハ載置ステージ 2:セラミック板状体 3:載置面 4:静電吸着用電極 5:静電チャック部 6:第一の有機系接着剤層 7:絶縁性フィルム 8:第二の有機系接着剤層 9:リード線 10:導電性ベース部材 11:冷却通路 12:貫通孔 13:リフトピン挿入穴 20:真空処理室 21:対向電極 22:Oリング 23:高周波電源 24:直流電源 25:保護リング 26:リフトピン W:ウエハ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view showing a semiconductor manufacturing apparatus including a wafer mounting stage according to the present invention. FIG. 2 is a cross-sectional view illustrating a main part of a wafer mounting stage according to the present invention. FIG. 3 is a plan view showing an electrostatic attraction electrode provided on the wafer mounting stage of the present invention. FIG. 4 is a plan view showing measurement points for measuring a temperature of a mounting surface on a wafer mounting stage in an experiment. FIG. 5 is a schematic sectional view showing a semiconductor manufacturing apparatus provided with a conventional wafer mounting stage. FIG. 6 is a cross-sectional view illustrating an example of a conventional wafer mounting stage. FIG. 7 is a cross-sectional view showing another example of a conventional wafer mounting stage. [Description of Signs] 1: Wafer mounting stage 2: Ceramic plate 3: Mounting surface 4: Electrostatic chuck electrode 5: Electrostatic chuck 6: First organic adhesive layer 7: Insulating film 8: Second organic adhesive layer 9: Lead wire 10: Conductive base member 11: Cooling passage 12: Through hole 13: Lift pin insertion hole 20: Vacuum processing chamber 21: Counter electrode 22: O-ring 23: High frequency power supply 24: DC power supply 25: Protection ring 26: Lift pin W: Wafer

Claims (1)

【特許請求の範囲】 【請求項1】セラミック板状体の一方の主面を、ウエハ
を載せる載置面とし、他方の主面に静電吸着用電極を備
えた静電チャック部と、上記セラミック板状体の他方の
主面側に接合された導電性ベース部材とからなるウエハ
載置ステージにおいて、上記セラミック板状体の他方の
主面に、上記静電吸着用電極を覆うように厚みが5〜5
0μmで、かつヤング率が29.4MPa〜100GP
aである第一の有機系接着剤層を介して厚みが5〜10
0μmの絶縁性フィルムを接着し、上記静電吸着用電極
上に位置する絶縁性フィルムの平面度を100μm以下
とするとともに、上記絶縁性フィルムと導電性ベース部
材とを厚みが50〜500μmで、かつヤング率が2
9.4MPa未満である第二の有機系接着剤層を介して
接着したことを特徴とするウエハ載置ステージ。
Claims: 1. An electrostatic chuck portion having one main surface of a ceramic plate as a mounting surface on which a wafer is mounted, and an electrostatic chuck electrode on the other main surface; In a wafer mounting stage comprising a conductive base member joined to the other main surface of the ceramic plate, the other main surface of the ceramic plate has a thickness so as to cover the electrode for electrostatic attraction. Is 5-5
0 μm and Young's modulus of 29.4 MPa to 100 GP
a through the first organic adhesive layer which is a
A 0 μm insulating film is adhered, and the flatness of the insulating film located on the electrostatic adsorption electrode is set to 100 μm or less, and the thickness of the insulating film and the conductive base member is 50 to 500 μm, And the Young's modulus is 2
A wafer mounting stage bonded via a second organic adhesive layer having a pressure of less than 9.4 MPa.
JP2001333583A 2001-10-31 2001-10-31 Wafer mounting stage Expired - Fee Related JP3978011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001333583A JP3978011B2 (en) 2001-10-31 2001-10-31 Wafer mounting stage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001333583A JP3978011B2 (en) 2001-10-31 2001-10-31 Wafer mounting stage

Publications (2)

Publication Number Publication Date
JP2003142567A true JP2003142567A (en) 2003-05-16
JP3978011B2 JP3978011B2 (en) 2007-09-19

Family

ID=19148822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001333583A Expired - Fee Related JP3978011B2 (en) 2001-10-31 2001-10-31 Wafer mounting stage

Country Status (1)

Country Link
JP (1) JP3978011B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129498A (en) * 2010-12-16 2012-07-05 Applied Materials Inc High efficiency electrostatic chuck assembly for semiconductor wafer processing
JP2014078731A (en) * 2010-01-29 2014-05-01 Sumitomo Osaka Cement Co Ltd Electrostatic chuck device
JP2014138164A (en) * 2013-01-18 2014-07-28 Sumitomo Osaka Cement Co Ltd Electrostatic chuck device
US20160027621A1 (en) * 2014-07-28 2016-01-28 Hitachi High-Technologies Corporation Plasma processing apparatus and sample stage fabricating method
US9343346B2 (en) 2010-01-29 2016-05-17 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck apparatus
US10037910B2 (en) 2014-09-04 2018-07-31 Ngk Insulators, Ltd. Wafer holder and method for manufacturing the same
JP2018181866A (en) * 2017-04-03 2018-11-15 日本特殊陶業株式会社 Manufacturing method of holding apparatus
JP6704100B1 (en) * 2019-09-03 2020-06-03 キヤノンアネルバ株式会社 X-ray generator and X-ray imaging device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6172301B2 (en) * 2014-11-20 2017-08-02 住友大阪セメント株式会社 Electrostatic chuck device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096832U (en) * 1983-12-08 1985-07-02 東芝機械株式会社 electrostatic chuck
JPH05347352A (en) * 1992-06-15 1993-12-27 Tokyo Electron Ltd Electrostatic chuck device and manufacture thereof
JPH10144778A (en) * 1996-11-13 1998-05-29 Kobe Steel Ltd Electrostatic chuck

