JP2003142306A - Rare-earth magnet and manufacturing method therefor - Google Patents

Rare-earth magnet and manufacturing method therefor

Info

Publication number
JP2003142306A
JP2003142306A JP2001336456A JP2001336456A JP2003142306A JP 2003142306 A JP2003142306 A JP 2003142306A JP 2001336456 A JP2001336456 A JP 2001336456A JP 2001336456 A JP2001336456 A JP 2001336456A JP 2003142306 A JP2003142306 A JP 2003142306A
Authority
JP
Japan
Prior art keywords
phase
rare earth
earth magnet
compound crystal
magnet according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001336456A
Other languages
Japanese (ja)
Inventor
Toshio Umemura
敏夫 梅村
Takeshi Araki
健 荒木
Hiroyuki Teramoto
浩行 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001336456A priority Critical patent/JP2003142306A/en
Publication of JP2003142306A publication Critical patent/JP2003142306A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rare-earth magnet that is superior in magnetization factor and will not deteriorate in sinterability, and to provide a method of manufacturing the magnet. SOLUTION: The rare-earth magnet contains a compound crystalline phase containing at least one kind of element selected from among Cr, Mn, Fe, and Ni and B and/or P as main components in the crystal grain boundary of a sintered material, containing an R2 T14 B1 phase (where R, T, and B respectively denote rare-earth elements of Nd, Pr, Dy and Tb, transition elements of Fe and Co, and boron) as the main phase. Consequently, this rare-earth magnet is improved in magnetization factor and will not deteriorate in sinterablity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、電気・電子機器
内のモーター用等に用いる着磁性に優れた永久磁石とそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet excellent in magnetizability used for a motor in electric / electronic devices and a method for manufacturing the same.

【0002】[0002]

【従来の技術】Nd、Fe、Bを主成分とし主相が正方
晶からなる希土類磁石は大きなエネルギー積を有する故
にモーターの高性能化、小型化のために利用が急増して
いる。しかし、保磁力の向上により高い着磁磁場が必要
となっているが、渦電流による反磁界により着磁し難く
これを改善することが課題であり、これを解決するため
に以下のような技術が有る。
2. Description of the Related Art Rare earth magnets containing Nd, Fe and B as main components and having a tetragonal main phase have a large energy product, and therefore, their use is rapidly increasing for high performance and miniaturization of motors. However, a high magnetizing magnetic field is required due to the improvement of coercive force, but it is difficult to magnetize due to the demagnetizing field due to the eddy current, and it is a problem to solve this. There is.

【0003】すなわち、高抵抗化により渦電流の発生を
抑制することを目的とし、例えば、特開2000−82
610号公報では、磁石合金組織の結晶粒界に希土類酸
化物を含有、高比抵抗化した磁石合金が開示されてい
る。さらには、含有量を磁化方向に勾配を持たせる(表
面を高比抵抗とする)技術が開示されている。製造方法
においては、酸化物は0.5重量%以上、0.05〜4
μmの粒径で混合することが開示されている。また、特
開平09−186010号公報では、Nd2Fe1 41
を主相とする焼結材粒界に化合物結晶粒を介在させ高比
抵抗とすることが提案されている。
That is, for the purpose of suppressing the generation of eddy current by increasing the resistance, for example, Japanese Patent Laid-Open No. 2000-82.
Japanese Patent No. 610 discloses a magnet alloy containing a rare earth oxide in a crystal grain boundary of a magnet alloy structure and having a high specific resistance. Further, a technique is disclosed in which the content has a gradient in the magnetization direction (the surface has a high specific resistance). In the manufacturing method, the oxide is 0.5% by weight or more, 0.05 to 4
Mixing with a particle size of μm is disclosed. Further, Japanese Patent Laid-Open No. 09-186010 proposes that a compound crystal grain intervenes in a grain boundary of a sintered material having an Nd 2 Fe 1 4 B 1 phase as a main phase to obtain high specific resistance.

【0004】[0004]

【発明が解決しようとする課題】現在、Nd、Fe、B
を主成分とした希土類磁石をモータ等へ応用するに当た
り、耐候性等を改善するための保磁力の向上が盛んに行
われている。一方、高い保磁力の磁石に対しては一般に
高い着磁磁界が必要となり、モータ等に配置された後に
狭い領域に高い磁界を発生させると、漏れ磁界が近傍の
磁石を不要に磁化させる不具合が有り、可能な限り低い
磁界でも着磁性の良好な磁石とする課題がある。
Presently, Nd, Fe, B
In applying rare earth magnets containing as a main component to motors and the like, coercive force has been actively improved to improve weather resistance and the like. On the other hand, a magnet having a high coercive force generally requires a high magnetizing magnetic field, and if a high magnetic field is generated in a narrow area after being placed in a motor or the like, there is a problem that a leakage magnetic field unnecessarily magnetizes nearby magnets. Yes, there is a problem of making a magnet having good magnetism even in a magnetic field as low as possible.

【0005】具体的には、着磁性を阻害しているパルス
磁界に対する渦電流の発生を抑制するために、磁石素材
自身の比抵抗を高くすることが必要である。この方法と
して、結晶粒界に希土類酸化物やフッ化物を含有する構
造が提案されているが、一般に、これらを多く粒界に含
有すると焼結性が低下する問題点がある。よって、高抵
抗化に際しての手段が焼結性を低下させないことも必要
である。
Specifically, it is necessary to increase the specific resistance of the magnet material itself in order to suppress the generation of eddy currents with respect to the pulsed magnetic field that inhibits the magnetization. As this method, a structure in which a crystal grain boundary contains a rare earth oxide or a fluoride has been proposed, but in general, when a large amount of these is contained in the grain boundary, there is a problem that sinterability decreases. Therefore, it is also necessary that the means for increasing the resistance does not reduce the sinterability.

【0006】本発明は上記のような問題点を解消するた
めになされたもので、着磁性良好で、且つ、焼結性が劣
ることがない希土類磁石及びその製造方法を提供するこ
とを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a rare earth magnet which has good magnetizability and is not inferior in sinterability, and a method for producing the same. To do.

【0007】[0007]

【課題と解決するための手段】本発明は、希土類元素R
(R=Nd、Pr、Dy、Tb)、遷移元素T(T=F
e、Co)及びボロン(B)を主成分とするR2141
相を主相とする焼結材の結晶粒界に、Cr、Mn、Fe
及びNiからなる群より選ばれる少なくとも一種の元素
と、B及び/又はPとを主成分とする化合物結晶相を含
有する希土類磁石である。
The present invention is directed to the rare earth element R
(R = Nd, Pr, Dy, Tb), transition element T (T = F
e, Co) and boron (B) as main components R 2 T 14 B 1
Cr, Mn, Fe at the crystal grain boundaries of the sintered material whose main phase is
And a rare-earth magnet containing a compound crystal phase containing B and / or P as main components, and at least one element selected from the group consisting of Ni and Ni.

【0008】化合物結晶相は、Ni3Cr26相、Ni1
Cr36相、Cr22Mn2550相、FeCrB相、B2
Cr5P相、Cr25Mn2550相、Cr21Mn21
58相、Fe 3Ni206相、FeMnP相、Fe10Mn40
50相、Fe20Mn4733相、Fe 33Ni3334相、F
38Ni3824相、CrFeP相、CrNiP相、Cr
12Ni71相、Cr4Ni34相、Cr10Mn40
50相、Cr32Mn3236相であることが好ましい。
The compound crystal phase is Ni3Cr2B6Phase, Ni1
Cr3B6Phase, Crtwenty twoMntwenty fiveB50Phase, FeCrB phase, B2
CrFiveP phase, Crtwenty fiveMntwenty fiveB50Phase, Crtwenty oneMntwenty oneB
58Phase, Fe 3Ni20B6Phase, FeMnP phase, FeTenMn40
P50Phase, Fe20Mn47P33Phase, Fe 33Ni33P34Phase, F
e38Ni38Ptwenty fourPhase, CrFeP phase, CrNiP phase, Cr
12Ni7P1Phase, CrFourNi3PFourPhase, CrTenMn40P
50Phase, Cr32Mn32P36It is preferably in phase.

【0009】また、本発明は、(i)希土類元素(R=
Nd、Pr、Dy、Tb)、遷移元素(T=Fe、C
o)及びボロン(B)を主成分とするRTB合金粉に、
1重量%以上、6重量%未満の量の、(a)Cr、M
n、Fe及びNiからなる群から選ばれる少なくとも2
種の元素を主成分とする合金粉、又は、(b)Cr、M
n、Fe及びNiからなる群から選ばれる少なくとも2
種の元素と、B及び/又はPとを主成分とする合金粉、
を混合する工程、並びに(ii)得られた混合合金粉
を、粉砕し、成形し、焼結し、焼鈍する各工程からな
る、上記希土類磁石の製造方法を包含する。
The present invention also provides (i) a rare earth element (R =
Nd, Pr, Dy, Tb), transition elements (T = Fe, C
o) and RTB alloy powder containing boron (B) as a main component,
(A) Cr, M in an amount of 1% by weight or more and less than 6% by weight
at least 2 selected from the group consisting of n, Fe and Ni
Alloy powder mainly composed of seed elements, or (b) Cr, M
at least 2 selected from the group consisting of n, Fe and Ni
Alloy powder mainly composed of seed element and B and / or P,
And (ii) the obtained mixed alloy powder is crushed, shaped, sintered, and annealed.

【0010】(焼結材)本発明において、焼結材を構成
する希土類元素Rは、Nd、Pr、Dy及びTbからな
る群から選ばれる少なくとも一種の元素である。Rは、
通常一種をもって足りるが、二種以上であってもよい。
Rは焼結材の10〜30原子%を占めることが好まし
い。遷移元素Tは、Fe及び/又はCoである。Tは、
焼結材の65〜80原子%を占めることが好ましい。ボ
ロン(B)は2〜28原子%を占めることが好ましい。
焼結材には、上記3要素の他に、工業的生産上の不可避
的不純物を許容できる。焼結材は、所定のR−T−B系
合金を溶解し、鋳造後に粉砕する溶解粉砕法、Ca還元
にて直接粉末を得る直接還元拡散法、所定のR−T−B
系合金を溶解ジェットキャスターでリボン箔を得てこれ
を粉砕、焼鈍する急冷合金法などで製造することが出来
る。
(Sintered Material) In the present invention, the rare earth element R constituting the sintered material is at least one element selected from the group consisting of Nd, Pr, Dy and Tb. R is
Usually, one kind is sufficient, but two or more kinds may be used.
R preferably accounts for 10 to 30 atom% of the sintered material. The transition element T is Fe and / or Co. T is
It is preferable to occupy 65 to 80 atomic% of the sintered material. Boron (B) preferably accounts for 2 to 28 atomic%.
In addition to the above three elements, inevitable impurities in industrial production can be allowed in the sintered material. The sintered material is a melt-pulverization method in which a predetermined RTB-based alloy is melted and crushed after casting, a direct reduction diffusion method in which a powder is directly obtained by Ca reduction, and a predetermined RTB.
The system alloy can be manufactured by a quenching alloy method or the like in which a ribbon foil is obtained by a melt jet caster, and this is crushed and annealed.

【0011】(化合物結晶相)本発明において、化合物
結晶相は、Cr、Mn、Fe及びNiからなる群より選
ばれる少なくとも一種の元素と、B及び/又はPとを主
成分とする。化合物結晶相の含有量は、好ましくは焼結
材の1〜10重量%、さらに好ましくは1.5〜8重量
%である。化合物結晶相中のCrの含有量は、好ましく
は10〜80原子%、さらに好ましくは15〜70原子
%である。化合物結晶相中のMnの含有量は、好ましく
は10〜50原子%、さらに好ましくは15〜40原子
%である。化合物結晶相中のFeの含有量は、好ましく
は5〜50原子%、さらに好ましくは10〜45原子%
である。化合物結晶相中のNiの含有量は、好ましくは
5〜70原子%、さらに好ましくは10〜60原子%で
ある。化合物結晶相中のBの含有量は、好ましくは3〜
70原子%、さらに好ましくは5〜65原子%である。
化合物結晶相中のPの含有量は、好ましくは20〜70
原子%、さらに好ましくは25〜60原子%である。
(Compound Crystal Phase) In the present invention, the compound crystal phase contains at least one element selected from the group consisting of Cr, Mn, Fe and Ni and B and / or P as main components. The content of the compound crystal phase is preferably 1 to 10% by weight of the sintered material, and more preferably 1.5 to 8% by weight. The content of Cr in the compound crystal phase is preferably 10 to 80 atom%, more preferably 15 to 70 atom%. The content of Mn in the compound crystal phase is preferably 10 to 50 atom%, more preferably 15 to 40 atom%. The content of Fe in the compound crystal phase is preferably 5 to 50 atom%, more preferably 10 to 45 atom%.
Is. The Ni content in the compound crystal phase is preferably 5 to 70 atom%, more preferably 10 to 60 atom%. The content of B in the compound crystal phase is preferably 3 to
It is 70 atom%, and more preferably 5 to 65 atom%.
The content of P in the compound crystal phase is preferably 20 to 70.
Atomic%, more preferably 25 to 60 atomic%.

【0012】本発明における希土類磁石は、希土類元素
R(R=Nd、Pr、Dy、Tb)と遷移元素T(T=
Fe、Co)とボロン(B)を主成分とするR2141
相を主相とする焼結材の結晶粒界に、R2141相より
高い比抵抗を有する化合物相を含有する組織構造として
いるために、当該化合物相を含まない焼結材に比較して
高比抵抗とすることができる。また、化合物相は金属で
あり焼結材の焼結性に影響を与えない。
The rare earth magnet according to the present invention comprises a rare earth element R (R = Nd, Pr, Dy, Tb) and a transition element T (T = T).
R 2 T 14 B 1 containing Fe (Co) and boron (B) as main components
Since the crystal grain boundary of the sintered material whose main phase is the phase contains a compound phase having a higher specific resistance than the R 2 T 14 B 1 phase, the sintered material does not contain the compound phase. In comparison, a high specific resistance can be obtained. The compound phase is a metal and does not affect the sinterability of the sintered material.

【0013】本発明の希土類磁石の製造方法は、(i)
希土類元素(R=Nd、Pr、Dy、Tb)、遷移元素
(T=Fe、Co)及びボロン(B)を主成分とするR
TB合金粉に、1重量%以上、6重量%未満の量の、
(a)Cr、Mn、Fe及びNiからなる群から選ばれ
る少なくとも2種の元素を主成分とする合金粉、又は、
(b)Cr、Mn、Fe及びNiからなる群から選ばれ
る少なくとも2種の元素と、B及び/又はPとを主成分
とする合金粉を、混合する工程、並びに(ii)得られ
た混合合金粉を、粉砕し、成形し、焼結し、焼鈍する各
工程からなる。
The method for producing a rare earth magnet of the present invention comprises (i)
R containing a rare earth element (R = Nd, Pr, Dy, Tb), a transition element (T = Fe, Co), and boron (B) as main components
In the TB alloy powder, an amount of 1% by weight or more and less than 6% by weight,
(A) Alloy powder containing at least two elements selected from the group consisting of Cr, Mn, Fe, and Ni as a main component, or
(B) a step of mixing at least two kinds of elements selected from the group consisting of Cr, Mn, Fe and Ni, and an alloy powder containing B and / or P as a main component, and (ii) the obtained mixing The alloy powder is crushed, shaped, sintered, and annealed.

【0014】即ち、本発明の希土類磁石は、(a)RT
B合金粉と(Cr、Mn、Fe、Ni)−(B、P)合
金粉とを混合して焼結させることにより、R2141
晶粒界に(Cr、Mn、Fe、Ni)−(B、P)から
なる化合物相を含有する組織構造を得ることができる。
また、RTB合金粉中のBの含有量を調整し、(b)R
TB合金粉と(Cr、Mn、Fe、Ni)合金粉とを混
合して焼結させることにより製造することが出来る。
That is, the rare earth magnet of the present invention is (a) RT
The B alloy powder and the (Cr, Mn, Fe, Ni)-(B, P) alloy powder are mixed and sintered to form (Cr, Mn, Fe, Ni in the R 2 T 14 B 1 grain boundary. )-(B, P) It is possible to obtain a tissue structure containing a compound phase.
Further, by adjusting the content of B in the RTB alloy powder, (b) R
It can be manufactured by mixing TB alloy powder and (Cr, Mn, Fe, Ni) alloy powder and sintering.

【0015】(混合)RTB合金粉と、(a)Cr、M
n、Fe及びNiからなる群から選ばれる少なくとも2
種の元素を主成分とする合金粉、又は、(b)Cr、M
n、Fe及びNiからなる群から選ばれる少なくとも2
種の元素と、B及び/又はPとを主成分とする合金粉を
RTB合金粉(以下、混合原料合金粉)との混合は、通
常の方法、例えば、窒素ガスを吹き付けつつライカイ機
を用いて行なうことが出来る。 (粉砕)粉砕は、窒素ガスを用いたジェットミルにより
行なうことが出来る。粉砕後の平均粒子径は、好ましく
は10μm以下、さらに好ましくは0.1〜5μmであ
る。 (成形)成形は磁界中で行なうことが好ましい。印加磁
界は0.5〜1.5テスラの範囲が好ましい。成形圧は
0.5〜1.5トン/cm2の範囲が好ましい。
(Mixed) RTB alloy powder and (a) Cr, M
at least 2 selected from the group consisting of n, Fe and Ni
Alloy powder mainly composed of seed elements, or (b) Cr, M
at least 2 selected from the group consisting of n, Fe and Ni
The mixing of the alloy powder containing B and / or P as the main component with the RTB alloy powder (hereinafter, mixed raw material alloy powder) is carried out by a usual method, for example, using a likai machine while spraying nitrogen gas. Can be done. (Pulverization) The pulverization can be performed by a jet mill using nitrogen gas. The average particle size after pulverization is preferably 10 μm or less, more preferably 0.1 to 5 μm. (Molding) Molding is preferably performed in a magnetic field. The applied magnetic field is preferably in the range of 0.5 to 1.5 Tesla. The molding pressure is preferably in the range of 0.5 to 1.5 ton / cm 2 .

【0016】(焼結)焼結は、水素等の非酸化雰囲気中
で行なうことが好ましい。焼結温度は、900〜110
0℃の範囲が好ましい。焼結時間は1〜10時間であ
る。焼結の前に水分等を除去するために300℃程度で
1時間程度、予備加熱することが好ましい。
(Sintering) Sintering is preferably performed in a non-oxidizing atmosphere such as hydrogen. Sintering temperature is 900-110
The range of 0 ° C is preferred. The sintering time is 1 to 10 hours. Before sintering, it is preferable to preheat at about 300 ° C. for about 1 hour to remove water and the like.

【0017】(焼鈍)焼鈍温度は、500〜600℃の
範囲が好ましい。焼結時間は1〜10時間である。焼結
の後、80〜120℃/時間で徐冷した後、焼鈍するこ
とが好ましい。
(Annealing) The annealing temperature is preferably in the range of 500 to 600 ° C. The sintering time is 1 to 10 hours. After sintering, it is preferable to anneal after slowly cooling at 80 to 120 ° C./hour.

【0018】[0018]

【実施例】実施の形態1.以下に、試料調製のフローチ
ャートを示す。
[Embodiment] Embodiment 1. The flow chart of sample preparation is shown below.

【化1】 [Chemical 1]

【0019】(RTB合金粉の調製)RTB合金はN
d、Fe、Fe−Bの各金属合金を用いて、Nd:F
e:B=32.9:65.8:1.23(重量%)とな
るように秤量して、0.2気圧の減圧Ar雰囲気中にて
高周波溶解、追って水冷銅鋳型へ鋳造して調製した。R
TB合金粉としては、ジョークラッシャーを用いて粗粉
砕し1mm径以下とした。
(Preparation of RTB alloy powder) RTB alloy is N
Nd: F using each metal alloy of d, Fe, and Fe-B
e: B = 32.9: 65.8: 1.23 (wt%), weighed, and high-frequency melted in a reduced pressure Ar atmosphere of 0.2 atm, followed by casting into a water-cooled copper mold. did. R
The TB alloy powder was coarsely crushed using a jaw crusher to have a diameter of 1 mm or less.

【0020】(混合原料合金粉の調製)混合原料合金
は、Cr、Mn、Fe、NiおよびB、Pを表1に示し
た混合比になるように秤量し、上記のRTB合金と同様
な方法にて調製した。また、当該合金粉についても、上
記RTB合金粉を調製したと同様にジョークラッシャー
を用いて粗粉砕し1mm径以下とした。
(Preparation of mixed raw material alloy powder) For the mixed raw material alloy, Cr, Mn, Fe, Ni and B, P were weighed so as to have the mixing ratio shown in Table 1, and the same method as that for the RTB alloy was used. It was prepared in. In addition, the alloy powder was roughly crushed using a jaw crusher to have a diameter of 1 mm or less as in the case of preparing the RTB alloy powder.

【0021】[0021]

【表1】 [Table 1]

【0022】(混合)RTB合金粉および混合原料合金
粉の混合は、窒素ガスを吹き付けつつライカイ機を用い
て行った。 (粉砕)当該混合粉の微粉砕は、N2ガスによるジェッ
トミルを用いて行った。得られた粉砕粉の粒度はレーザ
粒度計により計測し、平均粒径10μm以下であった。 (成形)成形体の調製は、1テスラの横磁界中にて、成
形圧1.0トン/cm2にて行った。尚、成形体寸法は
φ15mm×l10mmである。 (焼結)成形体の焼結は水素雰囲気中にて1080℃
(保持時間1〜10時間)にて行った。尚、焼結前に水
分等を逃がすために300℃にて約1時間加熱した。焼
鈍は焼結後徐冷(100℃/時間)し、580℃にて1
〜20時間保持して行った。以上の手順にて、RTB合
金および混合原料合金を用いた試料を調製した。各試料
(S0〜S0103−8)の詳細(各試料に含まれる混
合原料合金(R0〜R0103))を表2に示した。
(Mixing) The RTB alloy powder and the mixed raw material alloy powder were mixed with each other by using a Reiki machine while blowing nitrogen gas. (Pulverization) The mixed powder was finely pulverized using a jet mill using N 2 gas. The particle size of the obtained pulverized powder was measured by a laser granulometer, and the average particle size was 10 μm or less. (Molding) A molded body was prepared in a transverse magnetic field of 1 Tesla at a molding pressure of 1.0 ton / cm 2 . Incidentally, the molded body dimensions are 15 mm × l 10 mm. (Sintering) The compact is sintered in a hydrogen atmosphere at 1080 ° C.
(Holding time 1 to 10 hours). In addition, before sintering, it was heated at 300 ° C. for about 1 hour in order to release water and the like. Annealing is slow cooling (100 ° C / hour) after sintering and 1 hour at 580 ° C.
Hold for ~ 20 hours. A sample using the RTB alloy and the mixed raw material alloy was prepared by the above procedure. Details of each sample (S0 to S0103-8) (mixed raw material alloy (R0 to R0103) contained in each sample) are shown in Table 2.

【0023】(バルク材の抵抗率測定)RTB合金およ
び混合原料合金(R1〜R0103)の抵抗率は4端子
法プローブを用いて計測し、RTB合金は12×10-8
Ωm、R1〜R0103の各合金の値は表1に示した。
表から判るように、RTB合金に比較してR1〜R01
03の各試料の抵抗率は高かった。同様に上記によりR
TB合金粉および混合原料合金粉を原料として作製した
試料S1−1〜S0103−8の各試料の抵抗率を表2
に示す。試料名S0で示したRTB合金に比較してS1
−1〜S0103−8の各試料の抵抗率は高い、特に混
合量が増すに従って抵抗率は上昇した。
(Measurement of resistivity of bulk material) The resistivity of the RTB alloy and the mixed raw material alloys (R1 to R0103) was measured using a 4-terminal probe, and the RTB alloy was 12 × 10 -8.
The values of Ωm and the alloys R1 to R0103 are shown in Table 1.
As can be seen from the table, R1 to R01 compared to RTB alloy
The resistivity of each of the 03 samples was high. Similarly, by the above, R
Table 2 shows the resistivity of each of the samples S1-1 to S0103-8 prepared by using the TB alloy powder and the mixed raw material alloy powder as raw materials.
Shown in. S1 compared to RTB alloy shown by sample name S0
The resistivity of each of the samples of -1 to S0103-8 was high, and in particular, the resistivity increased as the mixing amount increased.

【0024】[0024]

【表2】 [Table 2]

【0025】試料(S0〜S0103−8)の磁気特性
は、B−Hトレーサを用いて計測した。尚、特性計測試
料の寸法はφ10mm、l7mm(パーミアンス係数=
1)である。その結果として、Br、iHc、(BH)
maxを表2に示す。混合原料粉が入っていない試料S
0に比較して、混合された試料のBrおよびiHcは低
下する傾向を示す。特に、6%以上の混合では(BH)
maxが10%以上低下する。しかしながら、実用材料
としては、混合粉が数%以内で得られる特性が有れば充
分利用可能な磁気特性である。
The magnetic characteristics of the samples (S0 to S0103-8) were measured using a BH tracer. The dimensions of the characteristic measurement sample are φ10 mm, l 7 mm (permeance coefficient =
1). As a result, Br, iHc, (BH)
The max is shown in Table 2. Sample S containing no mixed raw material powder
Compared to 0, Br and iHc of the mixed sample tend to decrease. Especially, if the mixture is 6% or more (BH)
max decreases by 10% or more. However, as a practical material, it is a magnetic property that can be sufficiently utilized if it has a property that a mixed powder can be obtained within several percent.

【0026】着磁性の評価はパルス磁界(50Hz半
波、2テスラ)により着磁したのち表面磁束を計測して
評価を行った。結果を表2に示した。試料S0は、3テ
スラ以上のパルス磁界により、直流磁界にて着磁した残
留磁束量を100%とした時、95%以上の残留磁束量
が得られた。しかし、2テスラのパルス磁界では表2に
示したように88%の残留磁束量しか得ることが出来な
かった。一方、混合原料を含む試料の2テスラパルス着
磁時の残留磁束量は、表2に示したように、S0の値8
8%より高い値を示した。この着磁性の改善は、試料の
抵抗率が高くなった効果と考えられる。
The magnetism was evaluated by magnetizing it with a pulsed magnetic field (50 Hz half wave, 2 tesla) and then measuring the surface magnetic flux. The results are shown in Table 2. In the sample S0, a residual magnetic flux amount of 95% or more was obtained when the residual magnetic flux amount magnetized by the DC magnetic field was set to 100% by the pulse magnetic field of 3 Tesla or more. However, with a pulse magnetic field of 2 Tesla, as shown in Table 2, only 88% of the residual magnetic flux could be obtained. On the other hand, as shown in Table 2, the residual magnetic flux amount of the sample containing the mixed raw material at the time of 2 Tesla pulse magnetization was 8
A value higher than 8% was shown. This improvement in magnetizability is considered to be an effect of increasing the resistivity of the sample.

【0027】(試料の組織評価)材料組織の評価として
表面研磨しSEM観察を行った。その結果、平均粒径9
μmのNd2Fe14B結晶粒とともに粒界に異相(S
EMで明暗の差)が見られた。このため、EDXにて粒
界1μm径領域の組成の定量を行うとともに、XDによ
りX線回折計測評価を行った。その結果を表3に示す。
表に見られるように、結晶粒界に見られた組織は化合物
相であることが推察できた。
(Evaluation of Microstructure of Sample) As an evaluation of the material microstructure, the surface was polished and observed by SEM. As a result, the average particle size is 9
Along with the Nd2Fe14B crystal grains of μm, a different phase (S
The difference in brightness and darkness was observed by EM. Therefore, the composition of the grain boundary 1 μm diameter region was quantified by EDX, and X-ray diffraction measurement evaluation was performed by XD. The results are shown in Table 3.
As can be seen from the table, it can be inferred that the structure observed at the grain boundaries is the compound phase.

【0028】[0028]

【表3】 [Table 3]

【0029】実施の形態2.RTB合金のRとしてNd
とともにPr、Dy、Tbを入れたRTB合金を実施の
形態1と同様な製法にてRTB合金を調製した。尚、
R:Fe:B=32.9:65.8:1.23(重量
%)(R:Nd:Pr=10:1、Nd:Dy=10:
1、Nd:Tb=10:1)。Prを入れた試料の抵抗
率、磁気特性および着磁性は、それを入れない試料S1
と有為差は得られず、S0に比較して良好な着磁性の改
善が見られた。
Embodiment 2. Nd as R of RTB alloy
An RTB alloy containing Pr, Dy, and Tb was prepared by the same manufacturing method as in the first embodiment. still,
R: Fe: B = 32.9: 65.8: 1.23 (wt%) (R: Nd: Pr = 10: 1, Nd: Dy = 10:
1, Nd: Tb = 10: 1). The resistivity, magnetic characteristics and magnetizability of the sample containing Pr are as follows:
No significant difference was obtained, and a good improvement in magnetizability was observed as compared with S0.

【0030】実施の形態3. (RTB合金の調製)RTB合金はNd、Fe、Fe−
Bの各金属合金を用いて、Nd:Fe:B=33:6
5:1.5(重量%)となるように秤量して、0.2気
圧の減圧Ar雰囲気中にて高周波溶解、追って水冷銅鋳
型へ鋳造して作製した。RTB合金粉としては、ジョー
クラッシャーを用いて粗粉砕し1mm径以下とした。 (混合原料合金の調製)混合原料合金は、Cr:Ni=
3:1のNiCr合金粉(粒径5μm以下)とし、RT
B合金に対して2重量%を秤量した。 (混合)RTB合金粉および混合原料合金粉の混合は、
窒素ガスを吹き付けつつライカイ機を用いて行った。 (粉砕)当該混合粉の微粉砕はN2ガスによるジェット
ミルを用いて行った。得られた粉砕粉の粒度はレーザ粒
度計により計測し、平均粒径10μm以下であった。 (成形)成形体の調製は、1テスラの横磁界中にて、成
形圧1.0トン/cm2にて行った。尚、成形体寸法は
φ15mm×l10mmである。 (焼結)成形体の焼結は水素雰囲気中にて1080℃
(保持時間1〜10時間)にて行った。尚、焼結前に水
分等を逃がすために300℃にて約1時間加熱した。 (焼鈍)焼鈍は焼結後徐冷(100℃/時間)し、58
0℃にて1〜20時間保持して行った。 以上の手順にて、RTB合金およびNiCr合金を用い
た試料を調製した。
Embodiment 3. (Preparation of RTB alloy) RTB alloy is Nd, Fe, Fe-
Using each metal alloy of B, Nd: Fe: B = 33: 6
It was weighed so as to be 5: 1.5 (wt%), high-frequency melted in a reduced pressure Ar atmosphere of 0.2 atm, and subsequently cast in a water-cooled copper mold. The RTB alloy powder was coarsely crushed using a jaw crusher to have a diameter of 1 mm or less. (Preparation of mixed raw material alloy) The mixed raw material alloy is Cr: Ni =
3: 1 NiCr alloy powder (particle size 5 μm or less), RT
2% by weight of the B alloy was weighed. (Mixing) Mixing RTB alloy powder and mixed raw material alloy powder
It was performed by using a Raiki machine while blowing nitrogen gas. (Pulverization) The mixed powder was finely pulverized using a jet mill using N 2 gas. The particle size of the obtained pulverized powder was measured by a laser granulometer, and the average particle size was 10 μm or less. (Molding) A molded body was prepared in a transverse magnetic field of 1 Tesla at a molding pressure of 1.0 ton / cm 2 . Incidentally, the molded body dimensions are 15 mm × l 10 mm. (Sintering) The compact is sintered in a hydrogen atmosphere at 1080 ° C.
(Holding time 1 to 10 hours). In addition, before sintering, it was heated at 300 ° C. for about 1 hour in order to release water and the like. (Annealing) Annealing is gradually cooled (100 ° C./hour) after sintering,
It hold | maintained at 0 degreeC for 1 to 20 hours, and performed. Through the above procedure, samples using RTB alloy and NiCr alloy were prepared.

【0031】NiCr合金の抵抗率は圧粉体の焼結材を
4端子法にて測定し、室温にて152×10-8Ωmであ
った。また、RTB合金およびNiCr合金を用いた本
実施例の試料の抵抗率および2テスラパルスによる着磁
性は、各々、12.7×10 -8Ωm、90%であった。
更に、XD回折計測により、Nd2Fe14B相以外にB6
Cr2Ni3相からの回折線と考えられるピークが得られ
た。この結果から、RTB合金への混合原料は、Bを含
まない合金を用いても、RTB合金に含まれるBが混合
合金と反応して粒界に高抵抗相を生じさせると推論でき
た。このことは、Fe、Ni、Mnなど他の合金を用い
た場合にも可能であることが推測できた。
The resistivity of the NiCr alloy is the same as that of the green compact sintered material.
Measured by 4-terminal method, 152 × 10 at room temperature-8In Ωm
It was. Also, books using RTB alloys and NiCr alloys
Magnetization by resistivity and 2 tesla pulse of the sample of the example
Sex is 12.7 × 10 each -8Ωm was 90%.
Furthermore, by XD diffraction measurement, Nd2Fe14B other than B phase6
Cr2Ni3A peak that is thought to be a diffraction line from the phase was obtained
It was From this result, the mixed raw material for the RTB alloy contains B.
Mixed with RTB alloy
It can be inferred that it will react with the alloy to produce a high resistance phase at the grain boundaries.
It was This means that other alloys such as Fe, Ni, Mn are used.
It was conjectured that it would be possible if

【0032】[0032]

【発明の効果】本発明の希土類磁石は、高抵抗な化合物
相が粒界に配置された構造によりバルク材としての抵抗
率が増加し、着磁性が改善された。特に、抵抗率は化合
物相の基となる成分からなる合金を主相の基となる成分
からなる合金に混合する量を増やすほど高くなる。ま
た、本発明によれば、上記着磁性に優れた永久磁石の製
造方法が提供される。
In the rare earth magnet of the present invention, the structure in which the high resistance compound phase is arranged at the grain boundary increases the resistivity as a bulk material and improves the magnetizability. In particular, the resistivity becomes higher as the amount of the alloy containing the compound phase base component mixed with the alloy containing the main phase base component increases. Further, according to the present invention, there is provided a method for producing a permanent magnet having excellent magnetizability.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺本 浩行 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 4K018 AA27 AD12 BA11 BA18 BC08 KA46 5E040 AA04 AA19 CA01 HB17 NN01   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroyuki Teramoto             2-3 2-3 Marunouchi, Chiyoda-ku, Tokyo             Inside Ryo Electric Co., Ltd. F-term (reference) 4K018 AA27 AD12 BA11 BA18 BC08                       KA46                 5E040 AA04 AA19 CA01 HB17 NN01

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 希土類元素R(R=Nd、Pr、Dy、
Tb)、遷移元素T(T=Fe、Co)及びボロン
(B)を主成分とするR2141相を主相とする焼結材
の結晶粒界に、Cr、Mn、Fe及びNiからなる群よ
り選ばれる少なくとも一種の元素と、B及び/又はPと
を主成分とする化合物結晶相を含有する希土類磁石。
1. A rare earth element R (R = Nd, Pr, Dy,
Tb), a transition element T (T = Fe, Co), and boron (B) as main components, and Cr, Mn, Fe, and Cr in the grain boundaries of the sintered material containing the R 2 T 14 B 1 phase as the main phase. A rare earth magnet containing a compound crystal phase containing B and / or P as main components, and at least one element selected from the group consisting of Ni.
【請求項2】 化合物結晶相が、Ni3Cr26相及び
/又はNi1Cr36相であることを特徴とする請求項
1に記載の希土類磁石。
2. The rare earth magnet according to claim 1, wherein the compound crystal phase is a Ni 3 Cr 2 B 6 phase and / or a Ni 1 Cr 3 B 6 phase.
【請求項3】 化合物結晶相が、Cr22Mn2550相で
あることを特徴とする請求項1に記載の希土類磁石。
3. The rare earth magnet according to claim 1, wherein the compound crystal phase is a Cr 22 Mn 25 B 50 phase.
【請求項4】 化合物結晶相が、FeCrB相であるこ
とを特徴とする請求項1に記載の希土類磁石。
4. The rare earth magnet according to claim 1, wherein the compound crystal phase is an FeCrB phase.
【請求項5】 化合物結晶相が、B2Cr5P相であるこ
とを特徴とする請求項第1項記載の希土類磁石。
5. The rare earth magnet according to claim 1, wherein the compound crystal phase is a B 2 Cr 5 P phase.
【請求項6】 化合物結晶相が、Cr25Mn2550相及
び/又はCr21Mn 2158相であることを特徴とする請
求項1に記載の希土類磁石。
6. The compound crystal phase is Crtwenty fiveMntwenty fiveB50Influence
And / or Crtwenty oneMn twenty oneB58Contracts characterized by being in phase
The rare earth magnet according to claim 1.
【請求項7】 化合物結晶相が、Fe3Ni206相であ
ることを特徴とする請求項1に記載の希土類磁石。
7. The rare earth magnet according to claim 1, wherein the compound crystal phase is a Fe 3 Ni 20 B 6 phase.
【請求項8】 化合物結晶相が、FeMnP相及び/又
はFe10Mn4050相及び/又はFe20Mn4733相で
あることを特徴とする請求項1項に記載の希土類磁石。
8. The rare earth magnet according to claim 1, wherein the compound crystal phase is an FeMnP phase and / or an Fe 10 Mn 40 P 50 phase and / or an Fe 20 Mn 47 P 33 phase.
【請求項9】 化合物結晶相が、Fe33Ni3334相及
び/又はFe38Ni 3824相であることを特徴とする請
求項1に記載の希土類磁石。
9. The compound crystal phase is Fe33Ni33P34Influence
And / or Fe38Ni 38Ptwenty fourContracts characterized by being in phase
The rare earth magnet according to claim 1.
【請求項10】 化合物結晶相が、CrFeP相である
ことを特徴とする請求項1に記載の希土類磁石。
10. The rare earth magnet according to claim 1, wherein the compound crystal phase is a CrFeP phase.
【請求項11】 化合物結晶相が、CrNiP相及び/
又はCr12Ni71相及び/又はCr4Ni34相であ
ることを特徴とする請求項1に記載の希土類磁石。
11. The compound crystal phase is a CrNiP phase and / or
Alternatively, the rare earth magnet according to claim 1, wherein the rare earth magnet has a Cr 12 Ni 7 P 1 phase and / or a Cr 4 Ni 3 P 4 phase.
【請求項12】 化合物結晶相が、Cr10Mn4050
及び/又はCr32Mn3236相であることを特徴とする
請求項1に記載の希土類磁石。
12. The rare earth magnet according to claim 1, wherein the compound crystal phase is a Cr 10 Mn 40 P 50 phase and / or a Cr 32 Mn 32 P 36 phase.
【請求項13】 (i)希土類元素(R=Nd、Pr、
Dy、Tb)、遷移元素(T=Fe、Co)及びボロン
(B)を主成分とするRTB合金粉に、1重量%以上、
6重量%未満の量の、(a)Cr、Mn、Fe及びNi
からなる群から選ばれる少なくとも2種の元素を主成分
とする合金粉、又は、(b)Cr、Mn、Fe及びNi
からなる群から選ばれる少なくとも2種の元素と、B及
び/又はPとを主成分とする合金粉を、混合する工程、
並びに(ii)得られた混合合金粉を、粉砕し、成形
し、焼結し、焼鈍する各工程からなる、請求項1〜12
のいずれか一項に記載の希土類磁石の製造方法。
13. (i) Rare earth element (R = Nd, Pr,
Dy, Tb), transition elements (T = Fe, Co) and boron (B) as the main components in RTB alloy powder, 1% by weight or more,
(A) Cr, Mn, Fe and Ni in an amount less than 6% by weight
Alloy powder containing as a main component at least two elements selected from the group consisting of, or (b) Cr, Mn, Fe and Ni
A step of mixing at least two elements selected from the group consisting of, and an alloy powder containing B and / or P as a main component,
And (ii) crushing, molding, sintering, and annealing the obtained mixed alloy powder.
The method for producing the rare earth magnet according to any one of 1.
JP2001336456A 2001-11-01 2001-11-01 Rare-earth magnet and manufacturing method therefor Pending JP2003142306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001336456A JP2003142306A (en) 2001-11-01 2001-11-01 Rare-earth magnet and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001336456A JP2003142306A (en) 2001-11-01 2001-11-01 Rare-earth magnet and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2003142306A true JP2003142306A (en) 2003-05-16

Family

ID=19151279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001336456A Pending JP2003142306A (en) 2001-11-01 2001-11-01 Rare-earth magnet and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2003142306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11289249B2 (en) 2017-08-30 2022-03-29 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11289249B2 (en) 2017-08-30 2022-03-29 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle

Similar Documents

Publication Publication Date Title
TWI673729B (en) R-Fe-B based sintered magnet and manufacturing method thereof
JP4103938B1 (en) R-T-B sintered magnet
EP2650886B1 (en) Preparation method for high-corrosion resistant sintered ndfeb magnet
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
US8388766B2 (en) Anisotropic rare earth sintered magnet and making method
JP6411630B2 (en) Quenched alloy for rare earth magnet and method for producing rare earth magnet
JP6848735B2 (en) RTB series rare earth permanent magnet
JP2021516870A (en) Low B-containing R-Fe-B-based sintered magnet and manufacturing method
JP4371188B2 (en) High specific electric resistance rare earth magnet and method for manufacturing the same
CN102959648A (en) R-T-B based rare earth permanent magnet, motor, automobile, power generator and wind energy conversion system
JP2012015168A (en) R-t-b-based rare earth permanent magnet, motor, vehicle, generator and wind power generator
KR960008185B1 (en) Rare earth-iron system permanent magnet and process for producing the same
JP3121824B2 (en) Sintered permanent magnet
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
EP0362805B1 (en) Permanent magnet and method for producing the same
JP2794496B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JP2740981B2 (en) R-Fe-Co-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JP2610798B2 (en) Permanent magnet material
JPH04268050A (en) R-fe-b-c permanent magnet alloy reduced in irreversible demagnetization and excellent in heat stability
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP2003142306A (en) Rare-earth magnet and manufacturing method therefor
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JPH10130796A (en) Production of fine crystal permanent magnet alloy and isotropic permanent magnet powder
JP6811120B2 (en) Rare earth cobalt permanent magnet manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060221