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096832U (en) * 1983-12-08 1985-07-02 東芝機械株式会社 electrostatic chuck
JPH05347352A (en) * 1992-06-15 1993-12-27 Tokyo Electron Ltd Electrostatic chuck device and manufacture thereof
JPH10144778A (en) * 1996-11-13 1998-05-29 Kobe Steel Ltd Electrostatic chuck

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014078731A (en) * 2010-01-29 2014-05-01 Sumitomo Osaka Cement Co Ltd Electrostatic chuck device
US9343346B2 (en) 2010-01-29 2016-05-17 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck apparatus
JP2012129498A (en) * 2010-12-16 2012-07-05 Applied Materials Inc High efficiency electrostatic chuck assembly for semiconductor wafer processing
TWI463597B (en) * 2010-12-16 2014-12-01 Applied Materials Inc High efficiency electrostatic chuck assembly for semiconductor wafer processing
KR101790265B1 (en) * 2010-12-16 2017-10-26 어플라이드 머티어리얼스, 인코포레이티드 High efficiency electrostatic chuck assembly for semiconductor wafer processing
JP2014138164A (en) * 2013-01-18 2014-07-28 Sumitomo Osaka Cement Co Ltd Electrostatic chuck device
US20160027621A1 (en) * 2014-07-28 2016-01-28 Hitachi High-Technologies Corporation Plasma processing apparatus and sample stage fabricating method
JP2016031956A (en) * 2014-07-28 2016-03-07 株式会社日立ハイテクノロジーズ Plasma processing device
US10037910B2 (en) 2014-09-04 2018-07-31 Ngk Insulators, Ltd. Wafer holder and method for manufacturing the same
JP2018181866A (en) * 2017-04-03 2018-11-15 日本特殊陶業株式会社 Manufacturing method of holding apparatus
JP6704100B1 (en) * 2019-09-03 2020-06-03 キヤノンアネルバ株式会社 X-ray generator and X-ray imaging device
WO2021044525A1 (en) * 2019-09-03 2021-03-11 キヤノンアネルバ株式会社 X-ray generator and x-ray imaging device
US11140763B2 (en) 2019-09-03 2021-10-05 Canon Anelva Corporation X-ray generation apparatus and X-ray imaging apparatus
TWI746143B (en) * 2019-09-03 2021-11-11 日商佳能安內華股份有限公司 X-ray generating device and X-ray photographing device
CN114303222A (en) * 2019-09-03 2022-04-08 佳能安内华股份有限公司 X-ray generating device and X-ray imaging device
CN114303222B (en) * 2019-09-03 2022-07-08 佳能安内华股份有限公司 X-ray generating device and X-ray imaging device

Also Published As

Publication number Publication date
JP3978011B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
EP3537472B1 (en) Method for transferring device layer to transfer substrate
JP4942471B2 (en) Susceptor and wafer processing method using the same
KR100681253B1 (en) Support member for wafer
US6272002B1 (en) Electrostatic holding apparatus and method of producing the same
JP2003224180A (en) Wafer support member
JP3485390B2 (en) Electrostatic chuck
JP6627936B1 (en) Electrostatic chuck device and method of manufacturing electrostatic chuck device
JP2003152057A (en) Susceptor with built-in electrode for generating plasma and method of manufacturing the same
WO2016158110A1 (en) Electrostatic chuck device
JP6228031B2 (en) Sample holder and plasma etching apparatus using the same
TWI836170B (en) Ceramic joint body, electrostatic chuck device, and method for manufacturing ceramic joint body
JP2018026427A (en) Substrate fixing device and manufacturing method of the same
TWI709189B (en) Electrostatic chuck device
JP3271352B2 (en) Electrostatic chuck, method of manufacturing the same, substrate processing apparatus, and substrate transfer apparatus
JP5011736B2 (en) Electrostatic chuck device
WO2020066237A1 (en) Electrostatic chuck device
JP2006278971A (en) Method for manufacturing laminated wafer and wafer holding tool used for it
JP2003142567A (en) Wafer mounting stage
TW202218038A (en) Ceramic assembly, electrostatic chuck device, and method for manufacturing ceramic assembly
JP2003258065A (en) Wafer-mounting stage
JP2001308165A (en) Susceptor and its manufacturing method
JP5343802B2 (en) Electrostatic chuck device
JP3979694B2 (en) Electrostatic chuck device and manufacturing method thereof
JP2008244149A (en) Electrostatic chuck and manufacturing method thereof
KR20100090561A (en) Electrostatic chuck having junction structure between different materals and fabrication method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees